a fresh look at the scission configuration fedir a. ivanyuk institut for nuclear research, kiev,...

34
A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle for liquid drop shapes Two point boundary problem, the relaxation method The scission configuration Mass-asymmetric shapes Applications: the barriers of heavy nuclei Summary and outlook

Upload: ethelbert-wilkins

Post on 19-Jan-2018

216 views

Category:

Documents


0 download

DESCRIPTION

Cassini ovaloids

TRANSCRIPT

Page 1: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

A FRESH LOOK AT THE SCISSION CONFIGURATION       Fedir A. Ivanyuk

Institut for Nuclear Research, Kiev, Ukraine

• Shape parameterisations• The variational principle for liquid drop

shapes• Two point boundary problem, the relaxation

method• The scission configuration• Mass-asymmetric shapes• Applications: the barriers of heavy nuclei• Summary and outlook

Page 2: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

The shape parameterisations

• Expansion around sphere in terms of spherical harmonics

• (Distorted) Cassinian ovaloids• Koonin-Trentalange parameterisation• (modified) Funny-Hills parameterisation• Two smoothly connected spheroids • The two center shell model

2 ( ) ( / )n n on

y z a P z z

Page 3: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Cassini ovaloids

Page 4: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

( ; ) (1 ( ))0R x R P xn nn

Page 5: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle
Page 6: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Parameteization of Moeller et al

Page 7: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

r

a2a1

r R=0.75 (1+ )0 d2/3 r

z =z1 2=0r r r

z

z2a1 a2

b1

b2

a1 | |z1 z2 a2

b2

|zmax1 | zmin

2

| |z1

E0

E

= /E0E

z

V V V

V0

b1

b1 b2

( )a ( )b ( )c

The two center shell model

J. Maruhn and W. Greiner, Z. Phys, 1972

Page 8: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

V.M.Strutinsky et al, Nucl. Phys. 46 (1963) 659

1 2 12

212

( ) profile fun

,

0

2

cti n

( )

oLD LD surf Coul

LD

E E y E y E y

E V Ry

R y z z

y y z

dzV

d d

2

1

2

1

2

1

2surf

22

Coul

22 2 2

2 ( ) 1 ( / )

1 ( )( ) ( , ( ))2

3 ( )( , ) ( ) ( ) ( ) ( , ) ( , )4

( , ) ( , ) elliptic integrals of first and se

z

z

z

LD Sz

z

S z

E y z dy dz dz

dy zE x y z z y z dzdz

dy zz y y z y z z z z F a b E a b dzdz

F a b E a b

cond type

Page 9: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

2 2 3/ 2

2 2 3/ 21 2

2 2

1 2

1 ( ) 10 ( ) (1 ( ) )

the fissility parameter, ( / ) /( / )( ) the Coulomb potential on the surface

1 ( ) 10 ( ) (1 ( )

( ) ( )

)

LD S

LD LD crit

S

S S

LD Syy y y z

yy y y z x z y

x x Z A Zz

z

x z y

A

z z

d

d

-2 -1 00,0

0,5

z / R0

y(z)

0,75

1,00

S(z)

Page 10: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Numerical results, V.M.Strutinsky et al, Nucl. Phys. 46 (1963) 659

0,0 0,5 1,0 1,50,0

0,1

0,2

0

(2)0

(1)

()

Page 11: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

The two point boundary value problem

n n

n n nk k-1 k k-1 k

In the one replaces the ordinary differential equations

dy /dx= g (x; y) with an algebraic equations relating function values at t

relaxation method

y - y = (x -

wo points k; k

x ) g [

- 1

(x

:

+(0)

k k k k k-1

k- k -

k

1 k 1

y = y y ; g(x; y) is expanded with respect to y , ywhat leads to the system of k-1 algebraic equations for ythe missing equation is given by bou

x )/2;

ndary conditionPress

(y

W

+ y )/2]

Numerical Recipes in F.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.

, Vol. 1, Cambridge University Preor sstr , an 77 1986

Page 12: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Optimal shapes

-2 -1 0 1 2

-1

0

1x

LD=0.75

y(z)

/ R

0

z / R0

2 2 3/21 21 ( ) 10 ( ) (1 ( ) )LD Syy y y z x z y

Page 13: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Deformation energy, (R12 )crit = 2.3 R0

Page 14: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

R.W.Hasse, W.D.Myers, Geometrical Relationships of Macroscopic Nuclear Physics:

Page 15: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

The scission point: the stiffness with respect to neck is sero

1.0 1.5 2.0 2.50.00

0.01

0.02

0.03

0.04

0.05

xLD

=0.75

Ede

f / E

(0) su

rf

R12

/ R0

U.Brosa, S.Grossmann and A.Muller, Phys. Rep. 197 (1990) 167—262.

Page 16: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Cassini ovaloids

1,0 1,5 2,0 2,5

-0,05

0,00

0,05

0,100.5

0.6

0.7

0.8

xLD

=0.9 "optimal" shapes Cassini ovaloids

E

def

R12

/ R0

Page 17: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

0.5 1.0 1.5 2.0 2.5

0.000

0.005

0.010

0.015

xLD

=0.75

Ede

fLD /

Esu

rf(0)

R12

/ R0

FH, B-minimization MFH, B-minimization "optimal" shapes

FH: M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky and C. Y. Wong, Rev. Mod. Phys. 44, 320 (1972).MFH: K. Pomorski and J. Bartel, Int. J. Mod. Phys. E 15, 417 (2006).

Page 18: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

0,75 1,00 1,25 1,50 1,75 2,00 2,25

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

n=8

n=6

n=4n=2

n=0 xLD=0.75

a n

R12

/ R0

20

20

S. Trentalange, S.E. Koonin, and A.J. Sierk, Phys. Rev. C 22 (1980) 1159

( ) ( / )n nn

y z R a P z z

Page 19: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

How unique are the „optimal“ shapes ?

1 2

2 2 2 3/21 2

2 2 3/2

2 2

1 2

3/2

2 21 2

1 2

1 1 1( ) average curvature2

[1 ( ) ], ( ) [1 ( ) ]

1 ( ) 2 ( )[1 ( ) ]

1 ( ) 10 ( ) [1 ( )

10 ( ) 2 ( )

( ) / 0

]

4 1

LD S

LD S

LD

z x z H

H zR R

R y y R y y

yy y

z

z y z

yH z y

yy y y z x z y

x

( ) 2 ( )S z H z

Page 20: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Q2 - constraint

1,0 1,5 2,0 2,5

0,00

0,05

0,10

0.5

0.6

0.7

R12

restriction Q

2 restriction

xLD

=0.8

E

LDde

f / E

(0) su

rf

R12

/ R0

Page 21: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Mass-asymmetric shapes

1 2 12 3

1 22

12 2 3/2

2

2

2

0

2 ( ) 1 / 1 /

[1 (

asymme

) ],

( ) [1 ( ) ]

( )

(

try :

( *)

)

LD

c

R L

m

R L

E V RyH z R R

R y y

R y

V VV V

sign z z

y

dz y zV

z dz y zV

z

d dd

d

d

2 * 2 3/2

1 2

2 * 2 3 21

3

2

*

* /3

sign(1 ( ) 10 ( ) [1 ( ) ]

1 ( ) 10 ( ) [

)

1 )) ]( (

LD S

LD S

yy y y z z x z y

y

z

y y y xzz z

z

z yz

-2 -1 0 1 20,0

0,5

1,0

y(z)

z / R0

-2 -1 0 1 20

1

2

xLD

=0.75

H(z

)

Page 22: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Mass asymmetric shapes, x = 0.75

0.9

0.6

0.3

R12

/R0

asym

met

ry

0

0.75 1.0 1.25 1.5 1.75 2.0 2.25

Page 23: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Deformation energy

1.0 1.5 2.0 2.5

0.00

0.02

0.04

0.06

d = 0.8

d = 0.1

xLDM

=0.75

Ede

fLD /

ES(s

ph)

R12

/ R02

dash - shape divided in parts be the neck solid - shape divided by the point of maximal curvature

Page 24: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Deformation energy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.00

0.02

0.04

0.06

d = 0.8

d = 0.1

xLDM

=0.75

Ede

fLD /

ES(s

ph)

Q2 / MR

02

shape is divided in parts by the point of maximal curvature

Page 25: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

The scission shapes, Rneck =0.2 R0

-2 -1 0 1 2-2

-1

0

1

2

0.1 < d < 0.9

xLDM

=0.75

y / R

0

z / R0

Page 26: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Optimal/Cassini shapes

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.02

0.04

0.06

optimal shapes Cassini ovaloids, ,

1

d = 0.7

d = 0.1

xLDM=0.75

Ede

fLD /

ES(s

ph)

Q2 / MR

02

shape is divided in parts by the point of maximal curvature

Page 27: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Optimal/Cassini shapes

-2 -1 0 1 2

-1

0

1

optimal shapes Cassini ovaloids, ,

1

xLDM

=0.75, d=0.5, Q2/MR

02=1.5

y / R

0

z / R0

Page 28: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

(z-z*)/octupole constraint

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.02

0.04

z-z* constraint octupole constraint

d = 0.5

d = 0.1

xLDM

=0.75

Ede

fLD /

ES(s

ph)

Q2 / MR

02

shape is divided in parts by the point of maximal curvature

Page 29: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

K.T.R.Davies and A.J.Sierk, Phys.Rev.C 31 (1985) 915

Page 30: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Businaro-Gallone point

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

ELD

=EC+E

S

0.7

0.6

0.5

0.4

0.3

0.1

0.2

xLD

=0LD

-bar

rier h

eigh

t / E

S(0)

(MR-M

L)/(M

R+M

L)

Page 31: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

The barriers of heavy nuclei, surface curvature energy

Leptodermous expansion:ETF = Evol+ Esurf + Ecurv + EGcurv

2 2 2 3/21 2

(0)

0

1 2

(0)

20

(0)

20

(0) (0)

( )4

1 1 1( )2

4

(

[1 ( ) ], ( ) [1 ( ) ]

1 )4

/

curvcurv

SS

SS curv

curv S

EE H z dS

R

H zR R

EE dS

R

EE E H dS

R

E E

R y y R y y

3/22 2 2 21 2(1 / ( ) ) 1 ( ) 10 1 ( )LD Syy y yy y y z x yy

1.0 1.5 2.0 2.5

0.00

0.05

0.10

0.15

0.20

0.25

0.75

0.65

0.5

0.3xLD

=0.15

/R0= 0.05

Ede

fLD/ E

(0) su

rf

R12

/ R0

Page 32: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

The LSD barrier heights

0.1 0.2 0.3

0

5

10

15

20

25

90

85

80

105100

95

Z=75

BLS

D /

MeV

(N-Z)/A

0.0 0.1 0.2 0.3

20

30

40

50

60

40

50

60

7065

55

45

Z=35

BLS

D /

MeV

(N-Z)/A

2 4max 0 1 2 3

0 4 52

6 7 8

( ) ,( )

( )

B Z a a Z a Z a ZI Z a a Z

I Z a a Z a Z

20

max( )

( , ) ( )exp( )LSD

I I ZB Z I B Z

I Z

F.A.Ivanyuk and K.Pomorski, Phys: Rev. C 79, 054327 (2009)

2

2 2/3

2 1/3

2 2 2

41/30

(1 )

(1 ) ( )

(1 ) ( )

3 ( )5

LSD vol vol

surf surf S

curv curv K

Cch

E b I A

b I A B def

b I A B def

Z e ZB def CAr A

K.Pomorski and J. Dudek, Phys. Rev. C 67, 044316 (2003)

The rms dev.for 35<Z< 105, 0<I< 0.3 is 150 keV

Page 33: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

The barrier heights, topological theorem

28 30 32 34 36 380

10

20

30

barr

ier h

eigh

t (M

eV)

Z2 / A

Bexp

BLSD

-Emicr

(gs)

(saddle) (saddle) (g.s.) (g.s)B LSD LSDV = E +δE - E +δE

W. D.Myers and W. J. Swiatecki, Nucl. Phys. A601, 141 (1996): the “barrierwill be determined by a path that avoids positive shell effects and has no use for negative shell effects. Hence the saddle point energy will be close to what it would have been in the absence of shell effects, i.e., close to the value given by the macroscopic theory!”

(saddle)B LSD micr

(g.s) (g.s.) (sph)micr LSD LSD

V = V + E ,

E =δE +( E -E )

• For Emicr see P. Moeller, J. R. Nix, W. D. Myers and W. J. Swiatecki,

At. Data and Nucl. Data Tables, 59, 249 (1995).

Page 34: A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle

Summary and outlook

• 1. The relaxation method allows to solve the variational problem for the shapes of contiional eqilibrium with a rather general constraints

• 2. The extension of this method to separated shapes • and account of the• surface diffuseness, attractive interaction• (eventually) shell corrections would result in a very accurate method for the

calculation of the potential energy surface

z

VRV

L

yR(z)

yL(z)

R12