a comparative analysis of lactic acid bacteria isolated from … · 2018. 4. 15. · master’s...

37
Master’s Thesis 2016 30 ECTS Department of Chemistry, Biotechnology and Food Science A Comparative Analysis of Lactic Acid Bacteria Isolated from Honeybee Gut and Flowers, with Focus on Phylogeny and Plasmid Profile Marte Sverdrup Linjordet Chemistry and Biotechnology, Molecular Biology

Upload: others

Post on 27-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Master’s Thesis 2016 30 ECTSDepartment of Chemistry, Biotechnology and Food Science

    A Comparative Analysis of Lactic Acid Bacteria Isolated from Honeybee Gut and Flowers, with Focus on Phylogeny and Plasmid Profile

    Marte Sverdrup LinjordetChemistry and Biotechnology, Molecular Biology

  • AcknowledgementsThework presented in thisMSc thesiswas performed at the Laboratory ofMicrobial

    Gene Technology (LMG), Department of Chemistry, Biotechnology and Food Science,

    NorwegianUniversityofLifeSciences.

    Iwould first like to thankmysupervisors,DzungBaoDiepandDanielMünch, for the

    opportunityandguidanceprovidedforthisMScthesis.AthanktoKariOlsenforcarry

    outtheGC-analysis,andtoClausKreibichforprovidingtheinformationonwhichplant

    speciestocollect.IwouldalsoliketothankLindaGodagerandMay-BrittSelvågHovet

    forallthehelpprovidedinthelab.Aspecialthanksgoestomyfellowstudent, Ingvild

    Gallefoss,whohaskeptmecompanythelastfewmonths(andyears)andalsoprovided

    mewithdatafromherownthesis.

    Last, but not least, I want to thank my family and boyfriend for all the comfort and

    encouragement through the past five years, and especially to my dad who is always

    thereformewhenhelpisneeded.

    MarteSverdupLinjordet

    Oslo,May2016

  • AbstractApismellifera (honeybee) areofhugevalue as theyare themost importantpollinator

    worldwide.Declinesinhoneybeepopulationshavemadethehoneybeesubjecttomuch

    scientificresearch.Lacticacidbacteria(LAB)havebeendiscoveredinthehoneybeegut

    and are believed to be of great importance to the honeybee health, protecting them

    againstbeepathogens.ComparingLABcommunitiesinthehoneybeeguttothosefound

    onflowersmayhelphighlighttherouteandimportanceoffloraltransmission.

    Using cultivation techniques selective for Lactobacillus, plasmid and fermentation

    profiling,and16SrDNAsequencing,LABwereisolatedfromdandelion,apple,rapeseed,

    raspberryandwillowherbandcomparedtotheLABisolatedfromhoneybeeguts.

    The results showed that Lactobacillus kunkeei and Fructobacillus fructosus were the

    mostabundantofall the identifiedspecies inbothhoneybeegutand flowerssamples.

    TheLABfloraofthehoneybeegutseemstoshiftfromL.kunkeeitoF.fructosusthrough

    MaytolateJune,andF.fructosuswasalsofoundasthemostabundantLABinoneofthe

    samples collected from honeybee guts in August. This is in accordancewith the LAB

    florafoundondandelionandappleinMayandraspberryinlateJune,givingindications

    towardapositivecorrelationbetweentheLABmicrobialflorainhoneybeegutandthe

    flowerswithin their foraging area. The results also showed theplasmidprofileswere

    more diverse in the honeybee gut samples, and although there seemed to be four

    profiles that also occurred in the flower samples, indicating possible relatedness on

    strainlevel,thedatasetsarerelativelysmallandfurtherinvestigationsareneeded.

  • Sammendrag

    Apismellifera (honningbie) er av stor verdi og er den viktigste pollinatoren over hele

    verden.Reduksjoneravhonningbienspopulasjonhargjortathonningbienerunderlagt

    mye vitenskapelig forskning. Melkesyrebakterier har blitt oppdaget i tarmen til

    honningbien og antas å være av stor betydning for honningbiens helse, hvor de

    beskytter dem mot bie-patogener. Sammenligning av melkesyrebakteriene i

    honningbienstarmogdesomfinnespåblomsterkankanskjehjelpetilmedåmarkere

    veienogviktighetenavbakteriellblomsteroverføring.Vedhjelpavdyrketeknikkersom

    er selektive for Lactobacillus, plasmid- og fermenteringsprofilering, og 16S rDNA

    sekvensering, ble melkesyrebakteriene isolert fra løvetann, eple, raps, bringebær og

    geitramsogsammenlignetmedmelkesyrebakterieneisolertfratarmentilhonningbien.

    ResultatenevisteatLactobacilluskunkeeiogFructobacillusfructosusvardemesttallrike

    av alle de identifiserte artene i både honningbietarmen og blomsterprøvene.

    Melkesyrebakteriefloraen i tarmen ser ut til å skifte fra L. kunkeei til F. fructosus

    gjennommai til slutten av juni, ogF. fructosus ble også funnet som denmest tallrike

    melkesyrebakterien i en av prøvene samlet inn fra bie-tarmer i august. Dette er i

    samsvarmedfloraensomblefunnetpåløvetannogepleimaiogpåbringebærislutten

    av juni, noe som gir indikasjoner mot en positiv korrelasjon mellom

    melkesyrebakteriefloraen i tarmen og blomstene i bienes pollineringsområde.

    Resultatetvisteogsåatplasmidprofilenevarmervariert ihonningbieprøvene,ogselv

    omdetsåuttilåværefireprofilersomogsåopptråddeiblomsterprøvene,noesomkan

    indikereslektskappåstammenivå,vardatasettenerelativtsmåogvidereundersøkelser

    erderfornødvendig.

  • Abbreviations

    CHX Cycloheximide

    FLAB FructophileLacticAcidBacteria

    GC GasChromatography

    GI Gastrointestinal

    LAB LacticAcidBacteria

    MRS DeMan-Rogosa-Sharp

    NMBU NorwegianUniversityofLifeSciences

    ON Overnight

    PCR PolymeraseChainReaction

    RT RoomTemperature

  • 1

    Contents

    1. INTRODUCTION......................................................................................................................................2

    2. MATERIALSANDMETHODS................................................................................................................62.1 SAMPLINGOFBACTERIAFROMFLOWERS..........................................................................................................62.2 GROWINGOFBACTERIALSTRAINS......................................................................................................................72.3 PLASMIDPROFILING...............................................................................................................................................72.3.1 IsolationofPlasmids......................................................................................................................................82.3.2 AgaroseGelElectrophoresis.......................................................................................................................82.3.3 RestrictionEndonucleaseCutting............................................................................................................9

    2.4 PHYLOGENETICIDENTIFICATION......................................................................................................................102.4.1 PolymeraseChainReaction(PCR)........................................................................................................102.4.2 SequencingandProcessingofData.....................................................................................................11

    2.5 SUGARFERMENTATIONPROFILING..................................................................................................................112.6 CYCLOHEXIMIDE...................................................................................................................................................12

    3. RESULTS.................................................................................................................................................123.1 GROWINGOFBACTERIALSTRAINSANDPLASMIDPROFILING....................................................................123.2 PLASMIDPROFILING............................................................................................................................................133.3 PHYLOGENETICIDENTIFICATION......................................................................................................................153.4 SUGARFERMENTATION......................................................................................................................................163.5 CYCLOHEXIMIDE...................................................................................................................................................16

    4. DISCUSSION...........................................................................................................................................184.1 LACTICACIDBACTERIAISOLATEDFROMFLOWERS.....................................................................................184.2 COMPARINGTHERESULTSTOLACTICACIDBACTERIAISOLATEDFROMHONEYBEEGUT...................194.2.1 ComparisonoftheLABSpecies..............................................................................................................194.2.2 ComparisonofthePlasmidProfiles.....................................................................................................21

    4.3 BACTERIALTRANSMISSIONBETWEENFLOWERANDHONEYBEES............................................................224.4 CONCLUSION.........................................................................................................................................................23

    5. REFERENCES.........................................................................................................................................24APPENDIX1–GROWTHMEDIA,BUFFERSANDTABLES......................................................................................27APPENDIX2-RESULTS...............................................................................................................................................28APPENDIX3-PROTOCOLS..........................................................................................................................................29

  • 2

    1. IntroductionApismellifera(honeybee)areofhugevalue,notonlyfortheirproductionofhoney,but

    more importantly, because they are themost important pollinatorworldwide. Recent

    declines in both wild and domestic pollinators have been a major concern and have

    madethehoneybeesubjecttomuchscientificresearch.

    Thegastrointestinaltractinbothhumansandanimalsisknowntoharboracollectionof

    microorganisms called the gut microbiota. By extensive research on the human gut

    microbiota, there is evidence that the gut bacteria influence human and animal

    physiology,metabolism,nutrition,andimmunefunction(1).Thecompositionofthegut

    microbiotaissubjecttodynamicchangesduringthecourseofthehost´sdevelopment,

    physiologicalstatusorhealth.Forexample,differentgastrointestinal(GI)disordersare

    oftenlinkedwithdegeneratingchangestothegutmicrobiota.Correspondingly,several

    recentstudieshave investigated thegutmicrobiotaofhoneybeesasa response to the

    alarmingdeclineinpollinators(2).

    Honeybeesharboranumberofcommensalorbeneficialbacteriadistributedthroughout

    the different compartments of their GI tracts. The GI tract of an adult honeybee is

    dividedintofourmajorcompartments:crop(honeystomach),midgut,ileumandrectum.

    Each compartment has a distinct environment favoring specific microorganisms (3).

    Severalfindingshaveindicatedthatthehoneybeegutiscolonizedbyadistinctivesetof

    bacterial species designated as the core gut microbiota (4). Because the community

    compositionhasshowntochangethroughthebee´slifecycle,thecolonizationofthegut

    is believed to be influenced by the honeybee´s age (3). During the course of their

    lifespan,honeybeeworkersperformmanydifferent tasks that can contribute to these

    variations. Newly emerged worker bees nurse larvae within the hive whereas older

    worker bees build and maintain the wax combs, defend the colony, and receive and

    process food that is collected by foragers. Foragers are specialized worker bees and

    theirjobistobringbacknectarandpollenfromdifferentflowerstheyvisitduringthe

    season.

    In addition to the coremicrobiota in the gut, a novel lactic acid bacterial (LAB) flora

    composed of 13 taxonomically well-defined Lactobacillus andBifidobacterium species

  • 3

    werediscoveredinthehoneystomachofhoneybees(5,6).Thehoneystomachfunctions

    asaninflatablebagthatcantransportthenectarbacktothehiveforstorageandhoney

    production.ItishypothesizedthatLABplayakeyroleintheconversionofbothnectar

    tohoneyandpollentobeebread(storedfoodrichinprotein)duetotheirfermentation

    properties(5,7)TheLABmicrobiotais,besidestheimportanceinbeefoodprocessing,

    believedtobeofgreatimportancetothehoneybeehealth,protectingthemagainstbee

    pathogens(8,9)andcontributingtotheantimicrobialpropertiesofhoney(10).

    LAB are Gram-positive, usually non-motile rods or cocci that do not form spores and

    produce lactic acid as their major or sole fermentation product. They require

    environments rich in sugars, amino acids, nucleic acid derivatives, minerals and

    vitamins (11). LAB reside in a diversity of different habitats that includes the

    gastrointestinal tract of humans and animals, as well as in a number of other

    environments suchasplantsanddifferentprocessed foodproducts.LABare foundas

    commensals within humans, animals and insects. They are considered as beneficial

    organisms commonly found in healthy individuals by protecting their hosts through

    antimicrobialmetabolites(12).ManyLABspeciesarealsoindispensabletothefoodand

    dairy industry because of their key role in in the formation of taste, texture and

    preservation effects due to the production of antimicrobial peptides such as

    bacteriocins,propionicacidandotherorganicacidsthatlowersthepH(11).

    LABarefoundintwodistinctphyla:FirmicutesandActinobacteria.Themostimportant

    genera of LAB within the Firmicutes are Enterococcus, Lactobacillus, Lactococcus,

    Leuconostoc,Pedicoccus,StreptococcusandWeissella,whichallhavealowG+Ccontent.

    LAB in theActinobacteria phylum only includes species of theBifidobacterium genus

    thatincontrasttotheFirmicutesmembershaveahighG+Ccontent.(13,14)

    Fructophilic LAB (FLAB) are a special group of LAB that prefers fructose instead of

    glucose as growth substrate (15). Fructobacillus spp. and Lactobacillus kunkeei are

    representativesofthesemicroorganisms.Inpreviousstudies,L.kunkeeihasbeenfound

    to be one of the most predominant LAB in honeybees (16, 17). FLAB are found in

    fructoserichnichesandhave–inadditiontohoneybees–beenisolatedfrombeehives,

    fruits,andflowers(15,16,18).

  • 4

    Flowers areoneof themanydiversehabitatsprovidedbyplants formicroorganisms.

    The availability of nutrients differs betweenplant parts such as roots, leaves, flowers

    and fruits, andwithinplant organs (19), and therefor contributes to varyingbacterial

    communities.Thebacterialcommunitiescolonizingrootsandleaveshavebeenthemost

    studiedformanyplantspecies.Onlyrecently, therehavebeenstudiesonthebacterial

    compositionof floralnectar,whichinitiallywasconsideredasnotsuitableasbacterial

    habitats due to their antimicrobial properties (20). Studies found that bacteria are

    common inhabitants of floral nectar, and that the bacterial communities differed

    between plant species andwere characterized by low species richness andmoderate

    phylogenetic diversity (21, 22). For bees, the floral nectar is the main source of

    carbohydrates and energy (‘fuel’),while pollenprovides proteins, lipids, vitamins and

    mineralsforbroodrearinganddevelopment(23).

    Specializedhoneybeeworkertypes,nectarforagers,canlearnflowerattributessuchas

    shape,colorandodor,calledpollinatorsyndromesandusethisinformationtoselectfor

    aparticularflower.Theindividualhoneybeetendstosticktoonetypeofflowerovera

    certain period of time(24), and can also discriminate between small differences in

    nectarconcentration.Theeffectthebacterialcommunitiesmayhaveonthefloralnectar

    theycolonizeismainlyunexplored.Goodetal.(25)hypothesizesthatbacteriacanalter

    thechemicalprofileofthenectar,thusaffectingthenectarattractivenesstopollinators

    suchashoneybees. Inaddition,bacteria found in floralnectarare frequently found in

    thehoneybeehiveenvironmentandalimentarytract(26),raisingquestionsconcerning

    the transmission effect between flowers andpollinators visiting them for their nectar

    andpollen.

    Foodsshapethegutmicrobiotainanimalsandinsects.Thegutmicrobiotainhoneybees

    has previously been shown to change in a season-dependent manner (27). Our

    hypothesis is thatthiscanberelatedtothetypeof foodthehoneybeeshaveaccessto

    along theaxisof time.During thewinter seasonhoneybees inNorway still have their

    pollenstores,butreceiveartificialnectarfromthebeekeeperstoproducehoney,asno

    flowers are available. During foraging season (spring and summer) honeybees fly out

    and collect nectar and fresh pollen directly from flowers. The biochemistry and

  • 5

    complexity of food, and the microbial flora associated in foods, are therefor quite

    different between winter season and foraging season, and may likely affect the gut

    microbiota in honeybees. LAB are frequent in vegetables and fruits, and are also

    commoninhabitantsingutmicrobiotaofmostvertebratesandinvertebrates.Theaimof

    this MSc thesis is to characterize LAB in selected flowers on or near campus of the

    NorwegianUniversityofLifeSciences.Thismaycontributetoabetterunderstandingof

    howplantLABarerelatedtothosepresentinhoneybees.

    Consequently,theaimsoftheworkofthisMSc-projectisto:

    1. Isolate and characterize lactic acid bacteria from selected spring, summer and

    autumnflowersusingPCR,plasmid-andfermentationprofiling

    2. Compare the resultswith respect to lactic acid bacteria found in honeybee gut

    sampledinparallelwiththeflowercollection

  • 6

    2. MaterialsandMethods

    2.1 SamplingofBacteriafromFlowers

    Flowerswerecollectedfromdifferent locationsonandnearcampusat theNorwegian

    University of Life Sciences, Ås, Norway. To represent different nectar secretions and

    relevantspeciesfortheproductionofhoneyinthedistrict,flowerswerecollectedfrom

    five plant species: dandelion (Taraxacum officinale), rapeseed (Brassica napus),

    willowherb (Chamerion angustifolium), apple (Malus) and raspberry (Rubus idaeus)

    (Table2.1).

    Table2.1Nectarproductionand importance for thedevelopmentofhoney fromsomeplant species in thedistrictsurroundingtheUniversityofLifeSciences,Ås,Norway.

    Plantspecies Nectarproduction

    Importanceforthehoneydevelopmentinthedistrict

    Blooming

    Dandelion Medium Importantforthedevelopment May–JuneFruit Medium–large Importantforthedevelopment May–JuneRaspberry Verylarge Cruciallyimportant70-90%ofthehoney June-JulyAutumnRapeseed

    Medium–large Small May

    Willowherb Large Small July-August

    Toreducecontamination, flowerswerepickedusingrubberglovesandtransported in

    plastic bags back to the laboratory the sameday. There, theywere cutwith a scalpel

    understerileconditions.andtransferredtotwo50mlFalcontubesbeforetheaddition

    of30ml0.9%NaClineachtube.Thenumberofflowersineachtubewas5,20,30,50

    and110fordandelion,apple,rapeseed,willowherbandraspberryrespectively,toadjust

    fordifferentflowermass/volumesastheyrangedgreatlyinsize.

    Thetubesweremixedvigorouslyonavortexbeforethe liquidcontainingthebacteria

    fromeachtubewastransferredtotwonew50mlFalcontubes.Aftercentrifugationat

    5000gfor5minutes(Eppendorf5804R)thepelletinonetubewassuspendedin4ml

    20%glycerolandthenmixedthoroughlywiththepelletintheothertube.Thebacterial

    suspensionwasdistributedonfour2mlmicrotubes(Sarstedt),1mlineachtube,and

    storedat-80°C.

  • 7

    2.2 GrowingofBacterialStrains

    ThemediumandtheanaerobicconditionssetwerechosentofavorthegrowthofLAB.

    Thebacterial flowersampleswerethawedatroomtemperature(RT)and100µlwere

    seriallydilutedin0.9%NaClwithintherange10-1–10-6.

    Volumes of 100 µl were plated out on De Man-Rogosa-Sharp (MRS) agar plates and

    incubatedat30°Cinananaerobicchamberuntilvisiblecolonieswereformed,generally

    within72hours.ThechambercontainedanAnaeroGensachet (ThermoScientific) for

    thegenerationofanaerobicconditions.

    Forsamplesthatshowednocoloniesontheagarplateswithin72hours,anewroundof

    cultivation was performed with either non-diluted or concentrated bacterial flower

    samples. For concentrated bacterial flower samples, 500 µl of the sample was

    centrifugedonmaximumspeedfor1minuteinatablecentrifugebeforethesupernatant

    wasdiscarded.Thecellpelletwasre-suspendedin200µl0.9%NaClbeforeplatedout

    onnewMRSagarplatesandincubatedanaerobically.

    Forpurecultureisolation,40colonieswerepickedwithinarandomandlimitedareaon

    the agar plate, and streaked on newMRS agar plates and incubated anaerobically as

    described above. Samples that got fewer colonies than 40were left at RT for aerobic

    growthfor48hoursinanattempttoyieldmoreisolates.

    Culture tubes containing 6 ml MRS broth supplemented with 40 % fructose were

    inoculated with single colonies from the pure cultures using sterile toothpicks. The

    culture tubes were then incubated at 30 °C for 24 to 72 hours for the isolation of

    plasmidsdescribedinsection2.3.

    For storing samples, glycerol stocks were made from pure cultures grown in MRS +

    fructosebyadding400µl45%Glycerolto800µlbacterialcultureina2mlmicrotube.

    The stockswere stored at -80 °C until further use. See Appendix 1 for description of

    preparationofMRS+fructose.

    2.3 PlasmidProfiling

    Plasmidprofileanalysishasbeenappliedinclinicalstudiestoinvestigatethespreadof

    antibiotic resistance, where patterns of plasmids are compared between disease

  • 8

    outbreak strains and non-outbreak control strains (28). Plasmids are first separated

    according to size by agarose gel electrophoresis, and then cleaved by restriction

    endonucleases generating multiple fragments that make interpretation of strain

    relatednessmorefeasible(29).

    2.3.1 IsolationofPlasmids

    PlasmidswereisolatedusingtheE.Z.N.A.PlasmidDNAMiniKitI(Omega)accordingto

    theprotocolprovidedby themanufacturerwithminormodificationsdescribed in the

    following.

    PureculturesgrowninMRS+fructoseovernight(ON)werecentrifugedat4000rpmfor

    5minutesbeforethepelletwasre-suspendedin500µlTE(Tris-ClEDTA)-buffer.The

    suspension was transferred into a 1.5 ml micro centrifuge tube followed by another

    centrifugationstepatmaximumspeedfor1minuteinatablecentrifuge.SolutionIwas

    addedtogetherwith5µl lysozyme(40mg/ml)and5µlmutanolysine(1000U/ml) to

    weaken the cell walls, and incubated on water bath at 37 °C for 10 minutes before

    resumingtotheprotocol.BoundDNAwaselutedtwicewith30µlElutionBufferandthe

    DNAsampleswerekeptat-20°Cuntilphylogeneticidentification(section2.4).Astep-

    by-stepprotocolisprovidedinAppendix3.

    2.3.2 AgaroseGelElectrophoresis

    AgarosegelelectrophoresiswasusedfordetectionandseparationofDNAaccordingto

    molecularsizeatvariousstagesthroughoutthestudy.

    To prepare two 1% agarose gels, amixture of 1 g agarose and 100ml 1XTAE (Tris-

    acetate-EDTA)bufferwasheatedinamicrowaveovenuntiltheagarosehaddissolved.

    The agarose solution was cooled down to below 60 °C before 4 µl Peq-Green (VWR

    Peqlab)wasaddedasafluorescentdyetomaketheDNAvisiblewhenexaminedunder

    UV-light.Thesolutionwasmixedbygentlyswirlingtheflask.Thesolutionwaspoured

    evenlyintotwomoldingtraysthatheldcombsfortheformationofwellsandallowedto

    cool until the gels solidified. The solid gels were placed in electrophoresis chambers

    (BioRad)andthechamberswerefilledwith1XTAEBuffer.

    Small volumes, generally 5 or 15 µl, of the samplesweremixedwith the appropriate

    amountof6XLoadingBuffercontainingavisibledyeand loaded intothewellsonthe

  • 9

    gel.Fiveor10µl1kbLadderfromNewEnglandBiolabswereprovidedasamolecular

    sizemarkeronbothsidesofthegel.Thegelswerethenrunat75Vuntiltheloadingdye

    hadtraveledabout2/3ofthelengthofthegel.DNAbandsonthegelswerevisualizedby

    UV-lightusingaGelDocimagerfromBioRad.

    2.3.3 RestrictionEndonucleaseCutting

    Restriction endonucleases are enzymes that recognize specific nucleotide sequences

    known as restriction sites and cleave the target DNA at defined positions at or near

    theserestrictionsites.Tomakeplasmidprofiles,restrictionenzymeswereusedtocut

    plasmidsintosmallerfragmentsthatwouldmakeauniquebandpatternwhenrunonan

    agarosegel.

    Duringthepilotstudy,twoenzymes,XhoIandSpeI,withdifferentrecognitionsiteswere

    testedfortheirabilitytocuttheisolatedplasmids.Theyweretestedbothtogetherand

    separately.BecauseXhoIperformedpoorer thanSpeI, adecisionwasmade to replace

    XhoI with XbaI. This decision was based on the difference in G+C content of the

    recognitionsite.LacticacidbacteriahavealowG+CcontentandXhoIhasahigherG+C

    contentthanbothSpeIandXbaI,seeAppendix1;TableA1.1.

    Reactionmixtureswereprepared,whileonice,accordingtoTable2.2.Thecomponents

    weremixedgentlybeforeashortcentrifugationtogetallthecomponentsatthebottom

    ofthetube,andthenincubatedat37°Cfor2h.Afterincubation,thesampleswererun

    ona1%agarosegelaccordingtotheproceduredescribedinsection2.3.2.

    Table 2.2 Reaction setup for endonuclease cutting showing the components with their correspondingvolumesandfinalconcentrationsfora20µlreaction

    Component Volume[µl] Finalconcentration10XCutSmartBuffer 2.0 1X20000units/mlXbaI 0.5 10units/20µlreaction10000units/mlSpeI 0.5 5units/20µlreactiondH2O 7.0 PlasmidDNA 10

  • 10

    2.4 PhylogeneticIdentification

    2.4.1 PolymeraseChainReaction(PCR)Forphylogeneticidentification,16SrRNAgeneamplificationbyPCRwasperformedon

    a selection of the collected bacterial strains using the universal primers 11F: (5´-TAA

    CACATGCAAGTCGAACG-3´)and4R:(5´-ACGGGCGGTGTGTRC-3´).TheDNAsamples

    fromthe isolationofplasmids(section2.3)wereusedasDNAtemplates.Thereaction

    setup shown in Table 2.3 and the thermocycling conditions shown in Table 2.4were

    applied.

    Table 2.3 Reaction setup for PCR showing the components with their corresponding volumes and finalconcentrationsfora50µlreaction.

    Component Volume[µl] FinalConcentration20µMForwardPrimer 1 0.4µM20µMReversePrimer 1 0.4µM5XPCRStandardReactionBuffer 10 1X10mMdNTPmix 1 0.2mM5000units/mlTaqDNAPolymerase 0.3 1.5units/50µlreactiondH2O 35.7 TemplateDNA 1 Table2.4Thermo-cyclingconditionsofPCRfor16S

    Steps Temperature[°C] Time[s] Cycles DescriptionStep1 95 30 1 InitialdenaturingStep2

    95 15 30

    Denaturing54 60 Primerannealing72 90 Primerextension

    Step3 72 300 1 Completion

    Inorder todetect thepresenceofamplicons,5µlof thePCRproductofeverysample

    were runon a1%agarose gel according to theproceduredescribed in section2.3.2.

    SamplescontainingampliconswerepurifiedusingtheNucleoSpin®GelandPCRClean

    up kit (Macherey-Nagel GmbH, Düren, Germany) according to the manufacturers

    instructions, and the DNA concentration was determined using a NanoDrop 2000

    SpectrophotometerfromThermoScientific.

  • 11

    2.4.2 SequencingandProcessingofData

    Purified PCR products were, if necessary, diluted with sterile dH2O to the final DNA

    concentrationof20to80ng/µl.Volumesof5µlwerethenaddedtoa96-wellskirted

    traycontaining5µl5µMprimer11Fineachwell.SequencingwasperformedbyGATC

    Biotech(Constance,Germany).

    ThegeneratedsequenceswereeditedusingBioEditv7.2.5SequenceAlignmentEditor

    (Ibis Biosciences, Carlsbad, CA, USA). Blast analysis was performed on the edited

    sequencesandalignedusingthefreelyavailablemultiplesequencealignmentprogram

    MAFFT. The phylogenetic tree constructed by MAFFT was used to pick isolates for

    fermentationprofilingbasedontheirclusteringinordertogetarandomsampling.

    2.5 SugarFermentationProfiling

    Twenty isolateswerechosenforcarbohydrate fermentationprofilingusingtheAPI50

    CHL identification system from BioMèrieux, Inc. The API 50 CH strip consists of 50

    microtubes that containonenegative control and49different substratesbelonging to

    thecarbohydratefamilyanditsderivatives.TheAPI50CHstripisusedinconjunction

    withAPI50CHLmediumthatrehydratesthesubstratesandthatcontainsapHindicator

    thatdetectstheproductionofacidswhenthesubstrateisfermented.

    Steriletoothpickswereusedtoscrapeasmallamountoffofthetopofthefreezingstock

    ofeachisolateanddroppedintoculturetubeswith5mlMRSmedium.Theisolateswere

    culturedONand1mloftheON-culturewascentrifugedfor5minutesat13000rpm.The

    supernatantwasdiscardedandthepelletsurfacewaswashedwithasmallamountof50

    CHLmedium.Thecellpelletwasre-suspendedin2mlof50CHLmediumbefore300µl

    of thesuspensionwastransferredto6ml50CHLmediumandmixedthoroughly.The

    APIcarbohydratefermentationstripswerepreparedbyplacingthemintheincubation

    trayandthebacterialsuspensionwasdistributedintothe50tubes.Mineraloilwasused

    tofillthecupuletocreateanaerobicconditionsandtheincubationtraywasplacedina

    plastic box with moistened paper and incubated at 30 °C. Color changes due to the

    productionofacidsinthecupuleswererecordedduringthecourseofoneweek.

  • 12

    2.6 Cycloheximide

    Cycloheximide (CHX) is a eukaryotic translation inhibitor and is the most common

    laboratory reagent used to inhibit protein synthesis. CHX was therefore used to

    determinewhethersomeofthecoloniesgrownaerobicallywereyeasts.

    Twoisolatesof inall23thatweresuspectedtobeyeastwere inoculated in5mlMRS

    brothON.OneisolatethatwasproventobeLactobacilluskunkeeiwasalsoinoculatedin

    5mlMRSbrothtofunctionasacontrol.

    To make a CHX stock solution, 0.157 g CHX was dissolved in 6 mL sterile dH2O by

    pipettingthesuspensionwhilstimmersedinhotwater.Thesolutionwasthenfiltrated

    throughFiltropurS0.2syringe(Sarstedt)filterbytheuseofa10mlsyringe.

    To achieve a working concentration of approximately 5 mg/ml, 200 µl of the stock

    solutionwasdilutedin800µlsteriledH2O.

    Fiveculturetubeseachcontaining5mlMRSbrothwerepreparedforeachisolate,and

    the working solution of CHX was added in various volumes to achieve various final

    concentrations,seeAppendix1;TableA1.2.

    The culture tubes were then thoroughly mixed before 50 µl of ON-cultures of each

    isolatewereaddedtotheirrespectivetubes.Theculturetubeswereagainmixedbefore

    incubatedat30°CandcelldensitywasmeasuredonaUltraspec10CellDensityMeter

    fromAmershamBiosciencesafter24hours.

    3. Results

    3.1 GrowingofBacterialStrainsandPlasmidProfiling

    TypicalcoloniesfromalldifferentflowersamplesgrownonMRSagarplateswerewhite,

    smoothandvaried little in size.Appleanddandelionsamplesgrownaerobicallywere

    bigger insizeandhadroughcolonyedges.Thedurationof incubationvariedbetween

    thedifferentbacterialflowersamples,andMRSagarplateswereleftatRTinanattempt

    toyieldmoreisolatesfrombothappleanddandelionsamples.Inaddition,isolatesfrom

    appleproducedaredpigmentaroundtheedgesofcoloniesontheperiphery.Lateron,

    these isolates were confirmed to be yeast and are therefore excluded from further

    estimationsdoneonthetotalsetofisolates.

  • 13

    3.2 PlasmidProfiling

    Onehundredandseventy-sevenisolateswereisolatedfromflowers,40fromeachplant

    species, except for apple samples with a yield of 17 isolates only. All isolates were

    assessedforplasmidcontent.Ofthe177isolates,37hadplasmids,whichaccounts for

    approximately21%.

    Themajorityoftheisolatesthatcontainedplasmidswerecollectedfromraspberry.The

    resultsfromraspberrysamplesarerepresentedinFigure3.1containingpicturesofall

    theagarosegelsthatwererun.Somelaneshaddistinctivebandsandotherswhereonly

    smearsofDNA.Differentbandintensitiesmadeitdifficulttoobtainasingleimageofall

    thebandsonthegel.Lane11containsabandatapproximately11kbwhichinFigure

    3.1 (B) appears as a smear. For the remaining plant species, samples that contained

    plasmidswere collectedand representedona single agarosegel shown inFigure3.2.

    Thisisbecausemanyofthegelslackedplasmidbandsandsomeonlyhad-atmost-two

    plasmids.

    Noplasmidswereobservedforisolatesisolatedfromrapeseed,whilethetotalnumber

    of plasmid containing isolates fromdandelion, apple andwillowherbwere 4, 2 and 5

    respectively(Figure3.2).Closeexaminationofthebandpatternsrevealed14different

    profiles, where one profile, consisting of a single band of approximately 3.7 kb, was

    observedfor10oftheisolates.

  • 14

    BA1kb123456789101kb

    1kb111213141516171819201kb

    1kb212223242526272829301kb D

    1kb313233343536373839401kb

    1kb4546515368721631641691721881kb

    C

    Figure3.1Plasmidprofilesofbacteriaisolatedfromraspberry.Theplasmidprofilesof40 isolates from raspberry are shown from (A) numbers 1-10, (B) numbers 11-20, (C)numbers21-30,and(D)numbers31-40.

    Figure3.2Plasmidprofilesfromisolatesgatheredfromdandelion(numbers45,46,51and53),apple(68and72),andwillowherb(163,164,169,172and188).

  • 15

    3.3 PhylogeneticIdentification

    Approximately 20 isolates from each flowerwere chosen for further identification by

    16S rRNA gene sequencing. Some strainswere deliberately chosen tomake sure that

    everyplasmidprofilewasrepresented. Intotal,eighty-nine isolateswere identifiedby

    BLASTanalysisofsequencesofapproximately1100bp.

    Fromdandelion,10oftheisolateswereidentifiedasL.kunkeeiwhiletheother10ofthe

    isolates, that were grown aerobically, had the closest percent identity to the

    Enterobacteriaceae family. All isolates from rapeseed were identified as Enterococcus

    spp.withhigh sequence similarities (99%) tobothEnterococcushaemoperoxidusand

    Enterococcusplantarum.Fromapple,2of the isolateswere identifiesasL.kunkeei (18

    %;2of11isolates)while9isolateswereF.fructosus(82%;9/11).Thisspecieswasalso

    found in raspberry,which represented78%(14/18)while the remaining22%were

    Lactococcus lactis (4/18). Samples of willowherb revealed the most diverse bacterial

    composition,with6isolatesidentifiedasL.lactis,2asLactobacillussakei(10%;2/20),

    6 as Lactococcus garvieae (30 %; 6/20), 5 asWeissella ceti (25 %; 5/20) and 1 as

    Weissellaviridescens (5%;1/20).Thedistributionof the identified isolatesamongthe

    differentflowersisillustratedinFigure3.3.

    Figure3.3Distributionofallidentifiedisolatesamongvariousflowers.IsolatesfromdandelionwereidentifiedasL.kunkeeiandEnterobacteriaceae,rapeseedisolateswereEnterococcusspp.,appleisolateswereF.fructosusandL.kunkeei,raspberryisolateswereF.fructosusandL.lactis,andisolatesfromwillowherbwereidentidiedasL.lactis,L.sakei,L.garvieae,W.cetiandW.viridenscens.

    0

    5

    10

    15

    20

    25

    Dandelion Rapeseed Apple Raspberry Willowherb

    Num

    berofisolates

    Enterobacteriaceae

    W.viridenscens

    W.ceti

    L.garvieae

    L.sakei

    L.kunkeei

    L.lactis

    F.fructosus

    Enterococcusspp.

  • 16

    3.4 SugarFermentation

    Carbohydrate fermentation reactions were recorded for representatives of every

    species isolated using API50 CHL galleries (Table 3.1). In total, 19 isolates produced

    acidsfrom29ofthe49carbohydratestested.TheresultsshowthatallstrainsexceptW.

    ceti fermentedD-fructoseafter1day,andD-glucosewithin7days.F.fructosus strains

    fermented only 3 sugarswithin oneweek,while strains ofL. lactis,L.garvieae andL.

    sakeifermentedupto20sugarseach.Threestrainsidentifiedasmembersofthefamily

    Enterobacteriaceae were also tested for carbohydrate fermentation using the API 50

    CHL system, but gave only erratic results that are neither shownnor evaluatedmore

    closely.Table3.1Carbohydratefermentationprofileoflacticacidbacteriaisolatedfromflowers.

    Carbohydratesa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16bGlycerol - - - - - - - - i i i - - - - -L-arabinose - - - - - - - - - - - - - - - 1dD-ribose - - - 1d 1d - - - 3d 3d 3d 1d 1d i w 1dD-xylose - - - 1d 1d - - - - - - - - - - 1dD-galactose - - - 1d 1d - - - i i i 2d 2d - - 1dD-glucose + 3d + 1d 1d + + + 1d 1d 1d 1d 1d i 1d 1dD-fructose 1d 1d 1d 1d 1d 1d 1d 1d 1d 1d 1d 1d 1d - 1d 1dD-mannose - - - 1d 1d - - - 1d 1d 1d 1d 1d - 2d 1dL-rhaminose - - - - - - - - - - - - - - - iD-mannitol + + + 1d 1d i + + - - - 2d 2d - - -N-acetylglucosamine - - - 1d 1d - - - 1d 1d 1d 1d 1d i 2d 1dAmygdallin - - - 2d 3d - - - i i i 1d 1d - - 2dArbutin - - - 1d 1d - - - 1d 1d 1d 1d 1d - - 2dEsculinferriccitrate - - - 1d 1d - - - 1d 1d 1d 1d 1d - 1d 1dSalicin - - - 1d 1d - - - 1d 1d 1d 1d 1d - w 2dD-cellobiose - - - 1d 1d - - - 1d 1d 1d 1d 1d - - 1dD-maltose - - - 1d 1d - - - + + + 2d 2d i 1d -D-lactose - - - 2d 3d - - - i i i - - - - 2dD-melibiose - - - - - - - - - - - - - - - 1dD-saccharose(sucrose) - - - - 1d + + + - - - - - - w 1dD-trehalose - - - 1d 1d + + + w w w 1d 1d - 1d 1dAmidon(starch) - - - + + - - - - - - - - - - -Gentiobiose - - - 1d 1d - - - 3d 3d 3d 1d 1d - - 2dD-turanose - - - - - - - - - - - - - - w -D-lyxose - - - - - - - - - - - - - w - iD-tagatose - - - - - - - - - - - 1d 1d - - -Potassiumgluconate - - - i i i i i - - - w w w i w”d”daysuntilpositivereaction,”+”positivereactionwithin4to7days,”i”intermediate,”w”weakreactionand”-”negative(nocolorchange).aCarbohydratesnotlistedwerenotfermentedbyanyofthestrains.bNumbers:1-3refertoF.fructosusstrainsB23,B29andB69;4-5,L. lactis strainsB37andB169;6-8,L.kunkeei strainsB45,B53andB72;9-11,Enterococcus sp. strainsB125,B139andB149;12-13,L.garvieaestrainsB167andB187;14,W.cetistrainB177;15,W.viridescensstrainB183;16,L.sakeistrainB188.

    3.5 Cycloheximide

    Fromthecultivationofbacterialstrainsfromapplesamples,therewereonly17colony-

    formingunits on theMRSagarplates. In an attempt to yieldmore isolates, theplates

    were left at room temperature for aerobic growth for three days. The new colonies

  • 17

    formed were sub-cultured for pure culture isolation and underwent all the same

    experiments as the other isolates. Plasmid isolation and PCR amplification of the 16S

    rRNA gene revealed neither plasmids nor amplicons. To address the theory of these

    isolatesnotbeingprokaryote,anexperimentwithaeukaryotetranslationinhibitorwas

    conducted(section2.8).

    The results showed no growth in culture tubes containing CHX of concentrations

    ranging from 5.2 to 156 µg/ml. There was, however, growth in the control tubes

    containing the bacterium L. kunkeei. Microscopy also revealed that the cells were

    oval/egg-shaped.Thisstronglysuggeststhattheisolateswereyeast.

    When grown on MRS agar plates, the yeast produced a sweet-like odor that could

    resemble the smell of apple cider. This prompted us to investigate if the pigment

    productionandsmellweremediumdependent.Two isolatesdenoted47and48were

    grownon4differentgrowthmedia(MRS,LA,GM17andBHI).MRSandLAwerethetwo

    media that gave off the strongest smell and were therefore analyzed with gas

    chromatography,alongwithblanksamplesofbothmediatocorrectforfalsepositives.

    TheanalysiswasperformedbyKariOlsenatNMBU.

    Many different alcohols together with some esters were detected; see Appendix 2;

    FigureA2.1andA2.2.Whataffectthesecompoundscouldhaveonthefloralnectar,or

    eveniftheyareproducedbytheyeastwhileinhabitingthenectar,isunknownandneed

    moreinvestigation.Itcouldbeinterestingtoseeifanyofthecompoundsproducedina

    significant amount could have any effect on the behavior of the honeybee. A deep

    literatureresearchandpossiblyalearningexperimentconductedonhoneybeeswould

    betorecommend.

  • 18

    4. DiscussionLABwere isolated fromfresh flowersof fivedifferentplantspecies.The isolateswere

    characterized using plasmid profiling, 16S rDNA sequencing and fermentation profile.

    Two FLAB species, L. kunkeei and F. fructosus, were identified in samples from

    dandelion, apple and raspberry. Rapeseed harbored only Enterococcus spp. and

    willowherbhadthemostdiverseLABfloraconsistingofL.garvieae,L.sakei,W.cetiand

    W.viridescens.TheLABwerecomparedwithLABisolatedfromhoneybeegutsampled

    inparallelwiththeflowersbloomingperiod.ComparisonoftheLABstrainsandplasmid

    profilessuggestapositivecorrelationbetweentheLABmicrobialflorainhoneybeegut

    andtheflowerswithintheirforagingarea.

    4.1 LacticAcidBacteriaIsolatedfromFlowers

    The results showed that the LAB flora of flowers from different plant species varied

    significantly between some plant species and less between others. Dandelion, apple

    flowerandraspberryharboredthefructophilicLABspeciesL.kunkeeiandF.fructosus,

    which have in previous studies also been isolated from flowers, and are known to

    inhabit fructose rich niches. Rapeseed harbored only Enterococcus spp. while

    willowherbhadthemostdiverseLABfloraconsistingofL.garvieae,L.sakei,W.cetiand

    W.viridescens.

    L. kunkeei and F. fructosus have previously been isolated from several flowers, while

    Enterococcusspp.arereadilyfoundintheenvironmentandarecommensalmembersof

    gutcommunitiesinmammalsandbirds(30).TheremainingLABspecies,isolatedfrom

    willowherb,haveasfarasweknownotbeenisolatedfromfreshflowersbefore.These

    LAB species have for the most part been detected in processed meat, fish or dairy

    products(31).L.garvieaehasalsobeenidentifiedinvegetablesprouts(32),andbothL.

    garvieaeandW.cetihavebeenshowntobefishpathogens(33,34).However,arelative

    ofW. ceti, W. confusus, has recently been isolated from the gut of honeybees (35).

    Obviously,thereisalotmoretolearnaboutthemicrofloraofbeesandflowers.

    Nectarcompositionisgreatlydiverseamongdifferentplantspeciesasmeanstoattract

    different pollinators. Although every plant species collected are of importance for the

  • 19

    honeybee pollinator, indicating a similar nectar composition in general, the nectar

    compositionsmay be different enough to cause the different LAB flora observed. For

    example, nectar fromwillowherb and rapeseedmay not contain enough fructose for

    FLAB growth. One the other hand, the results may also indicate that the bacterial

    extractionmethodusedonlyextracts themostdominantbacterialspecies.Wedidnot

    discriminateagainstdifferentpartsoftheflower,exceptforthestemandleaves,which

    maybeconsideredasa source for thevariationofLABspeciesobservedbetween the

    plantspecies,wheresomeLABmayoriginatefromeitherpetals,pollenornectar.

    Thefermentationprofilescorrespondedreasonablywellwiththeliterature,andstrains

    ofthesamespeciealsoshowedthesameprofile,withL.lactisastheonlyexception.

    Oneof the twostrainsofL. lactis fermented sucrosewhile theotherdidnot.The two

    strains of L. lactis were isolated from different flowers and had different plasmid

    profiles.Thisisbecausethemetabolismofsucroseiscontrolledbyplasmidgenesandis

    thereforestraindependent(36).

    4.2 ComparingtheResultstoLacticAcidBacteriaIsolatedfromHoneybeeGut

    TocomparehowtheLAB isolated from flowersare related toLAB found inhoneybee

    gut, theresults fromthepresentstudywerecomparedto theresultsofaparallelMSc

    thesisconductedbyIngvildGallefoss(37)(REF),characterizingthegutmicrobiotaofthe

    honeybee,andwithsimilarmethodsandprocedures.Bacterialsamplesfromhoneybee

    gut were provided by the LMG group at the Norwegian University of Life Sciences.

    Honeybeeshadbeencollectedfromwithinthehiveatthesametimepoints for flower

    sample collections, and each bacterial sample contained about 10 honeybee guts. All

    resultsmentionedaboutLABisolatedfromhoneybeegutsampleswerekindlyprovided

    by I. Gallefoss. The flowers collected represent amain pollination target at any given

    timepoint.

    4.2.1 ComparisonoftheLABSpecies

    AnoverallcomparisonoftheLABspecies,regardlessofseasonalprogression,revealed

    that45%of all isolates fromhoneybeegutwereL.kunkeeicompared to15%of the

    isolatesfromflowersamples.Bothflowersamplesandhoneybeegutsamplescontained

  • 20

    about29%F.fructosus. Bifidobacteriumasteroidesaccountedfor25%ofallidentified

    LABstrainsinhoneybeesamples,asdidEnterococcusspp.inflowersamples.

    Withfocusontheprogressingseasonandthefollowingchangeofpollinationtargets,a

    comparisonoftheLABisolatesfromflowersandhoneybeegutinrelationtotheirtime

    of collection is shown in Figure 4.1. Some correspondence can be seen between the

    samplescollectedinmiddleofMay,lateMayandlateJune.

    In middle of May, the main flowering period of dandelion, L. kunkeei was the only

    species found in both flower and honeybee samples. In lateMay, themain flowering

    period for fruit flowers and autumn rapeseed, this species was still dominant in the

    honeybeegutsample,whileF.fructosuswasdominantintheapplesample.

    Figure4.1Thebacterial compositionof flower samples compared to samplesof thehoneybeeguton theirrespective time points of collection.Data of bacterial strains isolated fromhoneybee gut samples (C3T6, C3T7,C3T9, C3T12 and C3T13) were kindly provided by Gallefoss 2016 (REF). The relative abundance represents thenumberofisolatesnormalizedto100%ofLABspeciesanalyzed.*Numberofisolates.

    In late June, almost 80% of the identified isolates from raspberry were F. fructosus,

    while thiswas theonlyspecies identified in thehoneybeesample.Seemingly, theLAB

    compositioninthehoneybeegutshiftsfromL.kunkeeitoF.fructosusbetweenmiddleof

    May and late June when comparing C3T6, C3T7 and C3T9. One sample from August

    (C3T12)alsocontainedalmostonlyF.fructosus,butthiscorrespondedpoorlywiththe

    willowherb sample and the other honeybee gut sample (C3T13) collected in August.

    0%10%20%30%40%50%60%70%80%90%100%

    Dandelion

    C3T6

    Apple

    Rapeseed

    C3T7

    Raspberry

    C3T9

    Willowherb

    C3T12

    C3T13

    MiddleofMay LateMay LateJune August

    Relativeabundance L.mesenteroides

    B.asteroides

    W.viridenscens

    W.ceti

    L.garvieae

    L.sakei

    L.kunkeei

    L.lactis

    F.fructosus

    Enterococcus

    1022112020187202023*

  • 21

    Actually,noneoftheidentifiedbacteriaonneitherrapeseednorwillowherbwerefound

    in anyof the samples fromhoneybeegut. Likewise,noB.asteroideswereobserved in

    anyoftheflowersamples.L.lactisandtheotherLABfoundinflowersamplesthatwere

    absentinthehoneybeegut,hasasfarasweknownotbeenidentifiedinotherstudies

    conductedonthehoneybeegut.

    4.2.2 ComparisonofthePlasmidProfiles

    In order to evaluate the relatedness between the LAB isolated from flowers and

    honeybee guts, the plasmid profiles were compared. The plasmid profiles from

    honeybeegutsamplesshowedgreaterdiversitythantheprofilesfromflowerssamples.

    Atotalof36differentprofilesdistributedamong140isolates,whichaccountsforabout

    74 % of the total number isolated bacteria from honeybee gut, were observed. In

    contrast, only21%of the isolates from flowers containedplasmidswith14different

    profiles.

    L.kunkeeihavepreviouslybeenshowntocomprisemanyplasmidswithhighdiversity

    among different strains (38). The same resultswere shown for theL.kunkeei strains

    isolatedfromC3T6andC3T7.Eighteenofthetotal34differentprofileswereassignedto

    L.kunkeei,andalmosteveryprofilewasobserved formore thanone isolate. In flower

    samples, L. kunkeei was identified for 5 different plasmid profiles where no strains

    contained the same profile. Although the diversity seemed greater for the plasmid

    profiles of honeybee samples, the abundance of this species were also greater in

    honeybeesamples,whichmaypartlyexplainthediversitydifference.

    F.fructosusshowedsimilardiversityintheflowersamplestothehoneybeegutsamples.

    SevenplasmidprofileswereidentifiedasF.fructosusinthehoneybeesamples,whileF.

    fructosusstrainsfromflowersamplesshowed6differentprofiles.

    Fouroftheplasmidprofilesfromflowersamplesgreatlyresembledthebandpatternof

    fourprofilesobtainedfromthehoneybeesamples.Forthreeoftheseprofiles,assigned

    L.kunkeei,therewashoweveradiscrepancybetweenthetimepointsofsamplingofthe

    isolates that contained the same profile. One profile sampled from apple inMaywas

    seen in an isolate from honeybee gut sampled two weeks earlier, and vise versa. A

    possible explanation for thismay be that the blooming period of dandelion and fruit

    trees,likeapple,arearoundthesametime.Individualhoneybees,orbeesfromthesame

  • 22

    hive,couldthereforehavevisitedbothflowersbeforetheygotsampled.Themajorityof

    theF.fructosusstrainsfrombothflowersandhoneybeegutsamplescontainedaprofile

    consisting of only one band of approximately 3.7 kb, indicating a prevalence of this

    straininbothflowerandhoneybeegutsamples.

    4.3 BacterialTransmissionbetweenFlowerandHoneybees

    The rapeseed samplewas dominated by another flora than the other flowers, and no

    enterococci were observed in the honeybee samples. Honeybees may prefer apple

    flowerstorapeseedinthisperiod,orevendandelion,asthebloomperiodforallthree

    flowersoverlap.Thefactthattherapeseedfieldwheretheflowerswerecollectedfrom

    islocatedmorethan4kilometersfromNMBUcampusalmostcertainlymeansthatthe

    honeybeeslocatedoncampusdidnotvisittheseflowers.Thereisapossibilitythatthere

    are other rapeseed fields closer to the hive, but these flowers would have to be

    examinedforLABfloraaswellbeforesomeconclusionscanbedrawnconcerningthese

    samplingresults.

    Due to the seemingly rapid loss of L. kunkeei in the honeybee gut, there are strong

    indicationstowardsafloraltransmission.However,thereisnoclearevidenceforwhich

    way the transmissionoccur.This is inagreementwith thehypothesisof severalother

    studies.Ushioetal.(39)demonstratedthatthemicrobialcommunitycompositionona

    flower surface changed after contact with an insect, and they suggested that the

    microbesaretransferredfromtheinsecttothefloweralthoughtheydidnotexcludethe

    possibility of the other way around. Aizenberg-Gershtein et al. (40) compared the

    microbialcommunity inhoneybeegutwithbothcoveredanduncoveredflowers.They

    found that the microbial flora in the honeybee gut differed more from the covered

    flower than the uncovered flower, supporting the hypothesis that honeybees may

    introducebacteriatotheflower.

    The honeybees were collected from within the hive, meaning that they did not

    discriminate against honeybee age and development stage. As the honeybee gut has

    been shown to vary with age and also gut compartments, any discrepancies in the

    honeybeesamplescanalsobe influencedby these factors.Onetheotherhand,even if

    theindividualhoneybeeforagertendstosticktoonetypeoffloweratatime,bacterial

  • 23

    flora from different flowers can be transferred back to the hive by many different

    foragers,makingthefloramorediversewithinthehivethanonaparticularflower.This

    may contribute to the greater variety of plasmid profiles seen in the honeybee gut

    samples compared to the flower samples. Possible contamination/transmission from

    thesurroundingenvironmentisquiteobvious,butthecontaminationpressurefromthe

    in-hive environment complicates interpretation of the results. The data sets are

    relatively small to give any hard evidence, but there are many indications toward a

    positive correlationbetween theLABmicrobial flora inhoneybeegut and the flowers

    withintheirforagingarea.

    Further work is advised with a closer examination of the LAB flora from the plant

    species collected in the study, where parallel samplings possibly could discard bias

    relatedtomethodologicalorpersonalerrors.Samplingofhoneybeeswhiletheyvisitthe

    flowercouldperhapsbypassagerelatedinfluenceincontrasttoin-hivesampling.

    4.4 Conclusion

    Flowers provide diverse habitats for microorganisms, and as shown in the present

    study,theLABcompositioninfivedifferentplantspeciesvariedamongthem.L.kunkeei

    andF.fructosuswerethemostabundantofalltheidentifiedspeciesandisincorrelation

    withotherstudiesonLABfoundinflowers.TheLABfloraofthehoneybeegutseemsto

    shift fromL.kunkeei toF.fructosus throughMayto late June,andF.fructosuswasalso

    foundasthemostabundantLABinoneofthesamplescollectedfromhoneybeegutsin

    August.This is inaccordancewiththeLABflora foundondandelionandapple inMay

    andraspberryinlateJune.Theseresultsagreeswellwithearlierfindingofanumerical

    variation of LAB in the honeybee crop across seasons (5) and a seasonal shift of L.

    kunkeeiinthegutofsummerbeesandwinterbees(41)wheretheysuggestedthatfloral

    transmissioncouldexplainthesporadicfindingsofthisspecie.

  • 24

    5. ReferencesReferanser

    1. GuinaneCM,CotterPD.2013.Roleofthegutmicrobiotainhealthandchronic

    gastrointestinaldisease:understandingahiddenmetabolicorgan.TherapAdvGastroenterol6:295-308.

    2. BromenshenkJJ,HendersonCB,WickCH,StanfordMF,ZulichAW,JabbourRE,DeshpandeSV,McCubbinPE,SeccombRA,WelchPM,WilliamsT,FirthDR,SkowronskiE,LehmannMM,BilimoriaSL,GressJ,WannerKW,CramerRA,Jr.2010.Iridovirusandmicrosporidianlinkedtohoneybeecolonydecline.PLoSOne5:e13181.

    3. MartinsonVG,MoyJ,MoranNA.2012.Establishmentofcharacteristicgutbacteriaduringdevelopmentofthehoneybeeworker.ApplEnvironMicrobiol78:2830-2840.

    4. MartinsonVG,DanforthBN,MinckleyRL,RueppellO,TingekS,MoranNA.2011.Asimpleanddistinctivemicrobiotaassociatedwithhoneybeesandbumblebees.MolEcol20:619-628.

    5. OlofssonTC,VasquezA.2008.DetectionandidentificationofanovellacticacidbacterialflorawithinthehoneystomachofthehoneybeeApismellifera.CurrMicrobiol57:356-363.

    6. OlofssonTC,AlsterfjordM,NilsonB,ButlerE,VasquezA.2014.Lactobacillusapinorumsp.nov.,Lactobacillusmellifersp.nov.,Lactobacillusmellissp.nov.,Lactobacillusmelliventrissp.nov.,Lactobacilluskimbladiisp.nov.,Lactobacillushelsingborgensissp.nov.andLactobacilluskullabergensissp.nov.,isolatedfromthehoneystomachofthehoneybeeApismellifera.IntJSystEvolMicrobiol64:3109-3119.

    7. VásquezA,OlofssonTC,SammataroD.2008.AscientificnoteonthelacticacidbacterialflorainhoneybeesintheUSA–AcomparisonwithbeesfromSweden.Apidologie40:26-28.

    8. VasquezA,ForsgrenE,FriesI,PaxtonRJ,FlabergE,SzekelyL,OlofssonTC.2012.Symbiontsasmajormodulatorsofinsecthealth:lacticacidbacteriaandhoneybees.PLoSOne7:e33188.

    9. ForsgrenE,OlofssonTC,VásquezA,FriesI.2009.NovellacticacidbacteriainhibitingPaenibacilluslarvaeinhoneybeelarvae.Apidologie41:99-108.

    10. OlofssonTC,ButlerE,MarkowiczP,LindholmC,LarssonL,VasquezA.2014.Lacticacidbacterialsymbiontsinhoneybees-anunknownkeytohoney'santimicrobialandtherapeuticactivities.IntWoundJdoi:10.1111/iwj.12345.

    11. HayekSA,IbrahimSA.2013.CurrentLimitationsandChallengeswithLacticAcidBacteria:AReview.FoodandNutritionSciences04:73-87.

    12. ServinAL.2004.Antagonisticactivitiesoflactobacilliandbifidobacteriaagainstmicrobialpathogens.FEMSMicrobiolRev28:405-440.

    13. SunZ,YuJ,DanT,ZhangW,ZhangH.2014.PhylogenesisandEvolutionofLacticAcidBacteria.doi:10.1007/978-94-017-8841-0_1:1-101.

    14. LiuW,PangH,ZhangH,CaiY.2014.BiodiversityofLacticAcidBacteria.doi:10.1007/978-94-017-8841-0_2:103-203.

    15. EndoA,Futagawa-EndoY,DicksLM.2009.Isolationandcharacterizationoffructophiliclacticacidbacteriafromfructose-richniches.SystApplMicrobiol32:593-600.

  • 25

    16. NevelingDP,EndoA,DicksLM.2012.FructophilicLactobacilluskunkeeiandLactobacillusbrevisisolatedfromfreshflowers,beesandbee-hives.CurrMicrobiol65:507-515.

    17. McFrederickQS,WcisloWT,TaylorDR,IshakHD,DowdSE,MuellerUG.2012.Environmentorkin:whencedobeesobtainacidophilicbacteria?MolEcol21:1754-1768.

    18. EndoA,SalminenS.2013.Honeybeesandbeehivesarerichsourcesforfructophiliclacticacidbacteria.SystApplMicrobiol36:444-448.

    19. AndrewsJH,HarrisRF.2000.TheEcologyandBiogeographyofMicroorganismsonPlantSurfaces.AnnuRevPhytopathol38:145-180.

    20. SasuMA,WallKL,StephensonAG.2010.AntimicrobialnectarinhibitsaflorallytransmittedpathogenofawildCucurbitapepo(Cucurbitaceae).AmJBot97:1025-1030.

    21. FridmanS,IzhakiI,GerchmanY,HalpernM.2012.Bacterialcommunitiesinfloralnectar.EnvironMicrobiolRep4:97-104.

    22. Alvarez-PerezS,HerreraCM,deVegaC.2012.Zooming-inonfloralnectar:afirstexplorationofnectar-associatedbacteriainwildplantcommunities.FEMSMicrobiolEcol80:591-602.

    23. NicolsonSW.2011.Beefood:thechemistryandnutritionalvalueofnectar,pollenandmixturesofthetwo.doi:10.1080/15627020.2011.11407495.

    24. GruterC,MooreH,FirminN,HelanteraH,RatnieksFL.2011.Flowerconstancyinhoneybeeworkers(Apismellifera)dependsonecologicallyrealisticrewards.JExpBiol214:1397-1402.

    25. GoodAP,GauthierMP,VannetteRL,FukamiT.2014.Honeybeesavoidnectarcolonizedbythreebacterialspecies,butnotbyayeastspecies,isolatedfromthebeegut.PLoSOne9:e86494.

    26. AndersonKE,SheehanTH,MottBM,MaesP,SnyderL,SchwanMR,WaltonA,JonesBM,Corby-HarrisV.2013.Microbialecologyofthehiveandpollinationlandscape:bacterialassociatesfromfloralnectar,thealimentarytractandstoredfoodofhoneybees(Apismellifera).PLoSOne8:e83125.

    27. LudvigsenJ,RangbergA,AvershinaE,SekeljaM,KreibichC,AmdamG,RudiK.2015.ShiftsintheMidgut/PyloricMicrobiotaCompositionwithinaHoneyBeeApiarythroughoutaSeason.MicrobesEnviron30:235-244.

    28. MayerLW.1988.Useofplasmidprofilesinepidemiologicsurveillanceofdiseaseoutbreaksandintracingthetransmissionofantibioticresistance.

    29. SinghA,GoeringRV,SimjeeS,FoleySL,ZervosMJ.2006.Applicationofmoleculartechniquestothestudyofhospitalinfection.ClinMicrobiolRev19:512-530.

    30. ByappanahalliMN,NeversMB,KorajkicA,StaleyZR,HarwoodVJ.2012.Enterococciintheenvironment.MicrobiolMolBiolRev76:685-706.

    31. Champomier-VergesMC,ChaillouS,CornetM,ZagorecM.2001.Lactobacillussakei:recentdevelopmentsandfutureprospects.ResMicrobiol152:839-848.

    32. KawanishiM,YoshidaT,KijimaM,YagyuK,NakaiT,OkadaS,EndoA,MurakamiM,SuzukiS,MoritaH.2007.CharacterizationofLactococcusgarvieaeisolatedfromradishandbroccolisproutsthatexhibitedaKG+phenotype,lackofvirulenceandabsenceofacapsule.LettApplMicrobiol44:481-487.

  • 26

    33. VendrellD,BalcazarJL,Ruiz-ZarzuelaI,deBlasI,GironesO,MuzquizJL.2006.Lactococcusgarvieaeinfish:areview.CompImmunolMicrobiolInfectDis29:177-198.

    34. FigueiredoHC,CostaFA,LealCA,Carvalho-CastroGA,LeiteRC.2012.Weissellasp.outbreaksincommercialrainbowtrout(Oncorhynchusmykiss)farmsinBrazil.VetMicrobiol156:359-366.

    35. RabadjievY,ChristovaP,IlievI,IvanovaI.2015.IdentificationofaLacticAcidBacterialflorawithinthehoneyintestinaltractofApismelliferafromdifferentregionsofBulgaria.

    36. DubravkaSamaržijaNA,JasminaLukaHavranek.2001.Taxonomy,physiologyandgrowthofLactococcuslactis:areview.

    37. GallefossI.2016.AComparativeAnalysisonPhylogeny,GeneticsandSelectedPhenotypesofLacticAcidBacteriaIsolatedfromGutMicrobiotaofHoneyBeeVersusFlowers.

    38. RangbergA,DiepDB,RudiK,AmdamGV.2012.Paratransgenesis:anapproachtoimprovecolonyhealthandmolecularinsightinhoneybees(Apismellifera)?IntegrCompBiol52:89-99.

    39. UshioM,YamasakiE,TakasuH,NaganoAJ,FujinagaS,HonjoMN,IkemotoM,SakaiS,KudohH.2015.Microbialcommunitiesonflowersurfacesactassignaturesofpollinatorvisitation.SciRep5:8695.

    40. Aizenberg-GershteinY,IzhakiI,HalpernM.2013.Dohoneybeesshapethebacterialcommunitycompositioninfloralnectar?PLoSOne8:e67556.

    41. RangbergA,MathiesenG,AmdamGV,DiepDB.2015.TheparatransgenicpotentialofLactobacilluskunkeeiinthehoneybeeApismellifera.BenefMicrobes6:513-523.

  • 27

    APPENDIX1–GrowthMedia,BuffersandTables

    PreparationofMRSMediaSupplementedwithFructose

    Avolumeof7.5ml40%fructosewasaddedto26gMRSbroth.Waterwasthenadded

    to the final volume of 500 ml giving the final concentration of 0.6 % fructose. The

    solutionwasdistributedonculturetubesinvolumesof6mlbeforeautoclaving.

    Buffers

    TE-buffer(TrisEDTA):

    1mMTris-HClpH8.0and100μMEDTApH8.0.

    50XTAEstock:

    Abottlewasfilledwithapproximately700mldH2Obefore242gTris-Base,100ml0.5

    MEDTAand57.1mlGlacialAceticAcidwereadded.The flaskwas filledup to1 liter

    withdH2Oandmixedonamagneticstirrer.

    1XTAE-buffer:

    100ml50XTAEwasmixedwith4.9litersdH2O.

    TablesTableA1.1Restrictionendonucleasesandtheirrestrictionsites,incubation-andkilltemperature.

    Enzyme Sequence Incubationtemperature HeatkillSpeI A/CTAGT 37°C 80°CXbaI T/CTAGA 37°C 65°CXhoI C/TCGAG 37°C 65°CTableA1.2Dilutionseriesshowingvolumesofcycloheximideandthefinalconcentrations.

    Culturetube 1 2 3 4 55.2mg/mLCHXworkingSolution[µL] 0 5 20 50 150CHXFinalConcentration[µg/mL] 0 5.2 20.8 52 156

  • 28

    APPENDIX2-Results

    DiagramsofGCanalysisresults

    FigureA2.1.GCanalysisresultsofvolatilesproducedbytwoyeastisolatesfromappleflowergrownonMRSmediumcomparedwithablanksampleofMRSmedium.

    FigureA2.2.GCanalysisresultsofvolatilesproducedbytwoyeastisolatesfromappleflowergrownonLAmediumcomparedwithablanksampleofLAmedium.

    110100100010000100000100000010000000100000000100000000010000000000

    Aceticacid

    Pyrazine

    Pyrazine,methyl-

    Pyrazine,2,5-

    2,3-Butanedione

    Acetone

    IsopropylAlcohol

    Butanal,3-methyl-

    EthylAcetate

    1-Butanol,3-methyl-

    ethanol

    PhenylethylAlcohol

    1-Propanol,2-methyl-

    Butanenitrile,3-

    Acetoin

    1-propanol

    1-butanol

    Acetaldehyde

    Aceticacid,2-

    Methacrolein

    2-Butanone

    Butanal

    Hexanal,3-methyl-

    Propanal,2-methyl-

    Area[log10]

    MRSBlankMRS 47MRS 48MRS

    110100100010000100000100000010000000100000000

    Aceticacid

    Pyrazine

    Pyrazine,methyl-

    Pyrazine,2,5-

    2,3-Butanedione

    Acetone

    IsopropylAlcohol

    Butanal,3-methyl-

    EthylAcetate

    1-Butanol,3-

    ethanol

    PhenylethylAlcohol

    1-Propanol,2-

    Butanenitrile,3-

    Acetoin

    1-propanol

    1-butanol

    Acetaldehyde

    Aceticacid,2-

    Methacrolein

    2-Butanone

    Butanal

    Hexanal,3-methyl-

    Propanal,2-methyl-

    Area[log10]

    LABlankLA 47LA 48LA

  • 29

    APPENDIX3-Protocols

    PlasmidIsolationProtocol

    1) Inoculateasinglecolonyfromapurecultureplatein6mlMRS+fructoseand

    incubateat30°Covernight.

    2) TransfertheON-culturetoa12mlfalcontubeandcentrifugeat400rpmfor5

    minutes.

    3) Decantanddiscardtheculturemedia.

    4) Dissolvethecellpelletin500µlTE-bufferbyvortexorpipettingandtransferthe

    suspensiontoanew1,5mlmicrocentrifugetube.

    5) Centrifugeatmaxspeedfor1minuteinatablecentrifuge.

    6) Decantanddiscardthesupernatant.

    7) Makeamixofenzymesbyadding5µlLysozymeand5µlMutanolysinemultiplied

    bythenumberofsamples.

    8) Add250µlSolutionItothecellpellet.Vortextomixthoroughly.

    9) Add10µloftheenzymemixandinvertthetubestomix.

    10) Placethetubeonawaterbathwith37°Cfor10minutes.

    11) Add250µlSolutionII.Invertandgentlyrotatethetubeseveraltimestoobtaina

    clearlysate.A2-3minutesincubationtimemaybenecessary.NB!AvoidvigorousmixingtoavoiddissolvingchromosomalDNAandalowerplasmidpurity.Do

    notexceed5minutesincubation.

    12) Add350µlSolutionIII.Immediatelyinvertseveraltimesuntilaflocculentwhite

    precipitateforms.NB!ItisimportantthatthesolutionismixedwellandimmediatelyaftertheadditionofSolution

    IIItoavoidlocalprecipitation.

    13) Centrifugeatmaximumspeedfor10minutes.Acompactwhitepelletwillform.

    Promptlyproceedtothenextstep.

    14) InsertaHiBindDNAMiniColumnintoa2mlCollectionTube.

    15) TransfertheclearedsupernatantfromStep13bycarefullyaspiratingitintothe

    HiBindDNAMiniColumn.

    16) Centrifugethecolumnatmaxspeedfor1minute.

    17) Discardthefiltrateandreusethecollectiontube.

    18) Add500µlHBCBuffer.

    19) Centrifugeatmaxspeedfor1minute.

  • 30

    20) Discardthefiltrateandreusethecollectiontube.

    21) Add700µlDNAWashBuffer.

    22) Centrifugeatmaxspeedfor30seconds.

    23) Discardthefiltrateandreusethecollectiontube.

    24) Repeatstep21through23.

    25) CentrifugetheemptyHiBindDNAMiniColumnatmaxspeedfor2minutesto

    drythecolumn.

    26) TransfertheHiBindDNAMiniColumntoanew1,5mlmicrocentrifugetube.

    27) Add30µlElutionBuffer.

    28) LetthecolumnsitatRTfor1minute.

    29) Centrifugeatmaxspeedfor1minute.

    30) Repeatstep27through29.

    31) StoretheelutedDNAat-20°C.

  • Postboks 5003 NO-1432 Ås, Norway+47 67 23 00 00www.nmbu.no