9/9/2015© 2010 raymond p. jefferis iiilect 02 - 1 telephone communications

40
06/13/22 © 2010 Raymond P. Jefferis III Lect 02 - 1 Telephone Communications

Upload: percival-bates

Post on 11-Jan-2016

226 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 1

Telephone Communications

Page 2: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 2

Internet Communications

• Largely carried on telephone network

• Lately quite a bit of privately owned fiber– communication carriers– electric companies– private organizations

• Some carried over television cables

• New conveyance by wireless providers

Page 3: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 3

Present Telephone Conveyance

• ATM backbone (long distance)

• ATM switching at core

• T1 data lines to businesses (1.544 Mb/s)

• Copper “last mile”– voice grade lines– DSL possible using residual bandwidth outside

the voice channel - has distance limitations

Page 4: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 4

Terms

• ATM - Asynchronous Transfer Mode

• DSL - Digital Subscriber Line

• DSLM - DSL Modem

• DSLAM - DSL Access Module

• POTS - Plain Ordinary Telephone System

• SONET - Synchronous Optical NETwork

Page 5: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 5

TelCo Network Interface

ATM

ATM

ATM

CS

DSLAM

R R

S

S

S

...

CoreSwitching

EdgeSwitching

Access(Local Loop)

OC 192 Backbone T1

Copper

Copper

DSLM

Page 6: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 6

Residential Data Lines• POTS line with modem

– 56 kb/s– rate depends on line quality

• DSL line with splitter/modem*– Advanced, up to 1.5M / 128K $59.95/month– Premium, up to 384K / 384K $69.95/month– Professional, up to 1.5M / 384K$79.95/month

-------------------------------------------------------------* Speed depends on distance to TelCo office

Page 7: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 7

Digital Data Transmission

• Binary data

• Transmitted as pulses

• Pulses shaped by line bandwidth

• Pulses have high frequency components

• Limiting bandwidth limits data rate

Page 8: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 8

Fourier Series of Bandlimited Pulse

Page 9: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 9

Fourier Transform of Pulse

Page 10: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 10

Notes:

• First crossover of spectral amplitude is at B

• 2B is effective bandwidth needed to transmit through noiseless channel.

Page 11: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 11

Nyquist Bit Rate

• Relates three transmission variables:– Channel Capacity (C)– Bandwidth (B)– Signal levels (L) – quantization levels– Formula:

C = 2Blog2[L]

• Noise-free channel assumed

Page 12: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 12

Nyquist Example:

• Formula: 2BLog2[L]

• Example:

L = 1 (binary signals)

B = 3000 Hz (300 – 3300 Hz)

C = 2*6000*1 = 6000 [bits/s]

Note: Applies to noise-free channel only

Page 13: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 13

Shannon Formula

• C = B log2(1 + SNR)

• Example:– B = 3000 Hz (300 – 3300 Hz)– SNR = 3163 (35 dB power ratio)– C = 34,882 [bits/s]

Page 14: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 14

All Digital Telephony

• Voice-to-Digital conversion coding at transmitter

• Digital transmission

• Digital-to-Voice code conversion at receiver

• Conversions performed by COder-DECoder (CODEC) module at each end of line

Page 15: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 15

Voice-Data Conversion

CODEC CODECVoice Data Voice

(8 bits)

Page 16: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 16

Digital Data Frame on T1 Line

• Voice lines are low-pass filtered to 3.1 KHz

• CODEC output is 8 bits wide

• Sampling rate is about 8000 samples/s

• Data rate is thus about 64000 bits/sec

• 24 lines carried on T1 link (1.544 Mb/s)

Page 17: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 17

T1 Time-Division Multiplexing• Data frame starts with framing bit

• Data samples (8 bits each)

• 24 lines each supply a data sample every 125 microseconds (0.000125 sec)

• Samples are sequentially multiplexed

• 193 bits per data frame

• 1.544 Mb/s total data rate

Page 18: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 18

Time Division Multiplexing

Multiplexer

Line 1

Line 2

Line n

...

Line 1

Line 2

Line n

...

Page 19: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 19

Time Division De-Multiplexing

De-Multiplexer

Line 1

Line 2

Line n

...

Line 1

Line 2

Line n

...

Page 20: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 20

De-Multiplexing

• Data samples are redistributed into lines

• Low-pass filter recovers analog voice

Page 21: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 21

High-Speed Backbone

• 28 T1 streams merged to T3 stream

• ATM cells repackage data at core– 53 octets/cell

• 5 octets of header information

• 48 octets of data

• SONET frames– 8 x 810 = 6480 bits sent 8000 times per second– 51.85 Mb/s data rate (some frame overhead)

Page 22: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 22

ATM Cell Transmission

Time

ATM Cell ATM Cell ... ATM Cell

Page 23: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 23

TelCo Standard Data Rates

• T1 1.544 Mb/s (24 voice circuits)• T3 44.736 Mb/s (672 voice circuits)• OC-3 155.52 Mb/s (2430 voice circuits)• OC-12 622.08 Mb/s (9720 voice circuits) • OC-48 2488.32 Mb/s (19440 voice circuits) • OC-192 9953.28 Mb/s (38880 voice circuits)

Page 24: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 24

Future Network Interface

l 1

l n

l -R

l -R R

S

S

S

...

CoreSwitching

EdgeSwitching

Access

l - BACKBONE

Fiber

Fiber

Copper

Copper...

Page 25: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 25

- Network

• Backbone fiber combines 16 OC-192 lines

• Each is given a different wavelength

• All data streams merged into single fiber

• Streams split by wavelength

• 16 OC-192 lines out

• Switches to TelCo customers

Page 26: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 26

Optical-Data Conversion

LASER DIODECopper Fiber Copper

()

Page 27: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 27

Optical Data Conversion

• Data on wire drives tunable laser

• Laser emits photon pulses

• Photons propagate down fiber

• Photon energy activates receiving diode

• Diode produces voltage or current

• Amplifier drives wire

Page 28: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 28

Transmission Problems

• Photons lost at fiber coupling

• Photons lost in fiber due to scattering

• Photons per pulse deteriorates with length

• Repeater amplifiers needed

Page 29: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 29

Optical-Data Link

LASER DIODECopper

FiberCopper

()Repeater

Fiber

()

Page 30: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 30

More Problems

• Repeaters require external power

• Photons need conversion to voltage, amplification, and then reconversion to photons - data rate bottleneck!

Page 31: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 31

Repeater for Fiber Optic Line

Diode LaserFiber

CopperFiber

()Amplifier

Copper

()

Page 32: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 32

Wave Division Multiplexing

LaserLine 1

Line 2

Line n

...

Laser

Laser

WDM Fiber

Page 33: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 33

Wave Division Multiplexing

• Incoming data converted to photons

• Photon streams have individual frequencies

• Streams can be merged onto single fiber

• Streams propagate without interference

Page 34: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 34

WDM Problems

• Limited number of “colors” of photons

• Repeaters must work on all “colors”

Page 35: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 35

Repeaters for WDM

• Must amplify all photon “colors”

• Must not cause interaction between photon streams

Page 36: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 36

Pumped Laser Repeater

Pumped LaserFiber Fiber

() ()

Pump

Photon Energy

Page 37: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 37

Pumped Laser Repeater

• Rare-earth doped glass

• Pumped by external light

• Photons receive excitation and are amplified

• Amplification of all photon “colors”

Page 38: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 38

WDM De-multiplexing

• Photon stream split by “colors”

• Separated streams may be converted to voltage pulses

Page 39: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 39

Wave Division De-Multiplexing

Line 1

Line 2

Line n

...WDM Fiber

DIODE

DIODE

DIODE

1

2

n

Page 40: 9/9/2015© 2010 Raymond P. Jefferis IIILect 02 - 1 Telephone Communications

04/21/23 © 2010 Raymond P. Jefferis III Lect 02 - 40

WDM Routing

• Data streams must be switched

• Ideally this should be optical

• Optical switching of SONET frames?

• Electro-optics?

• State-of-the-art - developments taking place rapidly (Lucent, Nortel, others)