88665474 transmission line protection

111
Fundamentals of Distance Protection GE Multilin

Upload: eorduna

Post on 04-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 1/111

Fundamentals of DistanceProtection

GE Multilin

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 2/111

2 /GE /

 April-9-12

Outline

• Transmission lin

e introduction

• What is distance protection?

• Non-pilot and pilot schemes

• Redundancy considerations• Security for dual-breaker terminals

• Out-of-step relaying

• Single-pole tripping• Series-compensated lines

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 3/111

3 /GE /

 April-9-12

Transmission Lines

 A Vital Part of the Power System: • Provide path to transfer power between generation and load

• Operate at voltage levels from 69kV to 765kV

• Deregulated markets, economic, environmental requirements

have pushed utilities to operate transmission lines close to theirlimits.

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 4/111

4 /GE /

 April-9-12

Transmission Lines

Classification of line length depends on:

Source-to-line Impedance Ratio (SIR),

and Nominal voltage

Length considerations:

Short Lines: SIR > 4Medium Lines: 0.5 < SIR < 4

Long Lines: SIR < 0.5

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 5/111

5 /GE /

 April-9-12

Typical Protection SchemesShort Lines

• Current differential

• Phase comparison

• Permissive Overreach Transfer Trip (POTT)• Directional Comparison Blocking (DCB)

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 6/111

6 /

GE /

 April-9-12

Typical Protection SchemesMedium Lines

• Phase comparison

• Directional Comparison Blocking (DCB)

• Permissive Underreach Transfer Trip (PUTT)

• Permissive Overreach Transfer Trip (POTT)

• Unblocking

• Step Distance

• Step or coordinated overcurrent• Inverse time overcurrent

• Current Differential

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 7/111

7 /

GE /

 April-9-12

Typical Protection SchemesLong Lines

• Phase comparison

• Directional Comparison Blocking (DCB)

• Permissive Underreach Transfer Trip (PUTT)

• Permissive Overreach Transfer Trip (POTT)

• Unblocking

• Step Distance

• Step or coordinated overcurrent

• Current Differential

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 8/111

8 /

GE /

 April-9-12

What is distance protection?

For internal faults:> IZ –  V and V approximately

in phase (mho)

> IZ –  V and IZ approximately in phase(reactance)

RELAY (V,I)

Intended

REACH point

Z

F1

I*Z

V=I*ZF

I*Z - V

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 9/111

9 /

GE /

 April-9-12

What is distance protection?

For external faults:> IZ –  V and V approximately

out of phase (mho)

> IZ –  V and IZ approximately out of phase(reactance)

RELAY (V,I)

Intended

REACH point

Z I*Z

V=I*ZF

I*Z - V

F2

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 10/111

10 /

GE /

 April-9-12

What is distance protection?

RELAY

Intended

REACH point

Z

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 11/111

11 /

GE /

 April-9-12

Source Impedance Ratio,Accuracy & Speed

LineSystem

Relay

Voltage at the relay:SIR f  

 f  V V 

 PU  LOC 

 PU  LOC 

 N  R

][

][

Consider SIR = 0.1

Fault location Voltage

(%)

Voltage change

(%)

75% 88.24 2.76

90% 90.00 0.91

100% 90.91 N/A

110% 91.67 0.76

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 12/111

12 /

GE /

 April-9-12

Source Impedance Ratio,Accuracy & Speed 

Lin

e

System

Relay

Voltage at the relay:SIR f  

 f  V V 

 PU  LOC 

 PU  LOC 

 N  R

][

][

Consider SIR = 30

Fault location Voltage

(%)

Voltage change

(%)

75% 2.4390 0.7868

90% 2.9126 0.3132

100% 3.2258 N/A

110% 3.5370 0.3112

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 13/111

13 /

GE /

 April-9-12

Challenges in relay design

> Transients:

 – High frequency

 – DC offset in currents

 – CVT transients involtages

CVT output

0  1  2  3  4 

steady-state output 

power cycles 

-30 

-20 

-10 

10 

20 

30 

  v  o   l   t  a  g  e ,

   V

C1

C2

2

3 5

6

1

4

7

High Voltage Line

   S  e  c  o  n   d  a  r

  y   V  o   l   t  a  g  e

   O  u   t  p  u   t

8

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 14/111

14 /

GE /

 April-9-12

Challenges in relay design

> Transients:

 – High frequency

 – DC offset in currents

 – CVT transients involtages

C1

C2

2

3 5

6

1

4

7

High Voltage Line

   S  e  c  o  n   d  a  r

  y   V  o   l   t  a  g  e

   O  u   t  p  u   t

8

CVToutput

0  1  2  3  4 

steady-state output 

-60 

-40 

-20 

20 

40 

power cycles 

  v  o   l   t  a  g  e ,

   V

60 

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 15/111

15 /

GE /

 April-9-12

Challenges in relay design

-0.5 0 0.5 1 1.5-100

-80

-60

-40

-20

0

20

40

60

80

100

   V  o   l   t  a  g  e   [   V   ]

-0.5 0 0.5 1 1.5-3

-2

-1

0

1

2

3

4

5

   C  u  r  r  e  n   t

   [   A   ]

v A

  vB   v

C

i A

iB, i

C

-0.5  0  0.5  1  1.5 -100 

-50 

50 

100 

   R  e  a  c   t  a

  n  c  e  c  o  m  p  a  r  a   t  o  r   [   V   ]

power cycles 

S POL 

S OP 

Sorry… Future (unknown) 

> In-phase = internal

fault

> Out-of-phase =external fault

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 16/111

16 /

GE /

 April-9-12

Transient Overreach

• Fault current generally contains dc offset in

addition to ac power frequency component

• Ratio of dc to ac component of currentdepends on instant in the cycle at which fault

occurred

• Rate of decay of dc offset depends onsystem X/R

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 17/111

17 /

GE /

 April-9-12

Zone 1 and CVT Transients

Capacitive Voltage Transformers (CVTs) create certainproblems for fast distance relays applied to systems with

high Source Impedance Ratios (SIRs):

> CVT-induced transient voltage components may

assume large magnitudes (up to 30-40%) and last fora comparatively long time (up to about 2 cycles)

> 60Hz voltage for faults at the relay reach point may be

as low as 3% for a SIR of 30

> the signal may be buried under noise

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 18/111

18 /

GE /

 April-9-12

CVT transients can cause distance relays to overreach.Generally, transient overreach may be caused by:

> overestimation of the current (the magnitude of the

current as measured is larger than its actual value,

and consequently, the fault appears closer than it isactually located),

> underestimation of the voltage (the magnitude of the

voltage as measured is lower than its actual value)

> combination of the above

Zone 1 and CVT Transients

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 19/111

Distance Element Fundamentals

XL

XC

R

Z1 End Zone

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 20/111

20 /

GE /

 April-9-12

-10 -5 0 5 10-5

0

5

10

15

   R  e  a  c   t  a  n  c  e   [  o   h  m   ]

Resistance [ohm]

18

22

26

30

3442 44   Actual Fault

Location

LineImpedance

Trajectory(msec)

dynamic mhozone extendedfor high SIRs

Impedance locus may pass

 below the origin of the Z-plane -

this would call for a time delay

to obtain stability

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 21/111

21 /

GE /

 April-9-12

> apply delay (fixed or adaptable)> reduce the reach

> adaptive techniques and better filtering

algorithms

CVT Transient OverreachSolutions

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 22/111

22 /

GE /

 April-9-12

> Optimize signal filtering:

 – currents - max 3% error due to the dc component

 – voltages - max 0.6% error due to CVT transients

> Adaptive double-reach approach

 – filtering alone ensures maximum transient

overreach at the level of 1% (for SIRs up to 5) and

20% (for SIRs up to 30)

 – to reduce the transient overreach even further an

adaptive double-reach zone 1 has been

implemented

CVT Transients – AdaptiveSolution

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 23/111

23 /

GE /

 April-9-12

The outer zone 1: 

> is fixed at the actual reach

> applies certain security delay to cope with CVT transients

Delayed

Trip

Instantaneous

Trip

R

XThe inner zone 1: 

> has its reach dynamically

controlled by the voltage

magnitude

> is instantaneous

CVT Transients – AdaptiveSolution

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 24/111

24 /

GE / April-9-12

Desirable Distance RelayAttributesFilters:

> Prefiltering of currents to remove dc decaying transients

 – Limit maximum transient overshoot (below 2%)

> Prefiltering of voltages to remove low frequency transients

caused by CVTs – Limit transient overreach to less than 5% for an SIR of

30

> Accurate and fast frequency tracking algorithm

> Adaptive reach control for faults at reach points

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 25/111

25 /

GE / April-9-12

Distance Relay Operating Times

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 26/111

26 /

GE / April-9-12

Distance Relay Operating Times

20ms

15ms

25ms 30ms

35ms

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 27/111

27 /

GE / April-9-12

Distance Relay Operating Times

SLG faults LL faults

3P faults

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 28/111

28 /

GE / April-9-12

0 5 10 15 20 25 300

10

20

30

40

50

60

70

80

90

100

   M  a  x   i  m  u  m    R

  a  c   h   [   %   ]

SIR

Actual maximum reach curves

Relay 1

Relay 3

Relay 2

Relay 4 

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 29/111

29 /

GE / April-9-12

Maximum Torque Angle

• Angle at which mho element has maximum

reach

• Characteristics with smaller MTA willaccommodate larger amount of arc resistance

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 30/111

30 /

GE / April-9-12

Traditional

Directional

angle lowered

and “slammed” 

Directional angle

“slammed” 

Both MHO anddirectional angles

“slammed” (lens) 

Mho Characteristics

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 31/111

31 /

GE / April-9-12

Typical load characteristic

impedance 

+R

Operate

area

No Operate area

+XL 

+ = LOOKING INTO LINE

normally considered

forward

Load

Trajectory

Load Swings

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 32/111

32 /

GE / April-9-12

Load swing 

“Lenticular”Characteristic

Load Swings

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 33/111

33 /

GE / April-9-12

Load Encroachment Characteristic

The load encroachment element responds to positive

sequence voltage and current and can be used to

block phase distance and phase overcurrent

elements.

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 34/111

34 /

GE / April-9-12

Blinders

• Blinders limit the operation of distance relays

(quad or mho) to a narrow region that parallels

and encompasses the protected line

• Applied to long transmission lines, where

mho settings are large enough to pick up on

maximum load or minor system swings

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 35/111

35 /

GE / April-9-12

Quadrilateral Characteristics

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 36/111

36 /

GE / April-9-12

Ground Resistance

(Conductor falls on ground)

R  Resultant impedance outside of

the mho operating region 

Quadrilateral Characteristics

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 37/111

37 /

GE / April-9-12

Mho Quadrilateral

Better coverage for

ground faults due

to resistance added

to return path

Lenticular

Used for phase elements

with long heavily loaded

lines heavily loaded

Standard for phase

elements

JX

R

Distance Characteristics -Summary

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 38/111

38 /

GE / April-9-12

Distance Element Polarization

The following polarization quantities are commonly

used in distance relays for determining directionality:

• Self-polarized

• Memory voltage

• Positive sequence voltage

• Quadrature voltage

• Leading phase voltage

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 39/111

39 /

GE / April-9-12

Memory Polarization

> Positive-sequence memorized voltage is used for

polarizing:

 – Mho comparator (dynamic, expanding Mho)

 – Negative-sequence directional comparator (Ground

Distance Mho and Quad)

 – Zero-sequence directional comparator (Ground

Distance MHO and QUAD)

 – Directional comparator (Phase Distance MHO and

QUAD)

> Memory duration is a common distance settings (all zones,

phase and ground, MHO and QUAD)

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 40/111

40 /

GE / April-9-12

Memory Polarization jX

R

Dynamic MHO characteristic for a reverse faul

Dynamic MHO characteristic for a forward fa

Impedance During Close-up Faults

Static MHO characteristic (memory not established or

expired)

ZL

ZS

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 41/111

41 /

GE / April-9-12

Memory Polarization

Memory Polarization…Improved ResistiveCovera e

Dynamic MHO characteristic for a forward faul

Static MHO characteristic (memory not established or

expired)

 jX

R

ZL

ZS

RL

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 42/111

42 /

GE / April-9-12

Choice of Polarization

• In order to provide flexibility modern distance

relays offer a choice with respect to

polarization of ground overcurrent direction

functions:

 –Voltage polarization

 –Current polarization

 –Dual polarization

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 43/111

43 /

GE / April-9-12

Ground Directional Elements> Pilot-aided schemes using ground mho distance relays

have inherently limited fault resistance coverage> Ground directional over current protection using either

negative or zero sequence can be a useful supplement togive more coverage for high resistance faults

> Directional discrimination based on the ground quantities is

fast:

 –  Accurate angular relations between the zero andnegative sequence quantities establish very quicklybecause:

During faults zero and negative-sequencecurrents and voltages build up from very lowvalues (practically from zero)

The pre-fault values do not bias the developing

fault components in any direction

S

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 44/111

44 /

GE / April-9-12

Distance Schemes

Pilot Aided

Schemes

No Communicationbetween Distance

Relays

Communicationbetween Distance

relays

Non-Pilot Aided

Schemes

(Step Distance)

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 45/111

45 /

GE / April-9-12

Step Distance Schemes• Zone 1:

 – Trips with no intentional time delay – Underreaches to avoid unnecessary operation for faults

beyond remote terminal

 – Typical reach setting range 80-90% of ZL 

• Zone 2: – Set to protect remainder of line

 – Overreaches into adjacent line/equipment

 – Minimum reach setting 120% of ZL

 – Typically time delayed by 15-30 cycles• Zone 3:

 – Remote backup for relay/station failures at remoteterminal

 – Reaches beyond Z2, load encroachment a consideration

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 46/111

46 /

GE / April-9-12

Z1

Z1

Local

Remote

Step Distance Schemes

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 47/111

47 /

GE / April-9-12

Z1

Z1

End

Zone

End

Zone

Local

Remote

Step Distance Schemes

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 48/111

48 /

GE / April-9-12

Z1

Z1

Breaker

Tripped

Breaker

Closed

Local

Remote

Step Distance Schemes

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 49/111

49 /

GE / April-9-12

Z1

Z1

Z2 (time delayed)

Remote

Local

Step Distance Schemes

Z2 (time delayed)

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 50/111

50 /

GE / April-9-12

Z1

Z2 (time delayed)

Step Distance Schemes

Z3 (remote backup)

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 51/111

51 /

GE / April-9-12

Step Distance Protection

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 52/111

52 /

GE / April-9-12

Local Relay – 

 Z2 

Zone 2 PKP 

Local Relay  Remote Relay 

Remote Relay – 

 Z4 

Zone 4 PKP 

Over Lap

Distance Relay Coordination

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 53/111

53 /

GE / April-9-12

Communication

Channel

Local

Relay

Remote Relay

Need For Pilot Aided Schemes

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 54/111

54 /

GE / April-9-12

Pilot Communications Channels

• Distance-based pilot schemes traditionally utilizesimple on/off communications between relays, butcan also utilize peer-to-peer communications andGOOSE messaging over digital channels

• Typical communications media include: – Pilot-wire (50Hz, 60Hz, AT)

 – Power line carrier

 – Microwave

 – Radio

 – Optic fiber (directly connected or multiplexedchannels)

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 55/111

55 /

GE / April-9-12

Distance-based Pilot Protection

Pil t Aid d Di t B d S h

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 56/111

56 /

GE / April-9-12

Pilot-Aided Distance-Based Schemes

 DUTT  – Direct Under-reaching Transfer Trip

 PUTT  – Permissive Under-reaching Transfer

Trip

 POTT  – Permissive Over-reaching Transfer Trip

 Hybrid POTT  – Hybrid Permissive Over-

reaching Transfer Trip

 DCB  – Directional Comparison Blocking

Scheme

 DCUB  – Directional Comparison Unblocking

Scheme

Di t U d hi T f T i

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 57/111

57 /

GE / April-9-12

Direct Underreaching Transfer Trip(DUTT)

• Requires only underreaching (RU) functions whichoverlap in reach (Zone 1).

• Applied with FSK channel

 – GUARD frequency transmitted during normalconditions

 – TRIP frequency when one RU function operates

• Scheme does not provide tripping for faults beyond

RU reach if remote breaker is open or channel isinoperative.

• Dual pilot channels improve security

DUTT S h

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 58/111

58 /

GE / April-9-12

Bus 

Line 

Bus 

Zone 1 

Zone 1 

DUTT Scheme

P i i U d hi

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 59/111

59 /

GE / April-9-12

Permissive UnderreachingTransfer Trip (PUTT)

• Requires both under (RU) and overreaching

(RO) functions

• Identical to DUTT, with pilot tripping signal

supervised by RO (Zone 2)

PUTT S h

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 60/111

60 /

GE / April-9-12

Bus

Line

Bus

Zone 1

Zone 2

Zone 2

Zone 1

To protect end of line

&  Local TripZone 2

Rx PKP

OR Zone 1

PUTT Scheme

P i i O hi T f

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 61/111

61 /

GE / April-9-12

Permissive Overreaching TransferTrip (POTT)

• Requires overreaching (RO) functions (Zone2).

• Applied with FSK channel:

 –GUARD frequency sent in stand-by

 –TRIP frequency when one RO functionoperates

• No trip for external faults if pilot channel isinoperative

• Time-delayed tripping can be provided

POTT S h

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 62/111

62 /

GE / April-9-12

Bus

Line

Bus

Zone 1

Zone 2

TripLine

  Breakers

OR

t

Rx

Tx

 AND

(Z1)

(Z1)

o

Zone 1

Zone 2

Zone 2

Zone 1

POTT Scheme

POTT Scheme

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 63/111

63 /

GE / April-9-12

POTT Scheme

POTT – Permissive Over-reaching Transfer

TripEnd

Zone

CommunicationChannel

POTT Scheme

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 64/111

64 /

GE / April-9-12

Local Relay Remote Relay

Remote

Relay FWD

IGND

Ground Dir OC Fwd 

OR 

Local Relay – Z2 

ZONE 2 PKP 

Local Relay

FWD IGND

Ground Dir OC Fwd

OR

TRIP

Remote Relay – Z2

POTT TX

ZONE 2 PKP 

POTT RX

Communicatio

n Channel

POTT Scheme

POTT Scheme

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 65/111

65 /

GE / April-9-12

POTT TX 4

POTT TX 3

POTT TX 2

POTT TX 1 A to G 

B to G 

C to G 

Multi Phase 

Local Relay  Remote Relay 

POTT RX 4

POTT RX 3

POTT RX 2

POTT RX 1

 C  om

m uni   c  a  t  i   on s 

 C 

h  a nn e l   (   s  )  

POTT Scheme

POTT Scheme

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 66/111

66 /

GE / April-9-12

Local Relay  Remote Relay 

POTT TX ZONE 2 OR

GND DIR OC FWD 

CommunicationChannel 

TRIP 

GND DIR OC REV GND DIR OC REV  POTT RX

StartTimer TimerExpire 

GND DIR OC FWD 

POTT SchemeCurrent reversal example

POTT Scheme

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 67/111

67 /

GE / April-9-12

Local Relay 

Open 

Remote Relay 

Remote FWD

IGND 

POTT TX

Remote – 

 Z2 

Communication

Channel 

POTT RX

OPEN 

POTT TX

Communication

Channel 

POTT RX

TRIP 

POTT SchemeEcho example

Hybrid POTT

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 68/111

68 /

GE / April-9-12

Hybrid POTT

• Intended for three-terminal lines and weak

infeed conditions

• Echo feature adds security during weak

infeed conditions

• Reverse-looking distance and oc elements

used to identify external faults

Hybrid POTT

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 69/111

69 /

GE / April-9-12

Bus

Line

Bus

Zone 1

Zone 2

Zone 2

Zone 1 Zone 4

LocalRemote

Weak

system

Hybrid POTT

Directional Comparison Blocking

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 70/111

70 /

GE / April-9-12

Directional Comparison Blocking(DCB)

• Requires overreaching (RO) tripping and blocking(B) functions

• ON/OFF pilot channel typically used (i.e., PLC)

 – Transmitter is keyed to ON state when blockingfunction(s) operate

 – Receipt of signal from remote end blockstripping relays

• Tripping function set with Zone 2 reach or greater• Blocking functions include Zone 3 reverse and low-set ground overcurrent elements

DCB Scheme

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 71/111

71 /

GE / April-9-12

Bus

Line

Bus

Zone 1

Zone 2

Zone 2

Zone 1

LocalRemote

DCB Scheme

Directional Comparison Blocking

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 72/111

72 /

GE / April-9-12

End Zone 

Communication Channel 

Directional Comparison Blocking

(DCB)

Directional Comparison Blocking

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 73/111

73 /

GE / April-9-12

Directional Comparison Blocking

(DCB)Internal Faults

Local Relay  Remote Relay 

Local Relay – 

 Z2 

Zone 2 PKP 

TRIP Timer

Start 

FWD IGND 

GND DIR OC Fwd

ORDir Block RXNO

TRIP 

Expired

Directional Comparison Blocking

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 74/111

74 /

GE /

 April-9-12

Local Relay  Remote Relay 

Remote Relay – 

 Z4 

Zone 4 PKP 

REV IGND 

GND DIR OC Rev 

OR  

DIR BLOCK TX

Local Relay – 

 Z2 

Zone 2 PKP 

Dir Block RX

Communication

Channel 

FWD IGND 

GND DIR OC Fwd

OR

TRIP Timer

Start  No TRIP 

Directional Comparison Blocking

(DCB)External Faults

Directional Comparison

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 75/111

75 /

GE /

 April-9-12

Directional ComparisonUnblocking (DCUB)

• Applied to Permissive Overreaching (POR)schemes to overcome the possibility of carrier signalattenuation or loss as a result of the fault

• Unblocking provided in the receiver when signal islost:

 – If signal is lost due to fault, at least onepermissive RO functions will be picked up

 – Unblocking logic produces short-duration TRIPsignal (150-300 ms). If RO function not pickedup, channel lockout occurs until GUARD signalreturns

DCUB Scheme

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 76/111

76 /

GE /

 April-9-12

Bus

Line

Bus

TripLine

  Breakers

Tx1(Un-Block)

Forward

Forward

Tx2(Block)

Forward

Rx2

Rx1

to

 AND   to

 AND

 AND

 AND

Lockout

(Block)

(Un-Block)

DCUB Scheme

Directional Comparison Unblocking

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 77/111

77 /

GE /

 April-9-12

End Zone 

Communication Channel 

Directional Comparison Unblocking

(DCUB) 

Directional Comparison Unblocking

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 78/111

78 /

GE /

 April-9-12

Directional Comparison Unblocking

(DCUB)Normal conditions

Local Relay  Remote Relay GUARD1 TXGUARD1 RX

Communication

Channel 

GUARD2 TX GUARD2 RXNO Loss of Guard

FSK Carrier FSK Carrier

NO Permission

NO Loss of Guard

NO Permission

Load Current

Directional Comparison Unblocking

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 79/111

79 /

GE /

 April-9-12

Directional Comparison Unblocking

(DCUB)Normal conditions, channel failure

Local Relay  Remote Relay GUARD1 TXGUARD1 RX

Communication

Channel 

GUARD2 TX GUARD2 RX

FSK Carrier FSK Carrier

Loss of Guard

Block Timer Started

Loss of Guard

Block Timer Started

Load Current

 NO RX

 NO RX

Block DCUB

until Guard OK

Expired

Block DCUB

until Guard OK

Expired

Loss of Channel

Directional Comparison Unblocking

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 80/111

80 /

GE /

 April-9-12

Directional Comparison Unblocking

(DCUB)Internal fault, healthy channel

Local Relay  Remote Relay GUARD1 TXGUARD1 RX

Communication

Channel 

GUARD2 TX GUARD2 RX

FSK Carrier FSK Carrier

Loss of Guard

Permission

TRIP1 TX

Local Relay –  Z2

 

Zone 2 PKP 

TRIP1 RX

TRIP2 TX

TRIP 

Remote Relay –  Z2 

ZONE 2 PKP 

TRIP Z1 

TRIP2 RX

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 81/111

Redundancy Considerations

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 82/111

82 /

GE /

 April-9-12

Redundancy Considerations

• Redundant protection systems increase dependability of the

system:Multiple sets of protection using same protection principle 

and multiple pilot channels overcome individual elementfailure, or

Multiple sets of protection using different protection principles and multiple channels protects against failure ofone of the protection methods.

• Security can be improved using “voting” schemes (i.e., 2-out-of-3), potentially at expense of dependability.

• Redundancy of instrument transformers, battery systems, tripcoil circuits, etc. also need to be considered.

Redundant Communications

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 83/111

83 /

GE /

 April-9-12

End Zone 

Communication Channel 1 

Communication Channel 2 

Loss of Channel 2

AND Channels: 

POTT Less Reliable 

DCB Less Secure 

OR Channels: 

POTT More Reliable 

DCB More Secure 

More Channel Security  More Channel Dependability 

Redundant Communications

Redundant Pilot Schemes

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 84/111

84 /

GE /

 April-9-12

Redundant Pilot Schemes

Pilot Relay Desirable Attributes

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 85/111

85 /

GE /

 April-9-12

• Integrated functions:

weak infeedecho

line pick-up (SOTF)

• Basic protection elements used to key thecommunication:

distance elements

fast and sensitive ground (zero and negative

sequence) directional IOCs with current,voltage, and/or dual polarization

Pilot Relay Desirable Attributes

Pilot Relay Desirable Attributes

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 86/111

86 /

GE /

 April-9-12

Pre-programmed distance-based pilot schemes:

Direct Under-reaching Transfer Trip (DUTT)

Permissive Under-reaching Transfer Trip (PUTT)

Permissive Overreaching Transfer Trip (POTT)

Hybrid Permissive Overreaching Transfer Trip (HYBPOTT)

Blocking scheme (DCB)

Unblocking scheme (DCUB)

Pilot Relay Desirable Attributes

Security for dual-breaker terminals

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 87/111

87 /

GE /

 April-9-12

Security for dual breaker terminals

• Breaker-and-a-half and ring bus terminals arecommon designs for transmission lines.

• Standard practice has been to:

 – sum currents from each circuit breaker

externally by paralleling the CTs – use external sum as the line current for

protective relays

• For some close-in external fault events, poor CT

performance may lead to improper operation of linerelays.

Security for dual-breaker terminals

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 88/111

88 /

GE /

 April-9-12

Security for dual breaker terminals

 Accurate CTs preserve thereverse current direction

under weak remote infeed

Security for dual-breaker terminals

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 89/111

89 /

GE /

 April-9-12

Security for dual breaker terminals

Saturation of CT1 may

invert the line current as

measured from externally

summated CTs

Security for dual-breaker terminals

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 90/111

90 /

GE /

 April-9-12

Security for dual breaker terminals

• Direct measurement of currents

from both circuit breakers allowsthe use of supervisory logic to

prevent distance and directional

overcurrent elements from

operating incorrectly due to CT

errors during reverse faults.

• Additional benefits of direct

measurement of currents:

 independent BF protection

for each circuit breaker independent autoreclosing

for each breaker

Security for dual-breaker terminals

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 91/111

91 /

GE /

 April-9-12

Security for dual breaker terminalsSupervisory logic should:

 – not affect speed or sensitivity of protection elements – correctly allow tripping during evolving external-to-

internal fault conditions

 – determine direction of current flow through eachbreaker independently:

• Both currents in FWD direction internal fault

• One current FWD, one current REV  external fault

 – allow tripping during all forward/internal faults

 – block tripping during all reverse/external faults

 – initially block tripping during evolving external-to-internal faults until second fault appears in forwarddirection. Block is then lifted to permit tripping.

Single-pole Tripping

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 92/111

92 /

GE /

 April-9-12

Single pole Tripping

• Distance relay must correctly identify a SLG

fault and trip only the circuit breaker pole for

the faulted phase.

• Autoreclosing and breaker failure functions

must be initiated correctly on the fault event

• Security must be maintained on the healthy

phases during the open pole condition and anyreclosing attempt.

Out-of-Step Condition

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 93/111

93 /

GE /

 April-9-12

Out of Step Condition

• For certain operating conditions, a severe

system disturbance can cause system

instability and result in loss of synchronism

between different generating units on aninterconnected system.

Out-of-Step Relaying

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 94/111

94 /

GE /

 April-9-12

Out of Step Relaying

Out-of-step blocking relays

 – Operate in conjunction with mho tripping relaysto prevent a terminal from tripping during severesystem swings & out-of-step conditions.

 – Prevent system from separating in an

indiscriminate manner.

Out-of-step tripping relays

 – Operate independently of other devices to

detect out-of-step condition during the first poleslip.

 – Initiate tripping of breakers that separate systemin order to balance load with available

generation on any isolated part of the system.

Out-of-Step Tripping

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 95/111

95 /

GE /

 April-9-12

Out of Step TrippingThe locus must stay

for some time

between the outer

and middle

characteristics

Must move and stay

between the middle

and inner

characteristics

When the inner

characteristic is

entered the elementis ready to trip

Power Swing Blocking

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 96/111

96 /

GE /

 April-9-12

Power Swing Blocking

 Applications:

> Establish a blocking signal for stable power swings (PowerSwing Blocking)

> Establish a tripping signal for unstable power swings (Out-

of-Step Tripping)

Responds to:> Positive-sequence voltage and current

Series-compensated lines

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 97/111

97 /

GE /

 April-9-12

Series compensated lines

EXs   SC

XL   Infinte

Bus

Benefits of series capacitors:

• Reduction of overall XL of long lines• Improvement of stability margins

• Ability to adjust line load levels

• Loss reduction

• Reduction of voltage drop during severe disturbances

• Normally economical for line lengths > 200 miles

Series-compensated lines

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 98/111

98 /

GE /

 April-9-12

p

EXs   SC

XL   Infinte

Bus

SCs create unfavorable conditions for protective relays and

fault locators:• Overreaching of distance elements

• Failure of distance element to pick up on low-current faults

• Phase selection problems in single-pole tripping

applications

• Large fault location errors

Series-compensated lines

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 99/111

99 /

GE /

 April-9-12

pSeries Capacitor with MOV

Series-compensated lines

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 100/111

100 /

GE /

 April-9-12

p

Series-compensated lines 

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 101/111

101 /

GE /

 April-9-12

pDynamic Reach Control

Series-compensated lines 

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 102/111

102 /

GE /

 April-9-12

pDynamic Reach Control for External Faults

Series-compensated lines 

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 103/111

103 /

GE /

 April-9-12

pDynamic Reach Control for External Faults

Series-compensated lines 

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 104/111

104 /

GE /

 April-9-12

pDynamic Reach Control for Internal Faults

Distance Protection Looking

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 105/111

105 /

GE /

 April-9-12

gThrough a Transformer

• Phase distance elements can be set to see beyond

any 3-phase power transformer

• CTs & VTs may be located independently on

different sides of the transformer• Given distance zone is defined by VT location (not

CTs)

• Reach setting is in sec, and must take into

account location & ratios of VTs, CTs and voltage

ratio of the involved power transformer

Transformer Group Compensation

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 106/111

106 /

GE /

 April-9-12

p p

Depending on locat ion o f VTs and CTs, distance relays need to

compensate for the phase shi f t and magni tude change caused by the

power transformer

Setting Rules

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 107/111

107 /

GE /

 April-9-12

g

• Transformer positive sequence impedance must beincluded in reach setting only if transformer liesbetween VTs and intended reach point

• Currents require compensation only if transformer

located between CTs and intended reach point• Voltages require compensation only if transformerlocated between VTs and intended reach point

• Compensation set based on transformer connection

& vector group as seen from CTs/VTs toward reachpoint

Distance Relay Desirable

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 108/111

108 /

GE /

 April-9-12

> Multiple reversible distance zones

> Individual per-zone, per-element characteristic: – Dynamic voltage memory polarization

 – Various characteristics, including mho, quad,lenticular

> Individual per-zone, per-element current supervision(FD)

> Multi-input phase comparator:

 – additional ground directional supervision

 – dynamic reactance supervision

> Transient overreach filtering/control

> Phase shift & magnitude compensation for distanceapplications with power transformers

yAttributes

Distance Relay Desirable

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 109/111

109 /

GE /

 April-9-12

> For improved flexibility, it is desirable to have the following

parameters settable on a per zone basis: – Zero-sequence compensation

 – Mutual zero-sequence compensation

 – Maximum torque angle

 – Blinders

 – Directional angle

 – Comparator limit angles (for lenticular characteristic)

 – Overcurrent supervision

yAttributes

Distance Relay Desirable

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 110/111

110 /

GE /

 April-9-12

> Additional functions

 – Overcurrent elements (phase, neutral, ground,directional, negative sequence, etc.)

 – Breaker failure

 – Automatic reclosing (single & three-pole)

 – Sync check – Under/over voltage elements

> Special functions

 – Power swing detection

 – Load encroachment – Pilot schemes

Attributes

8/14/2019 88665474 Transmission Line Protection

http://slidepdf.com/reader/full/88665474-transmission-line-protection 111/111