8.3.- aproximacioin de la distribucion binomial a la normal si la x se distribuye como una...

22
8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción y p es moderado (n > 30 y 0.1 < p < 0.9) talque np sea constante; entonces b(x;n,p) se aproxima a una distribución normal con media np y varianza npq. Lím b(x;n,p) = n(x; np, np(1-p)) = n(x; μ, σ² ) n→ ∞ 0.1 < p < 0.9 donde μ = np , σ² = np(1 –p) Como en b(x;n,p); x es el valor de una v.a. discreta y en n(x;u, σ² ); x es el valor de una v.a. continua, se introduce el factor de corrección de continuidad, que consiste en agregar ½ el límite superior o

Upload: emerico-pinzon

Post on 22-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción y p es moderado (n > 30 y 0.1 < p < 0.9) talque np sea constante; entonces b(x;n,p) se aproxima a una distribución normal con media np y varianza npq.Lím b(x;n,p) = n(x; np, np(1-p)) = n(x; μ, σ² )n→ ∞ 0.1 < p < 0.9donde μ = np , σ² = np(1 –p)Como en b(x;n,p); x es el valor de una v.a. discreta y en n(x;u, σ² ); x es el valor de una v.a. continua, se introduce el factor de corrección de continuidad, que consiste en agregar ½ el límite superior o quitar ½ el inferior; esto es:

Page 2: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

P( x1≤ x ≤ x2 )=

Donde z1 =

2

1

2

1

2

1

2/1

2/1

2 )1,0,(),;(),;(x

xx

x

x

z

zdzzdxxnpnxb

)1(

)2/1( 1

p np

npx

)1(

)2/1( 22 pnp

npx Z

¿Cuál es l probabilidad de conseguir de 210 a 220 caras en 400 lanzamientos de una moneda no sesgada?

Page 3: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

APROXIMACION DE LA DISTRIBUCION DE POISSON A LA DISTRIBUCION NORMAL

Si x1, x2, …..xn son variables aleatorias independientes de Poisson cada una con parámetro λ ,entonces : X= Σ x i Es una variable aleatoria de Poisson con parámetros nλ entonces por el teorema Central del Limite la variable aleatoria

n

x

n

nXZ

Page 4: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

Tiene aproximadamente una distribución normal (0,1) para n suficientemente grande .

La aproximación de la distribución de Poisson a La Normal se mejora conforme aumenta el valor de parámetro n λ, de la suma.

• En la practica se considera una aproximación buena, cuando n λ es mayor que 5.

• Como la dist. Normal es continua y la dist. De Poisson discreta, se debe usar el factor de corrección por continuidad.

n

nXZ

5.0

Page 5: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

Ejemplo 1

• El numero de vehículos que llegan por minuto a la Caseta de peaje de ua determinada autopista tiene una distribución de Poisson con media µ= 2.5.

• Determinar la probabilidad que en cualquier periodo dado de 10 minutos.

• a) Lleguen no más de 20 vehículos• b) lleguen entre 20 y 30 vehículos inclusive•

Page 6: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

SOLUCION

• Sea X una variable aleatoria de Poisson • X= x1+x2+x3……..x10 donde X es el numero

de vehículos que llegan por minuto :• X → P(nλ, nλ ) donde nλ= 2.5*10 ≥5

entonces la dist. De Poisson se puede aproximar a la distribución Normal

• σ= √25=5• P( X ≤ 20) = P( X ≤20.5) )

5.0(

n

nXP

Page 7: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

= F(-0.9) = 0.184

b) P( 20 ≤ X ≤ 30) = F(1.1)- F(-1.1) = 0.7287

)9.0()25

255.20( ZPZp

Page 8: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

Ejemplo 2

• Las llamadas telefónicas que se reciben en un conmutador de una industria llegan como eventos de un proceso de Poisson a razon de 120 por hora .

• ¿ cual es la probabilidad que entren entre 110 y 125 llamadas inclusive entre las 9 y las 10 a.m. De cualquier dia? Rsp. =0.5230

Page 9: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

DISTRIBUCIÓN 2 ( CHI –CUADRAD0 • Es un caso especial muy importante de la distribución

Gama, y se obtiene haciendo = v/2 y = v/2 , donde v es un entero positivo obteniéndose una familia de distribuciones de un paràmento con función de densidad dado por:

• f(2 ) = 1 (2 ) v/2 -1 e (- 2)/2 ; 2 > 0• 2v/2 (v/2)

• Una variable 2 que tiene su función de densidad como la anterior se dice que es una distribución Chi-cuadrado con V grados de libertad denotado por 2(v) .

Page 10: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

ESPERAZA Y VARIANZAE[2] = v , y V[2 ] = 2 v

• La distribución Chi-cuadrado tiene muchas aplicaciones importantes en inferencia estadística; debido a su importancia esta graficado para diversos valores del parámetro n , por lo tanto podemos encontrar el valor de 0

2 que satisface a la probabilidad :• P( 2 2 ) = y 0 < < 1 donde 2 = (n-1) s2 2

• cuyos valores de los percentiles se encuentran tabulados en una tabla al final de los textos de estadística .

Page 11: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

• Como no existe simetría , las tablas presentan los valores acumulados desde 2 = 0 hasta

• 2 = : Se presentan básicamente dos tipos de problemas :

Page 12: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

A) Dados 1- y V . encontrar 20

• Ejemplo:• Si 1- = 0.995 y v = 10 entonces

• 20 = 2 0.995 (10) = 25.2

• Si 1- = 0.005 y v = 2 entonces • 2

0 = 2 0.005 (2) = 0.01

Page 13: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

B) Dados 20 y V , encontrar 1-

Ejemplo: 1) Si 2

0 = 23.2 y v = 10 entonces

1- = P( 2 23.29 )= F(23.2) =0.99

2) Si 20 = 10.6 y v = 2 entonces 1- =

P( 2 23.2) = F(10.6) =0.995

Si los valores no se encuentran en la tabla, se acude a la interpolación lineal o se

escoge el valor más próximo

Page 14: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

DISTRIBUCIÓN “ T “ DE STUDENTS

Sea Z una variable aleatoria normal estándar y V una variable aleatoria chi - cuadrado con v grados de libertad. Si Z y V son independientes entonces la distribución de la variable aleatoria T dado por :

tiene la siguiente función de densidad

2

1

)(vV

ZT

Page 15: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

h(t) = ( ( v+1)/2) ( 1 + t2/v )- (v+1)/2 ; - t

( ( v/2) (v)1/2

Tiene una distribución t con v grados de libertad el valor de la integral :

f (t ) dt = 1 -

-

Page 16: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

CARACTERÍSTICAS

1) Gráfico de la distribución para diferentes valores de v

Tiene una forma acampanada, simétrica con respecto al eje de las ordenadas y asintótica al eje de las abscisas

Page 17: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

Está por debajo de la curva normal estándar ( platicúrtica), si v crece

esto es Lim f( t; v) = Normal Estándar v En algunos textos t se calcula a partir de t = x - donde s es la

desviación estándar de la muestra. s/(n –1 )1/2

Donde t es una v.a. que tiene la distribución t-student con v= n-1 grados de libertad, S la varianza de Cochran

Si la muestra es grande ( n > 30) y la varianza poblacional es desconocida entonces la varianza poblacional se estima a partir de la varianza muestral y en vez de t se usa Z. Esto es válido aún cuando la población no es normal

AREAS BAJO LA CURVA T t1 Como P ( t0 < t < t1 ) = f(t) dt t0 Se encuentra tabulado al final de los libros de estadística

Page 18: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

USO DE LA TABLA T STUDENT

CASO A: Dado 1 - y v Halla t0

1) Si 1 - = 0.005 y v = 15 entonces -t0 = t0.995 (15) = - 2.95

2) Si 1 - = 0.995 y v = 15 entonces t0 = t0.995 (15) = 2.95

3) Si = 0.01 o si 1 = 0.99 , v = 2 entonces t0 = t0.99 (2 ) = 6.96

Page 19: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

CASO B

Dado t0 y v encontrar 1 -

1) Si t0 = 2.602 y v = 15 entonces

1 - = p ( t < 2.60 ) = F(2.60) = 0.99 2) Si t0 = 63.66 , y v = 1 entonces

1 - = p ( t < 63.66 ) = F(63.66) = 0.995 3) Si - t0 = - 0.142 y v = 2 entonces

1 - = p ( t < - 0.142 ) = F(- 0.142) = 1-F( 0.142 ) = 1 – 0.55 = 0.45

Page 20: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

PROBLEMA :

Al someter a prueba una tarjeta de video de computadora se obtiene las siguientes duraciones en horas: 28,15,19,30,23 se sabe los tiempos de duración de las tarjetas se distribuye normalmente. ¿Cuál es la probabilidad de que la media poblacional se desvíe de la media muestral en 4 horas?

Page 21: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

SOLUCION

n=5 s=6.05 v=n-1= 5-1=4

888.0)4)(44.1()44.1

236.2205.64

()4( t

n

sx

Pxp

Page 22: 8.3.- APROXIMACIOIN DE LA DISTRIBUCION BINOMIAL A LA NORMAL Si la x se distribuye como una distribución binomial b(x;n,p), cuando n aumenta sin restricción

FIN DEL CURSO