6 g wadi network for see-zlatanović&dimkić

25
Nikola Zlatanović Dejan Dimkić

Upload: global-water-partnership-central-and-eastern-europe

Post on 16-Jul-2015

48 views

Category:

Environment


0 download

TRANSCRIPT

Page 1: 6 g wadi network for see-zlatanović&dimkić

Nikola Zlatanović

Dejan Dimkić

Page 2: 6 g wadi network for see-zlatanović&dimkić

Who are we? Full Name: Water for Sustainable Development and

Adaptation to Climate Change

Status: UNESCO Category 2 Centre

Location: Belgrade, Serbia

Hosting organization: Institute for the Development of Water Resources “Jaroslav Černi”

Established: 2013

2

Page 3: 6 g wadi network for see-zlatanović&dimkić

What is G-WADI?• Established 2003 -Paris plenary meeting

• Response to IHP 2003-2007; then 2008-2013

• The strategic objective of the G-WADI network is to strengthen the global capacity to manage the water resources of arid and semi-arid areas.

• Activities:

• To develop and maintain website and web-based activities

• Capacity building through workshops

• Publications and publicity

• Development of Regional Centres plus Core Activity

• eg: Asia, Arabian, Latin-America, Africa

3

Page 5: 6 g wadi network for see-zlatanović&dimkić

OrganizationGlobal Secretariat – ICIWaRM

Asian G-WADI

African G-WADI

Latin American G-WADI

Arab G-WADI

Southeastern European G-WADI

UN

ES

CO

5

Page 6: 6 g wadi network for see-zlatanović&dimkić

G-WADI Achievements

CHRS (Irvine, CA) –PERSIANN geoserver

LAC G-WADI –drought and flood monitor

workshops, conferences...

6

Page 7: 6 g wadi network for see-zlatanović&dimkić

G-WADI Meeting Belgrade 2014

7

Page 8: 6 g wadi network for see-zlatanović&dimkić

G-WADI Meeting Belgrade 2014 MAJOR OUTCOMES

WSDAC has become the G-WADI secretariat for SEE Regional experts have formed G-WADI SEE Advisory Group Major issues and gaps have been identified

FUTURE ACTIVITIES Create, host and maintain G-WADI SEE website Publish news and disseminate regional information Link with global G-WADI activities Raise awareness through brochures, workshops, conferences,

etc. Build capacity through manuals, training and education

8

Page 9: 6 g wadi network for see-zlatanović&dimkić

G-WADI Meeting Belgrade 2014 PARTICIPANTS

WSDAC, Belgrade, Serbia International Commission for the

Protection of the Danube River (ICPDR)

International Sava River Basin Commission (ISRBC)

UNESCO/INWEB, Aristotle University of Thessaloniki, Greece

National Meteorological Administration, Romania

Slovenian Environmental Agency University of Ljubljana, Slovenia University of Belgrade, Faculty of

Civil Engineering, Serbia Republic Hydrometeorological

Service of Serbia (RHMSS)

PROJECTS UNESCO IHP

IDI

DMCSEE

ASSIMO

CCWARE

DRINKADRIA

CCWATERS

WATERWEB

9

Page 10: 6 g wadi network for see-zlatanović&dimkić

G-WADI SEE Activities Satellite-based Rainfall validation

Rain gauge data: 15 stations

daily rainfall data

Period: 2001-2010

Satellite data: 0.25 deg (28 x 20km), daily

TRMM (PRT), PERSIANN (NRT)

10

Page 11: 6 g wadi network for see-zlatanović&dimkić

Comparing Satellite Rainfall Estimates with Rain-Gauge Data

RESULTS – Yearly cumulative rainfall EXAMPLES

11

Page 12: 6 g wadi network for see-zlatanović&dimkić

Comparing Satellite Rainfall Estimates with Rain-Gauge Data

RESULTS – daily rainfall scatter plots (2001-2010)

12

Page 13: 6 g wadi network for see-zlatanović&dimkić

Comparing Satellite Rainfall Estimates with Rain-Gauge Data

RESULTS – 10-day rainfall scatter plots (2001-2010)

13

Page 14: 6 g wadi network for see-zlatanović&dimkić

1. Observed climate and hydrological changes

Figure 1 Recorded annual trends in Serbia (1949-2006), based on T-26, P-34 and Q-18 stations

Table 1 Registered temperature and precipitation monthly trends and annual averages (1949-2006)

Type of station Station JAN FEB MAR APR MAY JUN JUL AUG

SEP

OCT NOV DEC Aver

Temperature

(°C/100years) Average of 26 stations

1.9 1.3 3.2 -0.1 1.7 1.1 1.1 0.8 -1.4 1.2 -1.9 -2.2 0.6

Precipitation

(%/100years) Average of 34 stations

-16.0 -21.7 -12.4 35.7 -43.7 -6.6 11.5 43.1 70.9 6.3 -41.4 -17.9 -0.3

Hydrological

(%/100yrs) Average of 18 stations

-12 -55 -22 -20 -70 -31 -27 -7 19 -22 -76 -68 -36.7

All three trend charts were generated using Surfer software, removing the stochastic component by regional averaging. 14

Page 15: 6 g wadi network for see-zlatanović&dimkić

1. Observed river discharge trends in Serbia in period 1949 - 2006

Promena srednje godisnjih protoka - sliv Jadra (profil

Zavlaka) za period 1949-2006

y = -0,0199x + 42,476

R2 = 0,0744

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qs

r,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv Jasenice

(profil D.Satornja) za period 1949-2006

y = -0,0013x + 3,135

R2 = 0,0073

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1,400

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qs

r,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv Lugomira

(profil Majur) za period 1949-2006

y = -0,0061x + 13,827

R2 = 0,0123

0,000

0,500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,

go

d (

m3/s

)

Promena srednje godisnjih protoka - sliv Velike

Morave (profil Varvarin) za period 1949-2006

y = -0,6843x + 1560,6

R2 = 0,0298

0,0

100,0

200,0

300,0

400,0

500,0

600,0

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv Crnice (profil

Paracin) za period 1949-2006

y = -0,0054x + 14,158

R2 = 0,0068

0,000

2,000

4,000

6,000

8,000

10,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv Peka (profil

Kusici) za period 1949-2006

y = -0,0386x + 85,264

R2 = 0,033

0,000

4,000

8,000

12,000

16,000

20,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv Drine (profil

Bajina Basta) za period 1949-2006

y = -1,0845x + 2478,5

R2 = 0,0666

0,0

100,0

200,0

300,0

400,0

500,0

600,0

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv Moravice

(profil Arilje) za period 1949-2006

y = -6E-05x + 10,765

R2 = 1E-07

0,000

5,000

10,000

15,000

20,000

25,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,

go

d (

m3/s

)

Promena srednje godisnjih protoka - sliv Zapadne

Morave (profil Jasika) za period 1949-2006

y = -0,1704x + 443,2

R2 = 0,0082

0,0

50,0

100,0

150,0

200,0

250,0

300,0

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv J. Morave

(profil Aleksinac) za period 1949-2006

y = -0,4559x + 989,76

R2 = 0,0603

0,0

25,0

50,0

75,0

100,0

125,0

150,0

175,0

200,0

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv Nisave

(profil Nis) za period 1949-2006

y = -0,1861x + 396,99

R2 = 0,1051

0,000

10,000

20,000

30,000

40,000

50,000

60,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,

go

d (

m3/s

)

Promena srednje godisnjih protoka - sliv Timoka

(profil Tamnic) za period 1949-2006

y = -0,1889x + 400,79

R2 = 0,0812

0,000

10,000

20,000

30,000

40,000

50,000

60,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,

go

d (

m3/s

)

Promena srednje godisnjih protoka - sliv Lima (profil

Prijepolje) za period 1949-2006

y = -0,2605x + 592,98

R2 = 0,0627

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv Studenice

(profil Devici) za period 1949-2006

y = -0,0005x + 3,967

R2 = 0,0001

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv Ibra (profil

Raska) za period 1949-2006

y = -0,1801x + 397,02

R2 = 0,0476

0,000

20,000

40,000

60,000

80,000

100,000

120,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,

go

d (

m3/s

)

Promena srednje godisnjih protoka - sliv Toplice

(profil Donja Selova) za period 1949-2006

y = -0,008x + 19,36

R2 = 0,0111

0,000

2,000

4,000

6,000

8,000

10,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv Veternice

(profil Leskovac) za period 1949-2006

y = -0,0231x + 49,734

R2 = 0,0583

0,000

2,000

4,000

6,000

8,000

10,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qs

r,g

od

( m

3/s

)

Promena srednje godisnjih protoka - sliv Belog

Timoka (profil Knjazevac) za period 1949-2006

y = -0,0468x + 100,52

R2 = 0,0608

0,000

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

1940 1950 1960 1970 1980 1990 2000 2010

G o d i n e

Qsr,

go

d (

m3/s

)

A very approximate geographical distribution of the downward average annual river discharge trends for Serbia is shown on the previous slide. It should be noted that within all river discharge trend isolines there are rivers and monitoring stations which often exhibit

significant trend variations (both up and down), as a result of Human use of water impact. It is also noteworthy that the long-term trends (annual averages) for the Danube and Sava river in Serbia generally approximated -10%/100 years.

15

Page 16: 6 g wadi network for see-zlatanović&dimkić

2. Future hydrological prediction

Observed hydrological changes told us that there is a downward average annual riverflow trend in Serbia. If temperature continues to increase, what is to be expected with regard to hydrological trends?

Common approach (RCM models) try to give us answer with different scenarios of future society changing. Great possible misunderstandings become when comparing the results of different models: In addition to applied climate scenario, differences in approach of Hydrology assessment are present: some of them analyze just Climate change, without changes in Land use and Human use of water, and some of them analyze all three factors.

In addition to common approach, the good way of arriving at the answer to this question is to analyze what has happened in the past with average annual temperature vs. average annual riverflow, and it is also useful to establish the same type of correlation between temperature and precipitation (Dimkić at all, 2012; JCI, 2012). 16

Page 17: 6 g wadi network for see-zlatanović&dimkić

2. Future hydrological prediction - Methodology and Results

Temperature deviation

category (°C)

Relative discharge

(average)

Relative precipi-

tation (average)

Temperature

difference (average)

Number of data

points (years)

ΔTav < -1.0°C 1.27 1.09 -1.22 74

-1.0 < ΔTav < -0.5 1.11 1.05 -0.72 148

-0.5 < ΔTav < 0.0 1.04 1.00 -0.24 327

All data for 18 C.A. 1.00 1.00 0.00 1044

0.0 < ΔTav < 0.5 0.96 1.00 0.22 278

0.5 < ΔTav < 1.0 0.90 0.99 0.70 123

1.0°C < ΔTav 0.72 0.88 1.36 94

Figure 2 Average annual riverflow and precipitation, relative to the average, as a function of temperature

deviation (all 18 watersheds).

y = -0,1997x + 1,0033

R2 = 0,9809

y = -0,0508x3 + 0,0141x2 - 0,1313x + 0,9981

R2 = 0,9986

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1,10

1,20

1,30

1,40

1,50

1,60

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0

ΔT av ( °C )

Qre

l

y = -0,0728x + 1,0015

R2 = 0,9032

y = -0,0348x3 - 0,0021x2 - 0,0243x + 1,0055

R2 = 0,9703

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1,10

1,20

1,30

1,40

1,50

1,60

-2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0

ΔT av ( °C )

Pre

l

The results of direct correlation between average annual temperature against precipitation and river discharge for the 18 analyzed catchments are shown in relative values in Figure 2.

17

Page 18: 6 g wadi network for see-zlatanović&dimkić

2. Future hydrological predictionResults

It should be noted that the coefficient of determination is very high in both graphs, leading to the

conclusion that a deviation of the average annual temperature by +1°C has an inversely proportional

effect on the average annual precipitation levels of about 7%, and on the average annual riverflow of

about 20%. The results differ from C.A. to C.A., but in most cases this variation is not great. If these linear and 3

rd degree polynomial trends are extrapolated to +2°C, the following values are derived for

relative riverflow and relative precipitation (Table 3).

Table 3 ΔTav ( °C ) → 0.5 1.0 1.5 2.0

Linear trend 0.90 0.80 0.70 0.60 Relative riverflow (Qrel)

3rd

degree polynomial trend 0.93 0.83 0.66 0.39

Linear trend 0.97 0.93 0.89 0.86 Relative precipitation (Prel)

3rd

degree polynomial trend 0.99 0.94 0.85 0.67

This methodology could be basis for the most probable average riverflow assessment (decline)

for the near future (30 years) in Serbia, in dependence of the average yearly temperature

increasing. The same methodology could be applied for many countries and regions.

If the average annual temperature were to increase by +2ºC, based on the correlations established to date between average annual river discharges and average annual temperatures, we could expect, on average, approximately -50% less water in rivers whose catchment areas largely lie within Serbia.

18

Page 19: 6 g wadi network for see-zlatanović&dimkić

Prikaz zastupljenosti (verovatnoce) razlike ostvarenih

relativnih i racunskih relativnih protoka

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Qostvareno - Qracun,linear

Za

stu

plj

en

os

t (p

)

Qostvar

Q121

Q11111

Distribution of differences between observed relative annual and calculated relativeannual discharges with linear trend line:

1. For all pairs of data relative T – relative Q (58 years x 18 T and Q stations) we calculaterelative annual discharges using trendline formula:

Qav.yrs.rel,calc., trendline = -0.1997 x ∆Tav.yrs. + 1.0033

2. For all pairs of data we calculate difference: Qav.yrs.rel,observ. - Q av.yrs.rel,calc., trendline

3. Then we group them in to the classes, count the number in each class and the resultinggraph is as follows:

2. Future hydrological prediction

19

Page 20: 6 g wadi network for see-zlatanović&dimkić

3. Climate change issue in Water Management planning

How to respond to these pressures and adapt Water sector against scarcity in hydrological dry years?

1. With increasing water efficiency (loss reduction, cost recovery approach - increasing price of water, WSC inside reorganization, etc.)

2. In parallel, Serbia needs to invest in and develop new systems, which distribute water from region with water suficit to region with water deficit . Many of them are already needed today.

The main problem is that all these regional systems require substantial financing and detailed long-term planning. Several scenario were done. Possibilities in pessimistic scenario are shown on this Figure.

20

Page 21: 6 g wadi network for see-zlatanović&dimkić

Relationships between summary annual Precipitations and average annual Temperatures (rel. values) in Europe

Oslo - relativan odnos godisnjih P i T (1938-2011)

y = 0.0495x + 1.0168

R2 = 0.353

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

∆T (°C)

Pre

l (-

)

Falun - relativan odnos godisnjih P i T (1918-2011)

y = -0.0047x + 1.0009

R2 = 0.0093

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

∆T (°C)

Pre

l (-

)

Sodankyla - relativan odnos godisnjih P i T (1908-2011)

y = 0.0299x + 1.0179

R2 = 0.28

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

∆T (°C)

Pre

l (-

)

Arhangelsk relativan odnos godisnjih P i T (1881-2011)

y = 0.0472x + 0.9914

R2 = 0.4202

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

∆T (°C)

Pre

l (-)

N O R T H E U R O P E Kopenhagen - relativan odnos godisnjih P i T (1874-2011)

y = 0.0293x + 0.9923

R2 = 0.4323

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

∆T (°C)

Pre

l (-

)

Hamburg Fuhlsbuettel - relativan odnos godisnjih P i T (1891-

2011)y = 0.0445x + 0.9966

R2 = 0.6213

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-

)

Bremen - relativan odnos godisnjih P i T (1890-2011)

y = -0.0638x + 0.9915

R2 = 0.5603

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-

)

Siedlce - relativan odnos godisnjih P i T (1966-2011)

y = 0.0272x + 0.9947

R2 = 0.3008

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

∆T (°C)

Pre

l (-

)

N O R T H M I D D L E E U R O P E

Salzburg - relativan odnos godisnjih P i T (1901-2011)

y = -0.0131x + 0.9988

R2 = 0.1646

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-

)

Praha - Klementinum relativan odnos godisnjih P i T (1804-

1953) y = -0.0225x + 0.9824

R2 = 0.2007

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-

)

Hurbanovo - relativan odnos godisnjih P i T (1951-2011)

y = 0.0004x + 1.0031

R2 = 0.0003

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-

)

Oravska Lesna - relativan odnos godisnjih P i T (1951-2009)y = 0.0257x + 1.0032

R2 = 0.2358

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-)

M I D D L E E U R O P E

Madrid - relativan odnos godisnjih P i T (1920-2011)

y = -0.0718x + 1.0198

R2 = 0.7033

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

∆T (°C)

Pre

l (-

)

Brindisi - relativan odnos godisnjih P i T (1951-2011)y = -0.073x + 1.0305

R2 = 0.2126

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

∆T (°C)

Pre

l (-

)

Split - Marjan - relativan odnos godisnjih P i T (1948-2010)

y = -0.0621x + 1.0384

R2 = 0.2045

0.8

0.9

0.9

1.0

1.0

1.1

1.1

1.2

1.2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

∆T (°C)

Pre

l (-

)

Larissa - relativan odnos godisnjih P i T (1955-2011)

y = -0.0838x + 1.0134

R2 = 0.3569

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-

)

S O U T H E U R O P E

21

Page 22: 6 g wadi network for see-zlatanović&dimkić

Relationships between summary annual Precipitations and average annual Temperatures (rel. values) in Europe

Tromso - relativan odnos godisnjih P i T (1931-2011)

y = 0.0048x + 0.9974

R2 = 0.0249

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

∆T (°C)

Pre

l (-

)

Stensele - relativan odnos godisnjih P i T (1918-2011)

y = -0.0028x + 0.991

R2 = 0.0045

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

∆T (°C)

Pre

l (-

)

Helsinki - relativan odnos godisnjih P i T (1951-2011)

y = 0.0239x + 1.0069

R2 = 0.1382

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

∆T (°C)

Pre

l (-

)

Murmansk relativan odnos godisnjih P i T (1936-2011)

y = 0.0427x + 1.0029

R2 = 0.5976

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

∆T (°C)

Pre

l (-

)

N O R T H E U R O P E

Rostock - Warnemunde - relativan odnos godisnjih P i T (1951-

2011)y = 0.0101x + 1.0013

R2 = 0.0363

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

∆T (°C)

Pre

l (-

)

Berlin - Tempelhof - relativan odnos godisnjih P i T (1874-

2011)

y = 0.0026x + 1.015

R2 = 0.0019

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-

)

Berlin - Dahlem - relativan odnos godisnjih P i T (1874-2011)

y = 0.0025x + 1.0187

R2 = 0.0017

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

∆T (°C)

Pre

l (-

)

Leba - relativan odnos godisnjih P i T (1966-2011)

y = 0.0104x + 1.0136

R2 = 0.02

0.80

0.90

1.00

1.10

1.20

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

∆T (°C)

Pre

l (-

)

N O R T H M I D D L E E U R O P E

Murska Sobota - Rakican - relativan odnos godisnjih P i T

(1961-2011)

y = -0.0406x + 0.9934

R2 = 0.3560.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-

)

Kosice - relativan odnos godisnjih P i T (1951-2011)

y = -0.0324x + 1.0083

R2 = 0.39990.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-

)

Arad - relativan odnos godisnjih P i T (1896-2011)

y = -0.0648x + 1.0023

R2 = 0.8435

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.0 0.0 1.0 2.0

∆T (°C)

Pre

l (-

)

M I D D L E E U R O P E

Barcelona - relativan odnos godisnjih P i T (1926-2011)

y = -0.0453x + 0.9945

R2 = 0.4448

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

∆T (°C)

Pre

l (-

)

Osijek - relativan odnos godisnjih P i T (1899-2010)

y = -0.1661x + 1.0301

R2 = 0.8525

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

∆T (°C)

Pre

l (-

)

Sarajevo - relativan odnos godisnjih P i T (1891-2011)

y = -0.0435x + 0.9961

R2 = 0.6157

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-

)

Corfu - relativan odnos godisnjih P i T (1955-2011)

y = -0.0242x + 1.0068

R2 = 0.2832

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

∆T (°C)

Pre

l (-

)

S O U T H E U R O P E

22

Page 23: 6 g wadi network for see-zlatanović&dimkić

5. Conclusion

• Observed data are extremely important, as is continued systematic monitoring in the future.

• Regional integration is very important (SEE or the Danube River Basin in the case of Serbia), as is the use of the same approach to produce various maps.

• Exchange of knowledge, experience and ideas between countries and regions that share the same problem is important (e.g. regions that record upward or downward precipitation trends, or sub-arid regions, etc.).

• It is extremely important to apply various methods to assess past and predict future climate and hydrological developments.

• If predictions for the near future under RCMs and through correlation and extrapolation of observed data do not differ to a large extent, the reliability of such predictions is quite high.

23

Page 24: 6 g wadi network for see-zlatanović&dimkić

For whom these results could be interesting (apart from Serbia)

Who can perhaps benefit from the outcomes of this research?

Apart from Serbia, it is believed that the presented results will be of interest to the entire region of Southeast Europe, especially eastern and southeastern part of Balkan peninsula.

Ultimately, the proposed methodology for the assessment of average temperature impact on average river discharge and precipitation could certainly be applied in many parts of the world, especially in regions where a long-term decreasing precipitation trend is recorded. It may also be used in other regions, but the results might not be as straightforward.

24

Page 25: 6 g wadi network for see-zlatanović&dimkić

Thank you for your attention!

25

Nikola Zlatanović - [email protected] Dimkić – [email protected]