6 1 molekulová fyzika a termodynamika -...

52
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 6_1_Molekulová fyzika a termodynamika Ing. Jakub Ulmann

Upload: vuongquynh

Post on 28-Feb-2019

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Zavádění inovativních metod a výukových materiálůdo přírodovědných předmětů na Gymnáziu v Krnově

6_1_Molekulová fyzika a termodynamika Ing. Jakub Ulmann

Page 2: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

MOLEKULOVÁ FYZIKA A TERMIKA

1 Molekulová fyzika a termika

1.1 Kinetická teorie látek, vnitřní energie tělesa

1.2 Modely struktur látek různých skupenství

1.2.1 Plynná látka

1.2.2 Kapalná látka

1.2.3 Pevná látka

1.3 Rovnovážný stav soustavy

1.4 Teplota a její měření

1.5 Termodynamická teplota

1.6 Relativní atomová hmotnost, látkové množství

2

Page 3: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1 Molekulová fyzika a termika

Př. 1: Vezmeme uzavřenou PET láhev se zbytkem vody a dáme ji do ledničky. Jakmile je v ledničce na polici, neděje se z hlediska mechaniky nic zajímavého. Děje se vůbec něco?

Termodynamika se zabývá tepelnými ději, které jsou zkoumány a popisovány veličinami,

které lze buď přímo měřit (objem, tlak, teplota), nebo vypočítat pomocí jiných měřitelných veličin.

Tlakový hrnec – teploměr, tlakoměr a zkoumám… 3

Page 4: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Mikroskopický pohled – molekulová fyzika:

Molekulová fyzika se zabývá vlastnostmi látek z hlediska jejich vnitřní struktury

V našem příkladě se zmenšuje rychlost neuspořádaného pohybu částic. U některých částic vodní páry převáží vzájemné přitahování a vytvoří kapku.

Obrovské množství částic uvnitř láhve (řádově 1024 ) nemůžeme sledovat jednotlivě a proto se k popisům dějů využívají poznatky z teorie pravděpodobnosti a matematické statistiky.

Molekulová fyzika je úvodem do mikrosvěta, navazuje na ní kvantová fyzika.

Naopak termika je nejstarší nauka o teple a teplotě - 17. stol. 4

Page 5: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Hmotnost a rozměry atomůMůžeme zkusit rozkrájet nějaký makroskopický předmět na mikroskopické kousky až k částici, která je ještě vidět.

Př. 2: Kolikrát rozdělímobdélníček čokolády,než dostanu drobek?

100 g = 10-1 kg

Hmotnost:

100/15 . 1/214 g =

= 4.10-4 g = 0,4 mg

100/15 = 6,7 g 1 1/2 1/22 1/23 1/24

1/25 1/26 1/27 1/28 1/29

1/210 1/211 1/212 1/213 1/214

5Jak blízko jsme k atomům?

Page 6: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Trvalo to staletí než byly určeny rozměry atomů a jejich vlastnosti. Dnes víme, že jejich hmotnost je řádově 10-27 až 10-25 kg. Typické rozměry atomů jsou 10-10 m.

Hmotnostní škála

Délková škála

1 10-3 10-6 10-9 10-12 10-15 10-18 m

naše tělo atom

nejmenší kousek čokolády,který mohu ještě vidět

elektron

atomové jádro

103 1 10-3 10-6 10-9 10-12 10-15 10-18 10-21 10-24 10-27 10-30

elektron

nejmenší kousek čokolády,který mohu ještě vidět

kg

atomnaše tělo

Page 7: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1.1 Kinetická (pohybová) teorie látek, vnitřní energie tělesa

Základem této teorie jsou 3 experimentálně ověřené poznatky:

1. Látka jakéhokoliv skupenství se skládá z částic. Těmi budeme rozumět atomy, molekuly nebo ionty. Nevyplňují zcela prostor nespojitá (diskrétní) struktura látky.

Typický rozměr atomu je 0,1 nm, tedy 10 mil. atomů těsně vedle sebe vytvoří 1 mm.

2. Částice se v látce neustále a neuspořádaně pohybují. S rostoucí teplotou se pohybují rychleji. S tímto poznatkem souvisí difuze – samovolné pronikání částic jedné látky mezi částice látky druhé.

3. Částice na sebe navzájem působí silami. Tyto síly jsou při malých vzdálenost odpudivé, při větších vzdálenostech přitažlivé.

7

Page 8: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

8

Př. 1: Vysvětli pomocí základních poznatků molekulové fyziky následující pokusy.

Šíření vůně po třídě: Stříkneme voňavku na katedru ⇒ za chvíli se vůně rozšíří po celé třídě.

Rozpouštění skalice modré nebo čaje: Máme dvě kádinky, v jedné je horká voda, v druhé je studená voda. Po určitém čase (u horké vody kratším než u studené) se voda v kádince zabarví, i když hustota roztoku je větší než hustota vody.

Tlak v plynu: Nafukujeme balónek. Plyn, který do něj přifoukneme, napíná gumu balónku. S množstvím plynu roste i tlak na stěnu balónku.

Brownův pohyb: Pozorujeme roztok tuše nebo mléka ve vodě mikroskopem při zvětšení 1000x. Vidíme chaotický pohyb. Menší částečky tuše se pohybují rychleji než větší.

Page 9: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

9

Page 10: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

10

Page 11: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Pokud difůze probíhá přes polopropustnou membránu (například buněčná blána) mluvíme o osmóze.

Bramborová osmóza. Rozřízněte bramboru napůl a vydlabejte uvnitř nožem důlek, nasýpejte do důlku sůl a počkejte alespoň půl hodiny.

Stěny buněk propouští pouze molekuly vody, ostatní ne. Voda proto prochází z oblasti, kde je jí více, do oblasti, kde je jí méně. Proto se voda z bramboru nahrnula do soli. Samotná brambora díky tomu mírně vyschla.

11

Page 12: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Kvůli tomuto jevu se maso před zkažením chrání naložením do soli a ovoce naložením do cukru. Díky osmóze totiž sůl (cukr) "vysaje" vodu z okolních buněk, tedy i ze zárodků plísní a hnilob, které díky tomu nemohou naloženou potravinu poškodit.

12

Page 13: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Př. 2: Dokumentuj na běžných situacích, že síly mezi částicemi, ze kterých se látky skládají, jsou: a) přitažlivé, b) odpudivé. Která veličina rozhoduje o tom, zda vzájemná síla bude přitažlivá nebo odpudivá?

13

Page 14: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Soudržnost a přilnavost

Kapaliny vytvářejí kuličky a snaží se udržet pohromadě. Tomu říkáme soudržnost.

Voda drží na skle - přilnavost.

Při vytahování skla z vody je přilnavost větší než soudržnost.

Pokus – přilnavost dvou skel namočených vodou.

Přilnavost je výrazná u hladkých předmětů. Je příčinou třecí síly. Známější příčina je naopak drsný povrch.

14

sklo

H2O

Page 15: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Př. 3: Načrtni přibližný graf závislosti vzájemné síly mezi dvěma částicemi na jejich vzdálenosti. Odpudivou sílu ber jako kladnou, přitažlivou jako zápornou, vzdálenost označ r.

15

Page 16: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Př. 4: Na obrázku je zachycen graf závislosti síly působící mezi dvěma částicemi uhlíku na jejich vzájemné vzdálenosti. a) Urči velikost působící síly pro 0,14 nm, 0,16 nm a 0,2 nm. Rozhodni, zda jde o přitažlivou nebo odpudivou sílu.b) Urči velikost maximální působící přitažlivé síly.

16

Page 17: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Přitažlivá síla mezi částicemi se vzdáleností klesá ⇒ částice je přitahována pouze nejbližšími částicemi ve svém okolí. Například u vody se přitahování projevuje do vzdáleností cca 1 nm.

Původ těchto sil je v elektrických silách – působí na sebe kladná jádra a záporné elektrony.

Z existence silového působení vyplývá, že soustava částic má vnitřní potenciální energii (vazebnou energii).Pokud chceme zrušit vazby mezi molekulami, musíme vykonat určitou práci. Velikost této práce je rovna vazebné energii.

Při chemické reakci musíme v první fázi dodávat energii na rozbití stávajících vazeb, v druhé fázi se při vzniku nových vazeb energie uvolňuje. Rozdíl těchto energií určuje zda se při reakci teplo uvolňuje nebo spotřebovává.

17

Page 18: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1.2 Modely struktur látek různých skupenství

Page 19: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1.2.1 Plynná látka

Střední vzdálenosti jsou mezi molekulami ve srovnání s jejich rozměry velké (např. pro vodík je tato vzdálenost 3 nm, zatímco průměr molekuly H2 je 0,07 nm).

Přitažlivé síly mezi částicemi jsou pro tyto vzdálenosti zanedbatelné.

Změna rychlosti nastává v důsledku srážek s ostatními molekulami nebo se stěnou nádoby, přičemž srážku je třeba chápat tak, že se molekuly k sobě přiblíží a odpudivá síla změní jejich rychlosti.

Hodnota celkové potenciální energie je mnohem menší než celková kinetická energie částic.

19

Page 20: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Kinetická energie soustavy molekul plynu je rovna kinetické energii molekul konajících posuvný a rotační pohyb a kinetické energii kmitajících atomů v molekulách.

Př. 1: Odhadni počet molekul vzduchu, které by se v jednom okamžiku nacházely ve třídě, v případě, že bychom všechny rozměry zvětšili tak, aby typická molekula měla velikost 1 m.

Př. 2: Vyznač v grafu vzájemného silového působení z minulé hodiny, typickou vzdálenost mezi molekulami plynu.

20

Page 21: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1.2.2 Kapalná látka

Vzájemné působení mezi molekulami podobné jako u pevných látek - podobné střední vzdálenosti - asi 0,2 nm.

Molekuly kapaliny však mají větší kinetickou energii.

Molekuly kapaliny tedy kmitají kolem rovnovážných poloh, které se mění (řádově za 1 ns).

Celková potenciální energie soustavy částic je srovnatelná s celkovou kinetickou energií.

21

Page 22: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Př. 3: Vysvětli podobnou hodnotu hustoty kapalných a pevných látek, daleko větší než je hustota plynů.

22

Page 23: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1.2.3 Pevná látka

Velká většina pevných látek je složena z částic s pravidelným uspořádáním - částice vytvářejí krystalovou strukturu. Existují však amorfní látky, které tuto strukturu nemají (vosk, sklo, pryskyřice, …).

Střední vzdálenosti částic jsou malé a vzájemné přitažlivé síly způsobují, že pevná látka vytváří těleso určitého tvaru a objemu.

Částice chaoticky kmitají kolem svých rovnovážných poloh, přičemž s rostoucí teplotou roste amplituda těchto výchylek.

Hodnota celkové potenciální energie soustavy částic pevného tělesa je větší než celková kinetická energie těchto částic.

23

Page 24: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Př. 5: Odhadni z grafu vzájemného silového působení částic typickou vzdálenost mezi rovnovážnými polohami částic v pevné látce.

Př. 6: Vysvětli na základě uvedených vlastností následující vlastnosti pevných látek: a) nestlačitelnost, b) tepelnou vodivost, c) teplotní roztažnost pevných látek při zahřívání.

24

Page 25: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Plazma

Ionizovaný plyn složený z iontů, elektronů, volných jader, neutrálních atomů a molekul. Poměr neutrálních a nabitých částic určuje stupeň ionizace.

Příklady: plamen, blesk, výboje zářivek a oblouků, hmota hvězd a mlhovin, sluneční vítr .

Typicky se vyskytuje za velmi vysokých teplot.

Podle některých odhadů tvoří až 99% pozorovatelné hmoty ve vesmíru.

25

Page 26: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1.3 Rovnovážný stav soustavy

Termodynamická soustava je skupina těles, jejichž stav právě zkoumáme (plyn ve válci s pístem, voda a její pára v baňce, zahřívaný drát, …).

Pokus s využitím soupravy Vernier: Na stůl položíme šálek s teplým čajem či ohřátou vodou, zapojíme čidlo Go Temp k počítači a sledujeme průběh teploty.

V šálku jsme vytvořili termodynamickou soustavu (častěji se říká pouze soustava).

Stav soustavy je dán stavovými veličinami: teplotou, objemem, tlakem, chemickým složením, skupenstvím, různým uspořádáním částic (např. grafit a diamant), …

26

Page 27: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Rozlišujeme:

1. izolovaná soustava - soustava, u niž nemůže docházet k výměně energie ani částic s okolím. Probíhají zde jen děje mezi částicemi (tělesy) dané soustavy.

2. uzavřená soustava - soustava, která si s okolím může vyměňovat energii, ale ne částice.

3. otevřená soustava - soustava, u níž dochází k výměně jak energie tak částic s okolím.

Př. 1: Rozhodni, o jakou soustavu se jedná v našem pokusu, a jak bychom jej museli upravit, aby vznikly zbylé dvě.

27

Page 28: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Každá soustava, která je od určitého okamžiku v neměnných vnějších podmínkách, přejde samovolně po určité době do rovnovážného stavu. Stavové veličiny v rovnovážném stavu jsou konstantní (tlak, objem a termodynamická teplota).

Náš pokus: Teplota se postupně vyrovná s okolím, pokračovalo by však vypařování…

V uzavřené soustavě – okurky v láhvi by nastal rovnovážný stav. To neznamená, že se nic neděje…

Termodynamický děj – každá změna stavu soustavy. Mění se stavové veličiny.

Při zvýšení teploty sklenice s okurkami se zvýší teplota nálevu, vypařování bude větší než kapalnění, hladina klesá, po ukončení děje nastává opět rovnovážný stav.

28

Page 29: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1.4 Teplota a její měření

Teplota je fyzikální veličina, která charakterizuje stav tělesa nezávisle na jeho hmotnosti a chemickém složení.

Z hlediska termodynamiky je přiřazena určitému rovnovážnému stavu, který nastane při tepelné výměně.

Z hlediska molekulové fyziky charakterizuje teplota energii, s níž se pohybují částice tělesa.

29

Page 30: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Př. 1: Vysvětli pokusy:

a) Všechny předměty ve třídě by po určité době měly mít stejnou teplotu. Šáhni na desku lavice a na kus její železné konstrukce. Co cítíš? b) Máme tři nádoby s vodou – studenou, teplou a horkou. Dej jednu ruku do studené vody, druhou do horké. Po půl minutě obě ruce přendej do teplé vody. Co cítíš.

Př. 2: Vysvětli princip rtuťového teploměru a navrhni, jak by jsi jej sestrojil (včetně stupnice).

30

Page 31: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Celsiova teplota - t

Jednotkou je Celsiův stupeň: °C

Pro měření teploty se užívá celá řada teploměrů:

1. Kapalinové teploměry - vhodné pro měření jen určitých intervalů teplot, neboť příslušná kapalina se poté začne silně vypařovat (eventuálně vřít) nebo tuhnout. Nejčastěji rtuťové, pro nižší teploty plněné etanolem (teplota tání -117 °C a teplota varu 78 °C).

31

Page 32: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

2. Plynové teploměry - lze používat pro poměrně široký interval teplot. Využívají závislost tlaku plynu na teplotě při stálém objemu.

3. Bimetalové teploměry - užívají se k orientačnímu měření teploty. Jsou založeny na různé teplotní roztažnosti dvou kovových plátků, které jsou spolu spojeny.

4. Odporové teploměry - využívají závislost elektrického odporu na teplotě. Různá čidla…

5. Termoelektrické teploměry - k měření teploty využívají termoelektrický jev.

6. Radiační teploměry (pyrometry) - jsou určeny k měření vysokých teplot a jsou založeny na zákonech tepelného záření.

7. Další.32

Page 33: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1.5 Termodynamická teplota

Začíná od nuly, kde je kinetická energie částic soustavy téměř nulová (několik cm za s, běžně stovky m za s). Nastávají zde některé zvláštní jevy jako je supravodivost.

Byla zavedena 1848 W. Thomsonem (lordem Kelvinem).

Označení: T, Jednotka: K (kelvin).

Termodynamická teplotní stupnice má jen jednu základní teplotu - teplotu rovnovážného stavu vody, její syté páry a ledu tzv. trojný bod vody.

33

Page 34: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

pa

Teplota trojného bodu je v Celsiově stupnici 0,01 °C.

Není to totožný bod s teplotou tání ledu při atmosférickém tlaku. Trojný bod nastává za velmi nízkého tlaku asi 1 kPa. (atmosférický je 101 kPa).

Page 35: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Trojnému bodu vody byla přiřazena teplota Tr = 273,16 K.

Proč takové divné číslo? Teplotní rozdíl T (jeden dílek stupnice) byl určen číselně stejně velký jako t.

Půjdeme-li v Celsiově stupnici dolů,až na absolutní nulu po těchto dílcích,dostaneme se na –273,15 °C.

Protože je trojný bod 0,01 °C,odpovídá tomu teplota 273,16 K.

Z toho vyplývá i definice kelvinu: Kelvin je 1/273,16 termodynamické teploty trojného bodu vody.

Page 36: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Př. 1: Napiš definici °C.

Definice kelvinu:

Kelvin je 1/273,16 termodynamické teplotytrojného bodu vody.

Pro praktické výpočty pak používáme:

T = t

T = ({t} + 273,15) K

t = ({T} – 273,15) °C

Hodnotu 273,15 většinou můžeme zaokrouhlovat na 273.

Page 37: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

37

Př. 2: Doplň tabulku:

3.24 Rozdíl termodynamických teplot dvou těles je T = 100 K. Vyjádřete tento rozdíl v Celsiových stupních.

3.25 Vyjádřete v Celsiových stupních zápis:

a) T = 30 K,

b) T = 30 K.

Fyzika – úlohy na straně 8Sbírka úloh – úlohy 3.20 až 3.26

Page 38: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1.6 Relativní atomová hmotnost

Relativní atomová hmotnost je definována takto: (v per. Soustavě prvků, kolikrát je těžší než…)ma je klidová hmotnost atomu mu atomová hmotnostní konstanta, mu = 1,66 10-27 kg

Atomová hmotností konstanta je hmotnost 1/12 atomu nuklidu uhlíku 12. (Srozumitelnější: …je přibližná hmotnost nejlehčího atomu, tedy ).

Relativní molekulová hmotnost analogicky: mm je klidová hmotnost molekuly.

Z definice relativní molekulové hmotnosti vyplývá, že je rovna součtu relativních atomových hmotností atomů, která danou molekulu tvoří.

u

ar

m

mA

u

mr

m

mM

38

H1

1

Page 39: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Prvky se v přírodě obvykle vyskytují jako směs izotopů (atomy se stejným počtem protonů a různým počtem neutronů) ⇒prvek je tedy tvořen směsí atomů s různou hmotností.

V tabulkách jsou udávány střední relativní atomové hmotnosti pro směs izotopů v poměrech obvyklých v přírodě.

Např. 99,985%, 0,015%, Ar vodíku je 1,008.

mu = 1,66 10-27 kg

Př. 1: V tabulkách najdi Ar a s její pomocí vypočti hmotnost atomů u následujících prvků.

a) vodík b) železo c) zlato

Př. 2: Urči relativní atomovou hmotnost nuklidu uhlíku 12.39

H1

1 H2

1

Page 40: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

40

Př. 3.2: Určete klidovou hmotnost mm molekuly vody H2O a molekuly oxidu uhličitého CO2.

Molekula vody se skládá z atomu kyslíku Ar = 16 a dvou atomů vodíku Ar = 1. Relativní molekulová hmotnost je tedy: Mr = 16 + 2 1 = 18.

pro vodu mm = 2,99 · 10–26 kg, pro oxid uhličitý mm = 7,31 · 10–26 kg

Máme 2 válečky, jeden z Fe a druhý z Al. Co můžeme na základě předešlých informací zjistit o jejich částicích?

Př. 3: Jaký je počet částic ve válečku z Al a válečku z Fe?

mu = 1,66 10-27 kg

N je počet částic, který vypočítáme: nebokde m je hmotnost látky. mm

mN

am

mN

Page 41: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

41

Př. 4: Urči hmotnost atomu uhlíku 12C. Jaký je počet částic, které obsahuje 12 g tohoto uhlíku?

mu = 1,66 10-27 kg

Z definice: m = 12 mu = 12 1,66 10-27 kg = 19,92 10-27 kg

částic 9879542168674660240963851019,92

101227

3

mm

mN

Page 42: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1.7 Látkové množství – nZákladní fyzikální veličina, která vyjadřuje počet jedinců (atomů, iontů, molekul, elektronů) obsažených v chemicky stejnorodé soustavě.

Číslo z předchozího příkladu 6,02 1023 je Avogadrova konstanta a je to právě 1 mol (dohodnuté množství látky).

Avogadrova konstanta NA je tolik částic, kolik je atomů v nuklidu uhlíku 12 o hmotnosti 12 g.(přibližně kolik je atomů v 1 g ).

NA = 6,02 1023

Pro látkové množství platí:

Př. 1: Urči látkové množství 2 válečků z Al a Fe.42

AN

Nn

H1

1

Page 43: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Jednotkou látkového množství je mol: [n] = mol

Př. 2: Urči bez kalkulačky přibližně počet částic látky, pokud je látkové množství látky n rovno: a) 2 mol b) 0,01 mol c) 500 mol d) 0,005 mol

NA = 6,02 1023

12 1023, 6 1021, 3 1026, 3 1021

Př. 3: Urči látkové množství látky, pokud obsahuje: a) 6,02 ⋅ 1025 částicb) 12,04 ⋅ 1020 částicc) 602 částic 100 mol, 0,002 mol, 10-21 mol

43

Page 44: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

44

Př. 3.4: Určete přibližný počet molekul v 1 kg vody H2O.

Hmotnost jedné molekuly:

Počet částic v jednom kg vody:

Lze upravit vztah:

3,35 ⋅ 1025 molekul

Sbírka úloh – úlohy 3.5 a 3.6

Př. 3.7: Jaké je látkové množství n vody o objemu 1 litr, je-li hustota vody 1 000 kg ⋅ m–3?

NA = 6,02 1023

56 mol

umm mM

m

m

mN

Page 45: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

1.8 Molární hmotnost - je hmotnost jednoho molu dané látky (hmotnost dohodnutého množství částic)

Př. 1: Z minulého příkladu víme, že 1 kg vody má 56 mol.

Jaká je hmotnost 1 molu vody?

0,018 kg = 18 g

Molární hmotnost označujeme Mm a platí:

Podíl hmotnosti m tělesa z chemicky stejnorodé látky a odpovídajícího látkového množství n.

Jednotka: [Mm] = kg ⋅ mol-1.

45

n

mMm

Page 46: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Víme, že 12 g je 1 mol. 1 mol tedy váží 12 g.

1 mol má stejný počet lehčích částic. Přesně 12 krát lehčích váží 1 g.

Molekuly H2 jsou složeny ze dvou atomů vodíku 1 mol váží 2 g.

1 mol vody bude těžší, neboť počet částic je stejný, ale každá molekula váží víc.

46

H1

1

C12

6C12

6

Page 47: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Př. 1: Jaký je rozdíl mezi molární hmotností Mm a relativní molekulovou hmotností Mr ?

Molární hmotnost je v jednotkách kg ⋅ mol-1, relativní hmotnost je bezrozměrná – udává kolikrát je částice těžší než dohodnutá částice.

Molární hmotnost látky v gramech na mol se číselně rovná její relativní molekulové (atomové) hmotnosti.

Ze vztahu pro molární hmotnost:

můžeme snadněji vypočítat n:

47

mol

gM

mol

kgMM rrm 310

mM

mn

n

mMm

Page 48: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Př. 2: Urči s přesností na dvě platné číslice hmotnost 1 molu v kg u těchto látek: a) H2O b) CO2 c) kyseliny siřičité

0,018 kg, 0,044 kg, H2SO3 - 0,082 kg

Př. 3.8: Jaké je látkové množství n oxidu uhličitého CO2

o hmotnosti 1 kg?

22,7 mol

3.10 Jaké látkové množství představuje 5 1024 atomů vodíku?

8,3 mol

48

Page 49: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Př. 3.9: Můžeme do odměrného válce o objemu 15 cm3 nalít vodu o látkovém množství 1 mol?Při výpočtech používáme základní vztah pro hustotu:

Nemůžeme, objem jednoho molu vody je 18 cm3.

Molární objem

Molární objem Vm je objem 1 molu dané látky za daných vnějších podmínek a je dán vztahem:

Jednotka: [Vm] = m3 mol–1

49

mV

V

m

n

VVm

Page 50: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

3.11 Určete molární objem Vm oxidu uhličitého CO2 při teplotě 0 °C a tlaku 1,01325 105 Pa, je-li za těchto podmínek jeho hustota 1,951 kg m–3.

Vypočítáme hmotnost 1 molu látky, objem z hustoty…

0,0226 m3 mol-1 = 23 dm3 mol-1n

VVm

50

mV

nMm m

Page 51: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Použitá literatura a zdroje:

[1] RNDr. Karel Bartuška, CSc., prof. RNDr. Emanuel Svoboda, CSc.: Fyzika pro gymnázia – Molekulový fyzika a termika, Prometheus, Praha 2007

[2] Doc. RNDr. Oldřich Lepil, CSc., RNDr. Milan Bednařík, CSc., doc. RNDr. Miroslava Široká, CSc.: Fyzika – Sbírka úloh pro střední školy, Prometheus, Praha 2010

[3] Mgr. Jaroslav Reichl: Klíč k fyzice, Albatros, Praha 2005

[4] Mgr. Jaroslav Reichl, www.fyzika.jreichl.com

[5] Mgr. Martin Krynický, www.realisticky.cz

[6] Česká televize, pořad Rande s Fyzikou

Page 52: 6 1 Molekulová fyzika a termodynamika - gymnasiumkrnov.czgymnasiumkrnov.cz/fyzika/06_1_S_Molekulova_fyzika.pdf · Zavádění inovativních metod a výukových materiálů do přírodovědných

Autor prezentace a ilustrací:

Ing. Jakub Ulmann

Fotografie použité v prezentaci:Na snímku 1: Ing. Jakub Ulmann

Na snímku 11: http://commons.wikimedia.org/wiki/File:Brownian_motion_large.gif

Na snímku 23: http://commons.wikimedia.org/wiki/File:Oxygen_molecule.png

Na snímku 27:http://commons.wikimedia.org/wiki/File:Cup_of_coffee.svg?uselang=cs

Na snímku 29: http://commons.wikimedia.org/wiki/File:Cucumbers_Vladimir_Morozov.jpg?uselang=cs