51 ch21b coulombslaw electric field

Upload: hemang-s-pandya

Post on 03-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    1/25

    Chapter 21 Electric Field andCoulombs Law (again)

    Electric fields and forces (sec. 21.4)

    Electric field calculations (sec. 21.5)

    Vector addition (quick review)

    C 2012 J. Becker

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    2/25

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    3/25

    Coulombs Law

    Coulombs Law lets us calculate the FORCEbetween two ELECTRIC CHARGES.

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    4/25

    Coulombs LawCoulombs Law lets us calculate the force

    between MANY charges. We calculatethe forces one at a time and ADD themAS VECTORS.

    (This is called superposition.)

    THE FORCE ON q3CAUSED BY q1AND q2.

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    5/25

    Figure 21.14

    SYMMETRY!

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    6/25

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    7/25

    Fig. 21.15 A charged bodycreates an electric field.

    Coulomb force of repulsion

    between two charged bodies atA and B, (having charges Q and qorespectively) has magnitude:

    F = k |Q qo|/r2= qo[ k Q/r2 ]

    where we have factored outthe small charge qo.

    We can write the force interms of an electric field E:

    Therefore we can write forF= qoE

    the electric field

    E = [ k Q / r2

    ]

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    8/25

    Calculate E1, E2, and ETOTALat point C:

    q= 12 nC

    See Fig. 21.23:Electric fieldatC set up by charges q1and q1

    (an electric dipole)

    At C E1= 6.4 (10)3N/C

    E2= 6.4 (10)3N/CET= 4.9 (10)

    3N/Cin the +x-direction

    A

    C

    SeeLab #2

    Need TABLE of ALLvector component

    VALUES.

    E1

    E2

    ET

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    9/25

    Fig. 21.24 Consider symmetry! Ey= 0

    Xo

    dq

    o

    dEx= dE cos =[k dq/(xo2

    +a2)

    ][xo/(xo2

    + a2

    )1/2

    ]Ex= k xodq/[xo2+ a2]3/2where xo and a stay

    constant as we add all the dqs (dq = Q)in the integration: Ex= k xoQ/[xo2+a2]3/2

    |dE| = k dq/ r2

    cos = xo/ r

    dEx = Ex

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    10/25

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    11/25

    Fig. 21.25 Electric field at Pcaused by a line

    of charge uniformly distributed along y-axis.

    Consider symmetry! Ey= 0

    Xo

    y

    |dE| = k dq/ r2

    dq

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    12/25

    |dE| = k dq/ r2 and r = (xo2+ y2)1/2cos = xo/ r and cos = dEx/ dE

    dEx= dE cos

    Ex= dEx= dE cosEx= [k dq/r2] [xo/ r]Ex= [k dq/(xo2+y2)] [xo/(xo2+ y2)1/2]

    Linear charge density = ll= charge / length = Q / 2a = dq / dydq = ldy

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    13/25

    Ex= [k dq/(xo2+y2)] [xo/(xo2+ y2)1/2]Ex= [k ldy/(xo2+y2)] [xo/(xo2+ y2)1/2]Ex= k l xo[dy/(xo2+y2)] [1 /(xo2+ y2)1/2]

    Ex= k l xo[dy/(xo2+y2) 3/2]Tabulated integral: (Integration variable z)

    dz / (c2+z2) 3/2= z / c2 (c2+z2) 1/2dy / (c2+y2) 3/2= y / c2 (c2+y2) 1/2dy / (Xo2+y2) 3/2= y / Xo2 (Xo2+y2) 1/2

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    14/25

    Ex= k l xo -a [dy/(xo2+y2) 3/2]Ex= k(Q/2a)

    Xo [y /Xo2 (Xo2+y2) 1/2] -aa

    Ex= k (Q /2a)Xo [(a (-a)) / Xo2 (Xo2+a2) 1/2]

    Ex= k (Q /2a)Xo [2a / Xo2 (Xo2+a2) 1/2]

    Ex= k (Q / Xo)[1 / (Xo2+a2) 1/2]

    a

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    15/25

    Fig. 21.47 Calculate the electric fieldat the

    protoncausedby the distributed charge +Q.

    Tabulated integral:dz / (c-z) 2= 1 / (c-z)

    b

    lis uniform (= constant)+Q

    l l

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    16/25

    Fig. 21.48 Calculate the electric fieldat -qcaused by +Q, and thenthe forceon q: F=qE

    Tabulated integrals:dz / (z2+ a2)3/2 = z / a2(z2+ a2) for calculation of Ex

    zdz / (z2+ a2)3/2= -1 / (z2+ a2) for calculation of Ey

    lis uniform (= constant)

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    17/25

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    18/25

    Fig. 21.32 Net forceon an ELECTRIC DIPOLE

    is zero, but torque( )is into the page.

    = r x F

    = p x E

    ELECTRIC DIPOLEMOMENT is

    p = qd

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    19/25

    seewww.physics.sjsu.edu/Becker/physics51

    Review

    V i i h

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    20/25

    Vectors are quantities thathave both magnitudeanddirection.

    An example of a vectorquantity is velocity. Avelocity has both magnitude(speed) and direction, say60 miles per hour in aDIRECTION due west.

    (A scalar quantity isdifferent; it has onlymagnitude mass, time,tem erature, etc.)

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    21/25

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    22/25

    Note: The dotproduct of two

    vectors is a scalarquantity.

    cosx x y y z z

    A B AB A B A B A B

    The scalar (or dot) productof two

    vectors is defined as

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    23/25

    sinA B AB

    The vector (or cross) productof

    two vectors is a vector where thedirection of the vector product isgiven by the right-hand rule.

    The MAGNITUDE of the vectorproduct is given by:

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    24/25

  • 8/12/2019 51 Ch21B CoulombsLaw Electric Field

    25/25

    PROFESSIONAL FORMAT