5. sources of errors. 5.5. fundamentals of low-noise design

44
1 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design 5.5. Fundamentals of low-noise design

Upload: gazelle-turner

Post on 30-Dec-2015

25 views

Category:

Documents


0 download

DESCRIPTION

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5. Fundamentals of low-noise design. 2) i dsh 2 = 2 q ( I F + I S ). I D. = 2 q ( I D + 2 I S ).  2 q I D. i df. i dsh. r d. 4) i dsh 2 = 2 q I D = 2 k T / r d. k T q I D. I D. 3) r d . r d. e dsh. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

15. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

5.5. Fundamentals of low-noise design

Page 2: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

2

rd

ID

edsh

rd

idsh

ID

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.1. Junction-diode noise model

4) idsh2 = 2 q ID = 2 k T / rd

3) rd k T

q ID

5) edsh2 = )2 k T / rd ) rd

2 = 2 k T rd

2) idsh2 2 q ) IF+IS ) 2 q ) ID+2IS ) 2 q ID

5.5.1. Junction-diode noise model

1) ID IS e IS IFISVD /VT

ID

At low frequencies and ID >> IS ,

idn2 = 2 q ID

Kf ID

f, Kf = 2 q ff

Note that dynamic resistances do not generate any thermal

noise since them dissipate no power, vd id 0.

idf

idf rd

Page 3: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

35. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model

5.5.2. BJT noise model

rb

icsh

B

E

CNoiseless

vbt

ibf ibsh

icsh2 = 2 q IC

ibsh2 = 2 q IB

vbt2 = 4 k T rb

ibf 2

Kf IB

f

NB: icf 0 JC < JB, ic=hfeib, )*)

ict 0 RC<0.1, ic=hfeib

*Negligible surface effects compared to FETs.

Page 4: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

4

vs

RS

r

ichfe i

ro

rbB C

icsh

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model

A. Total input noise

ibf ibsh

ivbt

vn s)t) vst)t) vbt)t) ibf )t) ibsh)t)])RS rb) icsh)t)RS+rb+r

hfe

1) Total input noise vs. time, vn s)t).

2) Power spectral density of the total input noise, vn s2) f ).

vbt

vn s?

Page 5: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

5

vs

RS

r

ichfe i

ro

C

icsh

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model

A. Total input noise

ibf ibsh

i

vn s)t) vst)t) vbt)t) ibf )t) ibsh)t)])RS rb) icsh)t)RS+rb+r

hfe

1) Total input noise vs. time, vn s)t).

2) Power spectral density of the total input noise, vn s2) f ).

vn s2 4 k T )rb RS) ibf

2 ibsh

2))RS rb)2 icsh2

RS+rb+r

hfe

2

vn s?

rbvbtvbt

vn sB

Page 6: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

6

vn s2 4 k T )rb RS) +2 q IC

)RS rb)2

hfe

2 q IC

RS+rb+hfeVT / IC

hfe

2

vn s

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model

B. Optimum collector current

IC opt hfeVT

hfe 0.5)RS rb)

r

ichfe i

ro

rbB Civbt

vn s2 4 k T )rb RS) ibsh

2 )RS rb)2 icsh2

RS+rb+r

hfe

2

RS

ibf 0

Reference: [7]

Page 7: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

75. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model

C. enin noise model

en2 vn s

2 4 k T rb ibf

2 ibsh

2) rb2 icsh

2 rb+r

hfe

2

RS= 0

in2

ibf 2 ibsh

2 vn s

2

RS2 RS=

icsh2

hfe2

vs

RS

r

ichfe i

ro

rbB Cien

in

vn s2 4 k T )rb RS) ibf

2 ibsh

2))RS rb)2 icsh2

RS+rb+r

hfe

2

Page 8: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

85. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model

B

E

C

en2 4 k T rb ibf

2 ibsh

2) rb2 icsh

2 rb+r

hfe

2

in2 ibf

2 ibsh2

icsh2

hfe2

en

in

BJT enin noise model

f >> ff

rb = 100

IC = 1 mA

hfe = 100

en 1.36 nV/Hz0.5

in 1.8 pA/Hz0.5

en / in 756

RS = 756

in RS = 1.4 nV/Hz0.5

Page 9: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

95. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.2. BJT noise model

D. Optimum source resistance at IC opt

vs

RS

r

ichfe i

ro

rbB Ci

Rs opt en

in IC opt

rb 2 1 + 1+hfe

en

in

IC opt

Page 10: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

10

igsh2 = 2 q IG

idf 2

Kf ID

f

5.4.3. JFET noise model

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model

idt

G

S

D

Noiseless

igsh

idf

NB: idsh 0

idt2 = 4 k T /)3/2 gm)

Page 11: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

11

id

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model

gmvgs

ro

G Dig

Equivalent small-signal model

igsh idtidf

vgs rgs

Page 12: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

12

id

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model

1/gm

gmvgs

ro

G Dig

igsh idtidf

vgsvgs rgs

Equivalent small-signal model

Page 13: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

135. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model

~1/gm

gmvgs

ro

G Dig

igsh idtidf

vgs

Equivalent small-signal model

Page 14: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

145. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model

idvs

RS

~1/gm

gmvgs

ro

G Dig

1) Total input noise vs. time, vn s)t).

vn s?

A. Total input noise

igsh idtidf

vgs

Page 15: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

155. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model

vs

RS

~1/gm

id

gmvgs

ro

G D

1) Total input noise vs. time, vn s)t).

A. Total input noise

idtidfvn s? igsh

igsh Rs

vn s)t) vst)t) + igsh)t) RS idf )t) idt)t)])1/gm)

vgs

ig

Page 16: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

16

vn s?

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model

vs

RS

~1/gm

id

gmvgs

ro

Digsh Rs

idtidf

vn sG

A. Total input noise

1) Total input noise vs. time, vn s)t).

vn s)t) vst)t) + igsh)t) RS idf )t) idt)t)])1/gm)

2) Power spectral density of the total input noise, vn s2) f ).

vn s2 4 k T RS + igsh

2RS2

idf 2 idt

2)/gm2

vgs

ig

Page 17: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

17

vn s?

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model

B. enin noise model

en2 vn s

2 idf

2 idt2)/gm

2

RS = 0

in2

igsh2

vn s2

RS2 RS =

vs

RS

~1/gm

id

gmvgs

ro

Digsh Rs

idtidf

vn s2 4 k T RS + igsh

2RS2

idf 2 idt

2)/gm2

vn s en

in

G

vgs

ig

Page 18: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

185. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.3. JFET noise model

G

S

D

en

in

en2 idf

2 idt2)/gm

2

in2 igsh

2

JFET enin noise model

f >> ff

Vp = 2 V

IDSS = 10 mA

IG = 10 pA

en 1.8 nV/Hz0.5

in 1.8 fA/Hz0.5

en /in 1 M

RS = 1 M

in RS = 1.8 nV/Hz0.5

f >> ff

rb = 100

IC = 1 mA

hfe = 100

en 1.36 nV/Hz0.5

in 1.8 pA/Hz0.5

en / in 756

RS = 756

in RS = 1.4 nV/Hz0.5

BJT

Page 19: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

19

idt2 = 4 k T /)3/2 gm)

idf 2

Kf ID

f

5.5.4. MOSFET noise model

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model

idt

G

S

D

Noiseless

idf

NB: igsh 0

idsh 0

Page 20: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

20

id

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model

1/gm

gmvgs

ro

D

vn s)t) vst)t) idf )t) idt)t)])1/gm)

1) Total input noise vs. time, vn s)t).

2) Power spectral density of the total input noise, vn s2) f ).

vn s2 4 k T RS + idf

2 idt2)/gm

2

A. Total input noise

idtidfvn s?

vs

RSvn s

G

Page 21: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

21

vn s

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model

B. enin noise model

en2 vn s

2 idf

2 idt2)/gm

2

RS = 0

in2

0vn s

2

Rs2 RS =

1/gm

id

gmvgs

ro

D

vn s2 4 k T RS + idf

2 idt2)/gm

2

vs

RSen

in

G

Page 22: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

225. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.4. MOSFET noise model

G

S

D

en

en2 idf

2 idt2)/gm

2

in 0

MOSFET enin noise model

f >> ff

Vp = 2 V

IDSS = 10 mA

en 1.8 nV/Hz0.5

f >> ff

Vp = 2 V

IDSS = 10 mA

IG = 10 pA

en 1.8 nV/Hz0.5

in 1.8 fA/Hz0.5

en /in 1 M

RS = 1 M

in RS = 1.8 nV/Hz0.5

JFET

Page 23: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

23

5.5.5. Frequency response effect

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect

r

ichfe i

ro

rb C

icsh

ibf ibsh

i

vbtvbt

VCC iC

C

C

VBB

vs

RS

vs

RS B

The aim is to analyze the dependence of a transistor en and in

on frequency and the operating point.

Page 24: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

24

vs

RS

Ag

1) Transconductance gain (ic<< hfe i)

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect

r

ichfe i

ro

rbB C

i C

C

ic

vs

is= 1

hfe [1/j2f)C+C)]/[r+1/j2f)C+C)]

RS + rb+ rII[1/j2f)C+C)]

hfe /)RS +rb+r)

1+j2f[)RS + rb)IIr])C+C)

is

A. Total input noise

Page 25: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

255. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect

r

ichfe i

ro

rb C

icsh

ibf ibsh

i

vbtvbt

C

C

2) Power spectral density of the total input noise, vn s2) f ).

vn s2 4 k T )RS +rb) ibf

2 ibsh

2) )RS+rb)2 icsh2

RS +rb+r

hfe

2

]12f)2[

vs

RS B

vn s

hfe /)RS +rb+r)

1+j2fAg [)RS + rb)IIr])C+C)

Page 26: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

265. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect

3) en and in of the transistor.

vn s2 4 k T )RS +rb) ibf

2 ibsh

2) )RS+rb)2 icsh2

RS +rb+r

hfe

2

]12f)2[

en2 vn s

2 4 k T rb ibf

2 ibsh

2) rb2

RS = 0

in2

vn s2

RS2 RS =

icsh2

rb+r

hfe

2

]12fen)2[

ibf 2

ibsh2 ]12fin)2[

icsh2

hfe2

en)rbIIr))C+C)

inr)C+C)

[)RS + rb)IIr])C+C)

Page 27: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

275. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect

r

ichfe i

ro

rb C

i C

C

vs

RS B

en2 4 k T rb ibf

2 ibsh

2) rb2

in2

icsh2

rb+r

hfe

2

]12fen)2[

ibf 2

ibsh2 ]12fin)2[

icsh2

hfe2

en

in

B. enin noise model for high-frequencies

en)rbIIr))C+C)

inr)C+C)

Page 28: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

28

IC opt = 24 mAIC opt = 24 mA

IC = 0.1 mAIC = 0.1 mA

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect

en) f )

nV/Hz0.5

Ag

Ag max

dB

101 103 105 108100 102 104 106 109107

-40

-20

0101 103 105 108100 102 104 106 109107

2

4

1

3

5

f, Hz

C. en) f ) for different IC

rb 100

hfe100

CpF 1

C)mA 1)pF 100

rb100

hfe100

C1 pF

C)1 mA)100 pF

en2 4 k T rb ibf

2 ibsh

2) rb2 icsh

2rb+r

hfe

2

]12fen)2[

Page 29: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

295. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect

D. in) f ) for different IC

IC opt = 24 mAIC opt = 24 mA

IC = 0.1 mAIC = 0.1 mAin) f )

pA/Hz0.5

Ag

Ag max

dB

101 103 105 108100 102 104 106 109107

-40

-20

0101 103 105 108100 102 104 106 109107

2

6

0

4

8

f, Hz

rb 100

hfe100

CpF 1

C)mA 1)pF 100

rb100

hfe100

C1 pF

C)1 mA)100 pF

in2 ibf

2 ibsh

2 ]12fin)2[icsh

2

hfe2

Page 30: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

305. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect

E. Noise simulation in PSPICE

V11Vac0Vdc

V510Vdc

0

Out1

0

R2

5k

0

V20.628Vdc

R1

100

Q7

2N2222A/ZTX

Frequency

1.0Hz 10KHz 100MHz 1.0THz0

10

20

30

V(ONOISE)*1G/10V(Out1)/V(V1:+)/10V(INOISE)*1G

Page 31: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

315. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.6. Comparison of the BJT, JFET and MOSFET

5.5.6. Comparison of the BJT, JFET and MOSFET

rb 40

hfe500

r o

I CmA 1

rb40

hfe500

ro

IC 1 mA

IDSS2 mA

Vp2 V

ro

ID 1 mA

vn s2 4 k T RS + igsh

2RS2

idf 2 idt

2)/gm2

vn s2 4 k T )rb RS) ibf

2 ibsh

2))RS rb)2 icsh2

RS+rb+r

hfe

2

vn s2 4 k T RS + idf

2 idt2)/gm

2

Page 32: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

325. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.6. Comparison of the BJT, JFET and MOSFET

1

5

100

102 103 104 105

RS,

vn s

nV/Hz0.5

Amplitude spectral density

of the total input noise vn s

as a function of RS

IC opt

The 1/f noise is

neglected.

The JFET gate current

is neglected.

Page 33: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

335. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.5. Frequency response effect

Frequency

1.0Hz 10KHz 100MHz 1.0THzV(INOISE)*1G V(Out11)/V(V11:+) V(ONOISE)*1G/20

0

10

20

30

40

Example: Comparison of an BJT and JFET in PSPICE

Frequency

1.0Hz 10KHz 100MHz 1.0THzV(INOISE)*1G V(Out1)/V(V1:+)/10 V(ONOISE)*1G/40

0

10

20

30

40

RS = 10 kRS = 100

Frequency

1.0Hz 10KHz 100MHz 1.0THzV(INOISE)*1G V(Out1)/V(V1:+)/10 V(ONOISE)*1G/40

0

10

20

30

40

V11Vac0Vdc

V510Vdc

0

Out1

0

R2

5k

0

V20.628Vdc

R1

100

Q7

2N2222A/ZTX

Frequency

1.0Hz 10KHz 100MHz 1.0THzV(INOISE)*1G V(Out11)/V(V11:+) V(ONOISE)*1G/20

0

10

20

30

40

V121.75Vdc

0

Out11

V111Vac0Vdc

R12

5k

V1510Vdc

J1

FN4393

00

R11

10k

en at S = 4 kT RS + en 2 + 2 en in + )in RS)2

Page 34: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

345. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.6. Comparison of the BJT, JFET and MOSFET

Reference: [9]

Conclusion: Guide for selection of the preamplifier

1 10 100 1 k 10 k 100 k 1 M 10 M 100 M 1 G 10 G 100 G

MOSFET

Transformer coupling

IC amplifiers

BJT

Source resistance, RS

JFET

Page 35: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

35

5.5.7 Noise analysis of a CE amplifier

RS

RC

RE

VCC

VBB

vs

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit

r

io

hfe i

ro

rb

RE RC

B

E

C

icsh

vs

RS

ibf ibsh

i

vet

vbt

vst

vct

ro

Page 36: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

36

Our final aim is to find and minimize the total input noise vn s.

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit

r

io

hfe i

rb

RE RC

B

E

C

icsh

vs

RS

ibf ibsh

i

vet

vbt

vst

vn s

?vct

Let us first find vn s by applying superposition.

Page 37: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

37

As Gs Gs s fwd AOL

1AOL

io

vs

1) Signal gain As for vs, vst, vbt, and vet.

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit

r

io

hfe i

rb

RE RC

B

E

C

vs

RS

i

As 1

RSrbrRE

hfe

1hfe RE/)RE RSrbr) 0

vet

vbt

vst

Page 38: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

38

Abf Gbf Gbf bf fwd AOL

1AOL

io

ibf

2) Noise gain Abf for ibf and ibsh.

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit

r

io

hfe i

rb

RE RC

B

E

C

vs

RS

ibf ibsh

i

Abf RSrbRE

RSrbRE r

hfe

1hfe RE/)RE RSrbr) 0

Page 39: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

39

Acsh Gcsh Gcsh csh fwd AOL

1AOL

io

icsh

r

io

hfe i

rb

RE RC

B

E

C

icsh

vs

RS

i

3) Noise gain Acsh for icsh.

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit

Acsh RE

RE RSrbr

hfe

1hfe RE/)RE RSrbr) 1

Page 40: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

40

Act Dct

io

vct

4) Noise gain Act for vct.

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit

r

io

hfe i

RE RC

B

E

C

vs

RS

i

vct /RC

rb

Act 1

RC

Page 41: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

41

5) Total input noise vs. time, vn s.

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit

r

io

hfe i

RE RC

B

E

C

vs

RS

i

vn s

vn s)t) vst vbt vet

)ibf ibsh) Abf

As

icsh Acsh

As

vct Act

As

rb

vn s2) f ) 4kT RSbE+)ibf

2ibsh2) RSbE

2)RSbEr)2

hfe2

icsh2 4kT

1

RC As2

0

RSbE RS rbRE

icsh

ibf ibsh

Page 42: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

42

r

ichfe i

RC

B Crb

vs

RS

)1+hfe) RE

E

RE

E

6) enin noise model.

en

in

in2 ibf

2 ibsh

2 icsh2

hfe2

en s2

RS2 RS =

en2 en s

2 4 k T RbE ibf

2 ibsh

2) RbE 2 icsh

2)RbE+r)2

hfe2

RS = 0

i

RbE rb RE

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit

Page 43: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

43

RSbE2

hfe

IC opt hfeVT

hfe 0.5RSbE

rb = 100

RS = 200

RE = 200

ibf 2 = 0

vbt2 = 4 k T rb

vet2 = 4 k T RE

ibsh2 = 2 q IC /

icsh2 = 2 q IC

7) Minimizing CE noise.

vn s min2 4 k T RSbE

)1 + hfe )0.5

)1 + hfe )0.51

vn s2 4 k T RSbE 2 q IC 2 q IC

RSbE+hfeVT /IC

hfe

2

102

-0.5

-0.4

-0.3

-0.2

-0.1

0

103 104

en s

norm.

dB

hfe

0.10

0.2

0.4

0.8

1.4

1 10

hfe=104

hfe=102

hfe=103

IC / IC opt

en s

norm.

dB

1.0

0.6

1.2

5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design. 5.5.7. Example circuit

Reference: [7]

Page 44: 5. SOURCES OF ERRORS. 5.5. Fundamentals of low-noise design

44Next lecture

Next lecture: