4/15/2015© 2009 raymond p. jefferis iii lect 04 - 1 geographic information processing raster data...

48
06/18/22 © 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling Smoothing Malvern Quadrangle - USGS DEM Data

Upload: esmeralda-elder

Post on 14-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 1

Geographic Information Processing

Raster Data Models• Data files• Metadata • Cell size• Cell alignment • Resampling• Smoothing

Malvern Quadrangle - USGS DEM Data

Page 2: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 2

Raster Data Files

• Taken at regular intervals covering an area

• The data cells are typically rectangular

• The area is defined by its corner coordinates

• The ordering of the data, within the file, determines the spatial location of each cell with respect to the corners

Page 3: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 3

USGS Digital Raster Graphics

Digital Geospatial Metadata7.5-minute DRGs (scanned from older maps)

Projection: typically 1927 North American Datum

Available Scales:1:12,000 (approx. 3.75' quadrangles)1:24,000 (approx. 7.5' quadrangles - most common)1:63,360 (approx. 15' quadrangles - abandoned)1:100,000 (30' x 60' quadrangles)1:250,000 (1˚ x 2˚ or 3 ˚ quadrangles)

Data supplied in TIFF format

Page 4: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 4

DRG Map Scale Comparison

USGS USGSScale 1:24,000 Scale 1:100,000

Page 5: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 5

Digital Elevation Model (DEM) Data

• Arrays of regularly spaced elevations on south-to-north profiles, ordered west-to-east

• 7.5', 30', or 1˚ sets, skewed from longitudes• ASCII or binary elevation values• Universal Transverse Mercator (UTM) or

geographic coordinate referenced• Seamless version is National Elevation Data

(NED)

Page 6: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 6

DEM Availability

• Replaced by:– National Elevation Dataset (NED) and,– Spatial Data Transfer Standard (SDTS) data

• Download sites:http://data.geocomm.com/dem/http://edc2.usgs.gov/geodata/index.php

Page 7: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 7

National Elevation Dataset (NED)

• Seamless raster dataset• Available from USGS• Elevations in meters• Resolution: 1arc-sec (approx. 30-meters)• Datum: North American Datum 1983• Metadata:

www.fgdc.gov

Page 8: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 8

DEM Scan Format

Standards for Digital Elevation models, Part 1, USGS

Page 9: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 9

DEM Standards

• Download for use with your datasets.• Download site:

http://rockyweb.cr.usgs.gov/nmpstds/demstds.html

Page 10: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 10

Reading DEM Files in Mathematica®

ySR = Import[yER = Import[

"~/Desktop/DEMdata/PA/Malvern/1670812.dem.sdts.tgz", {"SDTS", "ElevationRange"}] "~/Desktop/DEMdata/PA/Malvern/1670812.dem.sdts.tgz", {"SDTS", "SpatialRange"}]

•Spatial range result [meters]:

{{446655, 457365}, {4427685, 4441605}}•Elevation range result [feet]:

{0, 720}

Page 11: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 11

Extracting Data Parameters

dims = Dimensions[yDat]; (* get metadata *)

nbase = dims[[1]];(* Skip *)

nrows = dims[[2]];(*number of data rows -> 465 *)

ncols = dims[[3]]; (* number of data columns -> 358 *)

minval = yER[[1]]; (* minimum altitude, feet *)

maxval = yER[[2]]; (* maximmum altitude, feet *)

Page 12: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 12

Reading DEM File in Mathematica®

Import data: yDat = Import[

Look at the elevation data of one row:y = yDat[[1, 465]]

The result is:{0, 0, 0, 418, 408, 402, 394, 387, 375, 372, 386, 394, 393, 386, 378, 375, ¥372, 373, 373, 372, 371, 369, 361, 354, 348, 350, 350, 350, 350, 353, 354, ¥357, 358, 361, 364, 366, 368, 369, 379, 397, 407, 397, 388, 376, 367, 359, ¥352, 345, 340, 334, 329, 323, 316, 310, 306, 304, 304, 304, 305, 306, 308, ¥310, 312, 315, 320, 326, 330, 334, 337, 338, 338, 337, 334, 327, 322, 316, ¥304, 298, 292, 288, 286, 285, 285, 286, 290, 294, 302, 313, 321, 334, 350, ¥381, 400, 442, 486, 497, 483, 461, 449, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¥0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¥0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¥0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¥0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¥0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¥0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¥0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¥0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¥0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ¥0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

– "~/Desktop/DEMdata/PA/Malvern/1670812.dem.sdts.tgz", {"SDTS",

– "Data"}];

Page 13: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 13

Viewing DEM File in Mathematica®

yGrf = Import["~/Desktop/DEMdata/PA/Malvern/1670812.dem.sdts.tgz",

"SDTS"];Notes:• Raster skew, leading

to missing data, at edges of quadrangle

• Older file data• Image slightly blurred

Page 14: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 14

Plotting Data in Mathematica®

elev = Table[yDat[[1, r, c]], {r, 1, nrows, 1}, {c, 1, ncols, 1}];

ReliefPlot[elev, ColorFunction -> "GreenBrownTerrain"]

Notes:• First step makes table of

sampled data, which can be used for further processing

• Second step plots it• Image is crisp• Pixels approx. 30 x 30 meters

Page 15: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 15

Calculation, from Lecture #2

At 40˚ North latitude, 76˚ West longitude, a square of 7.5´ will have the planar dimensions:

North_Distance = 13.8793 km

463 30 meter cells

East_Distance = 10.6742 km

356 30 meter cells

Page 16: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 16

Calculation, from File Data

At 40˚ North latitude, 75.625˚ West longitude, a square of 7.5´ will have the planar dimensions:

North_Distance = 13.920 km464 30 meter cellsEast_Distance = 10.710 km357 30 meter cells

Note: There is one more row and column in the file, so that the data go all the way to the edges.

Page 17: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 17

Metadata

• Data about the data

• Gives resolution, units, datum, etc.

• Needed for interpreting data

• Data storage format given in specifications located separately

Page 18: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 18

Selected Metadata• ITEM_TYPE: SDTS DEM - 7.5X7.5 GRID• CELL_NAME: Malvern• X_RESOLUTION: 30• Y_RESOLUTION: 30• XY_UNITS: Meter• Z_RESOLUTION: 1.000• Z_UNITS: Foot• HORIZONTAL_DATUM: North American Datum of 1927• PROJECTION: Transverse Mercator• MIN_ELEVATION: 105• MAX_ELEVATION: 720• NORTH_LATITUDE: 40.125000• SOUTH_LATITUDE: 40.000000• WEST_LONGITUDE: -75.625000• EAST_LONGITUDE: -75.500000

Page 19: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 19

Calibration of Data

• Locate known landmark or benchmark feature coordinates

• Proportion pixel count to find data

• Draw mark at location on figure

• Replot data with modified feature

• Check with USGS topographic map

Page 20: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 20

ExampleAntenna known to be on top of ridge:(* Bacton Hills Antenna Location *)antlat = 40.058327; [North]antlon = 75.598366; [West]

Define quadrangle corners:(* Malvern Quadrangle Corners*)nelat = 40.125;nelon = 75.500;swlat = 40.000;swlon = 75.625;

Page 21: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 21

Example (continued)

Locate {x,y} data pixel of feature:

(* Proportion Pixels from SW Corner*)

latpt = Round[nrows*((antlat - swlat))/(nelat - swlat)];

lonpt = Round[ncols*((swlon - antlon))/(swlon - nelon)];

Page 22: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 22

Example (continued)

• Draw crosshairs (set height to sea level!)(* Draw Crosshairs *)

yDat[[1, latpt, lonpt]] = 0;yDat[[1, latpt + 1, lonpt]] = 0;

yDat[[1, latpt + 2, lonpt]] = 0;yDat[[1, latpt - 1, lonpt]] = 0;

yDat[[1, latpt - 2, lonpt]] = 0;yDat[[1, latpt, lonpt + 1]] = 0;

yDat[[1, latpt, lonpt + 2]] = 0;yDat[[1, latpt, lonpt - 1]] = 0;

yDat[[1, latpt, lonpt - 2]] = 0;

Page 23: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 23

Example (plotted result)• Crosshairs on

ridgeline• Location correct• Plot oriented

correctly• Find corresponding

Mathematica® notebook in Models file as: MalvernBactonTest

==>

Page 24: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 24

DTED Data File Format• (1) User Header Label (UHL: 80 bytes) 1

• (2) Data Set Identification Record (DSI: 648 bytes) 81

• (3) Accuracy Record (ACC: 2700 bytes)* 729

• (4) Data Records (3601 records at 72143429, 10642, 17856,etc. bytes/record)**

** The number of records is a function of the latitude. A count of 3601 is for cells between latitudes S50 and N50 degrees. Missing elevations are filled with 1 bits. Elevations are two-byte integers, high order

first, and negatives are signed magnitude.

Page 25: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 25

Reading DTED File

See MalvernDTED notebook in Models directory

Page 26: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 26

Reading DTED File Header

(* Define and read in data for DTED data set *)Array[d, 2000, 2000];s =

OpenRead["~/Desktop/DTEDdata/w076n40.dt2"];

(*Read Header information *)uhl = ReadList[s, Character, 80];dsi = ReadList[s, Character, 648];acc = ReadList[s, Character, 2700];

Page 27: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 27

Reading DTED File(* Read the data and convert to signed integer format *)

(* Offset to Malvern Quadrangle *)mm = 1350;ll = 450; (* Width in rows *)

For[j = mm, j < mm + ll, j++, { (* Read record header *) SetStreamPosition[s, 3428 + j*7214]; bh = Read[s, Byte]; bl = Read[s, Byte]; c1 = 256*Read[s, Byte] + Read[s, Byte]; c2 = 256*Read[s, Byte] + Read[s, Byte]; c3 = 256*Read[s, Byte] + Read[s, Byte]; rr = 0;(* Read data column *) For[i = 0, i < ll + 1, i++,{ d[i, j - mm] = 256*Read[s, Byte] + Read[s, Byte]; }] }]Close[s];

Page 28: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 28

Plotted ResultNotes:(Malvern Quadrangle)

• High resolution [10 meters] • Processing to Level 2• Data to edges• One-column overlap at edges (451 columns)

Page 29: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 29

Calibration

• Mark a known feature on plotted result and compare with its known location– Mountaintop– Stream intersection– Lake– Quarry

Page 30: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 30

Calibration

Notes:

• Crosshairs at Bacton Hill antenna site.

• Location correct

Page 31: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 31

SRTM Files [.HGT ]

• Heights are signed two byte integers. • The bytes are in Motorola "big-endian" order

with the most significant byte first.• Heights are in meters referenced to the

WGS84/EGM96 geoid. Data voids are assigned the value -32768.

• SRTM1 files contain 3601 lines of 3601 samples each, with edge overlap.

• IMPORTANT! - NW-to-SE order

Page 32: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 32

Reading SRTM1 Files

See hgt2Test notebook in Models file

Note: Data are in binary bytes, stored as rows (not columns), read from NW to SE (software will reverse).

Page 33: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 33

Reading SRTM1 Files [.HGT]

Array[d, 3601, 3601];s = OpenRead["~/Desktop/N40W076.hgt", BinaryFormat -> True];nn = 1350;nrows = 450;ncols = 450;For[j = 0, j < nrows + 1, j++, SetStreamPosition[s, nn*2 + 7202*(3600 - j)]; For[i = 0, i < ncols + 1, i++, d[i, j] = 256*BinaryRead[s, "UnsignedInteger8"] + BinaryRead[s, "UnsignedInteger8"] ]; ];(* Close data file *)Close[s];

Page 34: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 34

Results

Notes:

• High resolution image

• Processed to remove voids

• No gaps at edges

Page 35: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 35

Resampling

• Result is new image derived from original

• Each pixel is weighted sum of surrounding pixels

• Principal methods– Straight sampling (to reduce raster points)– Bilinear interpolation (for off-grid points)– Cubic convolution (for regular raster points)

Page 36: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 36

Simple Resampling

• Pick every nth pixel

• No pixel averaging

• Result is fewer pixels but no noise reduction

• Images look “jaggy”

Page 37: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 37

Simple Resampling [5:1]sampledelev = Table[d[r + rowmin, c + colmin], {r, 0, nrows, 5}, {c, 0, ncols, 5}];

ReliefPlot[sampledelev, AspectRatio -> 13.8793/10.6742, ColorFunction -> "GreenBrownTerrain"]

Note: Pixel aspect ratio is defined from calculation results of Slides 15 and 16.

Page 38: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 38

Resampled 2:1 and 5:1 Quadrangles

Page 39: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 39

Re-sampling with Smoothing

• Pick every nth pixel

• Form new value from weighted sum of this pixel and its surrounding ones.

• Result: fewer pixels, some noise reduction

• Images look “jaggy”

Page 40: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 40

Resulting Resampled Data

• Fewer pixels per square ground area

• More area can be covered

• Note: SRTM3 data could be used instead– 30 x 30 meter (approx.) pixels– Each pixel averages nine (9) SRTM1 pixels– Averaging improves statistical accuracy

Page 41: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 41

Bilinear Interpolationd11 d12 d13 d14 d15d21 d22 d23 d24 d25d31 d32 d33 d34 d35d41 d42 d43 d44 d45d51 d52 d53 d54 d55

• Pixel d33 can be off-grid, others are nearby points for extrapolation • Pixel d33 is to be distance-weighted sum of pixels d22, d24, d42, and d44

• x-distance is (x33/x32)*(x34-x32)• y-distance is (y33/y43)*(y23-y43)

Portion of data to be resampled to give value of data at new point, d33

Page 42: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 42

Convolution

• Value of raster point determined from weighted sum of others

• Simple averaging includes the 8 closest pixels, weighted by distance from the center pixel

• Cubic convolution uses the 16 closest pixels• Convolution kernel needed• Resulting values should be normalized by the sum

of weights to retain proper scale

Page 43: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 43

Averaging Convolution Kernel

0.707 1 0.7071 1 1 /7.828

0.707 1 0.707

Note: Cells are weighted by distance from the center cell, and the array of weights is then normalized by the sum of weights.

Page 44: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 44

Results

• Raw data represent 10 x 10 meter areas

• Averaged data represent 30 x 30 meter areas

• Raw data images are sharp; averaged data appear blurry.

• Raw data contours are jaggy; contours of averaged data are smoother.

• Images follow:

Page 45: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 45

Raw and Averaged Data Images

Raw Data - Malvern Averaged Data

Page 46: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 46

Raw and Averaged Contours

Raw Data - Malvern Averaged Data

Page 47: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 47

Contours - Summary

• Smoothing important for contour maps

• Convolution is effective for processing

Page 48: 4/15/2015© 2009 Raymond P. Jefferis III Lect 04 - 1 Geographic Information Processing Raster Data Models Data files Metadata Cell size Cell alignment Resampling

Questions?

04/18/23 © 2009 Raymond P. Jefferis III Lect 04 - 48