409375

11
Hindawi Publishing Corporation International Journal of Electrochemistry Volume 2013, Article ID 409375, 10 pages http://dx.doi.org/10.1155/2013/409375 Research Article Electrochemical and Spectroscopic Characterization of Aluminium(III)-para-methyl-meso-tetraphenylporphyrin Complexes Containing Substituted Salicylates as Axial Ligands Gauri D. Bajju, Deepmala, Sunil Kumar Anand, Sujata Kundan, and Narinder Singh P.G. Department of Chemistry, University of Jammu, Jammu 180006, India Correspondence should be addressed to Gauri D. Bajju; [email protected] Received 19 July 2013; Revised 26 September 2013; Accepted 28 October 2013 Academic Editor: Davood Nematollahi Copyright © 2013 Gauri D. Bajju et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A series of aluminium(III)-p-methyl-meso-tetraphenylporphyrin (p-CH 3 TPP-Al(III)) containing axially coordinated salicylate anion [p-CH 3 TPP-Al-X)], where X = salicylate (SA), 4-chlorosalicylate (4-CSA), 5-chlorosalicylate (5-CSA), 5-flourosalicylate (5-FSA), 4-aminosalicylate (4-ASA), 5-aminosalicylate (5-ASA), 5-nitrosalicylate (5-NSA), and 5-sulfosalicylate (5-SSA), have been synthesized and characterized by various spectroscopic techniques including ultraviolet-visible (UV-vis), infrared (IR) spectroscopy, proton nuclear magnetic resonance ( 1 H NMR) spectroscopy, 13 C NMR, and elemental analysis. A detailed study of electrochemistry of all the synthesized compounds has been done to compare their oxidation and reduction mechanisms and to explain the effect of axial coordination on their redox properties. 1. Introduction e field of the macrocyclic chemistry of transition metals is developing very rapidly because of its applications [1] and importance in the area of coordination chemistry [2]. Among the various macrocyclic systems studied, metalloporphyrins constitute an important class. Metalloporphyrins and their complexes with various ligands, which play an important role in biological processes and exhibit catalytic properties, are continuing to remain the subject of systematic experimental and theoretical studies [3, 4]. e axial ligation on the metal center is a synthetic way to synthesize large mul- tiporphyrinic systems [510]. Actually much attention has been paid to porphyrin containing zinc(II), magnesium(II), tin(IV), and rhodium(III) as metal centers [11, 12]. Although aluminium(III) porphyrins are well known for their catalytic properties and their rich photo- and electrochemistry [1315], their use as molecular building blocks for the design of porphyrin arrays remains limited. e synthesis of porphyrin arrays including aluminium(III) porphyrins is mostly limited to the use of phenolates [16] and carboxylates [17] as the axial ligand. Surprisingly, there is no example of aluminium(III) porphyrins axially bonded to salicylate anion. Here, we report the synthesis and characterization of aluminium(III)-p-methyl-meso-tetraphenylporphyrins (p- CH 3 TPP-Al-X) complexes axially bonded to substituted salicylate anions and study their electrochemistry. 2. Materials and Methods Pyrrole (Fluka, Switzerland) was distilled over KOH pel- lets under reduced pressure before use. Benzaldehyde was procured from Aldrich, USA, and aluminium oxide (basic) was purchased from Fluka, Switzerland. Anhydrous sodium sulphate (Na 2 SO 4 ) was procured from Ranbaxy Labs. Ltd. (India). Anhydrous aluminium(III) chloride, benzonitrile, and various salicylic acid were purchased from Alfa Asear, Japan. Benzonitrile was dried and vacuum distilled before use. (TBA)PF 6 was obtained from Himedia Laboratories Pvt. Ltd. and recrystallized twice from EtOAc and dried in vacuum prior to use. e optical absorption spectrum of the compounds was recorded on a T90+ UV/VIS spectrophotometer using a pair of matched quartz cells of 10 mm path length at an ambient temperature. e 1 H NMR and 13 C NMR spectra

Upload: hlpcravo

Post on 10-Feb-2016

17 views

Category:

Documents


0 download

DESCRIPTION

paper og porphyrin

TRANSCRIPT

Page 1: 409375

Hindawi Publishing CorporationInternational Journal of ElectrochemistryVolume 2013 Article ID 409375 10 pageshttpdxdoiorg1011552013409375

Research ArticleElectrochemical and Spectroscopic Characterization ofAluminium(III)-para-methyl-meso-tetraphenylporphyrinComplexes Containing Substituted Salicylates as Axial Ligands

Gauri D Bajju Deepmala Sunil Kumar Anand Sujata Kundan and Narinder Singh

PG Department of Chemistry University of Jammu Jammu 180006 India

Correspondence should be addressed to Gauri D Bajju gauribajjugmailcom

Received 19 July 2013 Revised 26 September 2013 Accepted 28 October 2013

Academic Editor Davood Nematollahi

Copyright copy 2013 Gauri D Bajju et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

A series of aluminium(III)-p-methyl-meso-tetraphenylporphyrin (p-CH3TPP-Al(III)) containing axially coordinated salicylate

anion [p-CH3TPP-Al-X)] where X= salicylate (SA) 4-chlorosalicylate (4-CSA) 5-chlorosalicylate (5-CSA) 5-flourosalicylate

(5-FSA) 4-aminosalicylate (4-ASA) 5-aminosalicylate (5-ASA) 5-nitrosalicylate (5-NSA) and 5-sulfosalicylate (5-SSA) havebeen synthesized and characterized by various spectroscopic techniques including ultraviolet-visible (UV-vis) infrared (IR)spectroscopy proton nuclear magnetic resonance (1H NMR) spectroscopy 13C NMR and elemental analysis A detailed studyof electrochemistry of all the synthesized compounds has been done to compare their oxidation and reduction mechanisms and toexplain the effect of axial coordination on their redox properties

1 Introduction

The field of the macrocyclic chemistry of transition metalsis developing very rapidly because of its applications [1] andimportance in the area of coordination chemistry [2] Amongthe various macrocyclic systems studied metalloporphyrinsconstitute an important class Metalloporphyrins and theircomplexes with various ligands which play an important rolein biological processes and exhibit catalytic properties arecontinuing to remain the subject of systematic experimentaland theoretical studies [3 4] The axial ligation on themetal center is a synthetic way to synthesize large mul-tiporphyrinic systems [5ndash10] Actually much attention hasbeen paid to porphyrin containing zinc(II) magnesium(II)tin(IV) and rhodium(III) as metal centers [11 12] Althoughaluminium(III) porphyrins are well known for their catalyticproperties and their rich photo- and electrochemistry [13ndash15] their use as molecular building blocks for the design ofporphyrin arrays remains limitedThe synthesis of porphyrinarrays including aluminium(III) porphyrins is mostly limitedto the use of phenolates [16] and carboxylates [17] as the axialligand Surprisingly there is no example of aluminium(III)porphyrins axially bonded to salicylate anion

Here we report the synthesis and characterization ofaluminium(III)-p-methyl-meso-tetraphenylporphyrins (p-CH3TPP-Al-X) complexes axially bonded to substituted

salicylate anions and study their electrochemistry

2 Materials and Methods

Pyrrole (Fluka Switzerland) was distilled over KOH pel-lets under reduced pressure before use Benzaldehyde wasprocured from Aldrich USA and aluminium oxide (basic)was purchased from Fluka Switzerland Anhydrous sodiumsulphate (Na

2SO4) was procured from Ranbaxy Labs Ltd

(India) Anhydrous aluminium(III) chloride benzonitrileand various salicylic acid were purchased from Alfa AsearJapan Benzonitrile was dried and vacuum distilled beforeuse (TBA)PF

6was obtained from Himedia Laboratories

Pvt Ltd and recrystallized twice from EtOAc and dried invacuum prior to use

The optical absorption spectrum of the compounds wasrecorded on a T90+ UVVIS spectrophotometer using apair of matched quartz cells of 10mm path length at anambient temperature The 1H NMR and 13C NMR spectra

2 International Journal of Electrochemistry

were recorded on a Bruker Avance III (400MHz) in CDCl3

and CD3OH using tetramethylsilane as an internal standard

Cyclic voltammetry measurements were carried out withan Autolab Computer-controlled electrochemical measure-ment system equipped with a potentiostat a three elec-trode system comprised a gold electrode a Pt wire and an(AgAgClKCl) wire as working counter and reference elec-trode respectively A 01M solution of n-tetrabutylammo-nium hexafluorophosphate (TBA)PF

6in freshly distilled

CH2Cl2was used as a supporting electrolyte during the

electrochemical experiments The scan rate was 20mVs andthe range was minus2ndash2V The concentration of the porphyrinswas 10minus6M The solutions were purged with oxygen-freenitrogen gas prior to measurements and all measurementswere made at room temperature (300K)

p-Methyl-meso-tetraphenylporphyrin (p-CH3TPP) The metalfree-base H

2TPP was synthesized by the conventional

method of condensation of benzaldehyde with pyrrole bymodified Adler method [18] The purified porphyrin wasobtained ingt20 yieldsUV-Vis spectra120582max (nm) inCHCl

3

420 517 5525 592 649

p-Methyl-meso-tetraphenylporphinatoaluminium(III) Chloride(p-CH3TPP-Al-Cl) A 01 g of H

2TPP was refluxed with

01 g of anhydrous AlCl3in 16mL of dry benzonitrile for

1ndash3 h The reaction course was monitored by absorptionspectra of the reaction mixture The refluxing was stoppedwhen the absorption bands of H

2TPP disappeared The

reaction mixture was filtered to remove the presence ofexcess AlCl

3 To the filtrate excess hexane was added for

complete precipitation of the complex The precipitates werewashed with hexane and dissolved in methanol A 3N HClsolution was added to precipitate the complex which wasthen recrystallized from the solution of acetone and hexaneReddish purple crystals thus obtained were of p-CH

3TPP-

Al-Clsdot4H2OMore reddish crystals of p-CH

3-TPP-Al-ClsdotH

2O

were obtained by drying p-CH3-TPP-Al-Clsdot4H

2O at 110ndash

120∘C for 2 hours Anal Calcd for C48H36ClN4Al C 7885

H 492 N 766 Found C 7832 H 466 N 724 UV-Vis(in CHCl

3) 120582max(nm) 4180 4660 5100sh 5490 5920 IR

(KBr)]max 52815 cmminus1 (]Al-N)

1HNMR (400MHz CDCl3)

90 (8H s 120573-pyrrole) 838(d) and 816(d) due to H26 765(d)

and 755(d) due to H35 270 (s 12H p-CH

3)

p-Methyl-meso-tetraphenylporphinatoaluminium(III) Hydrox-ide(p-CH3TPP-Al-OH) p-CH

3-TPP-Al-ClsdotH

2O (mg) was

dissolved in a mixture of CHCl3and MeOH in 10 1 ratio

The solution was shaken with 01 AgNO3solution and the

CHCl3layer was separated The process was repeated until

no further precipitates of AgCl separated out Finally thesolution was passed through Na

2SO4and dried to obtain

purple crystals of p-CH3TPP-Al-OH

Anal Calcd for C48H37N4AlO C 8089 H 519 N 786

Found C 8032H 506N 724UV-Vis (inCHCl3)120582max(nm)

4040 4250 5160 5560 5690 IR (KBr)]max 52815 cmminus1

(]Al-N)1H NMR (400MHz CDCl

3) 90 (8H s 120573-pyrrole)

835(d) and 812(d) due toH26 765(d) and 755(d) due toH

35

270 (s 12H p-CH3)

Axially Coordinated p-Methyl-meso-tetraphenylporphyrina-toaluminium(III)-salicylate (p-CH3TPP-Al-X) To a solutionof p-methyl5101520-tetraphenylporphyrin aluminium(III)hydroxide (0020 g 003mmol) in 10mLCHCl

3was added as

a solid 5 equiv of salicylic acid (SA) (15 nmol) The resultingsolution was stirred at room temperature for 12 h at whichtime it was filtered to remove excess acid The solution wasevaporated to yield purple colored complex (92) Similarprocedure was followed with all other substituted salicylicacids (Figure 1) The purified axially ligated aluminium por-phyrin complexes were obtained in yields of 80ndash85

p-CH3TPP-Al-SA Purple solid Anal Calcd for C55H41sdot

N4O3Al C 7932 H 492 N 673 Found C 7912 H 476

N 663 UV-Vis (in CHCl3) 120582max(nm) 417 546 581 nm

ESI-MS (CH3OH) mz calcd for C

55H41N4O3Al 832

found 832 IR (KBr)]max 52821 cmminus1 (]Al-N) 73619 cm

minus1

(]Al-O carboxylic SA) 1H NMR (400MHz CDCl3) 120575

(ppm) 90 (8H s 120573-pyrrole) 838(d) and 816(d) dueto H26 765(d) and 755(d) due to H

35 270 (s 12H

p-CH3) 678 (t H

4

10158401015840) 621 (d H3

10158401015840) 616 (d H6

10158401015840)608 (d H

5

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3)

p-CH3TPP-Al-4-CSA Purple solid Anal Calcd for C55H40sdotN4O3ClAl C 7616 H 461 N 646 Found C 7612H 446

N 623 UV-Vis (in CHCl3) 120582max(nm) 417 547 587 nm ESI-

MS (CH3OH)mz calcd for C

55H40N4O3ClAl 8665 found

8662 IR (KBr)]max 52521 cmminus1 (]Al-N) 73519 cm

minus1 (]Al-Ocarboxylic SA) 1H NMR (400MHz CDCl

3) 120575 (ppm) 900

(8H s120573-pyrrole) 808(d) and 806(d) due toH26 773(d) and

765(d) due toH35 270 (s 12H p-CH

3) 674 (s H

3

10158401015840) 626 (dH5

10158401015840) 644 (d H6

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3)

p-CH3TPP-Al-5-CSA Purple solid Anal Calcd for C55H40sdotN4O3ClAl C 7616 H 461 N 646 Found C 7610 H

456 N 623 UV-Vis (in CHCl3) 120582max(nm) 418 548

587 ESI-MS (CH3OH) mz calcd for C

55H40N4O3ClAl

8665 found 86650 IR (KBr)]max 52321 cmminus1 (]Al-N)74019 cmminus1 (]Al-O carboxylic SA) 1H NMR (400MHzCDCl

3) 120575 (ppm) 900 (8H s 120573-pyrrole) 808(d) and

806(d) due to H26 773(d) and 765(d) due to H

35

270 (s 12H p-CH3) 674 (d H

3

10158401015840) 626 (d H4

10158401015840)644 (s H

6

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3))

p-CH3TPP-Al-4-ASA Purple solid Anal Calcd for C55H42sdotN5O3Al C 7792 H 495 N 826 Found C 7792 H 476

N 823 UV-Vis (in CHCl3) 120582max(nm) 417 548 587 ESI-

MS (CH3OH) mz calcd for C

55H42N5O3Al 847 found

International Journal of Electrochemistry 3

NN

N N

Al

X

Salicylic acid (SA)

CH3

CH3

CH3 X = OOC

HO

H3CC1

C6

C5

C4

C3 C2

H120573

H120573

C120573Cmeta

C120572

C1

C6 C5

C4

C3C2

Y1

Y2

Where X =

4-Chlorosalicylic acid (4-CSA)5-Chlorosalicylic acid (5-CSA)

4-Aminosalicylic acid (4-ASA)5-Aminosalicylic acid (5-ASA)5-Nitrosalicylic acid (5-NSA)

5-Fluoroosalicylic acid (5-FSA)5-Sulfosalicylic acid (5-SSA)

Y1 = H Y2 = H

Y1 = Cl Y2 = HY1 = H Y2 = Cl

Y1 = H Y2 = NH2

Y1 = H Y2 = NO2

Y1 = H Y2 = FY1 = H Y2 = SO3H

Y1 = NH2 Y2 = H

998400998400

998400998400

998400998400

998400998400

998400998400998400998400998400998400

Figure 1

847 IR (KBr)]max 52801 cmminus1 (]Al-N) 73613 cm

minus1 (]Al-Ocarboxylic SA) 1H NMR (400MHz CDCl

3) 120575 (ppm) 900

(8H s120573-pyrrole) 808(d) and 806(d) due toH26 773(d) and

765(d) due toH35 270 (s 12H p-CH

3) 680 (sH

3

10158401015840) 629 (dC5

10158401015840) 647 (d H6

10158401015840) 40 (2H s 5-NH2) 13CNMR (400MHz

CDCl3) 120575 (ppm) 1698(COO) 1499(C

120572) 1416(C

1)

1349(C26) 1322(C

120573) 1276(C

4) 1266(C

35) 1222(Cm) 1594

(C2

10158401015840) 1298(C6

10158401015840) 1125(C1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840)1336(C

4

10158401015840) 215(p-CH3)

p-CH3TPP-Al-5-ASA Purple solid Anal Calcd for C55H42sdotN5O3Al C 7792 H 495 N 826 Found C 7790 H 486

N 813 UV-Vis (in CHCl3) 120582max(nm) 419 551 591 ESI-

MS (CH3OH) mz calcd for C

55H42N5O3Al 847 found

847 IR (KBr)]max 52891 cmminus1 (]Al-N) 73669 cm

minus1 (]Al-Ocarboxylic SA) 1H NMR (400MHz CDCl

3) 120575 (ppm) 900

(8H s 120573-pyrrole) 808(d) and 806(d) due to H26 773(d)

and 765(d) due to H35 270 (s 12H p-CH

3) 674 (d H

3

10158401015840)626 (d H

4

10158401015840) 644 (s H6

10158401015840) 40 (2H s 5-NH2) 13C NMR

(400MHz CDCl3) 120575 (ppm) 1698(COO) 1499(C

120572) 1416

(C1) 1349(C

26) 1322(C

120573) 1276(C

4) 1266(C

35) 1222(Cm)

1594(C2

10158401015840) 1298(C6

10158401015840) 1125(C1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840)1336(C

5

10158401015840) 215(p-CH3)

p-CH3TPP-Al-5-FSA Purple solid Anal Calcd for C55H40sdotN4O3FAl C 7764 H 470 N 659 Found C 7752 H

470 N 653 UV-Vis (in CHCl3) 120582max(nm) 418 548

587 ESI-MS (CH3OH) mz calcd for C

55H40N4O3FAl

849998 found 8490 IR (KBr)]max 52871 cmminus1 (]Al-N)73656 cmminus1 (]Al-O carboxylic SA) 1H NMR (400MHzCDCl

3) 120575 (ppm) 901 (8H s 120573-pyrrole) 851(d) and

814(d) due to H26 797(d) and 776(d) due to H

35

270 (s 12H p-CH3) 662 (d H

3

10158401015840) 679 (d H4

10158401015840)648 (s H

6

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3))

p-CH3TPP-Al-5-NSA Purple solid Anal Calcd for C55H40sdotN5O5Al C 7525 H 456 N 798 Found C 7502 H 436

N 763 UV-vis (CHCl3)max 419 547 584 ESI-MS (CH

3OH)

mz calcd for C55H40N5O5Al 877 found 877 IR (KBr)]max

52801 cmminus1 (]Al-N) 73519 cmminus1 (]Al-O carboxylic SA) 1H

NMR (400MHz CDCl3) 120575 (ppm) 901 (8H s 120573-pyrrole)

851(d) and 814(d) due to H26 797(d) and 776(d) due to

H35 270 (s 12H p-CH

3) 660 (d H

3

10158401015840) 675 (d H4

10158401015840)640 (s H

6

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3)

4 International Journal of Electrochemistry

NH

NH

N HN

NPropionic acid

Refluxing 40mins

N

HN

NH

N+

CHO

CH3

CH3

CH3

CH3

CH3

CH3

CH3

Crude p-CH3TPP

Chromatographedon basic aluminacolumn usingCHCl3 as an eluent

H3C H3C

RecrystallizedfromCHCl3Pet ether

Pure p-CH3TPP

Scheme 1 General synthetic route for the synthesis of p-methyl-meso-tetraphenylporphyrin (p-CH3TPP)

NNH

N

N

N

N

NAlCl N

N

N

NAl

OH

CH3

CH3

CH3

CH3

CH3 CH3

CH3

CH3

CH3

H3C

Pure p-CH3TPP

HN

Anhy AlCl3dryC6H5CN

Reflux in N2 atmH3C H3C

p-CH3TPP-Al-Cl p-CH3TPP-Al-OH

Aq AgNO3

Scheme 2 General synthetic route for the synthesis of p-methyl-meso-tetraphenylporphinatoaluminium(III) chloride (p-CH3TPP-Al-Cl)and p-methyl-meso-tetraphenylporphinatoaluminium(III) hydroxide (p-CH3TPP-Al-OH)

p-CH3TPP-Al-5-SSA Purple solid Anal Calcd forC55H41N4O6SAl C 7236 H 449 N 614 Found C 7212

H 476 N 613 UV-vis (CHCl3)max 417 547 587 ESI-MS

(CH3OH)mz calcd for C

55H41N4O6SAl 912 found 912 IR

(KBr)]max 52021 cmminus1 (]Al-N) 73319 cm

minus1 (]Al-O carboxylicSA) 1H NMR (400MHz CD

3OH) 120575 (ppm) 900 (8H

s 120573-pyrrole) 851(d) and 814(d) due to H26 797(d) and

776(d) due to H35 270 (s 12H p-CH

3) 670 (d H

3

10158401015840)686 (d H

4

10158401015840) 655 (s H6

10158401015840) 13C NMR (400MHz CD3OH)

120575 (ppm) 1698(COO) 1499(C120572) 1416(C

1) 1349(C

26)

1322(C120573) 1276(C

4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840)1298(C

6

10158401015840) 1125(C1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840)215(p-CH

3))

3 Results and Discussion

The general synthetic routes to tetraphenylporphyrin (TPP)their corresponding metallated and axially ligated alu-minium(III) porphyrins are shown in Schemes 1 2 and3 respectively All of these new aluminium(III) porphyrinswere purified by column chromatography with aluminumoxide as adsorbent and were characterized by spectral data(UV-visible spectroscopy IR spectroscopy 1H NMR spec-troscopy mass spectral data and elemental analysis) Thecharacterization data of the new compounds are consistentwith the assigned formula

The structures of free base porphyrin (p-CH3TPP)

[ClAl(III)p-CH3TPP] [OHAl(III)p-CH

3TPP] and (XAl(III)

p-CH3TPP) are characterized by UV-Vis spectroscopy On

comparing theUV-vis data of various complexes with the freebase porphyrin it was noticed that the axially ligated met-alloporphyrins undergo changes in both the wavelength andthe relative intensities of the absorption bands as comparedto free base porphyrins Noticeably free base porphyrinsexhibit fourQ-banded spectrum whereasmetalloporphyrinshaving axially coordinated salicylate anions exhibit two Q-bands because upon metal insertion the symmetry of theporphyrin increases from D

4h to D2h symmetry present in

free-base porphyrins resulting in the appearance of twobanded spectra Moreover the absorption bands of Al(III)complexes having electron donating substituents attachedto the salicylate ring are red shifted whereas those havingelectron withdrawing substituents are blue shifted whichcan be explained on the basis of four orbital approach ofGouterman [19]

Infrared spectral data of above porphyrin compoundsrevealed that the (N-H) stretching and bending frequenciesof free base porphyrin are located at sim3400ndash3320 cmminus1 andsim960 cmminus1 respectively [20] When the aluminium ion isinserted into the porphyrin ring theN-Hvibration frequencyof free base porphyrin disappeared and the characteristic (Al-N) vibration frequency found at sim800 cmminus1 appeared which

International Journal of Electrochemistry 5

N

N

N

NAlXN

N

N

NAlOH

X

Where X= Salicylic acid (SA)

4-Chlorosalicylic acid (4-CSA)

5-Chlorosalicylic acid (5-CSA)

4-Aminosalicylic acid (4-ASA)

5-Aminosalicylic acid (5-ASA)

5-Nitrosalicylic acid (5-NSA)

5-Fluoroosalicylic acid (5-FSA)

5-Sulfosalicylic acid (5-SSA)

H3C

CH3

CH3

CH3

CH3

CH3

CH3

+

Stirred for12h in dryCHCl3

H3C

p-CH3TPP-Al-OH p-CH3TPP-Al-X

Scheme 3 General synthetic route for the synthesis of axially coordinated p-methyl-meso-tetraphenylporphyrinatoaluminium(III)-salicylate(p-CH3TPP-Al-X)

indicated the formation of aluminium(III) porphyrin com-pounds [21]The incorporation of salicylates in p-CH

3TPP-Al

system is further confirmed by the appearance of Al-Ovibrational frequencies at 528 cmminus1 corresponding to theligation of aluminium to oxygen of carboxylic groups ofsalicylate moiety Thus the aluminium atom in the centre ofporphyrin ring coordinate with the salicylate group axially toform five-coordinate complex of Al(III) porphyrin

In 1H NMR data of all the metallated porphyrins inCDCl

3at 298K there was absence of signal related to N-H

protons and shift in other signals indicating the insertion ofaluminium into the porphyrin macrocycle [22] Generallythe presence of Al(III) metal in the porphyrin ring shiftsthe resonances of the porphyrinrsquos protons to down-fieldaccompanied by marginal changes in the pattern In axiallycoordinated Al(III) porphyrin complexes the signals of axialsalicylate fragment protons are shifted to higher field incomparison to the signals of porphyrin protons and also incomparison to proton signals of free salicylic acid derivatives[23] These positions of protons show that axial ligand isunder the influence of 120587-conjugated system of porphyrinmacrocycle [24] This is most probably due to deshieldingeffect resulting from the 120590-donation of electron density upon

bond formation as compared to the shielding effect of theporphyrin

4 Electrochemistry

An electrochemical study was carried out to determinethe formation potential of porphyrins dianion radical Theporphyrins ring system can be reduced or oxidized duringthe electrolysis process Electrochemical studies by cyclicvoltammetry (CV) show that porphyrins can be reducedor oxidized in two one-electron-transfer steps to form 120587-anion or cation radicals [25ndash28] p-CH

3TPP shows two

reduction and twooxidation processesThe reduction processin dichloromethane (CH

2Cl2) occurs at minus103V minus135 V and

the oxidation process takes place at 113 V 137V Theseprocesses should be the porphyrins ring redox processesbecause p-CH

3TPP does not contain other constituents that

can be reduced or oxidized As reported in the literature[29ndash32] factors affecting stability of the ionic forms of themacrocyclic compounds (both cationic and anionic) yieldedby proton transfer are electronic factors (or polarization)structural (or steric) and solvation factors

These factors are particularly significant for weak acidsand bases with rigid reaction centers as porphyrins The

6 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 2 Cyclic voltammogram of p-CH3TPP-Al-Cl

contribution of these factors on the overall stabilization of theionic species depends on the group to which the porphyrinsmacrocycle and the solvent belong

Porphyrins are usually subdivided into classical (withmoderate distortion of the planarity of the macrocycle andwell-known properties) and nonclassical (with nontradi-tional structures and properties) [29] The lightly non-planarity of p-methylmeso-tetraphenylporphyrinsmakes theNH centers more accessible to an attack of a base or adeprotonation

The values obtained for p-CH3TPP-Al-X where X =

substituted salicylate anion are close to those of the corre-sponding monomeric free base and Al(III) porphyrins

p-CH3TPP-Al-Cl undergoes two reversible reductions at

119864

12= minus115 and minus150V in CH

2Cl2and 01M (TBA)PF

6

The absolute potential difference between these two processesis 035V which suggests that both electron additions occurat the porphyrin 120587-ring system to generate an anion radicaland dianion [33 34] A dissociation of theCl-counter ionmayoccur after electroreduction of p-CH

3TPP-Al-Cl

The electrooxidation of p-CH3TPP-Al-Cl is complicated

in CH2Cl2and 01M (TBA)PF

6 there are three reversible

oxidations located at 11986412= 089 121 and 146V The

first involves a two-electron transfer step while the secondand third involve a single electron transfer The apparenttwo-electron reduction peak may be due to equilibriumbetween the original complex and the anion of the supportingelectrolyte to oxidation of Clminus andor to oxidation of oneor more porphyrin decomposition products This was notinvestigated in detail but it should be noted that a 120583-oxodimmer of the type [(p-CH

3TPP)Al]O is known [35] and

such species might conceivably be formed as a side productupon electrooxidation of p-CH

3TPP-Al-Cl

The electrochemistry of p-CH3TPP-Al-X where X =

SA 4-CSA 5-CSA 4-ASA 5-ASA 5-SSA and 5-NSA was

investigated in CH2Cl2containing 01M TBA(PF6) as sup-

porting electrolyte Cyclic voltammograms for the oxidationand reduction of all the complexes under these solution con-ditions are shown in Figures 2 3 4 5 and 6The p-CH

3TPP-

Al-CSA complexes are reduced via two one-electron-transfersteps The absolute half-wave potential difference betweenthe first and the second reductions of a given p-CH

3TPP-

Al-X complex ranges between 035 and 039V in CH2Cl2

All these values are in good agreement with the 042 plusmn005V separation generally observed for 120587-ring centeredreductions [33 36ndash38] The oxidation potentials and overallelectrochemical behavior of a given p-CH

3TPP-Al-X system

depend upon the specific solventsupporting electrolyte sys-tem Under CH

2Cl2solution conditions p-CH

3TPP-Al-4-

CSA complex undergoes two oxidations at minus060 and 057corresponding to Al+Al2+ and Al2+Al3+ The occurrence ofa chemical reaction following the first one-electron oxidationof all p-CH

3TPP-Al-X complexes has been suggested on the

basis of data available from the literature [34] This reactioninvolves a cleavage of the -X group and leads to the formationof ([p-CH

3TPP-Al]+ as shown in the following

p-CH3TPP-Al-X

eminus999445999468 [p-CH

3TPP-Al-X]∙+

997888rarr [(p-CH3TPP)Al]+ + Xminus

(1)

The second oxidation of p-CH3TPP-Al-X varies only

slightly with the changes in the axial ligand and is assignedas involving electrogenerated [p-CH

3TPP-Al]2+ as shown in

the following

[(p-CH3TPP)AlX]∙+ 999445999468 [(p-CH

3TPP)Al]2+ + eminus (2)

[(p-CH3TPP)AlX]∙2+ 999445999468 [(p-CH

3TPP)Al]3+ + eminus (3)

International Journal of Electrochemistry 7

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 3 Cyclic voltammogram of p-CH3TPP-Al-SA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 4 Cyclic voltammogram of p-CH3TPP-Al-4-CSA

5 Conclusion

In this paper we have described the synthesis of pureporphyrins and their subsequent reactions with AnhyAlCl

3

and salicylic acid derivatives so as to get axially ligated Al(III)porphyrins The structures of above porphyrin compoundswere characterized by UV-vis IR 1H NMR 13C NMR andelemental analysis In axially ligated aluminium(III) por-phyrin complexes bands showed slight red shift correspond-ing to the structural distortion in the porphyrin macrocycle

and concomitant electronic coupling of themetalloporphyrinto the salicylate mediated by the aluminium metal ionThe infrared spectra of these compounds showed that sal-icylate groups axially ligated to aluminium(III) porphyrinsto form five-coordinate complexes of Al(III) porphyrins(Figure 1) Additionally the 1H NMR spectral study of thesecompounds showed that signals of axial ligand protonsare shifted to higher field in comparison to the signalsof porphyrin protons The mass spectroscopy provided theinformation regarding the appearance of the molecular ion

8 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 5 Cyclic voltammogram of p-CH3TPP-Al-4-ASA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 6 Cyclic voltammogram of p-CH3TPP-Al-5-FSA

peak (mz) Meanwhile cyclic voltammograms of axially lig-ated aluminium(III) porphyrins complexes exhibit reversibleoxidation and reduction potentials characteristics of theporphyrin

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank University Grants Com-misssion for financially supporting this work sanctioned videorder no Fno 41-2422012(SR) dated 13 Jul 2012

References

[1] M W Hosseini J M Lehn S R Duff K Gu and M P MertesldquoSynthesis of mono- and difunctionalized ditopic [24]N6O2

International Journal of Electrochemistry 9

macrocyclic receptor moleculesrdquo Journal of Organic Chemistryvol 52 no 9 pp 1662ndash1666 1987

[2] J C Byun and C H Han ldquoCr(III)-tetraaza macrocycliccomplexes containing auxiliary ligands (part IV) synthesisand characterization of Cr(III)-acetylacetonato -malonato and-oxalato macrocyclic complexesrdquo Bulletin of the Korean Chemi-cal Society vol 26 p 9 2005

[3] K M Kadish K M Smith and R Gillard EdsThe PorphyrinHand Book Academic Press San Diego Calif USA 2000

[4] A V Markarov O P Charkin and N M Klimenko ldquoTheoret-ical study of 120587-complexes Ti(P)L of titanium porphyrin withligands containingmultiple bondsC-C C-N andN-NrdquoRussianJournal of Inorganic Chemistry vol 55 no 2 pp 229ndash237 2010

[5] U Michelsen and C A Hunter ldquoSelf-assembled porphyrinpolymersrdquo Angewandte Chemie vol 39 no 4 pp 764ndash7672000

[6] R A Haycock C A Hunter D A James U Michelsen andL R Sutton ldquoSelf-assembly of oligomeric porphyrin ringsrdquoOrganic Letters vol 2 no 16 pp 2435ndash2438 2000

[7] A Tsuda T Nakamura S Sakamoto K Yamaguchi and AOsuka ldquoA self-assembled porphyrin box from meso-meso-linked Bis5-p-pyridyl-15-(35-di-octyloxyphenyl)porphyrinatozinc(II)rdquo Angewandte Chemie vol 41 no 15 pp 2817ndash28212002

[8] L J Twyman and A S H King ldquoFormation of A2B2

supramolecular porphyrin co-polymersrdquo Chemical Communi-cations no 8 pp 910ndash911 2002

[9] D Furutsu A Satake and Y Kobuke ldquoA giant supramolecularlight-harvesting antenna-acceptor compositerdquo Inorganic Chem-istry vol 44 no 13 pp 4460ndash4462 2005

[10] R Takahashi and Y Kobuke ldquoHexameric and pentamericslipped-cofacial dimers toward an artificial light-harvestingcomplexrdquo Journal of Organic Chemistry vol 70 no 7 pp 2745ndash2753 2005

[11] J K M Sanders N Bampos Z Clyde-Watson et al ldquoTheaxial coordination chemistry of metalloporphyrinsrdquo in ThePorphyrin Handbook K M Kadish K M Smith and RGuilard Eds vol 3 pp 1ndash48 Academic Press 2000

[12] E Stulz S M Scott Y-F Ng et al ldquoConstruction of multi-porphyrin arrays using ruthenium and rhodium coordinationto phosphinesrdquo Inorganic Chemistry vol 42 no 20 pp 6564ndash6574 2003

[13] H Sugimoto T Kimura and S Inoue ldquoPhotoresponsivemolec-ular switch to control chemical fixation of CO

2rdquo Journal of the

American Chemical Society vol 121 no 10 pp 2325ndash2326 1999[14] K Konishi T Aida and S Inoue ldquoHydrogen transfer from

alcohols to carbonyl compounds catalyzed by aluminum por-phyrins Stereochemical aspectsrdquo Journal of Organic Chemistryvol 55 no 3 pp 816ndash820 1990

[15] Y Hirai T Aida and S Inoue ldquoArtificial photosynthesis of120573-ketocarboxylic acids from carbon dioxide and ketones viaenolate complexes of aluminum porphyrinrdquo Journal of theAmerican Chemical Society vol 111 no 8 pp 3062ndash3063 1989

[16] P P Kumar and B G Maiya ldquoAluminium(III) porphyrin baseddimers and trimers synthesis spectroscopy and photochem-istryrdquoNew Journal of Chemistry vol 27 no 3 pp 619ndash625 2003

[17] G J E Davidson L H Tong P R Raithby and J K MSanders ldquoAluminium(III) porphyrins as supramolecular build-ing blocksrdquo Chemical Communications no 29 pp 3087ndash30892006

[18] A D Alder ldquoA simplified synthesis of meso-tetraphenylpor-phyrinrdquo Journal of theAmericanChemical Society vol 32 p 4761966

[19] M Gouterman ldquoOptical spectra and electronic structure ofporphyrins and related ringsrdquo in The Porphyrins D DolphinEd vol 3 pp 1ndash165 Academic Press NewYork NY USA 1978

[20] E Fagadar-Cosma D Vlascici and G Fagadar-CosmaldquoMonomer and sandwich type dimmer complexes of zr (iv) withmeso-tetraphenylporphyrin Synthesis and comparative ir uv-vis and hplc behaviorrdquo in Proceedings of the 12th Symposiumon Analytical and Environmental Problems pp 25ndash29 SzegedHungary September 2005

[21] M M Amini M Sharbatdaran M Mirzaee and P MirzaeildquoSynthesis structure and luminescence study of a binuclear alu-minium complex a novel structure containing six coordinatedaluminium atoms in two distinct coordination geometriesrdquoPolyhedron vol 25 no 17 pp 3231ndash3237 2006

[22] D Vlascici O Bizerea-Spiridon and E Fagadar-Cosma ldquoMet-alloporphyrin based fluoride-selective Electroderdquo in Proceed-ings of the 13th Symposium on Analytical and EnvironmentalProblems pp 92ndash95 Szeged Hungary September 2006

[23] G J E Davidson L A Lane P R Raithby J E Warren C VRobinson and J K M Sanders ldquoCoordination polymers basedon aluminum(III) porphyrinsrdquo Inorganic Chemistry vol 47 no19 pp 8721ndash8726 2008

[24] Y S Gerasymchuk V Y Chernii L A Tomachynskii MKowalska J Legendziewicz and S Radzki ldquoCorrelation be-tween computer models of structure of 5-sulfosalicylato Zr(IV)phthalocyanine with results obtained by NMR ESI-MS andUV-Vis spectrardquo Optical Materials vol 32 pp 1193ndash1201 2010

[25] K M Kadish D Sazou Y M Liu A Saoiabi M Ferhat andR Guilard ldquoElectrochemical and spectroelectrochemical stud-ies of nickel(II) porphyrins in dimethylformamiderdquo InorganicChemistry vol 27 no 7 pp 1198ndash1204 1988

[26] G Wilkinson Comprehensive Coordination Chemistry Perga-mon Press Oxford UK 1st edition 1987

[27] K M Kadish C A McAdams B C Han and M M Fran-zen ldquoSyntheses and spectroscopic characterization of (T(p-Me2N)F4PP)H2 and (T(p-Me2N)F4PP)M where T(p-Me2N)F4PP = the dianion of meso-tetrakis(oomm-tetrafluoro-p-(dimethylamino)phenyl)porphyrin and M = cobalt(II)copper(II) or nickel(II) Structures of (T(p-Me2N)F4PP)Coand meso-tetrakis(pentafluorophenyl)porphinatocobalt(II)(TF5PP)Cordquo Journal of the American Chemical Society vol 112no 23 pp 8364ndash8368 1990

[28] K M Kadish E van Caemelbecke P Boulas et al ldquoFirstreversible electrogeneration of triply oxidized nickel porphyrinsand porphycenes Formation of nickel(III) 120587 dicationsrdquo Inor-ganic Chemistry vol 32 no 20 pp 4177ndash4178 1993

[29] D B Berezin N I Islamova O V Malkova and V GAndrianov ldquoNH-acid properties of porphyrins in acetonitrilerdquoRussian Journal of General Chemistry vol 76 no 6 pp 997ndash1002 2006

[30] D B Berezin A S Semeikin andM B Berezin ldquoThe influenceof the macroring structure on the solvation of nonplanarporphyrins in organic solventsrdquo Russian Journal of PhysicalChemistry A vol 83 no 8 pp 1315ndash1320 2009

[31] K M Kadish and E van Caemelbecke ldquoElectrochemistry ofporphyrins and related macrocyclesrdquo Journal of Solid StateElectrochemistry vol 7 no 5 pp 254ndash258 2003

10 International Journal of Electrochemistry

[32] E N Aguilera L M B Jerez and J L Alonso ldquoElectrochemicalmetallation with Ni(II) and Al(III) of 5101520-tetrakis(p-hydroxyphenyl)porphyrin effect of ultrasoundrdquo ElectrochimicaActa vol 98 pp 82ndash87 2013

[33] K M Kadish ldquoThe electrochemistry of metalloporphyrins innonaqueous mediardquo Progress in Inorganic Chemistry vol 34 p435 1986

[34] R Guilard A Zrineh A Tabard et al ldquoSynthesis andspectroscopic and electrochemical characterization of ionicand 120590-bonded aluminum(III) porphyrins Crystal structure ofmethyl(237812131718-octaethylporphinato)aluminum(III)(OEP)Al(CH

3)rdquo Inorganic Chemistry vol 29 no 22 pp

4476ndash4482 1990[35] A Harriman and A D Osborne ldquoLuminescence of por-

phrins and metalloporphyrins part 6mdashLuminescence of alu-minium(III) tetraphenylporphine and its 120583-oxo dimerrdquo Journalof the Chemical Society vol 79 no 3 pp 765ndash772 1983

[36] R Guilard and K M Kadish ldquoSome aspects of organometallicchemistry in metalloporphyrin chemistry synthesis chemicalreactivity and electrochemical behavior of porphyrins withmetal-carbon bondsrdquo Chemical Reviews vol 88 no 7 pp 1121ndash1146 1988

[37] R Guilard C Lecomte and K M Kadish ldquoSynthesis electro-chemistry and structural properties of porphyrins with metal-carbon single bonds and metal-metal bondsrdquo Structure andBonding vol 64 pp 205ndash268 1987

[38] J-H Fuhrhop K M Kadish and D G Davis ldquoThe redoxbehavior of metallo octaethylporphyrinsrdquo Journal of the Ameri-can Chemical Society vol 95 no 16 pp 5140ndash5147 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 2: 409375

2 International Journal of Electrochemistry

were recorded on a Bruker Avance III (400MHz) in CDCl3

and CD3OH using tetramethylsilane as an internal standard

Cyclic voltammetry measurements were carried out withan Autolab Computer-controlled electrochemical measure-ment system equipped with a potentiostat a three elec-trode system comprised a gold electrode a Pt wire and an(AgAgClKCl) wire as working counter and reference elec-trode respectively A 01M solution of n-tetrabutylammo-nium hexafluorophosphate (TBA)PF

6in freshly distilled

CH2Cl2was used as a supporting electrolyte during the

electrochemical experiments The scan rate was 20mVs andthe range was minus2ndash2V The concentration of the porphyrinswas 10minus6M The solutions were purged with oxygen-freenitrogen gas prior to measurements and all measurementswere made at room temperature (300K)

p-Methyl-meso-tetraphenylporphyrin (p-CH3TPP) The metalfree-base H

2TPP was synthesized by the conventional

method of condensation of benzaldehyde with pyrrole bymodified Adler method [18] The purified porphyrin wasobtained ingt20 yieldsUV-Vis spectra120582max (nm) inCHCl

3

420 517 5525 592 649

p-Methyl-meso-tetraphenylporphinatoaluminium(III) Chloride(p-CH3TPP-Al-Cl) A 01 g of H

2TPP was refluxed with

01 g of anhydrous AlCl3in 16mL of dry benzonitrile for

1ndash3 h The reaction course was monitored by absorptionspectra of the reaction mixture The refluxing was stoppedwhen the absorption bands of H

2TPP disappeared The

reaction mixture was filtered to remove the presence ofexcess AlCl

3 To the filtrate excess hexane was added for

complete precipitation of the complex The precipitates werewashed with hexane and dissolved in methanol A 3N HClsolution was added to precipitate the complex which wasthen recrystallized from the solution of acetone and hexaneReddish purple crystals thus obtained were of p-CH

3TPP-

Al-Clsdot4H2OMore reddish crystals of p-CH

3-TPP-Al-ClsdotH

2O

were obtained by drying p-CH3-TPP-Al-Clsdot4H

2O at 110ndash

120∘C for 2 hours Anal Calcd for C48H36ClN4Al C 7885

H 492 N 766 Found C 7832 H 466 N 724 UV-Vis(in CHCl

3) 120582max(nm) 4180 4660 5100sh 5490 5920 IR

(KBr)]max 52815 cmminus1 (]Al-N)

1HNMR (400MHz CDCl3)

90 (8H s 120573-pyrrole) 838(d) and 816(d) due to H26 765(d)

and 755(d) due to H35 270 (s 12H p-CH

3)

p-Methyl-meso-tetraphenylporphinatoaluminium(III) Hydrox-ide(p-CH3TPP-Al-OH) p-CH

3-TPP-Al-ClsdotH

2O (mg) was

dissolved in a mixture of CHCl3and MeOH in 10 1 ratio

The solution was shaken with 01 AgNO3solution and the

CHCl3layer was separated The process was repeated until

no further precipitates of AgCl separated out Finally thesolution was passed through Na

2SO4and dried to obtain

purple crystals of p-CH3TPP-Al-OH

Anal Calcd for C48H37N4AlO C 8089 H 519 N 786

Found C 8032H 506N 724UV-Vis (inCHCl3)120582max(nm)

4040 4250 5160 5560 5690 IR (KBr)]max 52815 cmminus1

(]Al-N)1H NMR (400MHz CDCl

3) 90 (8H s 120573-pyrrole)

835(d) and 812(d) due toH26 765(d) and 755(d) due toH

35

270 (s 12H p-CH3)

Axially Coordinated p-Methyl-meso-tetraphenylporphyrina-toaluminium(III)-salicylate (p-CH3TPP-Al-X) To a solutionof p-methyl5101520-tetraphenylporphyrin aluminium(III)hydroxide (0020 g 003mmol) in 10mLCHCl

3was added as

a solid 5 equiv of salicylic acid (SA) (15 nmol) The resultingsolution was stirred at room temperature for 12 h at whichtime it was filtered to remove excess acid The solution wasevaporated to yield purple colored complex (92) Similarprocedure was followed with all other substituted salicylicacids (Figure 1) The purified axially ligated aluminium por-phyrin complexes were obtained in yields of 80ndash85

p-CH3TPP-Al-SA Purple solid Anal Calcd for C55H41sdot

N4O3Al C 7932 H 492 N 673 Found C 7912 H 476

N 663 UV-Vis (in CHCl3) 120582max(nm) 417 546 581 nm

ESI-MS (CH3OH) mz calcd for C

55H41N4O3Al 832

found 832 IR (KBr)]max 52821 cmminus1 (]Al-N) 73619 cm

minus1

(]Al-O carboxylic SA) 1H NMR (400MHz CDCl3) 120575

(ppm) 90 (8H s 120573-pyrrole) 838(d) and 816(d) dueto H26 765(d) and 755(d) due to H

35 270 (s 12H

p-CH3) 678 (t H

4

10158401015840) 621 (d H3

10158401015840) 616 (d H6

10158401015840)608 (d H

5

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3)

p-CH3TPP-Al-4-CSA Purple solid Anal Calcd for C55H40sdotN4O3ClAl C 7616 H 461 N 646 Found C 7612H 446

N 623 UV-Vis (in CHCl3) 120582max(nm) 417 547 587 nm ESI-

MS (CH3OH)mz calcd for C

55H40N4O3ClAl 8665 found

8662 IR (KBr)]max 52521 cmminus1 (]Al-N) 73519 cm

minus1 (]Al-Ocarboxylic SA) 1H NMR (400MHz CDCl

3) 120575 (ppm) 900

(8H s120573-pyrrole) 808(d) and 806(d) due toH26 773(d) and

765(d) due toH35 270 (s 12H p-CH

3) 674 (s H

3

10158401015840) 626 (dH5

10158401015840) 644 (d H6

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3)

p-CH3TPP-Al-5-CSA Purple solid Anal Calcd for C55H40sdotN4O3ClAl C 7616 H 461 N 646 Found C 7610 H

456 N 623 UV-Vis (in CHCl3) 120582max(nm) 418 548

587 ESI-MS (CH3OH) mz calcd for C

55H40N4O3ClAl

8665 found 86650 IR (KBr)]max 52321 cmminus1 (]Al-N)74019 cmminus1 (]Al-O carboxylic SA) 1H NMR (400MHzCDCl

3) 120575 (ppm) 900 (8H s 120573-pyrrole) 808(d) and

806(d) due to H26 773(d) and 765(d) due to H

35

270 (s 12H p-CH3) 674 (d H

3

10158401015840) 626 (d H4

10158401015840)644 (s H

6

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3))

p-CH3TPP-Al-4-ASA Purple solid Anal Calcd for C55H42sdotN5O3Al C 7792 H 495 N 826 Found C 7792 H 476

N 823 UV-Vis (in CHCl3) 120582max(nm) 417 548 587 ESI-

MS (CH3OH) mz calcd for C

55H42N5O3Al 847 found

International Journal of Electrochemistry 3

NN

N N

Al

X

Salicylic acid (SA)

CH3

CH3

CH3 X = OOC

HO

H3CC1

C6

C5

C4

C3 C2

H120573

H120573

C120573Cmeta

C120572

C1

C6 C5

C4

C3C2

Y1

Y2

Where X =

4-Chlorosalicylic acid (4-CSA)5-Chlorosalicylic acid (5-CSA)

4-Aminosalicylic acid (4-ASA)5-Aminosalicylic acid (5-ASA)5-Nitrosalicylic acid (5-NSA)

5-Fluoroosalicylic acid (5-FSA)5-Sulfosalicylic acid (5-SSA)

Y1 = H Y2 = H

Y1 = Cl Y2 = HY1 = H Y2 = Cl

Y1 = H Y2 = NH2

Y1 = H Y2 = NO2

Y1 = H Y2 = FY1 = H Y2 = SO3H

Y1 = NH2 Y2 = H

998400998400

998400998400

998400998400

998400998400

998400998400998400998400998400998400

Figure 1

847 IR (KBr)]max 52801 cmminus1 (]Al-N) 73613 cm

minus1 (]Al-Ocarboxylic SA) 1H NMR (400MHz CDCl

3) 120575 (ppm) 900

(8H s120573-pyrrole) 808(d) and 806(d) due toH26 773(d) and

765(d) due toH35 270 (s 12H p-CH

3) 680 (sH

3

10158401015840) 629 (dC5

10158401015840) 647 (d H6

10158401015840) 40 (2H s 5-NH2) 13CNMR (400MHz

CDCl3) 120575 (ppm) 1698(COO) 1499(C

120572) 1416(C

1)

1349(C26) 1322(C

120573) 1276(C

4) 1266(C

35) 1222(Cm) 1594

(C2

10158401015840) 1298(C6

10158401015840) 1125(C1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840)1336(C

4

10158401015840) 215(p-CH3)

p-CH3TPP-Al-5-ASA Purple solid Anal Calcd for C55H42sdotN5O3Al C 7792 H 495 N 826 Found C 7790 H 486

N 813 UV-Vis (in CHCl3) 120582max(nm) 419 551 591 ESI-

MS (CH3OH) mz calcd for C

55H42N5O3Al 847 found

847 IR (KBr)]max 52891 cmminus1 (]Al-N) 73669 cm

minus1 (]Al-Ocarboxylic SA) 1H NMR (400MHz CDCl

3) 120575 (ppm) 900

(8H s 120573-pyrrole) 808(d) and 806(d) due to H26 773(d)

and 765(d) due to H35 270 (s 12H p-CH

3) 674 (d H

3

10158401015840)626 (d H

4

10158401015840) 644 (s H6

10158401015840) 40 (2H s 5-NH2) 13C NMR

(400MHz CDCl3) 120575 (ppm) 1698(COO) 1499(C

120572) 1416

(C1) 1349(C

26) 1322(C

120573) 1276(C

4) 1266(C

35) 1222(Cm)

1594(C2

10158401015840) 1298(C6

10158401015840) 1125(C1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840)1336(C

5

10158401015840) 215(p-CH3)

p-CH3TPP-Al-5-FSA Purple solid Anal Calcd for C55H40sdotN4O3FAl C 7764 H 470 N 659 Found C 7752 H

470 N 653 UV-Vis (in CHCl3) 120582max(nm) 418 548

587 ESI-MS (CH3OH) mz calcd for C

55H40N4O3FAl

849998 found 8490 IR (KBr)]max 52871 cmminus1 (]Al-N)73656 cmminus1 (]Al-O carboxylic SA) 1H NMR (400MHzCDCl

3) 120575 (ppm) 901 (8H s 120573-pyrrole) 851(d) and

814(d) due to H26 797(d) and 776(d) due to H

35

270 (s 12H p-CH3) 662 (d H

3

10158401015840) 679 (d H4

10158401015840)648 (s H

6

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3))

p-CH3TPP-Al-5-NSA Purple solid Anal Calcd for C55H40sdotN5O5Al C 7525 H 456 N 798 Found C 7502 H 436

N 763 UV-vis (CHCl3)max 419 547 584 ESI-MS (CH

3OH)

mz calcd for C55H40N5O5Al 877 found 877 IR (KBr)]max

52801 cmminus1 (]Al-N) 73519 cmminus1 (]Al-O carboxylic SA) 1H

NMR (400MHz CDCl3) 120575 (ppm) 901 (8H s 120573-pyrrole)

851(d) and 814(d) due to H26 797(d) and 776(d) due to

H35 270 (s 12H p-CH

3) 660 (d H

3

10158401015840) 675 (d H4

10158401015840)640 (s H

6

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3)

4 International Journal of Electrochemistry

NH

NH

N HN

NPropionic acid

Refluxing 40mins

N

HN

NH

N+

CHO

CH3

CH3

CH3

CH3

CH3

CH3

CH3

Crude p-CH3TPP

Chromatographedon basic aluminacolumn usingCHCl3 as an eluent

H3C H3C

RecrystallizedfromCHCl3Pet ether

Pure p-CH3TPP

Scheme 1 General synthetic route for the synthesis of p-methyl-meso-tetraphenylporphyrin (p-CH3TPP)

NNH

N

N

N

N

NAlCl N

N

N

NAl

OH

CH3

CH3

CH3

CH3

CH3 CH3

CH3

CH3

CH3

H3C

Pure p-CH3TPP

HN

Anhy AlCl3dryC6H5CN

Reflux in N2 atmH3C H3C

p-CH3TPP-Al-Cl p-CH3TPP-Al-OH

Aq AgNO3

Scheme 2 General synthetic route for the synthesis of p-methyl-meso-tetraphenylporphinatoaluminium(III) chloride (p-CH3TPP-Al-Cl)and p-methyl-meso-tetraphenylporphinatoaluminium(III) hydroxide (p-CH3TPP-Al-OH)

p-CH3TPP-Al-5-SSA Purple solid Anal Calcd forC55H41N4O6SAl C 7236 H 449 N 614 Found C 7212

H 476 N 613 UV-vis (CHCl3)max 417 547 587 ESI-MS

(CH3OH)mz calcd for C

55H41N4O6SAl 912 found 912 IR

(KBr)]max 52021 cmminus1 (]Al-N) 73319 cm

minus1 (]Al-O carboxylicSA) 1H NMR (400MHz CD

3OH) 120575 (ppm) 900 (8H

s 120573-pyrrole) 851(d) and 814(d) due to H26 797(d) and

776(d) due to H35 270 (s 12H p-CH

3) 670 (d H

3

10158401015840)686 (d H

4

10158401015840) 655 (s H6

10158401015840) 13C NMR (400MHz CD3OH)

120575 (ppm) 1698(COO) 1499(C120572) 1416(C

1) 1349(C

26)

1322(C120573) 1276(C

4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840)1298(C

6

10158401015840) 1125(C1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840)215(p-CH

3))

3 Results and Discussion

The general synthetic routes to tetraphenylporphyrin (TPP)their corresponding metallated and axially ligated alu-minium(III) porphyrins are shown in Schemes 1 2 and3 respectively All of these new aluminium(III) porphyrinswere purified by column chromatography with aluminumoxide as adsorbent and were characterized by spectral data(UV-visible spectroscopy IR spectroscopy 1H NMR spec-troscopy mass spectral data and elemental analysis) Thecharacterization data of the new compounds are consistentwith the assigned formula

The structures of free base porphyrin (p-CH3TPP)

[ClAl(III)p-CH3TPP] [OHAl(III)p-CH

3TPP] and (XAl(III)

p-CH3TPP) are characterized by UV-Vis spectroscopy On

comparing theUV-vis data of various complexes with the freebase porphyrin it was noticed that the axially ligated met-alloporphyrins undergo changes in both the wavelength andthe relative intensities of the absorption bands as comparedto free base porphyrins Noticeably free base porphyrinsexhibit fourQ-banded spectrum whereasmetalloporphyrinshaving axially coordinated salicylate anions exhibit two Q-bands because upon metal insertion the symmetry of theporphyrin increases from D

4h to D2h symmetry present in

free-base porphyrins resulting in the appearance of twobanded spectra Moreover the absorption bands of Al(III)complexes having electron donating substituents attachedto the salicylate ring are red shifted whereas those havingelectron withdrawing substituents are blue shifted whichcan be explained on the basis of four orbital approach ofGouterman [19]

Infrared spectral data of above porphyrin compoundsrevealed that the (N-H) stretching and bending frequenciesof free base porphyrin are located at sim3400ndash3320 cmminus1 andsim960 cmminus1 respectively [20] When the aluminium ion isinserted into the porphyrin ring theN-Hvibration frequencyof free base porphyrin disappeared and the characteristic (Al-N) vibration frequency found at sim800 cmminus1 appeared which

International Journal of Electrochemistry 5

N

N

N

NAlXN

N

N

NAlOH

X

Where X= Salicylic acid (SA)

4-Chlorosalicylic acid (4-CSA)

5-Chlorosalicylic acid (5-CSA)

4-Aminosalicylic acid (4-ASA)

5-Aminosalicylic acid (5-ASA)

5-Nitrosalicylic acid (5-NSA)

5-Fluoroosalicylic acid (5-FSA)

5-Sulfosalicylic acid (5-SSA)

H3C

CH3

CH3

CH3

CH3

CH3

CH3

+

Stirred for12h in dryCHCl3

H3C

p-CH3TPP-Al-OH p-CH3TPP-Al-X

Scheme 3 General synthetic route for the synthesis of axially coordinated p-methyl-meso-tetraphenylporphyrinatoaluminium(III)-salicylate(p-CH3TPP-Al-X)

indicated the formation of aluminium(III) porphyrin com-pounds [21]The incorporation of salicylates in p-CH

3TPP-Al

system is further confirmed by the appearance of Al-Ovibrational frequencies at 528 cmminus1 corresponding to theligation of aluminium to oxygen of carboxylic groups ofsalicylate moiety Thus the aluminium atom in the centre ofporphyrin ring coordinate with the salicylate group axially toform five-coordinate complex of Al(III) porphyrin

In 1H NMR data of all the metallated porphyrins inCDCl

3at 298K there was absence of signal related to N-H

protons and shift in other signals indicating the insertion ofaluminium into the porphyrin macrocycle [22] Generallythe presence of Al(III) metal in the porphyrin ring shiftsthe resonances of the porphyrinrsquos protons to down-fieldaccompanied by marginal changes in the pattern In axiallycoordinated Al(III) porphyrin complexes the signals of axialsalicylate fragment protons are shifted to higher field incomparison to the signals of porphyrin protons and also incomparison to proton signals of free salicylic acid derivatives[23] These positions of protons show that axial ligand isunder the influence of 120587-conjugated system of porphyrinmacrocycle [24] This is most probably due to deshieldingeffect resulting from the 120590-donation of electron density upon

bond formation as compared to the shielding effect of theporphyrin

4 Electrochemistry

An electrochemical study was carried out to determinethe formation potential of porphyrins dianion radical Theporphyrins ring system can be reduced or oxidized duringthe electrolysis process Electrochemical studies by cyclicvoltammetry (CV) show that porphyrins can be reducedor oxidized in two one-electron-transfer steps to form 120587-anion or cation radicals [25ndash28] p-CH

3TPP shows two

reduction and twooxidation processesThe reduction processin dichloromethane (CH

2Cl2) occurs at minus103V minus135 V and

the oxidation process takes place at 113 V 137V Theseprocesses should be the porphyrins ring redox processesbecause p-CH

3TPP does not contain other constituents that

can be reduced or oxidized As reported in the literature[29ndash32] factors affecting stability of the ionic forms of themacrocyclic compounds (both cationic and anionic) yieldedby proton transfer are electronic factors (or polarization)structural (or steric) and solvation factors

These factors are particularly significant for weak acidsand bases with rigid reaction centers as porphyrins The

6 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 2 Cyclic voltammogram of p-CH3TPP-Al-Cl

contribution of these factors on the overall stabilization of theionic species depends on the group to which the porphyrinsmacrocycle and the solvent belong

Porphyrins are usually subdivided into classical (withmoderate distortion of the planarity of the macrocycle andwell-known properties) and nonclassical (with nontradi-tional structures and properties) [29] The lightly non-planarity of p-methylmeso-tetraphenylporphyrinsmakes theNH centers more accessible to an attack of a base or adeprotonation

The values obtained for p-CH3TPP-Al-X where X =

substituted salicylate anion are close to those of the corre-sponding monomeric free base and Al(III) porphyrins

p-CH3TPP-Al-Cl undergoes two reversible reductions at

119864

12= minus115 and minus150V in CH

2Cl2and 01M (TBA)PF

6

The absolute potential difference between these two processesis 035V which suggests that both electron additions occurat the porphyrin 120587-ring system to generate an anion radicaland dianion [33 34] A dissociation of theCl-counter ionmayoccur after electroreduction of p-CH

3TPP-Al-Cl

The electrooxidation of p-CH3TPP-Al-Cl is complicated

in CH2Cl2and 01M (TBA)PF

6 there are three reversible

oxidations located at 11986412= 089 121 and 146V The

first involves a two-electron transfer step while the secondand third involve a single electron transfer The apparenttwo-electron reduction peak may be due to equilibriumbetween the original complex and the anion of the supportingelectrolyte to oxidation of Clminus andor to oxidation of oneor more porphyrin decomposition products This was notinvestigated in detail but it should be noted that a 120583-oxodimmer of the type [(p-CH

3TPP)Al]O is known [35] and

such species might conceivably be formed as a side productupon electrooxidation of p-CH

3TPP-Al-Cl

The electrochemistry of p-CH3TPP-Al-X where X =

SA 4-CSA 5-CSA 4-ASA 5-ASA 5-SSA and 5-NSA was

investigated in CH2Cl2containing 01M TBA(PF6) as sup-

porting electrolyte Cyclic voltammograms for the oxidationand reduction of all the complexes under these solution con-ditions are shown in Figures 2 3 4 5 and 6The p-CH

3TPP-

Al-CSA complexes are reduced via two one-electron-transfersteps The absolute half-wave potential difference betweenthe first and the second reductions of a given p-CH

3TPP-

Al-X complex ranges between 035 and 039V in CH2Cl2

All these values are in good agreement with the 042 plusmn005V separation generally observed for 120587-ring centeredreductions [33 36ndash38] The oxidation potentials and overallelectrochemical behavior of a given p-CH

3TPP-Al-X system

depend upon the specific solventsupporting electrolyte sys-tem Under CH

2Cl2solution conditions p-CH

3TPP-Al-4-

CSA complex undergoes two oxidations at minus060 and 057corresponding to Al+Al2+ and Al2+Al3+ The occurrence ofa chemical reaction following the first one-electron oxidationof all p-CH

3TPP-Al-X complexes has been suggested on the

basis of data available from the literature [34] This reactioninvolves a cleavage of the -X group and leads to the formationof ([p-CH

3TPP-Al]+ as shown in the following

p-CH3TPP-Al-X

eminus999445999468 [p-CH

3TPP-Al-X]∙+

997888rarr [(p-CH3TPP)Al]+ + Xminus

(1)

The second oxidation of p-CH3TPP-Al-X varies only

slightly with the changes in the axial ligand and is assignedas involving electrogenerated [p-CH

3TPP-Al]2+ as shown in

the following

[(p-CH3TPP)AlX]∙+ 999445999468 [(p-CH

3TPP)Al]2+ + eminus (2)

[(p-CH3TPP)AlX]∙2+ 999445999468 [(p-CH

3TPP)Al]3+ + eminus (3)

International Journal of Electrochemistry 7

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 3 Cyclic voltammogram of p-CH3TPP-Al-SA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 4 Cyclic voltammogram of p-CH3TPP-Al-4-CSA

5 Conclusion

In this paper we have described the synthesis of pureporphyrins and their subsequent reactions with AnhyAlCl

3

and salicylic acid derivatives so as to get axially ligated Al(III)porphyrins The structures of above porphyrin compoundswere characterized by UV-vis IR 1H NMR 13C NMR andelemental analysis In axially ligated aluminium(III) por-phyrin complexes bands showed slight red shift correspond-ing to the structural distortion in the porphyrin macrocycle

and concomitant electronic coupling of themetalloporphyrinto the salicylate mediated by the aluminium metal ionThe infrared spectra of these compounds showed that sal-icylate groups axially ligated to aluminium(III) porphyrinsto form five-coordinate complexes of Al(III) porphyrins(Figure 1) Additionally the 1H NMR spectral study of thesecompounds showed that signals of axial ligand protonsare shifted to higher field in comparison to the signalsof porphyrin protons The mass spectroscopy provided theinformation regarding the appearance of the molecular ion

8 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 5 Cyclic voltammogram of p-CH3TPP-Al-4-ASA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 6 Cyclic voltammogram of p-CH3TPP-Al-5-FSA

peak (mz) Meanwhile cyclic voltammograms of axially lig-ated aluminium(III) porphyrins complexes exhibit reversibleoxidation and reduction potentials characteristics of theporphyrin

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank University Grants Com-misssion for financially supporting this work sanctioned videorder no Fno 41-2422012(SR) dated 13 Jul 2012

References

[1] M W Hosseini J M Lehn S R Duff K Gu and M P MertesldquoSynthesis of mono- and difunctionalized ditopic [24]N6O2

International Journal of Electrochemistry 9

macrocyclic receptor moleculesrdquo Journal of Organic Chemistryvol 52 no 9 pp 1662ndash1666 1987

[2] J C Byun and C H Han ldquoCr(III)-tetraaza macrocycliccomplexes containing auxiliary ligands (part IV) synthesisand characterization of Cr(III)-acetylacetonato -malonato and-oxalato macrocyclic complexesrdquo Bulletin of the Korean Chemi-cal Society vol 26 p 9 2005

[3] K M Kadish K M Smith and R Gillard EdsThe PorphyrinHand Book Academic Press San Diego Calif USA 2000

[4] A V Markarov O P Charkin and N M Klimenko ldquoTheoret-ical study of 120587-complexes Ti(P)L of titanium porphyrin withligands containingmultiple bondsC-C C-N andN-NrdquoRussianJournal of Inorganic Chemistry vol 55 no 2 pp 229ndash237 2010

[5] U Michelsen and C A Hunter ldquoSelf-assembled porphyrinpolymersrdquo Angewandte Chemie vol 39 no 4 pp 764ndash7672000

[6] R A Haycock C A Hunter D A James U Michelsen andL R Sutton ldquoSelf-assembly of oligomeric porphyrin ringsrdquoOrganic Letters vol 2 no 16 pp 2435ndash2438 2000

[7] A Tsuda T Nakamura S Sakamoto K Yamaguchi and AOsuka ldquoA self-assembled porphyrin box from meso-meso-linked Bis5-p-pyridyl-15-(35-di-octyloxyphenyl)porphyrinatozinc(II)rdquo Angewandte Chemie vol 41 no 15 pp 2817ndash28212002

[8] L J Twyman and A S H King ldquoFormation of A2B2

supramolecular porphyrin co-polymersrdquo Chemical Communi-cations no 8 pp 910ndash911 2002

[9] D Furutsu A Satake and Y Kobuke ldquoA giant supramolecularlight-harvesting antenna-acceptor compositerdquo Inorganic Chem-istry vol 44 no 13 pp 4460ndash4462 2005

[10] R Takahashi and Y Kobuke ldquoHexameric and pentamericslipped-cofacial dimers toward an artificial light-harvestingcomplexrdquo Journal of Organic Chemistry vol 70 no 7 pp 2745ndash2753 2005

[11] J K M Sanders N Bampos Z Clyde-Watson et al ldquoTheaxial coordination chemistry of metalloporphyrinsrdquo in ThePorphyrin Handbook K M Kadish K M Smith and RGuilard Eds vol 3 pp 1ndash48 Academic Press 2000

[12] E Stulz S M Scott Y-F Ng et al ldquoConstruction of multi-porphyrin arrays using ruthenium and rhodium coordinationto phosphinesrdquo Inorganic Chemistry vol 42 no 20 pp 6564ndash6574 2003

[13] H Sugimoto T Kimura and S Inoue ldquoPhotoresponsivemolec-ular switch to control chemical fixation of CO

2rdquo Journal of the

American Chemical Society vol 121 no 10 pp 2325ndash2326 1999[14] K Konishi T Aida and S Inoue ldquoHydrogen transfer from

alcohols to carbonyl compounds catalyzed by aluminum por-phyrins Stereochemical aspectsrdquo Journal of Organic Chemistryvol 55 no 3 pp 816ndash820 1990

[15] Y Hirai T Aida and S Inoue ldquoArtificial photosynthesis of120573-ketocarboxylic acids from carbon dioxide and ketones viaenolate complexes of aluminum porphyrinrdquo Journal of theAmerican Chemical Society vol 111 no 8 pp 3062ndash3063 1989

[16] P P Kumar and B G Maiya ldquoAluminium(III) porphyrin baseddimers and trimers synthesis spectroscopy and photochem-istryrdquoNew Journal of Chemistry vol 27 no 3 pp 619ndash625 2003

[17] G J E Davidson L H Tong P R Raithby and J K MSanders ldquoAluminium(III) porphyrins as supramolecular build-ing blocksrdquo Chemical Communications no 29 pp 3087ndash30892006

[18] A D Alder ldquoA simplified synthesis of meso-tetraphenylpor-phyrinrdquo Journal of theAmericanChemical Society vol 32 p 4761966

[19] M Gouterman ldquoOptical spectra and electronic structure ofporphyrins and related ringsrdquo in The Porphyrins D DolphinEd vol 3 pp 1ndash165 Academic Press NewYork NY USA 1978

[20] E Fagadar-Cosma D Vlascici and G Fagadar-CosmaldquoMonomer and sandwich type dimmer complexes of zr (iv) withmeso-tetraphenylporphyrin Synthesis and comparative ir uv-vis and hplc behaviorrdquo in Proceedings of the 12th Symposiumon Analytical and Environmental Problems pp 25ndash29 SzegedHungary September 2005

[21] M M Amini M Sharbatdaran M Mirzaee and P MirzaeildquoSynthesis structure and luminescence study of a binuclear alu-minium complex a novel structure containing six coordinatedaluminium atoms in two distinct coordination geometriesrdquoPolyhedron vol 25 no 17 pp 3231ndash3237 2006

[22] D Vlascici O Bizerea-Spiridon and E Fagadar-Cosma ldquoMet-alloporphyrin based fluoride-selective Electroderdquo in Proceed-ings of the 13th Symposium on Analytical and EnvironmentalProblems pp 92ndash95 Szeged Hungary September 2006

[23] G J E Davidson L A Lane P R Raithby J E Warren C VRobinson and J K M Sanders ldquoCoordination polymers basedon aluminum(III) porphyrinsrdquo Inorganic Chemistry vol 47 no19 pp 8721ndash8726 2008

[24] Y S Gerasymchuk V Y Chernii L A Tomachynskii MKowalska J Legendziewicz and S Radzki ldquoCorrelation be-tween computer models of structure of 5-sulfosalicylato Zr(IV)phthalocyanine with results obtained by NMR ESI-MS andUV-Vis spectrardquo Optical Materials vol 32 pp 1193ndash1201 2010

[25] K M Kadish D Sazou Y M Liu A Saoiabi M Ferhat andR Guilard ldquoElectrochemical and spectroelectrochemical stud-ies of nickel(II) porphyrins in dimethylformamiderdquo InorganicChemistry vol 27 no 7 pp 1198ndash1204 1988

[26] G Wilkinson Comprehensive Coordination Chemistry Perga-mon Press Oxford UK 1st edition 1987

[27] K M Kadish C A McAdams B C Han and M M Fran-zen ldquoSyntheses and spectroscopic characterization of (T(p-Me2N)F4PP)H2 and (T(p-Me2N)F4PP)M where T(p-Me2N)F4PP = the dianion of meso-tetrakis(oomm-tetrafluoro-p-(dimethylamino)phenyl)porphyrin and M = cobalt(II)copper(II) or nickel(II) Structures of (T(p-Me2N)F4PP)Coand meso-tetrakis(pentafluorophenyl)porphinatocobalt(II)(TF5PP)Cordquo Journal of the American Chemical Society vol 112no 23 pp 8364ndash8368 1990

[28] K M Kadish E van Caemelbecke P Boulas et al ldquoFirstreversible electrogeneration of triply oxidized nickel porphyrinsand porphycenes Formation of nickel(III) 120587 dicationsrdquo Inor-ganic Chemistry vol 32 no 20 pp 4177ndash4178 1993

[29] D B Berezin N I Islamova O V Malkova and V GAndrianov ldquoNH-acid properties of porphyrins in acetonitrilerdquoRussian Journal of General Chemistry vol 76 no 6 pp 997ndash1002 2006

[30] D B Berezin A S Semeikin andM B Berezin ldquoThe influenceof the macroring structure on the solvation of nonplanarporphyrins in organic solventsrdquo Russian Journal of PhysicalChemistry A vol 83 no 8 pp 1315ndash1320 2009

[31] K M Kadish and E van Caemelbecke ldquoElectrochemistry ofporphyrins and related macrocyclesrdquo Journal of Solid StateElectrochemistry vol 7 no 5 pp 254ndash258 2003

10 International Journal of Electrochemistry

[32] E N Aguilera L M B Jerez and J L Alonso ldquoElectrochemicalmetallation with Ni(II) and Al(III) of 5101520-tetrakis(p-hydroxyphenyl)porphyrin effect of ultrasoundrdquo ElectrochimicaActa vol 98 pp 82ndash87 2013

[33] K M Kadish ldquoThe electrochemistry of metalloporphyrins innonaqueous mediardquo Progress in Inorganic Chemistry vol 34 p435 1986

[34] R Guilard A Zrineh A Tabard et al ldquoSynthesis andspectroscopic and electrochemical characterization of ionicand 120590-bonded aluminum(III) porphyrins Crystal structure ofmethyl(237812131718-octaethylporphinato)aluminum(III)(OEP)Al(CH

3)rdquo Inorganic Chemistry vol 29 no 22 pp

4476ndash4482 1990[35] A Harriman and A D Osborne ldquoLuminescence of por-

phrins and metalloporphyrins part 6mdashLuminescence of alu-minium(III) tetraphenylporphine and its 120583-oxo dimerrdquo Journalof the Chemical Society vol 79 no 3 pp 765ndash772 1983

[36] R Guilard and K M Kadish ldquoSome aspects of organometallicchemistry in metalloporphyrin chemistry synthesis chemicalreactivity and electrochemical behavior of porphyrins withmetal-carbon bondsrdquo Chemical Reviews vol 88 no 7 pp 1121ndash1146 1988

[37] R Guilard C Lecomte and K M Kadish ldquoSynthesis electro-chemistry and structural properties of porphyrins with metal-carbon single bonds and metal-metal bondsrdquo Structure andBonding vol 64 pp 205ndash268 1987

[38] J-H Fuhrhop K M Kadish and D G Davis ldquoThe redoxbehavior of metallo octaethylporphyrinsrdquo Journal of the Ameri-can Chemical Society vol 95 no 16 pp 5140ndash5147 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 3: 409375

International Journal of Electrochemistry 3

NN

N N

Al

X

Salicylic acid (SA)

CH3

CH3

CH3 X = OOC

HO

H3CC1

C6

C5

C4

C3 C2

H120573

H120573

C120573Cmeta

C120572

C1

C6 C5

C4

C3C2

Y1

Y2

Where X =

4-Chlorosalicylic acid (4-CSA)5-Chlorosalicylic acid (5-CSA)

4-Aminosalicylic acid (4-ASA)5-Aminosalicylic acid (5-ASA)5-Nitrosalicylic acid (5-NSA)

5-Fluoroosalicylic acid (5-FSA)5-Sulfosalicylic acid (5-SSA)

Y1 = H Y2 = H

Y1 = Cl Y2 = HY1 = H Y2 = Cl

Y1 = H Y2 = NH2

Y1 = H Y2 = NO2

Y1 = H Y2 = FY1 = H Y2 = SO3H

Y1 = NH2 Y2 = H

998400998400

998400998400

998400998400

998400998400

998400998400998400998400998400998400

Figure 1

847 IR (KBr)]max 52801 cmminus1 (]Al-N) 73613 cm

minus1 (]Al-Ocarboxylic SA) 1H NMR (400MHz CDCl

3) 120575 (ppm) 900

(8H s120573-pyrrole) 808(d) and 806(d) due toH26 773(d) and

765(d) due toH35 270 (s 12H p-CH

3) 680 (sH

3

10158401015840) 629 (dC5

10158401015840) 647 (d H6

10158401015840) 40 (2H s 5-NH2) 13CNMR (400MHz

CDCl3) 120575 (ppm) 1698(COO) 1499(C

120572) 1416(C

1)

1349(C26) 1322(C

120573) 1276(C

4) 1266(C

35) 1222(Cm) 1594

(C2

10158401015840) 1298(C6

10158401015840) 1125(C1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840)1336(C

4

10158401015840) 215(p-CH3)

p-CH3TPP-Al-5-ASA Purple solid Anal Calcd for C55H42sdotN5O3Al C 7792 H 495 N 826 Found C 7790 H 486

N 813 UV-Vis (in CHCl3) 120582max(nm) 419 551 591 ESI-

MS (CH3OH) mz calcd for C

55H42N5O3Al 847 found

847 IR (KBr)]max 52891 cmminus1 (]Al-N) 73669 cm

minus1 (]Al-Ocarboxylic SA) 1H NMR (400MHz CDCl

3) 120575 (ppm) 900

(8H s 120573-pyrrole) 808(d) and 806(d) due to H26 773(d)

and 765(d) due to H35 270 (s 12H p-CH

3) 674 (d H

3

10158401015840)626 (d H

4

10158401015840) 644 (s H6

10158401015840) 40 (2H s 5-NH2) 13C NMR

(400MHz CDCl3) 120575 (ppm) 1698(COO) 1499(C

120572) 1416

(C1) 1349(C

26) 1322(C

120573) 1276(C

4) 1266(C

35) 1222(Cm)

1594(C2

10158401015840) 1298(C6

10158401015840) 1125(C1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840)1336(C

5

10158401015840) 215(p-CH3)

p-CH3TPP-Al-5-FSA Purple solid Anal Calcd for C55H40sdotN4O3FAl C 7764 H 470 N 659 Found C 7752 H

470 N 653 UV-Vis (in CHCl3) 120582max(nm) 418 548

587 ESI-MS (CH3OH) mz calcd for C

55H40N4O3FAl

849998 found 8490 IR (KBr)]max 52871 cmminus1 (]Al-N)73656 cmminus1 (]Al-O carboxylic SA) 1H NMR (400MHzCDCl

3) 120575 (ppm) 901 (8H s 120573-pyrrole) 851(d) and

814(d) due to H26 797(d) and 776(d) due to H

35

270 (s 12H p-CH3) 662 (d H

3

10158401015840) 679 (d H4

10158401015840)648 (s H

6

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3))

p-CH3TPP-Al-5-NSA Purple solid Anal Calcd for C55H40sdotN5O5Al C 7525 H 456 N 798 Found C 7502 H 436

N 763 UV-vis (CHCl3)max 419 547 584 ESI-MS (CH

3OH)

mz calcd for C55H40N5O5Al 877 found 877 IR (KBr)]max

52801 cmminus1 (]Al-N) 73519 cmminus1 (]Al-O carboxylic SA) 1H

NMR (400MHz CDCl3) 120575 (ppm) 901 (8H s 120573-pyrrole)

851(d) and 814(d) due to H26 797(d) and 776(d) due to

H35 270 (s 12H p-CH

3) 660 (d H

3

10158401015840) 675 (d H4

10158401015840)640 (s H

6

10158401015840) 13C NMR (400MHz CDCl3) 120575 (ppm)

1698(COO) 1499(C120572) 1416(C

1) 1349(C

26) 1322(C

120573)

1276(C4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840) 1298(C6

10158401015840)1125(C

1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840) 215(p-CH3)

4 International Journal of Electrochemistry

NH

NH

N HN

NPropionic acid

Refluxing 40mins

N

HN

NH

N+

CHO

CH3

CH3

CH3

CH3

CH3

CH3

CH3

Crude p-CH3TPP

Chromatographedon basic aluminacolumn usingCHCl3 as an eluent

H3C H3C

RecrystallizedfromCHCl3Pet ether

Pure p-CH3TPP

Scheme 1 General synthetic route for the synthesis of p-methyl-meso-tetraphenylporphyrin (p-CH3TPP)

NNH

N

N

N

N

NAlCl N

N

N

NAl

OH

CH3

CH3

CH3

CH3

CH3 CH3

CH3

CH3

CH3

H3C

Pure p-CH3TPP

HN

Anhy AlCl3dryC6H5CN

Reflux in N2 atmH3C H3C

p-CH3TPP-Al-Cl p-CH3TPP-Al-OH

Aq AgNO3

Scheme 2 General synthetic route for the synthesis of p-methyl-meso-tetraphenylporphinatoaluminium(III) chloride (p-CH3TPP-Al-Cl)and p-methyl-meso-tetraphenylporphinatoaluminium(III) hydroxide (p-CH3TPP-Al-OH)

p-CH3TPP-Al-5-SSA Purple solid Anal Calcd forC55H41N4O6SAl C 7236 H 449 N 614 Found C 7212

H 476 N 613 UV-vis (CHCl3)max 417 547 587 ESI-MS

(CH3OH)mz calcd for C

55H41N4O6SAl 912 found 912 IR

(KBr)]max 52021 cmminus1 (]Al-N) 73319 cm

minus1 (]Al-O carboxylicSA) 1H NMR (400MHz CD

3OH) 120575 (ppm) 900 (8H

s 120573-pyrrole) 851(d) and 814(d) due to H26 797(d) and

776(d) due to H35 270 (s 12H p-CH

3) 670 (d H

3

10158401015840)686 (d H

4

10158401015840) 655 (s H6

10158401015840) 13C NMR (400MHz CD3OH)

120575 (ppm) 1698(COO) 1499(C120572) 1416(C

1) 1349(C

26)

1322(C120573) 1276(C

4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840)1298(C

6

10158401015840) 1125(C1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840)215(p-CH

3))

3 Results and Discussion

The general synthetic routes to tetraphenylporphyrin (TPP)their corresponding metallated and axially ligated alu-minium(III) porphyrins are shown in Schemes 1 2 and3 respectively All of these new aluminium(III) porphyrinswere purified by column chromatography with aluminumoxide as adsorbent and were characterized by spectral data(UV-visible spectroscopy IR spectroscopy 1H NMR spec-troscopy mass spectral data and elemental analysis) Thecharacterization data of the new compounds are consistentwith the assigned formula

The structures of free base porphyrin (p-CH3TPP)

[ClAl(III)p-CH3TPP] [OHAl(III)p-CH

3TPP] and (XAl(III)

p-CH3TPP) are characterized by UV-Vis spectroscopy On

comparing theUV-vis data of various complexes with the freebase porphyrin it was noticed that the axially ligated met-alloporphyrins undergo changes in both the wavelength andthe relative intensities of the absorption bands as comparedto free base porphyrins Noticeably free base porphyrinsexhibit fourQ-banded spectrum whereasmetalloporphyrinshaving axially coordinated salicylate anions exhibit two Q-bands because upon metal insertion the symmetry of theporphyrin increases from D

4h to D2h symmetry present in

free-base porphyrins resulting in the appearance of twobanded spectra Moreover the absorption bands of Al(III)complexes having electron donating substituents attachedto the salicylate ring are red shifted whereas those havingelectron withdrawing substituents are blue shifted whichcan be explained on the basis of four orbital approach ofGouterman [19]

Infrared spectral data of above porphyrin compoundsrevealed that the (N-H) stretching and bending frequenciesof free base porphyrin are located at sim3400ndash3320 cmminus1 andsim960 cmminus1 respectively [20] When the aluminium ion isinserted into the porphyrin ring theN-Hvibration frequencyof free base porphyrin disappeared and the characteristic (Al-N) vibration frequency found at sim800 cmminus1 appeared which

International Journal of Electrochemistry 5

N

N

N

NAlXN

N

N

NAlOH

X

Where X= Salicylic acid (SA)

4-Chlorosalicylic acid (4-CSA)

5-Chlorosalicylic acid (5-CSA)

4-Aminosalicylic acid (4-ASA)

5-Aminosalicylic acid (5-ASA)

5-Nitrosalicylic acid (5-NSA)

5-Fluoroosalicylic acid (5-FSA)

5-Sulfosalicylic acid (5-SSA)

H3C

CH3

CH3

CH3

CH3

CH3

CH3

+

Stirred for12h in dryCHCl3

H3C

p-CH3TPP-Al-OH p-CH3TPP-Al-X

Scheme 3 General synthetic route for the synthesis of axially coordinated p-methyl-meso-tetraphenylporphyrinatoaluminium(III)-salicylate(p-CH3TPP-Al-X)

indicated the formation of aluminium(III) porphyrin com-pounds [21]The incorporation of salicylates in p-CH

3TPP-Al

system is further confirmed by the appearance of Al-Ovibrational frequencies at 528 cmminus1 corresponding to theligation of aluminium to oxygen of carboxylic groups ofsalicylate moiety Thus the aluminium atom in the centre ofporphyrin ring coordinate with the salicylate group axially toform five-coordinate complex of Al(III) porphyrin

In 1H NMR data of all the metallated porphyrins inCDCl

3at 298K there was absence of signal related to N-H

protons and shift in other signals indicating the insertion ofaluminium into the porphyrin macrocycle [22] Generallythe presence of Al(III) metal in the porphyrin ring shiftsthe resonances of the porphyrinrsquos protons to down-fieldaccompanied by marginal changes in the pattern In axiallycoordinated Al(III) porphyrin complexes the signals of axialsalicylate fragment protons are shifted to higher field incomparison to the signals of porphyrin protons and also incomparison to proton signals of free salicylic acid derivatives[23] These positions of protons show that axial ligand isunder the influence of 120587-conjugated system of porphyrinmacrocycle [24] This is most probably due to deshieldingeffect resulting from the 120590-donation of electron density upon

bond formation as compared to the shielding effect of theporphyrin

4 Electrochemistry

An electrochemical study was carried out to determinethe formation potential of porphyrins dianion radical Theporphyrins ring system can be reduced or oxidized duringthe electrolysis process Electrochemical studies by cyclicvoltammetry (CV) show that porphyrins can be reducedor oxidized in two one-electron-transfer steps to form 120587-anion or cation radicals [25ndash28] p-CH

3TPP shows two

reduction and twooxidation processesThe reduction processin dichloromethane (CH

2Cl2) occurs at minus103V minus135 V and

the oxidation process takes place at 113 V 137V Theseprocesses should be the porphyrins ring redox processesbecause p-CH

3TPP does not contain other constituents that

can be reduced or oxidized As reported in the literature[29ndash32] factors affecting stability of the ionic forms of themacrocyclic compounds (both cationic and anionic) yieldedby proton transfer are electronic factors (or polarization)structural (or steric) and solvation factors

These factors are particularly significant for weak acidsand bases with rigid reaction centers as porphyrins The

6 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 2 Cyclic voltammogram of p-CH3TPP-Al-Cl

contribution of these factors on the overall stabilization of theionic species depends on the group to which the porphyrinsmacrocycle and the solvent belong

Porphyrins are usually subdivided into classical (withmoderate distortion of the planarity of the macrocycle andwell-known properties) and nonclassical (with nontradi-tional structures and properties) [29] The lightly non-planarity of p-methylmeso-tetraphenylporphyrinsmakes theNH centers more accessible to an attack of a base or adeprotonation

The values obtained for p-CH3TPP-Al-X where X =

substituted salicylate anion are close to those of the corre-sponding monomeric free base and Al(III) porphyrins

p-CH3TPP-Al-Cl undergoes two reversible reductions at

119864

12= minus115 and minus150V in CH

2Cl2and 01M (TBA)PF

6

The absolute potential difference between these two processesis 035V which suggests that both electron additions occurat the porphyrin 120587-ring system to generate an anion radicaland dianion [33 34] A dissociation of theCl-counter ionmayoccur after electroreduction of p-CH

3TPP-Al-Cl

The electrooxidation of p-CH3TPP-Al-Cl is complicated

in CH2Cl2and 01M (TBA)PF

6 there are three reversible

oxidations located at 11986412= 089 121 and 146V The

first involves a two-electron transfer step while the secondand third involve a single electron transfer The apparenttwo-electron reduction peak may be due to equilibriumbetween the original complex and the anion of the supportingelectrolyte to oxidation of Clminus andor to oxidation of oneor more porphyrin decomposition products This was notinvestigated in detail but it should be noted that a 120583-oxodimmer of the type [(p-CH

3TPP)Al]O is known [35] and

such species might conceivably be formed as a side productupon electrooxidation of p-CH

3TPP-Al-Cl

The electrochemistry of p-CH3TPP-Al-X where X =

SA 4-CSA 5-CSA 4-ASA 5-ASA 5-SSA and 5-NSA was

investigated in CH2Cl2containing 01M TBA(PF6) as sup-

porting electrolyte Cyclic voltammograms for the oxidationand reduction of all the complexes under these solution con-ditions are shown in Figures 2 3 4 5 and 6The p-CH

3TPP-

Al-CSA complexes are reduced via two one-electron-transfersteps The absolute half-wave potential difference betweenthe first and the second reductions of a given p-CH

3TPP-

Al-X complex ranges between 035 and 039V in CH2Cl2

All these values are in good agreement with the 042 plusmn005V separation generally observed for 120587-ring centeredreductions [33 36ndash38] The oxidation potentials and overallelectrochemical behavior of a given p-CH

3TPP-Al-X system

depend upon the specific solventsupporting electrolyte sys-tem Under CH

2Cl2solution conditions p-CH

3TPP-Al-4-

CSA complex undergoes two oxidations at minus060 and 057corresponding to Al+Al2+ and Al2+Al3+ The occurrence ofa chemical reaction following the first one-electron oxidationof all p-CH

3TPP-Al-X complexes has been suggested on the

basis of data available from the literature [34] This reactioninvolves a cleavage of the -X group and leads to the formationof ([p-CH

3TPP-Al]+ as shown in the following

p-CH3TPP-Al-X

eminus999445999468 [p-CH

3TPP-Al-X]∙+

997888rarr [(p-CH3TPP)Al]+ + Xminus

(1)

The second oxidation of p-CH3TPP-Al-X varies only

slightly with the changes in the axial ligand and is assignedas involving electrogenerated [p-CH

3TPP-Al]2+ as shown in

the following

[(p-CH3TPP)AlX]∙+ 999445999468 [(p-CH

3TPP)Al]2+ + eminus (2)

[(p-CH3TPP)AlX]∙2+ 999445999468 [(p-CH

3TPP)Al]3+ + eminus (3)

International Journal of Electrochemistry 7

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 3 Cyclic voltammogram of p-CH3TPP-Al-SA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 4 Cyclic voltammogram of p-CH3TPP-Al-4-CSA

5 Conclusion

In this paper we have described the synthesis of pureporphyrins and their subsequent reactions with AnhyAlCl

3

and salicylic acid derivatives so as to get axially ligated Al(III)porphyrins The structures of above porphyrin compoundswere characterized by UV-vis IR 1H NMR 13C NMR andelemental analysis In axially ligated aluminium(III) por-phyrin complexes bands showed slight red shift correspond-ing to the structural distortion in the porphyrin macrocycle

and concomitant electronic coupling of themetalloporphyrinto the salicylate mediated by the aluminium metal ionThe infrared spectra of these compounds showed that sal-icylate groups axially ligated to aluminium(III) porphyrinsto form five-coordinate complexes of Al(III) porphyrins(Figure 1) Additionally the 1H NMR spectral study of thesecompounds showed that signals of axial ligand protonsare shifted to higher field in comparison to the signalsof porphyrin protons The mass spectroscopy provided theinformation regarding the appearance of the molecular ion

8 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 5 Cyclic voltammogram of p-CH3TPP-Al-4-ASA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 6 Cyclic voltammogram of p-CH3TPP-Al-5-FSA

peak (mz) Meanwhile cyclic voltammograms of axially lig-ated aluminium(III) porphyrins complexes exhibit reversibleoxidation and reduction potentials characteristics of theporphyrin

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank University Grants Com-misssion for financially supporting this work sanctioned videorder no Fno 41-2422012(SR) dated 13 Jul 2012

References

[1] M W Hosseini J M Lehn S R Duff K Gu and M P MertesldquoSynthesis of mono- and difunctionalized ditopic [24]N6O2

International Journal of Electrochemistry 9

macrocyclic receptor moleculesrdquo Journal of Organic Chemistryvol 52 no 9 pp 1662ndash1666 1987

[2] J C Byun and C H Han ldquoCr(III)-tetraaza macrocycliccomplexes containing auxiliary ligands (part IV) synthesisand characterization of Cr(III)-acetylacetonato -malonato and-oxalato macrocyclic complexesrdquo Bulletin of the Korean Chemi-cal Society vol 26 p 9 2005

[3] K M Kadish K M Smith and R Gillard EdsThe PorphyrinHand Book Academic Press San Diego Calif USA 2000

[4] A V Markarov O P Charkin and N M Klimenko ldquoTheoret-ical study of 120587-complexes Ti(P)L of titanium porphyrin withligands containingmultiple bondsC-C C-N andN-NrdquoRussianJournal of Inorganic Chemistry vol 55 no 2 pp 229ndash237 2010

[5] U Michelsen and C A Hunter ldquoSelf-assembled porphyrinpolymersrdquo Angewandte Chemie vol 39 no 4 pp 764ndash7672000

[6] R A Haycock C A Hunter D A James U Michelsen andL R Sutton ldquoSelf-assembly of oligomeric porphyrin ringsrdquoOrganic Letters vol 2 no 16 pp 2435ndash2438 2000

[7] A Tsuda T Nakamura S Sakamoto K Yamaguchi and AOsuka ldquoA self-assembled porphyrin box from meso-meso-linked Bis5-p-pyridyl-15-(35-di-octyloxyphenyl)porphyrinatozinc(II)rdquo Angewandte Chemie vol 41 no 15 pp 2817ndash28212002

[8] L J Twyman and A S H King ldquoFormation of A2B2

supramolecular porphyrin co-polymersrdquo Chemical Communi-cations no 8 pp 910ndash911 2002

[9] D Furutsu A Satake and Y Kobuke ldquoA giant supramolecularlight-harvesting antenna-acceptor compositerdquo Inorganic Chem-istry vol 44 no 13 pp 4460ndash4462 2005

[10] R Takahashi and Y Kobuke ldquoHexameric and pentamericslipped-cofacial dimers toward an artificial light-harvestingcomplexrdquo Journal of Organic Chemistry vol 70 no 7 pp 2745ndash2753 2005

[11] J K M Sanders N Bampos Z Clyde-Watson et al ldquoTheaxial coordination chemistry of metalloporphyrinsrdquo in ThePorphyrin Handbook K M Kadish K M Smith and RGuilard Eds vol 3 pp 1ndash48 Academic Press 2000

[12] E Stulz S M Scott Y-F Ng et al ldquoConstruction of multi-porphyrin arrays using ruthenium and rhodium coordinationto phosphinesrdquo Inorganic Chemistry vol 42 no 20 pp 6564ndash6574 2003

[13] H Sugimoto T Kimura and S Inoue ldquoPhotoresponsivemolec-ular switch to control chemical fixation of CO

2rdquo Journal of the

American Chemical Society vol 121 no 10 pp 2325ndash2326 1999[14] K Konishi T Aida and S Inoue ldquoHydrogen transfer from

alcohols to carbonyl compounds catalyzed by aluminum por-phyrins Stereochemical aspectsrdquo Journal of Organic Chemistryvol 55 no 3 pp 816ndash820 1990

[15] Y Hirai T Aida and S Inoue ldquoArtificial photosynthesis of120573-ketocarboxylic acids from carbon dioxide and ketones viaenolate complexes of aluminum porphyrinrdquo Journal of theAmerican Chemical Society vol 111 no 8 pp 3062ndash3063 1989

[16] P P Kumar and B G Maiya ldquoAluminium(III) porphyrin baseddimers and trimers synthesis spectroscopy and photochem-istryrdquoNew Journal of Chemistry vol 27 no 3 pp 619ndash625 2003

[17] G J E Davidson L H Tong P R Raithby and J K MSanders ldquoAluminium(III) porphyrins as supramolecular build-ing blocksrdquo Chemical Communications no 29 pp 3087ndash30892006

[18] A D Alder ldquoA simplified synthesis of meso-tetraphenylpor-phyrinrdquo Journal of theAmericanChemical Society vol 32 p 4761966

[19] M Gouterman ldquoOptical spectra and electronic structure ofporphyrins and related ringsrdquo in The Porphyrins D DolphinEd vol 3 pp 1ndash165 Academic Press NewYork NY USA 1978

[20] E Fagadar-Cosma D Vlascici and G Fagadar-CosmaldquoMonomer and sandwich type dimmer complexes of zr (iv) withmeso-tetraphenylporphyrin Synthesis and comparative ir uv-vis and hplc behaviorrdquo in Proceedings of the 12th Symposiumon Analytical and Environmental Problems pp 25ndash29 SzegedHungary September 2005

[21] M M Amini M Sharbatdaran M Mirzaee and P MirzaeildquoSynthesis structure and luminescence study of a binuclear alu-minium complex a novel structure containing six coordinatedaluminium atoms in two distinct coordination geometriesrdquoPolyhedron vol 25 no 17 pp 3231ndash3237 2006

[22] D Vlascici O Bizerea-Spiridon and E Fagadar-Cosma ldquoMet-alloporphyrin based fluoride-selective Electroderdquo in Proceed-ings of the 13th Symposium on Analytical and EnvironmentalProblems pp 92ndash95 Szeged Hungary September 2006

[23] G J E Davidson L A Lane P R Raithby J E Warren C VRobinson and J K M Sanders ldquoCoordination polymers basedon aluminum(III) porphyrinsrdquo Inorganic Chemistry vol 47 no19 pp 8721ndash8726 2008

[24] Y S Gerasymchuk V Y Chernii L A Tomachynskii MKowalska J Legendziewicz and S Radzki ldquoCorrelation be-tween computer models of structure of 5-sulfosalicylato Zr(IV)phthalocyanine with results obtained by NMR ESI-MS andUV-Vis spectrardquo Optical Materials vol 32 pp 1193ndash1201 2010

[25] K M Kadish D Sazou Y M Liu A Saoiabi M Ferhat andR Guilard ldquoElectrochemical and spectroelectrochemical stud-ies of nickel(II) porphyrins in dimethylformamiderdquo InorganicChemistry vol 27 no 7 pp 1198ndash1204 1988

[26] G Wilkinson Comprehensive Coordination Chemistry Perga-mon Press Oxford UK 1st edition 1987

[27] K M Kadish C A McAdams B C Han and M M Fran-zen ldquoSyntheses and spectroscopic characterization of (T(p-Me2N)F4PP)H2 and (T(p-Me2N)F4PP)M where T(p-Me2N)F4PP = the dianion of meso-tetrakis(oomm-tetrafluoro-p-(dimethylamino)phenyl)porphyrin and M = cobalt(II)copper(II) or nickel(II) Structures of (T(p-Me2N)F4PP)Coand meso-tetrakis(pentafluorophenyl)porphinatocobalt(II)(TF5PP)Cordquo Journal of the American Chemical Society vol 112no 23 pp 8364ndash8368 1990

[28] K M Kadish E van Caemelbecke P Boulas et al ldquoFirstreversible electrogeneration of triply oxidized nickel porphyrinsand porphycenes Formation of nickel(III) 120587 dicationsrdquo Inor-ganic Chemistry vol 32 no 20 pp 4177ndash4178 1993

[29] D B Berezin N I Islamova O V Malkova and V GAndrianov ldquoNH-acid properties of porphyrins in acetonitrilerdquoRussian Journal of General Chemistry vol 76 no 6 pp 997ndash1002 2006

[30] D B Berezin A S Semeikin andM B Berezin ldquoThe influenceof the macroring structure on the solvation of nonplanarporphyrins in organic solventsrdquo Russian Journal of PhysicalChemistry A vol 83 no 8 pp 1315ndash1320 2009

[31] K M Kadish and E van Caemelbecke ldquoElectrochemistry ofporphyrins and related macrocyclesrdquo Journal of Solid StateElectrochemistry vol 7 no 5 pp 254ndash258 2003

10 International Journal of Electrochemistry

[32] E N Aguilera L M B Jerez and J L Alonso ldquoElectrochemicalmetallation with Ni(II) and Al(III) of 5101520-tetrakis(p-hydroxyphenyl)porphyrin effect of ultrasoundrdquo ElectrochimicaActa vol 98 pp 82ndash87 2013

[33] K M Kadish ldquoThe electrochemistry of metalloporphyrins innonaqueous mediardquo Progress in Inorganic Chemistry vol 34 p435 1986

[34] R Guilard A Zrineh A Tabard et al ldquoSynthesis andspectroscopic and electrochemical characterization of ionicand 120590-bonded aluminum(III) porphyrins Crystal structure ofmethyl(237812131718-octaethylporphinato)aluminum(III)(OEP)Al(CH

3)rdquo Inorganic Chemistry vol 29 no 22 pp

4476ndash4482 1990[35] A Harriman and A D Osborne ldquoLuminescence of por-

phrins and metalloporphyrins part 6mdashLuminescence of alu-minium(III) tetraphenylporphine and its 120583-oxo dimerrdquo Journalof the Chemical Society vol 79 no 3 pp 765ndash772 1983

[36] R Guilard and K M Kadish ldquoSome aspects of organometallicchemistry in metalloporphyrin chemistry synthesis chemicalreactivity and electrochemical behavior of porphyrins withmetal-carbon bondsrdquo Chemical Reviews vol 88 no 7 pp 1121ndash1146 1988

[37] R Guilard C Lecomte and K M Kadish ldquoSynthesis electro-chemistry and structural properties of porphyrins with metal-carbon single bonds and metal-metal bondsrdquo Structure andBonding vol 64 pp 205ndash268 1987

[38] J-H Fuhrhop K M Kadish and D G Davis ldquoThe redoxbehavior of metallo octaethylporphyrinsrdquo Journal of the Ameri-can Chemical Society vol 95 no 16 pp 5140ndash5147 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 4: 409375

4 International Journal of Electrochemistry

NH

NH

N HN

NPropionic acid

Refluxing 40mins

N

HN

NH

N+

CHO

CH3

CH3

CH3

CH3

CH3

CH3

CH3

Crude p-CH3TPP

Chromatographedon basic aluminacolumn usingCHCl3 as an eluent

H3C H3C

RecrystallizedfromCHCl3Pet ether

Pure p-CH3TPP

Scheme 1 General synthetic route for the synthesis of p-methyl-meso-tetraphenylporphyrin (p-CH3TPP)

NNH

N

N

N

N

NAlCl N

N

N

NAl

OH

CH3

CH3

CH3

CH3

CH3 CH3

CH3

CH3

CH3

H3C

Pure p-CH3TPP

HN

Anhy AlCl3dryC6H5CN

Reflux in N2 atmH3C H3C

p-CH3TPP-Al-Cl p-CH3TPP-Al-OH

Aq AgNO3

Scheme 2 General synthetic route for the synthesis of p-methyl-meso-tetraphenylporphinatoaluminium(III) chloride (p-CH3TPP-Al-Cl)and p-methyl-meso-tetraphenylporphinatoaluminium(III) hydroxide (p-CH3TPP-Al-OH)

p-CH3TPP-Al-5-SSA Purple solid Anal Calcd forC55H41N4O6SAl C 7236 H 449 N 614 Found C 7212

H 476 N 613 UV-vis (CHCl3)max 417 547 587 ESI-MS

(CH3OH)mz calcd for C

55H41N4O6SAl 912 found 912 IR

(KBr)]max 52021 cmminus1 (]Al-N) 73319 cm

minus1 (]Al-O carboxylicSA) 1H NMR (400MHz CD

3OH) 120575 (ppm) 900 (8H

s 120573-pyrrole) 851(d) and 814(d) due to H26 797(d) and

776(d) due to H35 270 (s 12H p-CH

3) 670 (d H

3

10158401015840)686 (d H

4

10158401015840) 655 (s H6

10158401015840) 13C NMR (400MHz CD3OH)

120575 (ppm) 1698(COO) 1499(C120572) 1416(C

1) 1349(C

26)

1322(C120573) 1276(C

4) 1266(C

35) 1222(Cm) 1594(C

2

10158401015840)1298(C

6

10158401015840) 1125(C1

10158401015840) 1173(C5

10158401015840) 1157(C3

10158401015840) 1336(C4

10158401015840)215(p-CH

3))

3 Results and Discussion

The general synthetic routes to tetraphenylporphyrin (TPP)their corresponding metallated and axially ligated alu-minium(III) porphyrins are shown in Schemes 1 2 and3 respectively All of these new aluminium(III) porphyrinswere purified by column chromatography with aluminumoxide as adsorbent and were characterized by spectral data(UV-visible spectroscopy IR spectroscopy 1H NMR spec-troscopy mass spectral data and elemental analysis) Thecharacterization data of the new compounds are consistentwith the assigned formula

The structures of free base porphyrin (p-CH3TPP)

[ClAl(III)p-CH3TPP] [OHAl(III)p-CH

3TPP] and (XAl(III)

p-CH3TPP) are characterized by UV-Vis spectroscopy On

comparing theUV-vis data of various complexes with the freebase porphyrin it was noticed that the axially ligated met-alloporphyrins undergo changes in both the wavelength andthe relative intensities of the absorption bands as comparedto free base porphyrins Noticeably free base porphyrinsexhibit fourQ-banded spectrum whereasmetalloporphyrinshaving axially coordinated salicylate anions exhibit two Q-bands because upon metal insertion the symmetry of theporphyrin increases from D

4h to D2h symmetry present in

free-base porphyrins resulting in the appearance of twobanded spectra Moreover the absorption bands of Al(III)complexes having electron donating substituents attachedto the salicylate ring are red shifted whereas those havingelectron withdrawing substituents are blue shifted whichcan be explained on the basis of four orbital approach ofGouterman [19]

Infrared spectral data of above porphyrin compoundsrevealed that the (N-H) stretching and bending frequenciesof free base porphyrin are located at sim3400ndash3320 cmminus1 andsim960 cmminus1 respectively [20] When the aluminium ion isinserted into the porphyrin ring theN-Hvibration frequencyof free base porphyrin disappeared and the characteristic (Al-N) vibration frequency found at sim800 cmminus1 appeared which

International Journal of Electrochemistry 5

N

N

N

NAlXN

N

N

NAlOH

X

Where X= Salicylic acid (SA)

4-Chlorosalicylic acid (4-CSA)

5-Chlorosalicylic acid (5-CSA)

4-Aminosalicylic acid (4-ASA)

5-Aminosalicylic acid (5-ASA)

5-Nitrosalicylic acid (5-NSA)

5-Fluoroosalicylic acid (5-FSA)

5-Sulfosalicylic acid (5-SSA)

H3C

CH3

CH3

CH3

CH3

CH3

CH3

+

Stirred for12h in dryCHCl3

H3C

p-CH3TPP-Al-OH p-CH3TPP-Al-X

Scheme 3 General synthetic route for the synthesis of axially coordinated p-methyl-meso-tetraphenylporphyrinatoaluminium(III)-salicylate(p-CH3TPP-Al-X)

indicated the formation of aluminium(III) porphyrin com-pounds [21]The incorporation of salicylates in p-CH

3TPP-Al

system is further confirmed by the appearance of Al-Ovibrational frequencies at 528 cmminus1 corresponding to theligation of aluminium to oxygen of carboxylic groups ofsalicylate moiety Thus the aluminium atom in the centre ofporphyrin ring coordinate with the salicylate group axially toform five-coordinate complex of Al(III) porphyrin

In 1H NMR data of all the metallated porphyrins inCDCl

3at 298K there was absence of signal related to N-H

protons and shift in other signals indicating the insertion ofaluminium into the porphyrin macrocycle [22] Generallythe presence of Al(III) metal in the porphyrin ring shiftsthe resonances of the porphyrinrsquos protons to down-fieldaccompanied by marginal changes in the pattern In axiallycoordinated Al(III) porphyrin complexes the signals of axialsalicylate fragment protons are shifted to higher field incomparison to the signals of porphyrin protons and also incomparison to proton signals of free salicylic acid derivatives[23] These positions of protons show that axial ligand isunder the influence of 120587-conjugated system of porphyrinmacrocycle [24] This is most probably due to deshieldingeffect resulting from the 120590-donation of electron density upon

bond formation as compared to the shielding effect of theporphyrin

4 Electrochemistry

An electrochemical study was carried out to determinethe formation potential of porphyrins dianion radical Theporphyrins ring system can be reduced or oxidized duringthe electrolysis process Electrochemical studies by cyclicvoltammetry (CV) show that porphyrins can be reducedor oxidized in two one-electron-transfer steps to form 120587-anion or cation radicals [25ndash28] p-CH

3TPP shows two

reduction and twooxidation processesThe reduction processin dichloromethane (CH

2Cl2) occurs at minus103V minus135 V and

the oxidation process takes place at 113 V 137V Theseprocesses should be the porphyrins ring redox processesbecause p-CH

3TPP does not contain other constituents that

can be reduced or oxidized As reported in the literature[29ndash32] factors affecting stability of the ionic forms of themacrocyclic compounds (both cationic and anionic) yieldedby proton transfer are electronic factors (or polarization)structural (or steric) and solvation factors

These factors are particularly significant for weak acidsand bases with rigid reaction centers as porphyrins The

6 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 2 Cyclic voltammogram of p-CH3TPP-Al-Cl

contribution of these factors on the overall stabilization of theionic species depends on the group to which the porphyrinsmacrocycle and the solvent belong

Porphyrins are usually subdivided into classical (withmoderate distortion of the planarity of the macrocycle andwell-known properties) and nonclassical (with nontradi-tional structures and properties) [29] The lightly non-planarity of p-methylmeso-tetraphenylporphyrinsmakes theNH centers more accessible to an attack of a base or adeprotonation

The values obtained for p-CH3TPP-Al-X where X =

substituted salicylate anion are close to those of the corre-sponding monomeric free base and Al(III) porphyrins

p-CH3TPP-Al-Cl undergoes two reversible reductions at

119864

12= minus115 and minus150V in CH

2Cl2and 01M (TBA)PF

6

The absolute potential difference between these two processesis 035V which suggests that both electron additions occurat the porphyrin 120587-ring system to generate an anion radicaland dianion [33 34] A dissociation of theCl-counter ionmayoccur after electroreduction of p-CH

3TPP-Al-Cl

The electrooxidation of p-CH3TPP-Al-Cl is complicated

in CH2Cl2and 01M (TBA)PF

6 there are three reversible

oxidations located at 11986412= 089 121 and 146V The

first involves a two-electron transfer step while the secondand third involve a single electron transfer The apparenttwo-electron reduction peak may be due to equilibriumbetween the original complex and the anion of the supportingelectrolyte to oxidation of Clminus andor to oxidation of oneor more porphyrin decomposition products This was notinvestigated in detail but it should be noted that a 120583-oxodimmer of the type [(p-CH

3TPP)Al]O is known [35] and

such species might conceivably be formed as a side productupon electrooxidation of p-CH

3TPP-Al-Cl

The electrochemistry of p-CH3TPP-Al-X where X =

SA 4-CSA 5-CSA 4-ASA 5-ASA 5-SSA and 5-NSA was

investigated in CH2Cl2containing 01M TBA(PF6) as sup-

porting electrolyte Cyclic voltammograms for the oxidationand reduction of all the complexes under these solution con-ditions are shown in Figures 2 3 4 5 and 6The p-CH

3TPP-

Al-CSA complexes are reduced via two one-electron-transfersteps The absolute half-wave potential difference betweenthe first and the second reductions of a given p-CH

3TPP-

Al-X complex ranges between 035 and 039V in CH2Cl2

All these values are in good agreement with the 042 plusmn005V separation generally observed for 120587-ring centeredreductions [33 36ndash38] The oxidation potentials and overallelectrochemical behavior of a given p-CH

3TPP-Al-X system

depend upon the specific solventsupporting electrolyte sys-tem Under CH

2Cl2solution conditions p-CH

3TPP-Al-4-

CSA complex undergoes two oxidations at minus060 and 057corresponding to Al+Al2+ and Al2+Al3+ The occurrence ofa chemical reaction following the first one-electron oxidationof all p-CH

3TPP-Al-X complexes has been suggested on the

basis of data available from the literature [34] This reactioninvolves a cleavage of the -X group and leads to the formationof ([p-CH

3TPP-Al]+ as shown in the following

p-CH3TPP-Al-X

eminus999445999468 [p-CH

3TPP-Al-X]∙+

997888rarr [(p-CH3TPP)Al]+ + Xminus

(1)

The second oxidation of p-CH3TPP-Al-X varies only

slightly with the changes in the axial ligand and is assignedas involving electrogenerated [p-CH

3TPP-Al]2+ as shown in

the following

[(p-CH3TPP)AlX]∙+ 999445999468 [(p-CH

3TPP)Al]2+ + eminus (2)

[(p-CH3TPP)AlX]∙2+ 999445999468 [(p-CH

3TPP)Al]3+ + eminus (3)

International Journal of Electrochemistry 7

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 3 Cyclic voltammogram of p-CH3TPP-Al-SA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 4 Cyclic voltammogram of p-CH3TPP-Al-4-CSA

5 Conclusion

In this paper we have described the synthesis of pureporphyrins and their subsequent reactions with AnhyAlCl

3

and salicylic acid derivatives so as to get axially ligated Al(III)porphyrins The structures of above porphyrin compoundswere characterized by UV-vis IR 1H NMR 13C NMR andelemental analysis In axially ligated aluminium(III) por-phyrin complexes bands showed slight red shift correspond-ing to the structural distortion in the porphyrin macrocycle

and concomitant electronic coupling of themetalloporphyrinto the salicylate mediated by the aluminium metal ionThe infrared spectra of these compounds showed that sal-icylate groups axially ligated to aluminium(III) porphyrinsto form five-coordinate complexes of Al(III) porphyrins(Figure 1) Additionally the 1H NMR spectral study of thesecompounds showed that signals of axial ligand protonsare shifted to higher field in comparison to the signalsof porphyrin protons The mass spectroscopy provided theinformation regarding the appearance of the molecular ion

8 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 5 Cyclic voltammogram of p-CH3TPP-Al-4-ASA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 6 Cyclic voltammogram of p-CH3TPP-Al-5-FSA

peak (mz) Meanwhile cyclic voltammograms of axially lig-ated aluminium(III) porphyrins complexes exhibit reversibleoxidation and reduction potentials characteristics of theporphyrin

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank University Grants Com-misssion for financially supporting this work sanctioned videorder no Fno 41-2422012(SR) dated 13 Jul 2012

References

[1] M W Hosseini J M Lehn S R Duff K Gu and M P MertesldquoSynthesis of mono- and difunctionalized ditopic [24]N6O2

International Journal of Electrochemistry 9

macrocyclic receptor moleculesrdquo Journal of Organic Chemistryvol 52 no 9 pp 1662ndash1666 1987

[2] J C Byun and C H Han ldquoCr(III)-tetraaza macrocycliccomplexes containing auxiliary ligands (part IV) synthesisand characterization of Cr(III)-acetylacetonato -malonato and-oxalato macrocyclic complexesrdquo Bulletin of the Korean Chemi-cal Society vol 26 p 9 2005

[3] K M Kadish K M Smith and R Gillard EdsThe PorphyrinHand Book Academic Press San Diego Calif USA 2000

[4] A V Markarov O P Charkin and N M Klimenko ldquoTheoret-ical study of 120587-complexes Ti(P)L of titanium porphyrin withligands containingmultiple bondsC-C C-N andN-NrdquoRussianJournal of Inorganic Chemistry vol 55 no 2 pp 229ndash237 2010

[5] U Michelsen and C A Hunter ldquoSelf-assembled porphyrinpolymersrdquo Angewandte Chemie vol 39 no 4 pp 764ndash7672000

[6] R A Haycock C A Hunter D A James U Michelsen andL R Sutton ldquoSelf-assembly of oligomeric porphyrin ringsrdquoOrganic Letters vol 2 no 16 pp 2435ndash2438 2000

[7] A Tsuda T Nakamura S Sakamoto K Yamaguchi and AOsuka ldquoA self-assembled porphyrin box from meso-meso-linked Bis5-p-pyridyl-15-(35-di-octyloxyphenyl)porphyrinatozinc(II)rdquo Angewandte Chemie vol 41 no 15 pp 2817ndash28212002

[8] L J Twyman and A S H King ldquoFormation of A2B2

supramolecular porphyrin co-polymersrdquo Chemical Communi-cations no 8 pp 910ndash911 2002

[9] D Furutsu A Satake and Y Kobuke ldquoA giant supramolecularlight-harvesting antenna-acceptor compositerdquo Inorganic Chem-istry vol 44 no 13 pp 4460ndash4462 2005

[10] R Takahashi and Y Kobuke ldquoHexameric and pentamericslipped-cofacial dimers toward an artificial light-harvestingcomplexrdquo Journal of Organic Chemistry vol 70 no 7 pp 2745ndash2753 2005

[11] J K M Sanders N Bampos Z Clyde-Watson et al ldquoTheaxial coordination chemistry of metalloporphyrinsrdquo in ThePorphyrin Handbook K M Kadish K M Smith and RGuilard Eds vol 3 pp 1ndash48 Academic Press 2000

[12] E Stulz S M Scott Y-F Ng et al ldquoConstruction of multi-porphyrin arrays using ruthenium and rhodium coordinationto phosphinesrdquo Inorganic Chemistry vol 42 no 20 pp 6564ndash6574 2003

[13] H Sugimoto T Kimura and S Inoue ldquoPhotoresponsivemolec-ular switch to control chemical fixation of CO

2rdquo Journal of the

American Chemical Society vol 121 no 10 pp 2325ndash2326 1999[14] K Konishi T Aida and S Inoue ldquoHydrogen transfer from

alcohols to carbonyl compounds catalyzed by aluminum por-phyrins Stereochemical aspectsrdquo Journal of Organic Chemistryvol 55 no 3 pp 816ndash820 1990

[15] Y Hirai T Aida and S Inoue ldquoArtificial photosynthesis of120573-ketocarboxylic acids from carbon dioxide and ketones viaenolate complexes of aluminum porphyrinrdquo Journal of theAmerican Chemical Society vol 111 no 8 pp 3062ndash3063 1989

[16] P P Kumar and B G Maiya ldquoAluminium(III) porphyrin baseddimers and trimers synthesis spectroscopy and photochem-istryrdquoNew Journal of Chemistry vol 27 no 3 pp 619ndash625 2003

[17] G J E Davidson L H Tong P R Raithby and J K MSanders ldquoAluminium(III) porphyrins as supramolecular build-ing blocksrdquo Chemical Communications no 29 pp 3087ndash30892006

[18] A D Alder ldquoA simplified synthesis of meso-tetraphenylpor-phyrinrdquo Journal of theAmericanChemical Society vol 32 p 4761966

[19] M Gouterman ldquoOptical spectra and electronic structure ofporphyrins and related ringsrdquo in The Porphyrins D DolphinEd vol 3 pp 1ndash165 Academic Press NewYork NY USA 1978

[20] E Fagadar-Cosma D Vlascici and G Fagadar-CosmaldquoMonomer and sandwich type dimmer complexes of zr (iv) withmeso-tetraphenylporphyrin Synthesis and comparative ir uv-vis and hplc behaviorrdquo in Proceedings of the 12th Symposiumon Analytical and Environmental Problems pp 25ndash29 SzegedHungary September 2005

[21] M M Amini M Sharbatdaran M Mirzaee and P MirzaeildquoSynthesis structure and luminescence study of a binuclear alu-minium complex a novel structure containing six coordinatedaluminium atoms in two distinct coordination geometriesrdquoPolyhedron vol 25 no 17 pp 3231ndash3237 2006

[22] D Vlascici O Bizerea-Spiridon and E Fagadar-Cosma ldquoMet-alloporphyrin based fluoride-selective Electroderdquo in Proceed-ings of the 13th Symposium on Analytical and EnvironmentalProblems pp 92ndash95 Szeged Hungary September 2006

[23] G J E Davidson L A Lane P R Raithby J E Warren C VRobinson and J K M Sanders ldquoCoordination polymers basedon aluminum(III) porphyrinsrdquo Inorganic Chemistry vol 47 no19 pp 8721ndash8726 2008

[24] Y S Gerasymchuk V Y Chernii L A Tomachynskii MKowalska J Legendziewicz and S Radzki ldquoCorrelation be-tween computer models of structure of 5-sulfosalicylato Zr(IV)phthalocyanine with results obtained by NMR ESI-MS andUV-Vis spectrardquo Optical Materials vol 32 pp 1193ndash1201 2010

[25] K M Kadish D Sazou Y M Liu A Saoiabi M Ferhat andR Guilard ldquoElectrochemical and spectroelectrochemical stud-ies of nickel(II) porphyrins in dimethylformamiderdquo InorganicChemistry vol 27 no 7 pp 1198ndash1204 1988

[26] G Wilkinson Comprehensive Coordination Chemistry Perga-mon Press Oxford UK 1st edition 1987

[27] K M Kadish C A McAdams B C Han and M M Fran-zen ldquoSyntheses and spectroscopic characterization of (T(p-Me2N)F4PP)H2 and (T(p-Me2N)F4PP)M where T(p-Me2N)F4PP = the dianion of meso-tetrakis(oomm-tetrafluoro-p-(dimethylamino)phenyl)porphyrin and M = cobalt(II)copper(II) or nickel(II) Structures of (T(p-Me2N)F4PP)Coand meso-tetrakis(pentafluorophenyl)porphinatocobalt(II)(TF5PP)Cordquo Journal of the American Chemical Society vol 112no 23 pp 8364ndash8368 1990

[28] K M Kadish E van Caemelbecke P Boulas et al ldquoFirstreversible electrogeneration of triply oxidized nickel porphyrinsand porphycenes Formation of nickel(III) 120587 dicationsrdquo Inor-ganic Chemistry vol 32 no 20 pp 4177ndash4178 1993

[29] D B Berezin N I Islamova O V Malkova and V GAndrianov ldquoNH-acid properties of porphyrins in acetonitrilerdquoRussian Journal of General Chemistry vol 76 no 6 pp 997ndash1002 2006

[30] D B Berezin A S Semeikin andM B Berezin ldquoThe influenceof the macroring structure on the solvation of nonplanarporphyrins in organic solventsrdquo Russian Journal of PhysicalChemistry A vol 83 no 8 pp 1315ndash1320 2009

[31] K M Kadish and E van Caemelbecke ldquoElectrochemistry ofporphyrins and related macrocyclesrdquo Journal of Solid StateElectrochemistry vol 7 no 5 pp 254ndash258 2003

10 International Journal of Electrochemistry

[32] E N Aguilera L M B Jerez and J L Alonso ldquoElectrochemicalmetallation with Ni(II) and Al(III) of 5101520-tetrakis(p-hydroxyphenyl)porphyrin effect of ultrasoundrdquo ElectrochimicaActa vol 98 pp 82ndash87 2013

[33] K M Kadish ldquoThe electrochemistry of metalloporphyrins innonaqueous mediardquo Progress in Inorganic Chemistry vol 34 p435 1986

[34] R Guilard A Zrineh A Tabard et al ldquoSynthesis andspectroscopic and electrochemical characterization of ionicand 120590-bonded aluminum(III) porphyrins Crystal structure ofmethyl(237812131718-octaethylporphinato)aluminum(III)(OEP)Al(CH

3)rdquo Inorganic Chemistry vol 29 no 22 pp

4476ndash4482 1990[35] A Harriman and A D Osborne ldquoLuminescence of por-

phrins and metalloporphyrins part 6mdashLuminescence of alu-minium(III) tetraphenylporphine and its 120583-oxo dimerrdquo Journalof the Chemical Society vol 79 no 3 pp 765ndash772 1983

[36] R Guilard and K M Kadish ldquoSome aspects of organometallicchemistry in metalloporphyrin chemistry synthesis chemicalreactivity and electrochemical behavior of porphyrins withmetal-carbon bondsrdquo Chemical Reviews vol 88 no 7 pp 1121ndash1146 1988

[37] R Guilard C Lecomte and K M Kadish ldquoSynthesis electro-chemistry and structural properties of porphyrins with metal-carbon single bonds and metal-metal bondsrdquo Structure andBonding vol 64 pp 205ndash268 1987

[38] J-H Fuhrhop K M Kadish and D G Davis ldquoThe redoxbehavior of metallo octaethylporphyrinsrdquo Journal of the Ameri-can Chemical Society vol 95 no 16 pp 5140ndash5147 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 5: 409375

International Journal of Electrochemistry 5

N

N

N

NAlXN

N

N

NAlOH

X

Where X= Salicylic acid (SA)

4-Chlorosalicylic acid (4-CSA)

5-Chlorosalicylic acid (5-CSA)

4-Aminosalicylic acid (4-ASA)

5-Aminosalicylic acid (5-ASA)

5-Nitrosalicylic acid (5-NSA)

5-Fluoroosalicylic acid (5-FSA)

5-Sulfosalicylic acid (5-SSA)

H3C

CH3

CH3

CH3

CH3

CH3

CH3

+

Stirred for12h in dryCHCl3

H3C

p-CH3TPP-Al-OH p-CH3TPP-Al-X

Scheme 3 General synthetic route for the synthesis of axially coordinated p-methyl-meso-tetraphenylporphyrinatoaluminium(III)-salicylate(p-CH3TPP-Al-X)

indicated the formation of aluminium(III) porphyrin com-pounds [21]The incorporation of salicylates in p-CH

3TPP-Al

system is further confirmed by the appearance of Al-Ovibrational frequencies at 528 cmminus1 corresponding to theligation of aluminium to oxygen of carboxylic groups ofsalicylate moiety Thus the aluminium atom in the centre ofporphyrin ring coordinate with the salicylate group axially toform five-coordinate complex of Al(III) porphyrin

In 1H NMR data of all the metallated porphyrins inCDCl

3at 298K there was absence of signal related to N-H

protons and shift in other signals indicating the insertion ofaluminium into the porphyrin macrocycle [22] Generallythe presence of Al(III) metal in the porphyrin ring shiftsthe resonances of the porphyrinrsquos protons to down-fieldaccompanied by marginal changes in the pattern In axiallycoordinated Al(III) porphyrin complexes the signals of axialsalicylate fragment protons are shifted to higher field incomparison to the signals of porphyrin protons and also incomparison to proton signals of free salicylic acid derivatives[23] These positions of protons show that axial ligand isunder the influence of 120587-conjugated system of porphyrinmacrocycle [24] This is most probably due to deshieldingeffect resulting from the 120590-donation of electron density upon

bond formation as compared to the shielding effect of theporphyrin

4 Electrochemistry

An electrochemical study was carried out to determinethe formation potential of porphyrins dianion radical Theporphyrins ring system can be reduced or oxidized duringthe electrolysis process Electrochemical studies by cyclicvoltammetry (CV) show that porphyrins can be reducedor oxidized in two one-electron-transfer steps to form 120587-anion or cation radicals [25ndash28] p-CH

3TPP shows two

reduction and twooxidation processesThe reduction processin dichloromethane (CH

2Cl2) occurs at minus103V minus135 V and

the oxidation process takes place at 113 V 137V Theseprocesses should be the porphyrins ring redox processesbecause p-CH

3TPP does not contain other constituents that

can be reduced or oxidized As reported in the literature[29ndash32] factors affecting stability of the ionic forms of themacrocyclic compounds (both cationic and anionic) yieldedby proton transfer are electronic factors (or polarization)structural (or steric) and solvation factors

These factors are particularly significant for weak acidsand bases with rigid reaction centers as porphyrins The

6 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 2 Cyclic voltammogram of p-CH3TPP-Al-Cl

contribution of these factors on the overall stabilization of theionic species depends on the group to which the porphyrinsmacrocycle and the solvent belong

Porphyrins are usually subdivided into classical (withmoderate distortion of the planarity of the macrocycle andwell-known properties) and nonclassical (with nontradi-tional structures and properties) [29] The lightly non-planarity of p-methylmeso-tetraphenylporphyrinsmakes theNH centers more accessible to an attack of a base or adeprotonation

The values obtained for p-CH3TPP-Al-X where X =

substituted salicylate anion are close to those of the corre-sponding monomeric free base and Al(III) porphyrins

p-CH3TPP-Al-Cl undergoes two reversible reductions at

119864

12= minus115 and minus150V in CH

2Cl2and 01M (TBA)PF

6

The absolute potential difference between these two processesis 035V which suggests that both electron additions occurat the porphyrin 120587-ring system to generate an anion radicaland dianion [33 34] A dissociation of theCl-counter ionmayoccur after electroreduction of p-CH

3TPP-Al-Cl

The electrooxidation of p-CH3TPP-Al-Cl is complicated

in CH2Cl2and 01M (TBA)PF

6 there are three reversible

oxidations located at 11986412= 089 121 and 146V The

first involves a two-electron transfer step while the secondand third involve a single electron transfer The apparenttwo-electron reduction peak may be due to equilibriumbetween the original complex and the anion of the supportingelectrolyte to oxidation of Clminus andor to oxidation of oneor more porphyrin decomposition products This was notinvestigated in detail but it should be noted that a 120583-oxodimmer of the type [(p-CH

3TPP)Al]O is known [35] and

such species might conceivably be formed as a side productupon electrooxidation of p-CH

3TPP-Al-Cl

The electrochemistry of p-CH3TPP-Al-X where X =

SA 4-CSA 5-CSA 4-ASA 5-ASA 5-SSA and 5-NSA was

investigated in CH2Cl2containing 01M TBA(PF6) as sup-

porting electrolyte Cyclic voltammograms for the oxidationand reduction of all the complexes under these solution con-ditions are shown in Figures 2 3 4 5 and 6The p-CH

3TPP-

Al-CSA complexes are reduced via two one-electron-transfersteps The absolute half-wave potential difference betweenthe first and the second reductions of a given p-CH

3TPP-

Al-X complex ranges between 035 and 039V in CH2Cl2

All these values are in good agreement with the 042 plusmn005V separation generally observed for 120587-ring centeredreductions [33 36ndash38] The oxidation potentials and overallelectrochemical behavior of a given p-CH

3TPP-Al-X system

depend upon the specific solventsupporting electrolyte sys-tem Under CH

2Cl2solution conditions p-CH

3TPP-Al-4-

CSA complex undergoes two oxidations at minus060 and 057corresponding to Al+Al2+ and Al2+Al3+ The occurrence ofa chemical reaction following the first one-electron oxidationof all p-CH

3TPP-Al-X complexes has been suggested on the

basis of data available from the literature [34] This reactioninvolves a cleavage of the -X group and leads to the formationof ([p-CH

3TPP-Al]+ as shown in the following

p-CH3TPP-Al-X

eminus999445999468 [p-CH

3TPP-Al-X]∙+

997888rarr [(p-CH3TPP)Al]+ + Xminus

(1)

The second oxidation of p-CH3TPP-Al-X varies only

slightly with the changes in the axial ligand and is assignedas involving electrogenerated [p-CH

3TPP-Al]2+ as shown in

the following

[(p-CH3TPP)AlX]∙+ 999445999468 [(p-CH

3TPP)Al]2+ + eminus (2)

[(p-CH3TPP)AlX]∙2+ 999445999468 [(p-CH

3TPP)Al]3+ + eminus (3)

International Journal of Electrochemistry 7

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 3 Cyclic voltammogram of p-CH3TPP-Al-SA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 4 Cyclic voltammogram of p-CH3TPP-Al-4-CSA

5 Conclusion

In this paper we have described the synthesis of pureporphyrins and their subsequent reactions with AnhyAlCl

3

and salicylic acid derivatives so as to get axially ligated Al(III)porphyrins The structures of above porphyrin compoundswere characterized by UV-vis IR 1H NMR 13C NMR andelemental analysis In axially ligated aluminium(III) por-phyrin complexes bands showed slight red shift correspond-ing to the structural distortion in the porphyrin macrocycle

and concomitant electronic coupling of themetalloporphyrinto the salicylate mediated by the aluminium metal ionThe infrared spectra of these compounds showed that sal-icylate groups axially ligated to aluminium(III) porphyrinsto form five-coordinate complexes of Al(III) porphyrins(Figure 1) Additionally the 1H NMR spectral study of thesecompounds showed that signals of axial ligand protonsare shifted to higher field in comparison to the signalsof porphyrin protons The mass spectroscopy provided theinformation regarding the appearance of the molecular ion

8 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 5 Cyclic voltammogram of p-CH3TPP-Al-4-ASA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 6 Cyclic voltammogram of p-CH3TPP-Al-5-FSA

peak (mz) Meanwhile cyclic voltammograms of axially lig-ated aluminium(III) porphyrins complexes exhibit reversibleoxidation and reduction potentials characteristics of theporphyrin

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank University Grants Com-misssion for financially supporting this work sanctioned videorder no Fno 41-2422012(SR) dated 13 Jul 2012

References

[1] M W Hosseini J M Lehn S R Duff K Gu and M P MertesldquoSynthesis of mono- and difunctionalized ditopic [24]N6O2

International Journal of Electrochemistry 9

macrocyclic receptor moleculesrdquo Journal of Organic Chemistryvol 52 no 9 pp 1662ndash1666 1987

[2] J C Byun and C H Han ldquoCr(III)-tetraaza macrocycliccomplexes containing auxiliary ligands (part IV) synthesisand characterization of Cr(III)-acetylacetonato -malonato and-oxalato macrocyclic complexesrdquo Bulletin of the Korean Chemi-cal Society vol 26 p 9 2005

[3] K M Kadish K M Smith and R Gillard EdsThe PorphyrinHand Book Academic Press San Diego Calif USA 2000

[4] A V Markarov O P Charkin and N M Klimenko ldquoTheoret-ical study of 120587-complexes Ti(P)L of titanium porphyrin withligands containingmultiple bondsC-C C-N andN-NrdquoRussianJournal of Inorganic Chemistry vol 55 no 2 pp 229ndash237 2010

[5] U Michelsen and C A Hunter ldquoSelf-assembled porphyrinpolymersrdquo Angewandte Chemie vol 39 no 4 pp 764ndash7672000

[6] R A Haycock C A Hunter D A James U Michelsen andL R Sutton ldquoSelf-assembly of oligomeric porphyrin ringsrdquoOrganic Letters vol 2 no 16 pp 2435ndash2438 2000

[7] A Tsuda T Nakamura S Sakamoto K Yamaguchi and AOsuka ldquoA self-assembled porphyrin box from meso-meso-linked Bis5-p-pyridyl-15-(35-di-octyloxyphenyl)porphyrinatozinc(II)rdquo Angewandte Chemie vol 41 no 15 pp 2817ndash28212002

[8] L J Twyman and A S H King ldquoFormation of A2B2

supramolecular porphyrin co-polymersrdquo Chemical Communi-cations no 8 pp 910ndash911 2002

[9] D Furutsu A Satake and Y Kobuke ldquoA giant supramolecularlight-harvesting antenna-acceptor compositerdquo Inorganic Chem-istry vol 44 no 13 pp 4460ndash4462 2005

[10] R Takahashi and Y Kobuke ldquoHexameric and pentamericslipped-cofacial dimers toward an artificial light-harvestingcomplexrdquo Journal of Organic Chemistry vol 70 no 7 pp 2745ndash2753 2005

[11] J K M Sanders N Bampos Z Clyde-Watson et al ldquoTheaxial coordination chemistry of metalloporphyrinsrdquo in ThePorphyrin Handbook K M Kadish K M Smith and RGuilard Eds vol 3 pp 1ndash48 Academic Press 2000

[12] E Stulz S M Scott Y-F Ng et al ldquoConstruction of multi-porphyrin arrays using ruthenium and rhodium coordinationto phosphinesrdquo Inorganic Chemistry vol 42 no 20 pp 6564ndash6574 2003

[13] H Sugimoto T Kimura and S Inoue ldquoPhotoresponsivemolec-ular switch to control chemical fixation of CO

2rdquo Journal of the

American Chemical Society vol 121 no 10 pp 2325ndash2326 1999[14] K Konishi T Aida and S Inoue ldquoHydrogen transfer from

alcohols to carbonyl compounds catalyzed by aluminum por-phyrins Stereochemical aspectsrdquo Journal of Organic Chemistryvol 55 no 3 pp 816ndash820 1990

[15] Y Hirai T Aida and S Inoue ldquoArtificial photosynthesis of120573-ketocarboxylic acids from carbon dioxide and ketones viaenolate complexes of aluminum porphyrinrdquo Journal of theAmerican Chemical Society vol 111 no 8 pp 3062ndash3063 1989

[16] P P Kumar and B G Maiya ldquoAluminium(III) porphyrin baseddimers and trimers synthesis spectroscopy and photochem-istryrdquoNew Journal of Chemistry vol 27 no 3 pp 619ndash625 2003

[17] G J E Davidson L H Tong P R Raithby and J K MSanders ldquoAluminium(III) porphyrins as supramolecular build-ing blocksrdquo Chemical Communications no 29 pp 3087ndash30892006

[18] A D Alder ldquoA simplified synthesis of meso-tetraphenylpor-phyrinrdquo Journal of theAmericanChemical Society vol 32 p 4761966

[19] M Gouterman ldquoOptical spectra and electronic structure ofporphyrins and related ringsrdquo in The Porphyrins D DolphinEd vol 3 pp 1ndash165 Academic Press NewYork NY USA 1978

[20] E Fagadar-Cosma D Vlascici and G Fagadar-CosmaldquoMonomer and sandwich type dimmer complexes of zr (iv) withmeso-tetraphenylporphyrin Synthesis and comparative ir uv-vis and hplc behaviorrdquo in Proceedings of the 12th Symposiumon Analytical and Environmental Problems pp 25ndash29 SzegedHungary September 2005

[21] M M Amini M Sharbatdaran M Mirzaee and P MirzaeildquoSynthesis structure and luminescence study of a binuclear alu-minium complex a novel structure containing six coordinatedaluminium atoms in two distinct coordination geometriesrdquoPolyhedron vol 25 no 17 pp 3231ndash3237 2006

[22] D Vlascici O Bizerea-Spiridon and E Fagadar-Cosma ldquoMet-alloporphyrin based fluoride-selective Electroderdquo in Proceed-ings of the 13th Symposium on Analytical and EnvironmentalProblems pp 92ndash95 Szeged Hungary September 2006

[23] G J E Davidson L A Lane P R Raithby J E Warren C VRobinson and J K M Sanders ldquoCoordination polymers basedon aluminum(III) porphyrinsrdquo Inorganic Chemistry vol 47 no19 pp 8721ndash8726 2008

[24] Y S Gerasymchuk V Y Chernii L A Tomachynskii MKowalska J Legendziewicz and S Radzki ldquoCorrelation be-tween computer models of structure of 5-sulfosalicylato Zr(IV)phthalocyanine with results obtained by NMR ESI-MS andUV-Vis spectrardquo Optical Materials vol 32 pp 1193ndash1201 2010

[25] K M Kadish D Sazou Y M Liu A Saoiabi M Ferhat andR Guilard ldquoElectrochemical and spectroelectrochemical stud-ies of nickel(II) porphyrins in dimethylformamiderdquo InorganicChemistry vol 27 no 7 pp 1198ndash1204 1988

[26] G Wilkinson Comprehensive Coordination Chemistry Perga-mon Press Oxford UK 1st edition 1987

[27] K M Kadish C A McAdams B C Han and M M Fran-zen ldquoSyntheses and spectroscopic characterization of (T(p-Me2N)F4PP)H2 and (T(p-Me2N)F4PP)M where T(p-Me2N)F4PP = the dianion of meso-tetrakis(oomm-tetrafluoro-p-(dimethylamino)phenyl)porphyrin and M = cobalt(II)copper(II) or nickel(II) Structures of (T(p-Me2N)F4PP)Coand meso-tetrakis(pentafluorophenyl)porphinatocobalt(II)(TF5PP)Cordquo Journal of the American Chemical Society vol 112no 23 pp 8364ndash8368 1990

[28] K M Kadish E van Caemelbecke P Boulas et al ldquoFirstreversible electrogeneration of triply oxidized nickel porphyrinsand porphycenes Formation of nickel(III) 120587 dicationsrdquo Inor-ganic Chemistry vol 32 no 20 pp 4177ndash4178 1993

[29] D B Berezin N I Islamova O V Malkova and V GAndrianov ldquoNH-acid properties of porphyrins in acetonitrilerdquoRussian Journal of General Chemistry vol 76 no 6 pp 997ndash1002 2006

[30] D B Berezin A S Semeikin andM B Berezin ldquoThe influenceof the macroring structure on the solvation of nonplanarporphyrins in organic solventsrdquo Russian Journal of PhysicalChemistry A vol 83 no 8 pp 1315ndash1320 2009

[31] K M Kadish and E van Caemelbecke ldquoElectrochemistry ofporphyrins and related macrocyclesrdquo Journal of Solid StateElectrochemistry vol 7 no 5 pp 254ndash258 2003

10 International Journal of Electrochemistry

[32] E N Aguilera L M B Jerez and J L Alonso ldquoElectrochemicalmetallation with Ni(II) and Al(III) of 5101520-tetrakis(p-hydroxyphenyl)porphyrin effect of ultrasoundrdquo ElectrochimicaActa vol 98 pp 82ndash87 2013

[33] K M Kadish ldquoThe electrochemistry of metalloporphyrins innonaqueous mediardquo Progress in Inorganic Chemistry vol 34 p435 1986

[34] R Guilard A Zrineh A Tabard et al ldquoSynthesis andspectroscopic and electrochemical characterization of ionicand 120590-bonded aluminum(III) porphyrins Crystal structure ofmethyl(237812131718-octaethylporphinato)aluminum(III)(OEP)Al(CH

3)rdquo Inorganic Chemistry vol 29 no 22 pp

4476ndash4482 1990[35] A Harriman and A D Osborne ldquoLuminescence of por-

phrins and metalloporphyrins part 6mdashLuminescence of alu-minium(III) tetraphenylporphine and its 120583-oxo dimerrdquo Journalof the Chemical Society vol 79 no 3 pp 765ndash772 1983

[36] R Guilard and K M Kadish ldquoSome aspects of organometallicchemistry in metalloporphyrin chemistry synthesis chemicalreactivity and electrochemical behavior of porphyrins withmetal-carbon bondsrdquo Chemical Reviews vol 88 no 7 pp 1121ndash1146 1988

[37] R Guilard C Lecomte and K M Kadish ldquoSynthesis electro-chemistry and structural properties of porphyrins with metal-carbon single bonds and metal-metal bondsrdquo Structure andBonding vol 64 pp 205ndash268 1987

[38] J-H Fuhrhop K M Kadish and D G Davis ldquoThe redoxbehavior of metallo octaethylporphyrinsrdquo Journal of the Ameri-can Chemical Society vol 95 no 16 pp 5140ndash5147 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 6: 409375

6 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 2 Cyclic voltammogram of p-CH3TPP-Al-Cl

contribution of these factors on the overall stabilization of theionic species depends on the group to which the porphyrinsmacrocycle and the solvent belong

Porphyrins are usually subdivided into classical (withmoderate distortion of the planarity of the macrocycle andwell-known properties) and nonclassical (with nontradi-tional structures and properties) [29] The lightly non-planarity of p-methylmeso-tetraphenylporphyrinsmakes theNH centers more accessible to an attack of a base or adeprotonation

The values obtained for p-CH3TPP-Al-X where X =

substituted salicylate anion are close to those of the corre-sponding monomeric free base and Al(III) porphyrins

p-CH3TPP-Al-Cl undergoes two reversible reductions at

119864

12= minus115 and minus150V in CH

2Cl2and 01M (TBA)PF

6

The absolute potential difference between these two processesis 035V which suggests that both electron additions occurat the porphyrin 120587-ring system to generate an anion radicaland dianion [33 34] A dissociation of theCl-counter ionmayoccur after electroreduction of p-CH

3TPP-Al-Cl

The electrooxidation of p-CH3TPP-Al-Cl is complicated

in CH2Cl2and 01M (TBA)PF

6 there are three reversible

oxidations located at 11986412= 089 121 and 146V The

first involves a two-electron transfer step while the secondand third involve a single electron transfer The apparenttwo-electron reduction peak may be due to equilibriumbetween the original complex and the anion of the supportingelectrolyte to oxidation of Clminus andor to oxidation of oneor more porphyrin decomposition products This was notinvestigated in detail but it should be noted that a 120583-oxodimmer of the type [(p-CH

3TPP)Al]O is known [35] and

such species might conceivably be formed as a side productupon electrooxidation of p-CH

3TPP-Al-Cl

The electrochemistry of p-CH3TPP-Al-X where X =

SA 4-CSA 5-CSA 4-ASA 5-ASA 5-SSA and 5-NSA was

investigated in CH2Cl2containing 01M TBA(PF6) as sup-

porting electrolyte Cyclic voltammograms for the oxidationand reduction of all the complexes under these solution con-ditions are shown in Figures 2 3 4 5 and 6The p-CH

3TPP-

Al-CSA complexes are reduced via two one-electron-transfersteps The absolute half-wave potential difference betweenthe first and the second reductions of a given p-CH

3TPP-

Al-X complex ranges between 035 and 039V in CH2Cl2

All these values are in good agreement with the 042 plusmn005V separation generally observed for 120587-ring centeredreductions [33 36ndash38] The oxidation potentials and overallelectrochemical behavior of a given p-CH

3TPP-Al-X system

depend upon the specific solventsupporting electrolyte sys-tem Under CH

2Cl2solution conditions p-CH

3TPP-Al-4-

CSA complex undergoes two oxidations at minus060 and 057corresponding to Al+Al2+ and Al2+Al3+ The occurrence ofa chemical reaction following the first one-electron oxidationof all p-CH

3TPP-Al-X complexes has been suggested on the

basis of data available from the literature [34] This reactioninvolves a cleavage of the -X group and leads to the formationof ([p-CH

3TPP-Al]+ as shown in the following

p-CH3TPP-Al-X

eminus999445999468 [p-CH

3TPP-Al-X]∙+

997888rarr [(p-CH3TPP)Al]+ + Xminus

(1)

The second oxidation of p-CH3TPP-Al-X varies only

slightly with the changes in the axial ligand and is assignedas involving electrogenerated [p-CH

3TPP-Al]2+ as shown in

the following

[(p-CH3TPP)AlX]∙+ 999445999468 [(p-CH

3TPP)Al]2+ + eminus (2)

[(p-CH3TPP)AlX]∙2+ 999445999468 [(p-CH

3TPP)Al]3+ + eminus (3)

International Journal of Electrochemistry 7

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 3 Cyclic voltammogram of p-CH3TPP-Al-SA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 4 Cyclic voltammogram of p-CH3TPP-Al-4-CSA

5 Conclusion

In this paper we have described the synthesis of pureporphyrins and their subsequent reactions with AnhyAlCl

3

and salicylic acid derivatives so as to get axially ligated Al(III)porphyrins The structures of above porphyrin compoundswere characterized by UV-vis IR 1H NMR 13C NMR andelemental analysis In axially ligated aluminium(III) por-phyrin complexes bands showed slight red shift correspond-ing to the structural distortion in the porphyrin macrocycle

and concomitant electronic coupling of themetalloporphyrinto the salicylate mediated by the aluminium metal ionThe infrared spectra of these compounds showed that sal-icylate groups axially ligated to aluminium(III) porphyrinsto form five-coordinate complexes of Al(III) porphyrins(Figure 1) Additionally the 1H NMR spectral study of thesecompounds showed that signals of axial ligand protonsare shifted to higher field in comparison to the signalsof porphyrin protons The mass spectroscopy provided theinformation regarding the appearance of the molecular ion

8 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 5 Cyclic voltammogram of p-CH3TPP-Al-4-ASA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 6 Cyclic voltammogram of p-CH3TPP-Al-5-FSA

peak (mz) Meanwhile cyclic voltammograms of axially lig-ated aluminium(III) porphyrins complexes exhibit reversibleoxidation and reduction potentials characteristics of theporphyrin

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank University Grants Com-misssion for financially supporting this work sanctioned videorder no Fno 41-2422012(SR) dated 13 Jul 2012

References

[1] M W Hosseini J M Lehn S R Duff K Gu and M P MertesldquoSynthesis of mono- and difunctionalized ditopic [24]N6O2

International Journal of Electrochemistry 9

macrocyclic receptor moleculesrdquo Journal of Organic Chemistryvol 52 no 9 pp 1662ndash1666 1987

[2] J C Byun and C H Han ldquoCr(III)-tetraaza macrocycliccomplexes containing auxiliary ligands (part IV) synthesisand characterization of Cr(III)-acetylacetonato -malonato and-oxalato macrocyclic complexesrdquo Bulletin of the Korean Chemi-cal Society vol 26 p 9 2005

[3] K M Kadish K M Smith and R Gillard EdsThe PorphyrinHand Book Academic Press San Diego Calif USA 2000

[4] A V Markarov O P Charkin and N M Klimenko ldquoTheoret-ical study of 120587-complexes Ti(P)L of titanium porphyrin withligands containingmultiple bondsC-C C-N andN-NrdquoRussianJournal of Inorganic Chemistry vol 55 no 2 pp 229ndash237 2010

[5] U Michelsen and C A Hunter ldquoSelf-assembled porphyrinpolymersrdquo Angewandte Chemie vol 39 no 4 pp 764ndash7672000

[6] R A Haycock C A Hunter D A James U Michelsen andL R Sutton ldquoSelf-assembly of oligomeric porphyrin ringsrdquoOrganic Letters vol 2 no 16 pp 2435ndash2438 2000

[7] A Tsuda T Nakamura S Sakamoto K Yamaguchi and AOsuka ldquoA self-assembled porphyrin box from meso-meso-linked Bis5-p-pyridyl-15-(35-di-octyloxyphenyl)porphyrinatozinc(II)rdquo Angewandte Chemie vol 41 no 15 pp 2817ndash28212002

[8] L J Twyman and A S H King ldquoFormation of A2B2

supramolecular porphyrin co-polymersrdquo Chemical Communi-cations no 8 pp 910ndash911 2002

[9] D Furutsu A Satake and Y Kobuke ldquoA giant supramolecularlight-harvesting antenna-acceptor compositerdquo Inorganic Chem-istry vol 44 no 13 pp 4460ndash4462 2005

[10] R Takahashi and Y Kobuke ldquoHexameric and pentamericslipped-cofacial dimers toward an artificial light-harvestingcomplexrdquo Journal of Organic Chemistry vol 70 no 7 pp 2745ndash2753 2005

[11] J K M Sanders N Bampos Z Clyde-Watson et al ldquoTheaxial coordination chemistry of metalloporphyrinsrdquo in ThePorphyrin Handbook K M Kadish K M Smith and RGuilard Eds vol 3 pp 1ndash48 Academic Press 2000

[12] E Stulz S M Scott Y-F Ng et al ldquoConstruction of multi-porphyrin arrays using ruthenium and rhodium coordinationto phosphinesrdquo Inorganic Chemistry vol 42 no 20 pp 6564ndash6574 2003

[13] H Sugimoto T Kimura and S Inoue ldquoPhotoresponsivemolec-ular switch to control chemical fixation of CO

2rdquo Journal of the

American Chemical Society vol 121 no 10 pp 2325ndash2326 1999[14] K Konishi T Aida and S Inoue ldquoHydrogen transfer from

alcohols to carbonyl compounds catalyzed by aluminum por-phyrins Stereochemical aspectsrdquo Journal of Organic Chemistryvol 55 no 3 pp 816ndash820 1990

[15] Y Hirai T Aida and S Inoue ldquoArtificial photosynthesis of120573-ketocarboxylic acids from carbon dioxide and ketones viaenolate complexes of aluminum porphyrinrdquo Journal of theAmerican Chemical Society vol 111 no 8 pp 3062ndash3063 1989

[16] P P Kumar and B G Maiya ldquoAluminium(III) porphyrin baseddimers and trimers synthesis spectroscopy and photochem-istryrdquoNew Journal of Chemistry vol 27 no 3 pp 619ndash625 2003

[17] G J E Davidson L H Tong P R Raithby and J K MSanders ldquoAluminium(III) porphyrins as supramolecular build-ing blocksrdquo Chemical Communications no 29 pp 3087ndash30892006

[18] A D Alder ldquoA simplified synthesis of meso-tetraphenylpor-phyrinrdquo Journal of theAmericanChemical Society vol 32 p 4761966

[19] M Gouterman ldquoOptical spectra and electronic structure ofporphyrins and related ringsrdquo in The Porphyrins D DolphinEd vol 3 pp 1ndash165 Academic Press NewYork NY USA 1978

[20] E Fagadar-Cosma D Vlascici and G Fagadar-CosmaldquoMonomer and sandwich type dimmer complexes of zr (iv) withmeso-tetraphenylporphyrin Synthesis and comparative ir uv-vis and hplc behaviorrdquo in Proceedings of the 12th Symposiumon Analytical and Environmental Problems pp 25ndash29 SzegedHungary September 2005

[21] M M Amini M Sharbatdaran M Mirzaee and P MirzaeildquoSynthesis structure and luminescence study of a binuclear alu-minium complex a novel structure containing six coordinatedaluminium atoms in two distinct coordination geometriesrdquoPolyhedron vol 25 no 17 pp 3231ndash3237 2006

[22] D Vlascici O Bizerea-Spiridon and E Fagadar-Cosma ldquoMet-alloporphyrin based fluoride-selective Electroderdquo in Proceed-ings of the 13th Symposium on Analytical and EnvironmentalProblems pp 92ndash95 Szeged Hungary September 2006

[23] G J E Davidson L A Lane P R Raithby J E Warren C VRobinson and J K M Sanders ldquoCoordination polymers basedon aluminum(III) porphyrinsrdquo Inorganic Chemistry vol 47 no19 pp 8721ndash8726 2008

[24] Y S Gerasymchuk V Y Chernii L A Tomachynskii MKowalska J Legendziewicz and S Radzki ldquoCorrelation be-tween computer models of structure of 5-sulfosalicylato Zr(IV)phthalocyanine with results obtained by NMR ESI-MS andUV-Vis spectrardquo Optical Materials vol 32 pp 1193ndash1201 2010

[25] K M Kadish D Sazou Y M Liu A Saoiabi M Ferhat andR Guilard ldquoElectrochemical and spectroelectrochemical stud-ies of nickel(II) porphyrins in dimethylformamiderdquo InorganicChemistry vol 27 no 7 pp 1198ndash1204 1988

[26] G Wilkinson Comprehensive Coordination Chemistry Perga-mon Press Oxford UK 1st edition 1987

[27] K M Kadish C A McAdams B C Han and M M Fran-zen ldquoSyntheses and spectroscopic characterization of (T(p-Me2N)F4PP)H2 and (T(p-Me2N)F4PP)M where T(p-Me2N)F4PP = the dianion of meso-tetrakis(oomm-tetrafluoro-p-(dimethylamino)phenyl)porphyrin and M = cobalt(II)copper(II) or nickel(II) Structures of (T(p-Me2N)F4PP)Coand meso-tetrakis(pentafluorophenyl)porphinatocobalt(II)(TF5PP)Cordquo Journal of the American Chemical Society vol 112no 23 pp 8364ndash8368 1990

[28] K M Kadish E van Caemelbecke P Boulas et al ldquoFirstreversible electrogeneration of triply oxidized nickel porphyrinsand porphycenes Formation of nickel(III) 120587 dicationsrdquo Inor-ganic Chemistry vol 32 no 20 pp 4177ndash4178 1993

[29] D B Berezin N I Islamova O V Malkova and V GAndrianov ldquoNH-acid properties of porphyrins in acetonitrilerdquoRussian Journal of General Chemistry vol 76 no 6 pp 997ndash1002 2006

[30] D B Berezin A S Semeikin andM B Berezin ldquoThe influenceof the macroring structure on the solvation of nonplanarporphyrins in organic solventsrdquo Russian Journal of PhysicalChemistry A vol 83 no 8 pp 1315ndash1320 2009

[31] K M Kadish and E van Caemelbecke ldquoElectrochemistry ofporphyrins and related macrocyclesrdquo Journal of Solid StateElectrochemistry vol 7 no 5 pp 254ndash258 2003

10 International Journal of Electrochemistry

[32] E N Aguilera L M B Jerez and J L Alonso ldquoElectrochemicalmetallation with Ni(II) and Al(III) of 5101520-tetrakis(p-hydroxyphenyl)porphyrin effect of ultrasoundrdquo ElectrochimicaActa vol 98 pp 82ndash87 2013

[33] K M Kadish ldquoThe electrochemistry of metalloporphyrins innonaqueous mediardquo Progress in Inorganic Chemistry vol 34 p435 1986

[34] R Guilard A Zrineh A Tabard et al ldquoSynthesis andspectroscopic and electrochemical characterization of ionicand 120590-bonded aluminum(III) porphyrins Crystal structure ofmethyl(237812131718-octaethylporphinato)aluminum(III)(OEP)Al(CH

3)rdquo Inorganic Chemistry vol 29 no 22 pp

4476ndash4482 1990[35] A Harriman and A D Osborne ldquoLuminescence of por-

phrins and metalloporphyrins part 6mdashLuminescence of alu-minium(III) tetraphenylporphine and its 120583-oxo dimerrdquo Journalof the Chemical Society vol 79 no 3 pp 765ndash772 1983

[36] R Guilard and K M Kadish ldquoSome aspects of organometallicchemistry in metalloporphyrin chemistry synthesis chemicalreactivity and electrochemical behavior of porphyrins withmetal-carbon bondsrdquo Chemical Reviews vol 88 no 7 pp 1121ndash1146 1988

[37] R Guilard C Lecomte and K M Kadish ldquoSynthesis electro-chemistry and structural properties of porphyrins with metal-carbon single bonds and metal-metal bondsrdquo Structure andBonding vol 64 pp 205ndash268 1987

[38] J-H Fuhrhop K M Kadish and D G Davis ldquoThe redoxbehavior of metallo octaethylporphyrinsrdquo Journal of the Ameri-can Chemical Society vol 95 no 16 pp 5140ndash5147 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 7: 409375

International Journal of Electrochemistry 7

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 3 Cyclic voltammogram of p-CH3TPP-Al-SA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 4 Cyclic voltammogram of p-CH3TPP-Al-4-CSA

5 Conclusion

In this paper we have described the synthesis of pureporphyrins and their subsequent reactions with AnhyAlCl

3

and salicylic acid derivatives so as to get axially ligated Al(III)porphyrins The structures of above porphyrin compoundswere characterized by UV-vis IR 1H NMR 13C NMR andelemental analysis In axially ligated aluminium(III) por-phyrin complexes bands showed slight red shift correspond-ing to the structural distortion in the porphyrin macrocycle

and concomitant electronic coupling of themetalloporphyrinto the salicylate mediated by the aluminium metal ionThe infrared spectra of these compounds showed that sal-icylate groups axially ligated to aluminium(III) porphyrinsto form five-coordinate complexes of Al(III) porphyrins(Figure 1) Additionally the 1H NMR spectral study of thesecompounds showed that signals of axial ligand protonsare shifted to higher field in comparison to the signalsof porphyrin protons The mass spectroscopy provided theinformation regarding the appearance of the molecular ion

8 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 5 Cyclic voltammogram of p-CH3TPP-Al-4-ASA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 6 Cyclic voltammogram of p-CH3TPP-Al-5-FSA

peak (mz) Meanwhile cyclic voltammograms of axially lig-ated aluminium(III) porphyrins complexes exhibit reversibleoxidation and reduction potentials characteristics of theporphyrin

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank University Grants Com-misssion for financially supporting this work sanctioned videorder no Fno 41-2422012(SR) dated 13 Jul 2012

References

[1] M W Hosseini J M Lehn S R Duff K Gu and M P MertesldquoSynthesis of mono- and difunctionalized ditopic [24]N6O2

International Journal of Electrochemistry 9

macrocyclic receptor moleculesrdquo Journal of Organic Chemistryvol 52 no 9 pp 1662ndash1666 1987

[2] J C Byun and C H Han ldquoCr(III)-tetraaza macrocycliccomplexes containing auxiliary ligands (part IV) synthesisand characterization of Cr(III)-acetylacetonato -malonato and-oxalato macrocyclic complexesrdquo Bulletin of the Korean Chemi-cal Society vol 26 p 9 2005

[3] K M Kadish K M Smith and R Gillard EdsThe PorphyrinHand Book Academic Press San Diego Calif USA 2000

[4] A V Markarov O P Charkin and N M Klimenko ldquoTheoret-ical study of 120587-complexes Ti(P)L of titanium porphyrin withligands containingmultiple bondsC-C C-N andN-NrdquoRussianJournal of Inorganic Chemistry vol 55 no 2 pp 229ndash237 2010

[5] U Michelsen and C A Hunter ldquoSelf-assembled porphyrinpolymersrdquo Angewandte Chemie vol 39 no 4 pp 764ndash7672000

[6] R A Haycock C A Hunter D A James U Michelsen andL R Sutton ldquoSelf-assembly of oligomeric porphyrin ringsrdquoOrganic Letters vol 2 no 16 pp 2435ndash2438 2000

[7] A Tsuda T Nakamura S Sakamoto K Yamaguchi and AOsuka ldquoA self-assembled porphyrin box from meso-meso-linked Bis5-p-pyridyl-15-(35-di-octyloxyphenyl)porphyrinatozinc(II)rdquo Angewandte Chemie vol 41 no 15 pp 2817ndash28212002

[8] L J Twyman and A S H King ldquoFormation of A2B2

supramolecular porphyrin co-polymersrdquo Chemical Communi-cations no 8 pp 910ndash911 2002

[9] D Furutsu A Satake and Y Kobuke ldquoA giant supramolecularlight-harvesting antenna-acceptor compositerdquo Inorganic Chem-istry vol 44 no 13 pp 4460ndash4462 2005

[10] R Takahashi and Y Kobuke ldquoHexameric and pentamericslipped-cofacial dimers toward an artificial light-harvestingcomplexrdquo Journal of Organic Chemistry vol 70 no 7 pp 2745ndash2753 2005

[11] J K M Sanders N Bampos Z Clyde-Watson et al ldquoTheaxial coordination chemistry of metalloporphyrinsrdquo in ThePorphyrin Handbook K M Kadish K M Smith and RGuilard Eds vol 3 pp 1ndash48 Academic Press 2000

[12] E Stulz S M Scott Y-F Ng et al ldquoConstruction of multi-porphyrin arrays using ruthenium and rhodium coordinationto phosphinesrdquo Inorganic Chemistry vol 42 no 20 pp 6564ndash6574 2003

[13] H Sugimoto T Kimura and S Inoue ldquoPhotoresponsivemolec-ular switch to control chemical fixation of CO

2rdquo Journal of the

American Chemical Society vol 121 no 10 pp 2325ndash2326 1999[14] K Konishi T Aida and S Inoue ldquoHydrogen transfer from

alcohols to carbonyl compounds catalyzed by aluminum por-phyrins Stereochemical aspectsrdquo Journal of Organic Chemistryvol 55 no 3 pp 816ndash820 1990

[15] Y Hirai T Aida and S Inoue ldquoArtificial photosynthesis of120573-ketocarboxylic acids from carbon dioxide and ketones viaenolate complexes of aluminum porphyrinrdquo Journal of theAmerican Chemical Society vol 111 no 8 pp 3062ndash3063 1989

[16] P P Kumar and B G Maiya ldquoAluminium(III) porphyrin baseddimers and trimers synthesis spectroscopy and photochem-istryrdquoNew Journal of Chemistry vol 27 no 3 pp 619ndash625 2003

[17] G J E Davidson L H Tong P R Raithby and J K MSanders ldquoAluminium(III) porphyrins as supramolecular build-ing blocksrdquo Chemical Communications no 29 pp 3087ndash30892006

[18] A D Alder ldquoA simplified synthesis of meso-tetraphenylpor-phyrinrdquo Journal of theAmericanChemical Society vol 32 p 4761966

[19] M Gouterman ldquoOptical spectra and electronic structure ofporphyrins and related ringsrdquo in The Porphyrins D DolphinEd vol 3 pp 1ndash165 Academic Press NewYork NY USA 1978

[20] E Fagadar-Cosma D Vlascici and G Fagadar-CosmaldquoMonomer and sandwich type dimmer complexes of zr (iv) withmeso-tetraphenylporphyrin Synthesis and comparative ir uv-vis and hplc behaviorrdquo in Proceedings of the 12th Symposiumon Analytical and Environmental Problems pp 25ndash29 SzegedHungary September 2005

[21] M M Amini M Sharbatdaran M Mirzaee and P MirzaeildquoSynthesis structure and luminescence study of a binuclear alu-minium complex a novel structure containing six coordinatedaluminium atoms in two distinct coordination geometriesrdquoPolyhedron vol 25 no 17 pp 3231ndash3237 2006

[22] D Vlascici O Bizerea-Spiridon and E Fagadar-Cosma ldquoMet-alloporphyrin based fluoride-selective Electroderdquo in Proceed-ings of the 13th Symposium on Analytical and EnvironmentalProblems pp 92ndash95 Szeged Hungary September 2006

[23] G J E Davidson L A Lane P R Raithby J E Warren C VRobinson and J K M Sanders ldquoCoordination polymers basedon aluminum(III) porphyrinsrdquo Inorganic Chemistry vol 47 no19 pp 8721ndash8726 2008

[24] Y S Gerasymchuk V Y Chernii L A Tomachynskii MKowalska J Legendziewicz and S Radzki ldquoCorrelation be-tween computer models of structure of 5-sulfosalicylato Zr(IV)phthalocyanine with results obtained by NMR ESI-MS andUV-Vis spectrardquo Optical Materials vol 32 pp 1193ndash1201 2010

[25] K M Kadish D Sazou Y M Liu A Saoiabi M Ferhat andR Guilard ldquoElectrochemical and spectroelectrochemical stud-ies of nickel(II) porphyrins in dimethylformamiderdquo InorganicChemistry vol 27 no 7 pp 1198ndash1204 1988

[26] G Wilkinson Comprehensive Coordination Chemistry Perga-mon Press Oxford UK 1st edition 1987

[27] K M Kadish C A McAdams B C Han and M M Fran-zen ldquoSyntheses and spectroscopic characterization of (T(p-Me2N)F4PP)H2 and (T(p-Me2N)F4PP)M where T(p-Me2N)F4PP = the dianion of meso-tetrakis(oomm-tetrafluoro-p-(dimethylamino)phenyl)porphyrin and M = cobalt(II)copper(II) or nickel(II) Structures of (T(p-Me2N)F4PP)Coand meso-tetrakis(pentafluorophenyl)porphinatocobalt(II)(TF5PP)Cordquo Journal of the American Chemical Society vol 112no 23 pp 8364ndash8368 1990

[28] K M Kadish E van Caemelbecke P Boulas et al ldquoFirstreversible electrogeneration of triply oxidized nickel porphyrinsand porphycenes Formation of nickel(III) 120587 dicationsrdquo Inor-ganic Chemistry vol 32 no 20 pp 4177ndash4178 1993

[29] D B Berezin N I Islamova O V Malkova and V GAndrianov ldquoNH-acid properties of porphyrins in acetonitrilerdquoRussian Journal of General Chemistry vol 76 no 6 pp 997ndash1002 2006

[30] D B Berezin A S Semeikin andM B Berezin ldquoThe influenceof the macroring structure on the solvation of nonplanarporphyrins in organic solventsrdquo Russian Journal of PhysicalChemistry A vol 83 no 8 pp 1315ndash1320 2009

[31] K M Kadish and E van Caemelbecke ldquoElectrochemistry ofporphyrins and related macrocyclesrdquo Journal of Solid StateElectrochemistry vol 7 no 5 pp 254ndash258 2003

10 International Journal of Electrochemistry

[32] E N Aguilera L M B Jerez and J L Alonso ldquoElectrochemicalmetallation with Ni(II) and Al(III) of 5101520-tetrakis(p-hydroxyphenyl)porphyrin effect of ultrasoundrdquo ElectrochimicaActa vol 98 pp 82ndash87 2013

[33] K M Kadish ldquoThe electrochemistry of metalloporphyrins innonaqueous mediardquo Progress in Inorganic Chemistry vol 34 p435 1986

[34] R Guilard A Zrineh A Tabard et al ldquoSynthesis andspectroscopic and electrochemical characterization of ionicand 120590-bonded aluminum(III) porphyrins Crystal structure ofmethyl(237812131718-octaethylporphinato)aluminum(III)(OEP)Al(CH

3)rdquo Inorganic Chemistry vol 29 no 22 pp

4476ndash4482 1990[35] A Harriman and A D Osborne ldquoLuminescence of por-

phrins and metalloporphyrins part 6mdashLuminescence of alu-minium(III) tetraphenylporphine and its 120583-oxo dimerrdquo Journalof the Chemical Society vol 79 no 3 pp 765ndash772 1983

[36] R Guilard and K M Kadish ldquoSome aspects of organometallicchemistry in metalloporphyrin chemistry synthesis chemicalreactivity and electrochemical behavior of porphyrins withmetal-carbon bondsrdquo Chemical Reviews vol 88 no 7 pp 1121ndash1146 1988

[37] R Guilard C Lecomte and K M Kadish ldquoSynthesis electro-chemistry and structural properties of porphyrins with metal-carbon single bonds and metal-metal bondsrdquo Structure andBonding vol 64 pp 205ndash268 1987

[38] J-H Fuhrhop K M Kadish and D G Davis ldquoThe redoxbehavior of metallo octaethylporphyrinsrdquo Journal of the Ameri-can Chemical Society vol 95 no 16 pp 5140ndash5147 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 8: 409375

8 International Journal of Electrochemistry

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)minus2 minus1 0

Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 5 Cyclic voltammogram of p-CH3TPP-Al-4-ASA

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

minus2 minus1 0Potential applied (V)

(a)

15E minus 5

1E minus 5

5E minus 5

0

minus5E minus 5

minus1E minus 5

minus15E minus 5

minus2E minus 5

WE(

1) cu

rren

t (A

)

210Potential applied (V)

(b)

Figure 6 Cyclic voltammogram of p-CH3TPP-Al-5-FSA

peak (mz) Meanwhile cyclic voltammograms of axially lig-ated aluminium(III) porphyrins complexes exhibit reversibleoxidation and reduction potentials characteristics of theporphyrin

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgment

The authors would like to thank University Grants Com-misssion for financially supporting this work sanctioned videorder no Fno 41-2422012(SR) dated 13 Jul 2012

References

[1] M W Hosseini J M Lehn S R Duff K Gu and M P MertesldquoSynthesis of mono- and difunctionalized ditopic [24]N6O2

International Journal of Electrochemistry 9

macrocyclic receptor moleculesrdquo Journal of Organic Chemistryvol 52 no 9 pp 1662ndash1666 1987

[2] J C Byun and C H Han ldquoCr(III)-tetraaza macrocycliccomplexes containing auxiliary ligands (part IV) synthesisand characterization of Cr(III)-acetylacetonato -malonato and-oxalato macrocyclic complexesrdquo Bulletin of the Korean Chemi-cal Society vol 26 p 9 2005

[3] K M Kadish K M Smith and R Gillard EdsThe PorphyrinHand Book Academic Press San Diego Calif USA 2000

[4] A V Markarov O P Charkin and N M Klimenko ldquoTheoret-ical study of 120587-complexes Ti(P)L of titanium porphyrin withligands containingmultiple bondsC-C C-N andN-NrdquoRussianJournal of Inorganic Chemistry vol 55 no 2 pp 229ndash237 2010

[5] U Michelsen and C A Hunter ldquoSelf-assembled porphyrinpolymersrdquo Angewandte Chemie vol 39 no 4 pp 764ndash7672000

[6] R A Haycock C A Hunter D A James U Michelsen andL R Sutton ldquoSelf-assembly of oligomeric porphyrin ringsrdquoOrganic Letters vol 2 no 16 pp 2435ndash2438 2000

[7] A Tsuda T Nakamura S Sakamoto K Yamaguchi and AOsuka ldquoA self-assembled porphyrin box from meso-meso-linked Bis5-p-pyridyl-15-(35-di-octyloxyphenyl)porphyrinatozinc(II)rdquo Angewandte Chemie vol 41 no 15 pp 2817ndash28212002

[8] L J Twyman and A S H King ldquoFormation of A2B2

supramolecular porphyrin co-polymersrdquo Chemical Communi-cations no 8 pp 910ndash911 2002

[9] D Furutsu A Satake and Y Kobuke ldquoA giant supramolecularlight-harvesting antenna-acceptor compositerdquo Inorganic Chem-istry vol 44 no 13 pp 4460ndash4462 2005

[10] R Takahashi and Y Kobuke ldquoHexameric and pentamericslipped-cofacial dimers toward an artificial light-harvestingcomplexrdquo Journal of Organic Chemistry vol 70 no 7 pp 2745ndash2753 2005

[11] J K M Sanders N Bampos Z Clyde-Watson et al ldquoTheaxial coordination chemistry of metalloporphyrinsrdquo in ThePorphyrin Handbook K M Kadish K M Smith and RGuilard Eds vol 3 pp 1ndash48 Academic Press 2000

[12] E Stulz S M Scott Y-F Ng et al ldquoConstruction of multi-porphyrin arrays using ruthenium and rhodium coordinationto phosphinesrdquo Inorganic Chemistry vol 42 no 20 pp 6564ndash6574 2003

[13] H Sugimoto T Kimura and S Inoue ldquoPhotoresponsivemolec-ular switch to control chemical fixation of CO

2rdquo Journal of the

American Chemical Society vol 121 no 10 pp 2325ndash2326 1999[14] K Konishi T Aida and S Inoue ldquoHydrogen transfer from

alcohols to carbonyl compounds catalyzed by aluminum por-phyrins Stereochemical aspectsrdquo Journal of Organic Chemistryvol 55 no 3 pp 816ndash820 1990

[15] Y Hirai T Aida and S Inoue ldquoArtificial photosynthesis of120573-ketocarboxylic acids from carbon dioxide and ketones viaenolate complexes of aluminum porphyrinrdquo Journal of theAmerican Chemical Society vol 111 no 8 pp 3062ndash3063 1989

[16] P P Kumar and B G Maiya ldquoAluminium(III) porphyrin baseddimers and trimers synthesis spectroscopy and photochem-istryrdquoNew Journal of Chemistry vol 27 no 3 pp 619ndash625 2003

[17] G J E Davidson L H Tong P R Raithby and J K MSanders ldquoAluminium(III) porphyrins as supramolecular build-ing blocksrdquo Chemical Communications no 29 pp 3087ndash30892006

[18] A D Alder ldquoA simplified synthesis of meso-tetraphenylpor-phyrinrdquo Journal of theAmericanChemical Society vol 32 p 4761966

[19] M Gouterman ldquoOptical spectra and electronic structure ofporphyrins and related ringsrdquo in The Porphyrins D DolphinEd vol 3 pp 1ndash165 Academic Press NewYork NY USA 1978

[20] E Fagadar-Cosma D Vlascici and G Fagadar-CosmaldquoMonomer and sandwich type dimmer complexes of zr (iv) withmeso-tetraphenylporphyrin Synthesis and comparative ir uv-vis and hplc behaviorrdquo in Proceedings of the 12th Symposiumon Analytical and Environmental Problems pp 25ndash29 SzegedHungary September 2005

[21] M M Amini M Sharbatdaran M Mirzaee and P MirzaeildquoSynthesis structure and luminescence study of a binuclear alu-minium complex a novel structure containing six coordinatedaluminium atoms in two distinct coordination geometriesrdquoPolyhedron vol 25 no 17 pp 3231ndash3237 2006

[22] D Vlascici O Bizerea-Spiridon and E Fagadar-Cosma ldquoMet-alloporphyrin based fluoride-selective Electroderdquo in Proceed-ings of the 13th Symposium on Analytical and EnvironmentalProblems pp 92ndash95 Szeged Hungary September 2006

[23] G J E Davidson L A Lane P R Raithby J E Warren C VRobinson and J K M Sanders ldquoCoordination polymers basedon aluminum(III) porphyrinsrdquo Inorganic Chemistry vol 47 no19 pp 8721ndash8726 2008

[24] Y S Gerasymchuk V Y Chernii L A Tomachynskii MKowalska J Legendziewicz and S Radzki ldquoCorrelation be-tween computer models of structure of 5-sulfosalicylato Zr(IV)phthalocyanine with results obtained by NMR ESI-MS andUV-Vis spectrardquo Optical Materials vol 32 pp 1193ndash1201 2010

[25] K M Kadish D Sazou Y M Liu A Saoiabi M Ferhat andR Guilard ldquoElectrochemical and spectroelectrochemical stud-ies of nickel(II) porphyrins in dimethylformamiderdquo InorganicChemistry vol 27 no 7 pp 1198ndash1204 1988

[26] G Wilkinson Comprehensive Coordination Chemistry Perga-mon Press Oxford UK 1st edition 1987

[27] K M Kadish C A McAdams B C Han and M M Fran-zen ldquoSyntheses and spectroscopic characterization of (T(p-Me2N)F4PP)H2 and (T(p-Me2N)F4PP)M where T(p-Me2N)F4PP = the dianion of meso-tetrakis(oomm-tetrafluoro-p-(dimethylamino)phenyl)porphyrin and M = cobalt(II)copper(II) or nickel(II) Structures of (T(p-Me2N)F4PP)Coand meso-tetrakis(pentafluorophenyl)porphinatocobalt(II)(TF5PP)Cordquo Journal of the American Chemical Society vol 112no 23 pp 8364ndash8368 1990

[28] K M Kadish E van Caemelbecke P Boulas et al ldquoFirstreversible electrogeneration of triply oxidized nickel porphyrinsand porphycenes Formation of nickel(III) 120587 dicationsrdquo Inor-ganic Chemistry vol 32 no 20 pp 4177ndash4178 1993

[29] D B Berezin N I Islamova O V Malkova and V GAndrianov ldquoNH-acid properties of porphyrins in acetonitrilerdquoRussian Journal of General Chemistry vol 76 no 6 pp 997ndash1002 2006

[30] D B Berezin A S Semeikin andM B Berezin ldquoThe influenceof the macroring structure on the solvation of nonplanarporphyrins in organic solventsrdquo Russian Journal of PhysicalChemistry A vol 83 no 8 pp 1315ndash1320 2009

[31] K M Kadish and E van Caemelbecke ldquoElectrochemistry ofporphyrins and related macrocyclesrdquo Journal of Solid StateElectrochemistry vol 7 no 5 pp 254ndash258 2003

10 International Journal of Electrochemistry

[32] E N Aguilera L M B Jerez and J L Alonso ldquoElectrochemicalmetallation with Ni(II) and Al(III) of 5101520-tetrakis(p-hydroxyphenyl)porphyrin effect of ultrasoundrdquo ElectrochimicaActa vol 98 pp 82ndash87 2013

[33] K M Kadish ldquoThe electrochemistry of metalloporphyrins innonaqueous mediardquo Progress in Inorganic Chemistry vol 34 p435 1986

[34] R Guilard A Zrineh A Tabard et al ldquoSynthesis andspectroscopic and electrochemical characterization of ionicand 120590-bonded aluminum(III) porphyrins Crystal structure ofmethyl(237812131718-octaethylporphinato)aluminum(III)(OEP)Al(CH

3)rdquo Inorganic Chemistry vol 29 no 22 pp

4476ndash4482 1990[35] A Harriman and A D Osborne ldquoLuminescence of por-

phrins and metalloporphyrins part 6mdashLuminescence of alu-minium(III) tetraphenylporphine and its 120583-oxo dimerrdquo Journalof the Chemical Society vol 79 no 3 pp 765ndash772 1983

[36] R Guilard and K M Kadish ldquoSome aspects of organometallicchemistry in metalloporphyrin chemistry synthesis chemicalreactivity and electrochemical behavior of porphyrins withmetal-carbon bondsrdquo Chemical Reviews vol 88 no 7 pp 1121ndash1146 1988

[37] R Guilard C Lecomte and K M Kadish ldquoSynthesis electro-chemistry and structural properties of porphyrins with metal-carbon single bonds and metal-metal bondsrdquo Structure andBonding vol 64 pp 205ndash268 1987

[38] J-H Fuhrhop K M Kadish and D G Davis ldquoThe redoxbehavior of metallo octaethylporphyrinsrdquo Journal of the Ameri-can Chemical Society vol 95 no 16 pp 5140ndash5147 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 9: 409375

International Journal of Electrochemistry 9

macrocyclic receptor moleculesrdquo Journal of Organic Chemistryvol 52 no 9 pp 1662ndash1666 1987

[2] J C Byun and C H Han ldquoCr(III)-tetraaza macrocycliccomplexes containing auxiliary ligands (part IV) synthesisand characterization of Cr(III)-acetylacetonato -malonato and-oxalato macrocyclic complexesrdquo Bulletin of the Korean Chemi-cal Society vol 26 p 9 2005

[3] K M Kadish K M Smith and R Gillard EdsThe PorphyrinHand Book Academic Press San Diego Calif USA 2000

[4] A V Markarov O P Charkin and N M Klimenko ldquoTheoret-ical study of 120587-complexes Ti(P)L of titanium porphyrin withligands containingmultiple bondsC-C C-N andN-NrdquoRussianJournal of Inorganic Chemistry vol 55 no 2 pp 229ndash237 2010

[5] U Michelsen and C A Hunter ldquoSelf-assembled porphyrinpolymersrdquo Angewandte Chemie vol 39 no 4 pp 764ndash7672000

[6] R A Haycock C A Hunter D A James U Michelsen andL R Sutton ldquoSelf-assembly of oligomeric porphyrin ringsrdquoOrganic Letters vol 2 no 16 pp 2435ndash2438 2000

[7] A Tsuda T Nakamura S Sakamoto K Yamaguchi and AOsuka ldquoA self-assembled porphyrin box from meso-meso-linked Bis5-p-pyridyl-15-(35-di-octyloxyphenyl)porphyrinatozinc(II)rdquo Angewandte Chemie vol 41 no 15 pp 2817ndash28212002

[8] L J Twyman and A S H King ldquoFormation of A2B2

supramolecular porphyrin co-polymersrdquo Chemical Communi-cations no 8 pp 910ndash911 2002

[9] D Furutsu A Satake and Y Kobuke ldquoA giant supramolecularlight-harvesting antenna-acceptor compositerdquo Inorganic Chem-istry vol 44 no 13 pp 4460ndash4462 2005

[10] R Takahashi and Y Kobuke ldquoHexameric and pentamericslipped-cofacial dimers toward an artificial light-harvestingcomplexrdquo Journal of Organic Chemistry vol 70 no 7 pp 2745ndash2753 2005

[11] J K M Sanders N Bampos Z Clyde-Watson et al ldquoTheaxial coordination chemistry of metalloporphyrinsrdquo in ThePorphyrin Handbook K M Kadish K M Smith and RGuilard Eds vol 3 pp 1ndash48 Academic Press 2000

[12] E Stulz S M Scott Y-F Ng et al ldquoConstruction of multi-porphyrin arrays using ruthenium and rhodium coordinationto phosphinesrdquo Inorganic Chemistry vol 42 no 20 pp 6564ndash6574 2003

[13] H Sugimoto T Kimura and S Inoue ldquoPhotoresponsivemolec-ular switch to control chemical fixation of CO

2rdquo Journal of the

American Chemical Society vol 121 no 10 pp 2325ndash2326 1999[14] K Konishi T Aida and S Inoue ldquoHydrogen transfer from

alcohols to carbonyl compounds catalyzed by aluminum por-phyrins Stereochemical aspectsrdquo Journal of Organic Chemistryvol 55 no 3 pp 816ndash820 1990

[15] Y Hirai T Aida and S Inoue ldquoArtificial photosynthesis of120573-ketocarboxylic acids from carbon dioxide and ketones viaenolate complexes of aluminum porphyrinrdquo Journal of theAmerican Chemical Society vol 111 no 8 pp 3062ndash3063 1989

[16] P P Kumar and B G Maiya ldquoAluminium(III) porphyrin baseddimers and trimers synthesis spectroscopy and photochem-istryrdquoNew Journal of Chemistry vol 27 no 3 pp 619ndash625 2003

[17] G J E Davidson L H Tong P R Raithby and J K MSanders ldquoAluminium(III) porphyrins as supramolecular build-ing blocksrdquo Chemical Communications no 29 pp 3087ndash30892006

[18] A D Alder ldquoA simplified synthesis of meso-tetraphenylpor-phyrinrdquo Journal of theAmericanChemical Society vol 32 p 4761966

[19] M Gouterman ldquoOptical spectra and electronic structure ofporphyrins and related ringsrdquo in The Porphyrins D DolphinEd vol 3 pp 1ndash165 Academic Press NewYork NY USA 1978

[20] E Fagadar-Cosma D Vlascici and G Fagadar-CosmaldquoMonomer and sandwich type dimmer complexes of zr (iv) withmeso-tetraphenylporphyrin Synthesis and comparative ir uv-vis and hplc behaviorrdquo in Proceedings of the 12th Symposiumon Analytical and Environmental Problems pp 25ndash29 SzegedHungary September 2005

[21] M M Amini M Sharbatdaran M Mirzaee and P MirzaeildquoSynthesis structure and luminescence study of a binuclear alu-minium complex a novel structure containing six coordinatedaluminium atoms in two distinct coordination geometriesrdquoPolyhedron vol 25 no 17 pp 3231ndash3237 2006

[22] D Vlascici O Bizerea-Spiridon and E Fagadar-Cosma ldquoMet-alloporphyrin based fluoride-selective Electroderdquo in Proceed-ings of the 13th Symposium on Analytical and EnvironmentalProblems pp 92ndash95 Szeged Hungary September 2006

[23] G J E Davidson L A Lane P R Raithby J E Warren C VRobinson and J K M Sanders ldquoCoordination polymers basedon aluminum(III) porphyrinsrdquo Inorganic Chemistry vol 47 no19 pp 8721ndash8726 2008

[24] Y S Gerasymchuk V Y Chernii L A Tomachynskii MKowalska J Legendziewicz and S Radzki ldquoCorrelation be-tween computer models of structure of 5-sulfosalicylato Zr(IV)phthalocyanine with results obtained by NMR ESI-MS andUV-Vis spectrardquo Optical Materials vol 32 pp 1193ndash1201 2010

[25] K M Kadish D Sazou Y M Liu A Saoiabi M Ferhat andR Guilard ldquoElectrochemical and spectroelectrochemical stud-ies of nickel(II) porphyrins in dimethylformamiderdquo InorganicChemistry vol 27 no 7 pp 1198ndash1204 1988

[26] G Wilkinson Comprehensive Coordination Chemistry Perga-mon Press Oxford UK 1st edition 1987

[27] K M Kadish C A McAdams B C Han and M M Fran-zen ldquoSyntheses and spectroscopic characterization of (T(p-Me2N)F4PP)H2 and (T(p-Me2N)F4PP)M where T(p-Me2N)F4PP = the dianion of meso-tetrakis(oomm-tetrafluoro-p-(dimethylamino)phenyl)porphyrin and M = cobalt(II)copper(II) or nickel(II) Structures of (T(p-Me2N)F4PP)Coand meso-tetrakis(pentafluorophenyl)porphinatocobalt(II)(TF5PP)Cordquo Journal of the American Chemical Society vol 112no 23 pp 8364ndash8368 1990

[28] K M Kadish E van Caemelbecke P Boulas et al ldquoFirstreversible electrogeneration of triply oxidized nickel porphyrinsand porphycenes Formation of nickel(III) 120587 dicationsrdquo Inor-ganic Chemistry vol 32 no 20 pp 4177ndash4178 1993

[29] D B Berezin N I Islamova O V Malkova and V GAndrianov ldquoNH-acid properties of porphyrins in acetonitrilerdquoRussian Journal of General Chemistry vol 76 no 6 pp 997ndash1002 2006

[30] D B Berezin A S Semeikin andM B Berezin ldquoThe influenceof the macroring structure on the solvation of nonplanarporphyrins in organic solventsrdquo Russian Journal of PhysicalChemistry A vol 83 no 8 pp 1315ndash1320 2009

[31] K M Kadish and E van Caemelbecke ldquoElectrochemistry ofporphyrins and related macrocyclesrdquo Journal of Solid StateElectrochemistry vol 7 no 5 pp 254ndash258 2003

10 International Journal of Electrochemistry

[32] E N Aguilera L M B Jerez and J L Alonso ldquoElectrochemicalmetallation with Ni(II) and Al(III) of 5101520-tetrakis(p-hydroxyphenyl)porphyrin effect of ultrasoundrdquo ElectrochimicaActa vol 98 pp 82ndash87 2013

[33] K M Kadish ldquoThe electrochemistry of metalloporphyrins innonaqueous mediardquo Progress in Inorganic Chemistry vol 34 p435 1986

[34] R Guilard A Zrineh A Tabard et al ldquoSynthesis andspectroscopic and electrochemical characterization of ionicand 120590-bonded aluminum(III) porphyrins Crystal structure ofmethyl(237812131718-octaethylporphinato)aluminum(III)(OEP)Al(CH

3)rdquo Inorganic Chemistry vol 29 no 22 pp

4476ndash4482 1990[35] A Harriman and A D Osborne ldquoLuminescence of por-

phrins and metalloporphyrins part 6mdashLuminescence of alu-minium(III) tetraphenylporphine and its 120583-oxo dimerrdquo Journalof the Chemical Society vol 79 no 3 pp 765ndash772 1983

[36] R Guilard and K M Kadish ldquoSome aspects of organometallicchemistry in metalloporphyrin chemistry synthesis chemicalreactivity and electrochemical behavior of porphyrins withmetal-carbon bondsrdquo Chemical Reviews vol 88 no 7 pp 1121ndash1146 1988

[37] R Guilard C Lecomte and K M Kadish ldquoSynthesis electro-chemistry and structural properties of porphyrins with metal-carbon single bonds and metal-metal bondsrdquo Structure andBonding vol 64 pp 205ndash268 1987

[38] J-H Fuhrhop K M Kadish and D G Davis ldquoThe redoxbehavior of metallo octaethylporphyrinsrdquo Journal of the Ameri-can Chemical Society vol 95 no 16 pp 5140ndash5147 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 10: 409375

10 International Journal of Electrochemistry

[32] E N Aguilera L M B Jerez and J L Alonso ldquoElectrochemicalmetallation with Ni(II) and Al(III) of 5101520-tetrakis(p-hydroxyphenyl)porphyrin effect of ultrasoundrdquo ElectrochimicaActa vol 98 pp 82ndash87 2013

[33] K M Kadish ldquoThe electrochemistry of metalloporphyrins innonaqueous mediardquo Progress in Inorganic Chemistry vol 34 p435 1986

[34] R Guilard A Zrineh A Tabard et al ldquoSynthesis andspectroscopic and electrochemical characterization of ionicand 120590-bonded aluminum(III) porphyrins Crystal structure ofmethyl(237812131718-octaethylporphinato)aluminum(III)(OEP)Al(CH

3)rdquo Inorganic Chemistry vol 29 no 22 pp

4476ndash4482 1990[35] A Harriman and A D Osborne ldquoLuminescence of por-

phrins and metalloporphyrins part 6mdashLuminescence of alu-minium(III) tetraphenylporphine and its 120583-oxo dimerrdquo Journalof the Chemical Society vol 79 no 3 pp 765ndash772 1983

[36] R Guilard and K M Kadish ldquoSome aspects of organometallicchemistry in metalloporphyrin chemistry synthesis chemicalreactivity and electrochemical behavior of porphyrins withmetal-carbon bondsrdquo Chemical Reviews vol 88 no 7 pp 1121ndash1146 1988

[37] R Guilard C Lecomte and K M Kadish ldquoSynthesis electro-chemistry and structural properties of porphyrins with metal-carbon single bonds and metal-metal bondsrdquo Structure andBonding vol 64 pp 205ndash268 1987

[38] J-H Fuhrhop K M Kadish and D G Davis ldquoThe redoxbehavior of metallo octaethylporphyrinsrdquo Journal of the Ameri-can Chemical Society vol 95 no 16 pp 5140ndash5147 1973

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 11: 409375

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of