3g and ipv6 (tsao)

76
IPv6 and 3G IPv6 and 3G Shiao-Li Tsao (曹孝櫟) ITRI/CCL/K400 [email protected]

Upload: absohaib

Post on 07-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 1/76

IPv6 and 3GIPv6 and 3G

Shiao-Li Tsao (曹孝櫟)

ITRI/CCL/K400

[email protected]

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 2/76

2

OutlineOutline

• IPv6 Basics

• 3G Basics

• Why using IPv6 in 3G ?

• IPv6 and 3GPP• IPv6 and 3GPP2

• Conclusions

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 3/76

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 4/76

4

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

Version Flow LabelTraffic Class

Payload Length Next Header Hop Limit

Source Address

Destination Address

32 bits

Version IHL Type of Service Total Length

Identifier Flags Fragment Offset

Time to Live Protocol Header Checksum

IPv6 Header

Source AddressDestination AddressOptions + Padding

IPv4 Header

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 5/76

5

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• IPv4 vs. IPv6 –  1975 vs. 1995

 –  32 bits address vs. 128 bits address (4 times)

 –  20 bytes header length vs. 40 bytes header length (2 times)

 –  New• Traffic class, Flow label

 –  Remove• Header length, Type of service, Identification, Flags, Fragment offset,

checksum

 –  Replace• Hop limit by TTL

 –  Unchanged• Version, Payload length, Next header

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 6/76

6

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• IPv6 Improvement

 –  Fixed size header, no options• eliminate header length field

• easy for processing

 –  Byte alignment• easy for processing

 –  Support extension and options by using next header options• Improve scalability and functionality

 –  QoS capable• flow label and traffic class

 –  Time to live replaced by hop limit• counts in terms of hop number, not time, is more practical

 –  Security built-in• header options

 –  Header checksum• Links become more reliable

• handled by upper layers

 –  Fragmentation only by source host• header options

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 7/76

7

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• Next header

IPv6Header

NextHeader :

TCP

L2Header

TrailerTCP

HeaderNext

Header :None

Application Data

IPv6Header

NextHeader :

TCP

L2Header

TrailerTCP

HeaderNext

Header :None

RoutingHeader

Application Data

NextHeader :Routing

Header

IPv6Header

NextHeader :

FragmentHeader

L2Header

TrailerTCP

HeaderApplication Data (fragment)

NextHeader :

None

RoutingHeader

FragmentHeader

NextHeader :

RoutingHeader

NextHeader :

TCP

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 8/76

8

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• Extension options

 –  Hop-by-hop option• Every hop alone the delivery path of the packet should process

 –  Destination option• Destination node should process the packet

 –  Routing header option• Used in source routing, policy based routing, provider selection, host

mobility, etc

 –  Fragmentation header option• Fragmentation is done at the source and assembly is done at the

destination

• Unlike IPv4, fragmentation in IPv6 is performed only by source nodes

• For every packet generated a 32 bit identifier is assigned

 –  Authentication option

• For authentication data and information exchange

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 9/76

9

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• Three type of IPv6 addresses –  Unicast

• identify a single interface

 –  Anycast

• identify a set of interfaces such that a packet sent to a anycastaddress will be delivered to one member of the set

 –  Multicast

• identify a group of interfaces such that a packet sent to a

multicast address is delivered to all the interfaces in the group

 –  No broadcast

• superseded by multicast addresses.

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 10/76

10

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• IPv6 addressing colon-hex –  X:X:X:X:X:X:X:X (X: 16 bits)

• E.q., FEDC:AABB:0000:0000:1234:0000:0000:ABCD

 –  Replace 0 with 0000

• E.q., FEDC:AABB:0:0:1234:0:0:ABCD –  Replace :: with successive 0 (can only use one ::)

• E.q., FEDC:AABB::1234:0:0:ABCD

 –  IPv6-address/prefix-length

• FEDC:AABB::/48

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 11/76

11

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• Address allocation

Format Prefix Address

UnassignedOthers

……

Multicast Addresses1111 1111

Site Local Addresses1111 1110 11

Link Local Addresses1111 1110 10

Aggregatable Global UnicastAddresses

001

Reserved for IPX0000 0100

Reserved for NSAP0000 0010

Unassigned0000 0001

Reserved0000 0000

AllocationPrefix (Binary)

n bits 128-n bits

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 12/76

12

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• Link local address

 –  Only used in a link

 –  Not forwarded outside the link

• Site local address

 –  Use within a site

 – Not forwarded outside the site

1111 1110 10 0

10 54

Interface ID

64

1111 1110 11 0

10 38

Interface ID

64

Subnet ID

16

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 13/76

13

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• IPv4-compatible IPv6 address –  An address of IPv4/IPv6 dual stack node who supports

automatic tunneling

• IPv4-mapped IPv6 address

 –  An address of IPv4-only node whom an IPv6 node is talkingto

000…..000 0..0

80 16

IPv4 address

32

000…..000 1..1

80 16

IPv4 address

32

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 14/76

14

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• Address configuration –  Stateful autoconfiguration

• DHCPv6

 –  Stateless autoconfiguration

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 15/76

15

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• Stateless autoconfiguration process

Generate link-local address[prefix + interface identifier

Verify uniqueness oftentative address

Transmit NeighborSolicitation message with thetentative address as target

address

Assume tentative address isunique and available

Neighbor Adverisement message isreturned

(existing node is using this address)

No Response

Response

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 16/76

16

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• Host autoconfiguration

• Router autoconfiguration –  Router renumbering

• A change in providers means a change in addresses

• Manual changes are clearly undesirable

 –  Automatic address expiration mechanisms built into IPv6 –  Router advertisements drive the expiration

 –  Next question is how to reconfigure the routers

 –  Goal is minimal network administration effort

• Automatic renumbering of routers by setting a new prefix at a single

border –  router

 –  Uses a Prefix Control Operation (PCO) to change the prefix in a number ofways

 –  ICMP Router Renumbering messages are then sent to all downstreamrouters

 –  Renumbered routes then send Router Advertisements to renumber hosts

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 17/76

17

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• Connection IPv6 Islands via IPv4 cloud

• Communication between IPv4 and IPv6

IPv6 IPv6IPv4

IPv6 IPv4

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 18/76

18

IPv6 Basics (Cont.)IPv6 Basics (Cont.)• Configured Tunnel

 –  Router to Router –  “Transition Mechanisms for IPv6 Hosts and Routers”, RFC

2893.

IPv6IPv6 IPv4

Av6 Bv6RAv4/v6 RBv4/v6

Av6 Bv6 Av6 Bv6RBv4RAv4

Av6 Bv6

Tunnel EndPoint (TEP)

EncapsulatingPoint

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 19/76

19

IPv6 Basics (Cont.)IPv6 Basics (Cont.)• Automatic Tunnel

 –  Host to Host –  “Transition Mechanisms for IPv6 Hosts and Routers”, RFC

2893.

IPv4IPv4 IPv4

v4C6 Bv4C6

Bv4Av4Av4C6Bv4C6

A

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 20/76

20

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• 6to4

• “Connection of IPv6 Domains via IPv4 Clouds”, RFC3056

IPv6IPv6 IPv4

A6t4 B6t4RA6t4 RB6t4

A6t4 B6t4 A6t4 B6t4RB6t4RA6t4

A6t4 B6t4

2002:c001:0203::/48 2002:09fe:fdfc::/48

192.1.2.3 9.254.253.252

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 21/76

21

IPv6 Basics (Cont.)IPv6 Basics (Cont.)

• SIIT

• “Stateless IP/ICMP Translation Algorithm (SIIT)”,RFC 2765

IPv4 poolXv4, …

IPv4IPv6

Xv4T Bv4SIIT

Bv4MAXv4T Bv4Xv4

A

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 22/76

22

3G Basics3G Basics

Source : http://www.umtsSource : http://www.umts--forum.org/presentations/Migration_Paths_2G_to_3G.pdfforum.org/presentations/Migration_Paths_2G_to_3G.pdf

Analog voiceAnalog voice

Digital voiceDigital voice

Digital data (2.5G)Digital data (2.5G)

Digital multimediDigital multimedi

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 23/76

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 24/76

24

3G Basics (Cont.)3G Basics (Cont.)

• 3GPP

UE

3G-SGSN 3G-GGSNRNCNode B

MSC/VLR GMSCRNCNode B

HLR AuCEIR

UMTS core networkUMTS core networkNode B

Node B

UTRANUTRAN

PSTNPSTN

InternetInternet

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 25/76

25

3G Basics (Cont.)3G Basics (Cont.)

• 3GPP2

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 26/76

26

Why using IPv6 in 3G ?Why using IPv6 in 3G ?

• Why using IPv6 in 3G terminals ? –  Why 3G ?

• Capacities

 –  Voice service is still the main stream

• Services/applications –  Mobile data

 –  Lesson learned from GSM/SMS

 –  How about EMS/MMS/MIM (mobile instant messaging)

• (Internet) data services/applications over 3G• All-IP (VoIP) over 3G

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 27/76

27

Why using IPv6 in 3G ?Why using IPv6 in 3G ?

• SMS statistics

2002 SMS Traffic

0

2000

4000

6000

8000

10000

12000

14000

Germany T-

Mobile

Germany

Vodafone

I taly TIM Spain

Telefonica

UK O2 China Mobile China

Unicom

Operator 

  m   i   l .  m  s  g .

2001-2002 SMS yearly growth

0

50

100

150

200

250

300

350

400

450

Germany T-

Mobile

Germany

Vodafone

I taly TIM Spain

Telefonica

UK O2 China Mobile China

Unicom

Operator 

   %

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 28/76

28

Why using IPv6 in 3G ?Why using IPv6 in 3G ?

• VoIP/Data services over 3G –  We need more IP addresses

 –  We need end-to-end security

 –  We need mobility between 3G other networks

 –  We need QoS

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 29/76

29

Why using IPv6 in 3G ?Why using IPv6 in 3G ?

• How about NAT (network address translation) ? –  Performance issue (NAT on GGSN)

 –  SIP will break

 –  End-to-end security will break

 –  Difficult to offer end-to-end QoS –  Difficult to offer seamless mobility

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 30/76

30

Why using IPv6 in 3G ?Why using IPv6 in 3G ?

• Why using IPv6 in 3G network transport ? –  IP transport network

InternetInternet3G Core Network3G Core Network

IP transportIP transport

3G Radio Access Network3G Radio Access Network

IP transportIP transport

RNC

RNC

Node-B

Node-B

MGW

SGSN

MSC Server

GGSN

Private IP NetworkPrivate IP Network

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 31/76

31

Why using IPv6 in 3G ?Why using IPv6 in 3G ?

• Why using IPv6 in 3G network transport ? (Cont.) –  Benefits to use IPv6 in IP transport network

• Offer QoS transport

• Easy to manage networks

 –  Intra-PLMN –  Inter-PLMN

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 32/76

32

IPv6 and 3GPPIPv6 and 3GPP• 3GPP R99

 –  Transport network• Core network IPv4 transport

 –  User Equipment• IPv4

• 3GPP R4 –  Transport network

• Core /Radio access network IPv4/IPv6 transport

 –  User Equipment• IPv4

• 3GPP R5 –  Transport network

• CN/RAN (IPv4 or IPv6) transport

•• IPv6 for IP multimedia subsystem (IMS) elementsIPv6 for IP multimedia subsystem (IMS) elements

 –  User Equipment• IPv4 and IPv6 to Internet

•• IPv6 for IMSIPv6 for IMS

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 33/76

33

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• 3GPP R5 architecture requirements –  IP transport between network elements

• both IPv4 / IPv6 are options for IP Connectivity

 –  IM CN subsystem elements

• The architecture shall make optimum use of IPv6• The IM CN subsystem shall exclusively support IPv6

• The UE shall exclusively support IPv6 for the connection toservices provided by the IM CN subsystem.

 –  Access to existing data services• The UE can access IPv4 and IPv6 based services.

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 34/76

34

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)• 3GPP R99

RNC

Node B

Node B

MS

MS

SGSN Internet

PSTN

GGSNGiGnIu_PS

Iu CS

Signaling (SS7 or IP based)

Circuit

Packet (user traffic / signaling)

Call control function

HLR

GMSCMSCPSTN

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 35/76

35

Architecture (Cont.)Architecture (Cont.)

• 3GPP R99 –  CS Domain Control Plane

Node B RNCUE MSC/VLR HLR

WCDMA L1

MAC

RLC

L1

MAC

RLC

ATM AAL5

SCCP

ATM AAL5

SCCP

MTP MTP

RRC RRC RANAP RANAP

CC/MM CC/MM

SCCP SCCP

MAP MAP

L1

ATM

AAL5

SSCOP

SSCF-NNI

MTP3-B

SCCP

NBAP RNSAPNBAP

ATM AAL5

SCCP

ATM AAL5

SCCP

L1 L1

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 36/76

36

Architecture (Cont.)Architecture (Cont.)

• 3GPP R99

 –  CS Domain User Plane

WCDMA L1

MAC

RLC

AMR

Iub FP

AMR

Node B RNCUE MSC/VLR PSTN/ISDN

L1

MAC

RLC

ATM AAL2 ATM AAL2

Iu UP Iu UP

Iub FP

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 37/76

37

Architecture (Cont.)Architecture (Cont.)

• 3GPP R99

 –  PS Domain Control Plane

SM/PMM

WCDMA L1

MAC

RLC

L1

MAC

RLC

ATM or IP

SCCP

ATM or IP

SCCP

UDP/IP UDP/IP

RRC RRC RANAP RANAP

SM/PMMSM

GTP-C GTP-C

L1

ATM

AAL5

SSCOP

SSCF-NNI

MTP3-B

SCCP

IP

SCTP

M3UA

Node B RNCUE 3G-SGSN 3G-GGSN

NBAP RNSAPNBAP

ATM or IP

SCCP

ATM or IP

SCCP

L1 L1

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 38/76

38

Architecture (Cont.)Architecture (Cont.)

• 3GPP R99

 –  PS Domain User Plane

Node B RNCUE 3G-SGSN 3G-GGSN

WCDMA L1

MAC

RLC

PDCP

L1

MAC

RLC

UDP/IP

GTP-U

UDP/IP

GTP-U

UDP/IP UDP/IP

PDCPGTP-U GTP-U

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 39/76

39

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)• 3GPP R4

RNC

Node B

Node B

MS

MS

SGSN Internet

PSTN

GGSN

HLR

MGWMGWMAP

MAP Mc

Gi

Gi

Nb

Iu_CS

Control Plane

Gr Gc

GnIu_PS

Iu CSUser Plane

Mc

Signaling (SS7 or IP based)

Circuit

Packet (user traffic / signaling)

Call control function

T-SGWMSC Server GMSC ServerNc

IP Transport

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 40/76

40

Architecture (Cont.)Architecture (Cont.)

• Protocol Stack (R4, R5)

 –  Transport network protocols – Control Plane (Bearerindependent transport)Gr, Gs, Gf, Gd (R99) Gr, Gs, Gf, Gd (R4, R5)

SCCP

MTP2

MTP3

MTP2

MTP3

SCCP

Gr

SGSN HLR

TCAP

MAP

TCAP

MAP

L1 L1

SCCP

MTP2

MTP3

MTP2

MTP3

SCCP

GsSGSN MSC/VLR

BSSAP+ BSSAP+

L1 L1

SCCP SCCP

Gr

SGSN HLR

TCAP

MAP

TCAP

MAP

SignallingBearer

SignallingBearer

SCCP

Signalling

bearer

Signalling

bearer

SCCP

Gs

SGSN MSC/VLR

BSSAP+ BSSAP+

SCCP

MTP2

MTP3

MTP2

MTP3

SCCP

Gf SGSN EIR

TCAP

MAP

TCAP

MAP

L1 L1

SCCP

MTP2

MTP3

MTP2

MTP3

SCCP

GdSGSN SMS-MSC

TCAP

MAP

TCAP

MAP

L1 L1

SCCP

Signalling

bearer

Signalling

bearer

SCCP

Gf 

SGSN EIR

TCAP

MAP

TCAP

MAP

SCCP

Signallingbearer

Signallingbearer

SCCP

Gd

SGSN SMS-MSC

TCAP

MAP

TCAP

MAP

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 41/76

41

Architecture (Cont.)Architecture (Cont.)

• R4 and R5 options

 –  MTP-based SS7 signalling transport network

 –  IP-based SS7 signalling transport network

MTP3-User

MTP3

MTP2MTP1

MTP3-User

M3UA

SCTPIP

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 42/76

42

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)• 3GPP R5

RNC

Node B

Node B

MS

MS

SGSN Internet

PSTN

GGSN

Legacy mobilesignaling network

CSCFHSS

MGWMGW

R-SGW

MAP

MAP Mc

McGi

Gi

Nb

Iu_CS

Control Plane

Mh

Gr Gc

Cx

Mm

Ms

GnIu_PS

Iu_CSUser Plane

Gi

Mc

MGCF

Mg

Gi

MrMRF

T-SGWMSC Server GMSC ServerNc

Signaling (SS7 or IP based)

Circuit

Packet (user traffic / signaling)

Call control function

IMS

(IP multimedia subsystem)

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 43/76

43

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• R5 New network elements

 –  Call State Control Function (CSCF)• ICGW (Incoming call gateway)

• CCF (Call Control Function)

• SPD (Serving Profile Database)• AH (Address Handling)

 –  Home Subscriber Server (HSS)

• User Mobility Server (UMS)

• 3G HLR

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 44/76

44

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• Home Subscriber Server

SGSN GGSN CSCF

Gr

(MAPbased )

Gc

(MAPbased )

Cx

(IP basedinterface)

Location

information

Subscription

information

HSS (HLR / UMS)

R-SGW

Mh

HOME SUBSCRIBER SERVER

3G HLR

SGSN GGSN CSCF

Cx(IP based

interface)

Gr(MAPbased ) Gc

(MAP

based )

USER MOBILITY SERVER

AAA Location Server

(e.g. LDAP)DNS

R-SGW

Mh

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 45/76

45

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)• R5 New network elements (Cont.)

 –  Transport Signalling Gateway Function (T-SWG) –  Roaming Signalling Gateway Function (R-SGW)

 –  Media Gateway Control Function (MGCF)

 –  Media Gateway Function (MGW)

 –  Multimedia Resource Function (MRF)• R5 New reference points (selected)

 –  Cx Reference Point (HSS – CSCF)• DIAMETER

 –  Gm Reference Point (CSCF – UE)• SIP

 –  Mw Reference Point

(CSCF-CSCF)

• SIP

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 46/76

46

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• IP transport in UTRAN

 –  IuCS

RNC

Node B

Node B

MS

MS

SGSN GGSNGnIu_PS

Iu CS

HLR

GMSCMSCPSTN

Q.2150.1

Q.2630.1

RANAP Iu UP Protocol

Layer

Transport

Network 

Layer

Physical Layer

Transport

User

Network 

Plane

Control Plane User Plane

Transport

User

Network 

PlaneTransport Network 

Control Plane

Radio

Network 

Layer

ATM

SSCOP

AAL5

SSCOP

SSCF-NNI

AAL2AAL5

MTP3bMTP3b

SCCP

SSCF-NNI

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 47/76

47

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• IP transport in UTRAN

 –  IuCS User Plane

AAL-2 SAR SSCS (I.366.1)

AAL2 (I.363.2)

Physical Layer

ATM (I.361)

Protocol Stack for the ATM transport option

UDP (RFC 768) 

Physical Layer

Data Link Layer

Protocol Stack for the IP transport option

IPv6 (RFC 2460)IPv4 optional (RFC 791)

RTP (RFC 1889 ) 

RNC

Node B

Node B

MS

SGSN GGSNGnIu_PS

Iu CS

HLR

GMSCPSTN

MSCMS

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 48/76

48

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• IP transport in UTRAN

 –  IuCS Control Plane

L1

ATM

AAL5

SSCOP

SSCF-NNI

MTP3-B

SCCP

IP

SCTP

M3UA

R99R4/R5

L1

ATM

AAL5

SSCOP

SSCF-NNI

MTP3-B

SCCP

Q.2150.1

Q.2630.1

RANAP Iu UP Protocol

Layer

TransportNetwork 

Layer

Physical Layer

TransportUser

Network Plane

Control Plane User Plane

TransportUser

Network Plane

Transport Network Control Plane

Radio

Network 

Layer

ATM

SSCOP

AAL5

SSCOP

SSCF-NNI

AAL2AAL5

MTP3bMTP3b

SCCP

SSCF-NNI

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 49/76

49

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

Q.2150.1

Q.2630.1

RANAP Iu UP Protocol

Layer

Transport

Network 

Layer

Physical Layer

TransportUser Network Plane

Control Plane User Plane

TransportUser Network PlaneTransport Network Control Plane

Radio

Network 

Layer

ATM

SSCOP

AAL5

SSCOP

SSCF-NNI

AAL2AAL5

MTP3bMTP3b

SCCP

SSCF-NNI

• IP transport in UTRAN

 –  IuCS Transport Network Control Plane

AAL2 connection s ignalling(Q.2630.2)

AAL2 Signalling TransportConverter for MTP3b

(Q.2150.1)

MTP3b

SSCF-NNI

SSCOP

ATM

Physical Layer

AAL2 connection s ignalling(Q.2630.2)

AAL2 Signalling TransportConverter for MTP3b

(Q.2150.1)

MTP3b

SSCF-NNI

SSCOP

ATM

Physical Layer

”IP-ALCAP” (ffs)

ffs

IPv6 (RFC 2460)IPv4 optional (RFC 791)

Data Link Layer

Physical Layer

”IP-ALCAP” (ffs)

ffs

IPv6 (RFC 2460)IPv4 optional (RFC 791)

Data Link Layer

Physical Layer

R99R4/R5

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 50/76

50

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• Packet Domain Access Interfaces and Reference

Points

TE

R

reference point

Gp

PDN or

other network MT

Um or UuPacket Domain

network 1

MS

Gi

reference point

Packet Domain

network 2

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 51/76

51

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• Transparent mode

DNS

DHCP

GGSNPacket Domain

Network

Firewall / Proxy

Gi

Reference

Point

External IPNetwork

OperatorspecificIPNetwork

I P

I n t r a n e tp r o t o c o l

  P P Po r L 2

P P Po r L 2 P a c k e t D o m a in b e a r e r

L 2 L 2

I PI PI P

I n t r a n e tp r o t o c o l

M T G G S N I n t r a n e tT E

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 52/76

52

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• Non-transparent mode

PPP/L2 PPP/L2 SM SM GTP-C GTP-C

Phy. layerPhy.

layer

Lower

layers

Lower

layers

Lower

layers

Lower

layers

Lower

layers

IP

Lower layers

UDP

DHCP/ 

RADIUS

IP

UDP

DHCP/ 

RADIUS

TE MT SGSN GGSN ISP

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 53/76

53

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• Methods to obtain IPv6 address

 –  Network access mode• Transparent mode

• Non-transparent mode

 –  IPv6 address type• Static IPv6 address

• Dynamic IPv6 address

 –  Automatic configuration

• Stateless• DHCPv6

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 54/76

54

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• Static IPv6 address

GGSN

9. Activate PDP Context Accept

4. Create PDP Context Response

4. Create PDP Context Request

1. Activate PDP Context Request

SGSNRANMS

5. Radio Access Bearer Setup

C1

C2

6. Invoke Trace

8. Update PDP Context Response

8. Update PDP Context Request

(PDP type=IPv6, PDP address=IPv6 address, PCO)

 Non-transparent mode

Send RADIUS to ISP

(PDP address=IPv6 address, PCO)

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 55/76

55

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• Stateless IPv6 address

  GGSN

5. Router Advertisement

SGSNBSS/UTRANMS

4. Router Solicitation

3. Activate PDP Context Accept

1. Activate PDP Context Request

2. Create PDP Context Request

2. Create PDP Context Response

(PDP type=IPv6, PDP address=null, PCO)

(PDP address=prefix+IID, PCO)

(prefix)

•Ignore prefix

•Store IID

•Generate link local address

•Duplicated address

detection is not necessary

•Prefix = Step 2 prefix•Can change its IID (IPv6address) or generate a new

IID (IPv6 address)

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 56/76

56

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• In a PLMN

 –  UE A• Prefixa+IIDc

 –  UE B

•Prefixb+IIDd

 –  Prefixa ≠ Prefixb

 –  IIDc = IIDd or IIDc ≠ IIDd

 –  Prefixa+IIDc ≠ Prefixb +IIDd

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 57/76

57

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• Address assignment solutions

 –  #1 assign one or more entire /64s to a PDP context• Is a /64 per PDP context too much ?

• Still has 61 bits (3-bit prefix 001 for aggregatable global unicastaddresses) = 490x10^22 /64 prefixes can be used

 –  #2 share the same prefix between multiple PDP contextconnected to the same PLMN

• DAD is required

• Increase GGSN workload –  Prefix match or complete address match

 –  Determine temporary addresses that are no longer in use

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 58/76

58

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• Stateless IPv6 address (Cont.)

MS  SGSN GGSN  ISP/intranet

RADIUS/DHCP server

Activate PDP Context Create PDP Context

Router Solicitation

Router Advertisement

[M-flag=0, O-flag, Prefix, Lifetime, A-flag=1, L-flag=0 ]

RADIUS / DHCPv6

Router Advertisement

[M-flag=0, O-flag, Prefix, Lifetime, A-flag=1, L-flag=0 ]

(PDP type=IPv6, PDP address=null, PCO)

(PDP address=prefix+IID, PCO) (prefix)

Get network prefix

through DHCP

•Generate global unique

IPv6 address or site-local

address

 TE  MT SGSN GGSN

RADIUS/DHCP client

ISP/intranet

RADIUS/DHCP server

GGSN performs:

AT-Commands

[APN]

 Stateless IPv6 address (Cont.)

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 59/76

59

The MT stores theauthentication parameters

GGSN performs:

- APN -> ISP addresstranslation via DNS

- allocates 1) RADIUS client or2) RADIUS client and

DHCP client- Translates the Protocol

Configuration Options, DHCPOption and RADIUS attributes.

LCP negotiation

[MRU, Auth. prot.]

Authentication

[CHAP/PAP/none]

Option 1: RADIUS 

IPV6CP Configure-request

[ Interface Identifier,Compression ]

Activate PDP Context req.

[ APN, QoS, PDP-type,

NSAPI,

Protocol ConfigurationOptions]

Create PDP ContextReq. 

[ APN, QoS, PDP-type, TID, Protocol Configuration Options] 

RADIUS Access-Request

Authentication, Configuration

RADIUS Access-Accept

Authentication, Configuration

GGSN stores IP- address

IPV6CP Configure-Ack/Nak 

[Interface Identifier,Compression]

Activate PDP Context AccCreate PDP Context Response

Protocol ConfigurationOptions, Cause]

IPV6CP Configure-Request[Interface Identifier, Compression]

IPV6CP Configure-Ack 

[Interface Identifier, Compression]

[PDP Address, Protocol Configuration Options, Cause]

[PDP Address,

Option 2: RADIUS+ DHCP

RADIUS Access-Request

Authentication

RADIUS Access-Accept

Authentication

DHCPv6 (Note)

Configuration

Non-transparent

mode

Non-transparent

mode or

transparent mode

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 60/76

60

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• DHCPv6

MS SGSN GGSN ISP/intranet

RADIUS server

Activate PDP Context Create PDP Context

Router Solicitation

Router Advertisement

[M-flag=1, no prefix info option included]

RADIUS

ISP/intranet

DHCP server

GGSN

DHCP relay agent

Update PDP Context Req.Modify PDP Context Req.

Router Advertisement

[M-flag=1, no prefix info option included ]

DHCP-PROCEDURE

Using link localaddress

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 61/76

61

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• DHCPv6 (Cont.)TE

GGSN

DHCP Relay AgentSGSNMT

Intranet or

ISP

Create PDP ContextActivate PDP Context

4. ADVERTISE (maybe several)

5. REQUEST

8. REPLY

AT commands

1. SOLICIT

9. Update PDP Context req.

12. Update PDP Context resp.

11. Modify PDP Context acc.

10. Modify PDP Context req.

Router Advertisement ( M-flag=1 )

2. RELAY-FORWARD( SOLICIT )

3. RELAY-REPLY( ADVERTISE ) (maybe several)

6. RELAY-FORWARD( REQUEST )

7. RELAY-REPLY(REPLY)

13. Router Advertisement ( M-fla =1

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 62/76

62

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• Other DHCPv6 configuration

TE SGSNMT

Intranet or ISP

DHCP Server(s)

3. REPLY (maybe several)

2. INFORMATION-REQUEST

1. Router Advertisement ( O-flag=1 )

GGSNDHCP Relay Agent

RELAY-FORWARD( INFORMATION-REQUEST )

RELAY-REPLY( REPLY )

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 63/76

63

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)

• IPv4 to IPv6 transition in 3GPP

 –  GPRS Scenarios (data service)• Dual Stack UE connecting to IPv4 and IPv6 nodes

• IPv6 UE connecting to an IPv6 node through an IPv4 network

• IPv4 UE connecting to an IPv4 node through an IPv6 network

• IPv6 UE connecting to an IPv4 node

• IPv4 UE connecting to an IPv6 node

 –  Transition scenarios with IMS (IMS service)

• UE connecting to a node in an IPv4 network through IMS• Two IPv6 IMS islands connected via an IPv4 network

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 64/76

64

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)• Dual stack UE connecting to IPv4 and IPv6 nodes

IPv6

IPv4

Bv6

2.5G/3G Network2.5G/3G Network

GGSNEdge Router

Cv4

, Av4

IPIP

Av6

IPv6 PDP

Context

IPv4 PDP

Context

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 65/76

65

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)• IPv6 UE connecting to IPv6 node through an IPv4

network• IPv6 UE connecting to an IPv4 node

IPv4 IPv6

Bv6

2.5G/3G Network2.5G/3G Network

GGSN Edge Router

Cv4

Av6

IPIP

Translator

IPv6 PDP

Context

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 66/76

66

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)• IPv4 UE connecting to IPv4 node through an IPv6

network• IPv4 UE connecting to an IPv6 node

IPv6 IPv42.5G/3G Network2.5G/3G Network

GGSN Edge RouterAv4

IPIP

Cv4

Bv6

Translator

IPv4 PDP

Context

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 67/76

67

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)• UE connecting to a node in an IPv4 network through

IMS

IPv4

3G Network3G NetworkGGSN Edge Router

Cv4

Av6

IPIP

Interworking UnitCSCF

Interworking Unit

SIP ALG

Translator

IPv6 PDPContext

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 68/76

68

IPv6 and 3GPP (Cont.)IPv6 and 3GPP (Cont.)• Two IPv6 IMS islands connected via an IPv4 network

IPv4 IPv6

Bv6

3G Network3G Network

GGSN Edge RouterAv6

IPIP

CSCF CSCF

IPv6 PDP

Context

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 69/76

69

IPv6 and 3GPP2IPv6 and 3GPP2• 3GPP2 Architecture

 –  Simple IPv4 and Simple IPv6

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 70/76

70

IPv6 and 3GPP2 (Cont.)IPv6 and 3GPP2 (Cont.)• Simple IP protocol stack

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 71/76

71

IPv6 and 3GPP2 (Cont.)IPv6 and 3GPP2 (Cont.)• 3GPP2 Architecture

 –  Mobile IPv4

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 72/76

72

IPv6 and 3GPP2 (Cont.)IPv6 and 3GPP2 (Cont.)• Mobile IP protocol stack

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 73/76

73

IPv6 and 3GPP2 (Cont.)IPv6 and 3GPP2 (Cont.)• 3GPP2 Wireless All-IP Network Architecture Model

IP Multimedia Domain

Packet CN Domain

Legacy MS Domain

RAN Domain

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 74/76

74

IPv6 and 3GPP2 (Cont.)IPv6 and 3GPP2 (Cont.)• Current 3GPP 2 architectural principal

 –  “The All-IP architecture shall be designed in such a way thata migration from IPv4 to IPv6 is feasible and that IPv4 andIPv6 based All-IP networks may interoperate”

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 75/76

75

ConclusionsConclusions• R99 and R4 still use IPv4

•In R5, IPv6 is a MUST• In 3GPP2 All-IP, IPv6 is recommended

• Mobile data (Internet) service/applications will speed up the

deployment of IPv6 over 3G• Mobile data (Internet) applications/services boost

 –  SMS/EMS/MMS/MIM

• All-IP (VoIP) over 3G

 –  Still have to wait –  Technologies/infrastructure are not ready

• SIP/ENUM

8/4/2019 3G and IPv6 (Tsao)

http://slidepdf.com/reader/full/3g-and-ipv6-tsao 76/76

76

ReferencesReferences• 3GPP

 –  3GPP TS 29.061

 –  3GPP TS 23.060

 –  3GPP TS 24.228

 –  3GPP TS 24.229

 –  3GPP TS 22.941

 –  3GPP TS 23.221

 –  3GPP TS 27.060

• 3GPP2

 –  3GPP2 S.R0037-0 –  3GPP2 P.S0001-B

• IETF –  RFC 3316

 –  RFC 3314