369 motor management relay instruction manual · 369 motor management relay instruction manual 369...

290
GE Power Management 215 Anderson Avenue, Markham, Ontario, Canada L6E 1B3 Tel: (905) 294-6222, 1-800-547-8629 (North America) Fax: (905) 201-2098 Internet: http://www.GEindustrial.com/pm R E G I S T E R E D 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) Copyright © 2001 GE Power Management Manufactured under an ISO9001 Registered system. g GE Power Management

Upload: ngonguyet

Post on 09-Sep-2018

282 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management

215 Anderson Avenue, Markham, Ontario,

Canada L6E 1B3

Tel: (905) 294-6222, 1-800-547-8629 (North America)

Fax: (905) 201-2098

Internet: http://www.GEindustrial.com/pm

R E G I S T E R E D

369 Motor Mana gement Rela y

Instruction Manual

369 Revision: 53CMB18x.000

Manual P/N: 1601-0077-BC (GEK-106288)

Copyright © 2001 GE Power Management

Manufactured under anISO9001 Registered system.

gGE Power Management

Courtesy of NationalSwitchgear.com
Page 2: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management
Courtesy of NationalSwitchgear.com
Page 3: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay i

TABLE OF CONTENTS

1. INTRODUCTION 1.1 ORDERING1.1.1 GENERAL OVERVIEW...................................................................................... 1-11.1.2 ORDERING........................................................................................................ 1-11.1.3 ACCESSORIES ................................................................................................. 1-21.1.4 FIRMWARE HISTORY....................................................................................... 1-21.1.5 PC PROGRAM (SOFTWARE) HISTORY.......................................................... 1-21.1.6 369 FUNCTIONAL SUMMARY.......................................................................... 1-31.1.7 RELAY LABEL DEFINITION.............................................................................. 1-4

2. PRODUCT DESCRIPTION 2.1 OVERVIEW2.1.1 GUIDEFORM SPECIFICATIONS ...................................................................... 2-12.1.2 METERED QUANTITIES ................................................................................... 2-12.1.3 PROTECTION FEATURES ............................................................................... 2-22.1.4 ADDITIONAL FEATURES ................................................................................. 2-3

2.2 TECHNICAL SPECIFICATIONS2.2.1 INPUTS .............................................................................................................. 2-42.2.2 OUTPUTS .......................................................................................................... 2-52.2.3 METERING ........................................................................................................ 2-52.2.4 COMMUNICATIONS.......................................................................................... 2-52.2.5 PROTECTION ELEMENTS ............................................................................... 2-52.2.6 MONITORING ELEMENTS ............................................................................... 2-72.2.7 CONTROL ELEMENTS ..................................................................................... 2-72.2.8 ENVIRONMENTAL SPECIFICATIONS ............................................................. 2-82.2.9 APPROVALS / CERTIFICATION....................................................................... 2-82.2.10 TYPE TEST STANDARDS ................................................................................ 2-82.2.11 PRODUCTION TESTS ...................................................................................... 2-8

3. INSTALLATION 3.1 MECHANICAL INSTALLATION3.1.1 MECHANICAL INSTALLATION ......................................................................... 3-1

3.2 TERMINAL IDENTIFICATION3.2.1 369 TERMINAL LIST ......................................................................................... 3-23.2.2 269 TO 369 CONVERSION TERMINAL LIST ................................................... 3-33.2.3 MTM-369 CONVERSION TERMINAL LIST....................................................... 3-43.2.4 MPM-369 CONVERSION TERMINAL LIST....................................................... 3-43.2.5 TERMINAL LAYOUT.......................................................................................... 3-5

3.3 ELECTRICAL INSTALLATION3.3.1 TYPICAL WIRING DIAGRAM ............................................................................ 3-63.3.2 TYPICAL WIRING.............................................................................................. 3-73.3.3 CONTROL POWER ........................................................................................... 3-73.3.4 PHASE CURRENT (CT) INPUTS ...................................................................... 3-73.3.5 GROUND CURRENT INPUTS .......................................................................... 3-83.3.6 ZERO SEQUENCE GROUND CT PLACEMENT .............................................. 3-83.3.7 PHASE VOLTAGE (VT/PT) INPUTS ................................................................. 3-93.3.8 BACKSPIN VOLTAGE INPUTS......................................................................... 3-93.3.9 RTD INPUTS.................................................................................................... 3-103.3.10 DIGITAL INPUTS ............................................................................................. 3-103.3.11 ANALOG OUTPUTS ........................................................................................ 3-113.3.12 REMOTE DISPLAY.......................................................................................... 3-113.3.13 OUTPUT RELAYS ........................................................................................... 3-123.3.14 RS485 COMMUNICATIONS............................................................................ 3-13

3.4 REMOTE RTD MODULE (RRTD)3.4.1 MECHANICAL INSTALLATION ....................................................................... 3-143.4.2 ELECTRICAL INSTALLATION ........................................................................ 3-15

3.5 CT INSTALLATION3.5.1 PHASE CT INSTALLATION............................................................................. 3-163.5.2 5 AMP GROUND CT INSTALLATION ............................................................. 3-173.5.3 HGF (50:0.025) GROUND CT INSTALLATION............................................... 3-18

Courtesy of NationalSwitchgear.com
Page 4: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

ii 369 Motor Management Relay GE Power Management

TABLE OF CONTENTS

4. USER INTERFACES 4.1 FACEPLATE INTERFACE4.1.1 DISPLAY.............................................................................................................4-14.1.2 LED INDICATORS..............................................................................................4-14.1.3 RS232 PROGRAM PORT ..................................................................................4-14.1.4 KEYPAD .............................................................................................................4-24.1.5 SETPOINT ENTRY.............................................................................................4-2

4.2 369PC INTERFACE4.2.1 HARDWARE & SOFTWARE REQUIREMENTS ................................................4-34.2.2 INSTALLING 369PC...........................................................................................4-34.2.3 UPGRADING 369PC ..........................................................................................4-34.2.4 CONFIGURATION..............................................................................................4-44.2.5 UPGRADING RELAY FIRMWARE.....................................................................4-44.2.6 CREATING A NEW SETPOINT FILE.................................................................4-54.2.7 EDITING A SETPOINT FILE ..............................................................................4-64.2.8 DOWNLOADING A SETPOINT FILE TO THE 369 ............................................4-64.2.9 UPGRADING SETPOINT FILE TO NEW REVISION.........................................4-74.2.10 CONVERTING 269 SETPOINT FILES TO 369..................................................4-84.2.11 PRINTING...........................................................................................................4-84.2.12 TRENDING .........................................................................................................4-94.2.13 WAVEFORM CAPTURE ..................................................................................4-104.2.14 PHASORS ........................................................................................................4-114.2.15 EVENT RECORDING.......................................................................................4-124.2.16 TROUBLESHOOTING......................................................................................4-12

5. SETPOINTS 5.1 OVERVIEW5.1.1 SETPOINTS MAIN MENU..................................................................................5-1

5.2 S1 369 SETUP5.2.1 SETPOINTS PAGE 1 MENU..............................................................................5-45.2.2 SETPOINT ACCESS ..........................................................................................5-45.2.3 DISPLAY PREFERENCES.................................................................................5-55.2.4 369 COMMUNICATIONS ...................................................................................5-65.2.5 REAL TIME CLOCK ...........................................................................................5-85.2.6 WAVEFORM CAPTURE ....................................................................................5-85.2.7 MESSAGE SCRATCHPAD ................................................................................5-95.2.8 DEFAULT MESSAGES ......................................................................................5-95.2.9 CLEAR/PRESET DATA....................................................................................5-105.2.10 FACTORY SERVICE........................................................................................5-10

5.3 S2 SYSTEM SETUP5.3.1 SETPOINTS PAGE 2 MENU............................................................................5-115.3.2 CT/VT SETUP ..................................................................................................5-115.3.3 MONITORING SETUP .....................................................................................5-12

a TRIP COUNTER ...................................................................................... 5-12b STARTER FAILURE ................................................................................ 5-13c DEMAND: ................................................................................................ 5-13d SELF-TEST RELAY ASSIGNMENT: ....................................................... 5-15

5.3.4 OUTPUT RELAY SETUP .................................................................................5-165.3.5 CONTROL FUNCTIONS ..................................................................................5-175.3.6 REDUCED VOLTAGE START TIMER .............................................................5-175.3.7 AUTORESTART ...............................................................................................5-19

5.4 S3 OVERLOAD PROTECTION5.4.1 SETPOINTS PAGE 3 MENU............................................................................5-215.4.2 THERMAL MODEL...........................................................................................5-225.4.3 OVERLOAD CURVES......................................................................................5-23

a STANDARD OVERLOAD CURVE:.......................................................... 5-24b CUSTOM OVERLOAD CURVE: .............................................................. 5-27

5.4.4 UNBALANCE BIAS...........................................................................................5-285.4.5 MOTOR COOLING...........................................................................................5-295.4.6 HOT/COLD CURVE RATIO..............................................................................5-295.4.7 RTD BIAS .........................................................................................................5-305.4.8 OVERLOAD ALARM ........................................................................................5-31

Courtesy of NationalSwitchgear.com
Page 5: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay iii

TABLE OF CONTENTS

5.5 S4 CURRENT ELEMENTS5.5.1 SETPOINTS PAGE 4 MENU ........................................................................... 5-325.5.2 SHORT CIRCUIT ............................................................................................. 5-325.5.3 MECHANICAL JAM ......................................................................................... 5-335.5.4 UNDERCURRENT........................................................................................... 5-345.5.5 CURRENT UNBALANCE................................................................................. 5-355.5.6 GROUND FAULT............................................................................................. 5-36

5.6 S5 MOTOR START / INHIBITS5.6.1 SETPOINTS PAGE 5 MENU ........................................................................... 5-385.6.2 ACCELERATION TRIP .................................................................................... 5-385.6.3 START INHIBITS ............................................................................................. 5-395.6.4 BACKSPIN DETECTION ................................................................................. 5-40

5.7 S6 RTD TEMPERATURE5.7.1 SETPOINTS PAGE 6 MENU ........................................................................... 5-415.7.2 LOCAL RTD PROTECTION ............................................................................ 5-415.7.3 REMOTE RTD PROTECTION......................................................................... 5-425.7.4 OPEN RTD ALARM ......................................................................................... 5-445.7.5 SHORT/LOW TEMP RTD ALARM................................................................... 5-455.7.6 LOSS OF RRTD COMMS ALARM .................................................................. 5-45

5.8 S7 VOLTAGE ELEMENTS5.8.1 SETPOINTS PAGE 7 MENU ........................................................................... 5-465.8.2 UNDERVOLTAGE ........................................................................................... 5-465.8.3 OVERVOLTAGE .............................................................................................. 5-475.8.4 PHASE REVERSAL......................................................................................... 5-485.8.5 UNDERFREQUENCY...................................................................................... 5-485.8.6 OVERFREQUENCY ........................................................................................ 5-49

5.9 S8 POWER ELEMENTS5.9.1 SETPOINTS PAGE 8 MENU ........................................................................... 5-505.9.2 LEAD POWER FACTOR ................................................................................. 5-515.9.3 LAG POWER FACTOR.................................................................................... 5-515.9.4 POSITIVE REACTIVE POWER ....................................................................... 5-525.9.5 NEGATIVE REACTIVE POWER ..................................................................... 5-535.9.6 UNDERPOWER............................................................................................... 5-535.9.7 REVERSE POWER ......................................................................................... 5-54

5.10 S9 DIGITAL INPUTS5.10.1 SETPOINTS PAGE 9 MENU ........................................................................... 5-555.10.2 SPARE SWITCH.............................................................................................. 5-555.10.3 EMERGENCY RESTART ................................................................................ 5-555.10.4 DIFFERENTIAL SWITCH ................................................................................ 5-565.10.5 SPEED SWITCH.............................................................................................. 5-565.10.6 REMOTE RESET............................................................................................. 5-565.10.7 DIGITAL INPUT FUNCTIONS ......................................................................... 5-57

a GENERAL................................................................................................ 5-57b DIGITAL COUNTER ................................................................................ 5-57c WAVEFORM CAPTURE.......................................................................... 5-58d SIMULATE PRE-FAULT.......................................................................... 5-58e SIMULATE FAULT................................................................................... 5-58f SIMULATE PRE-FAULT to FAULT.......................................................... 5-58

5.11 S10 ANALOG OUTPUTS5.11.1 SETPOINTS PAGE 10 MENU ......................................................................... 5-595.11.2 ANALOG OUTPUTS ........................................................................................ 5-595.11.3 ANALOG OUTPUT PARAMETER SELECTION.............................................. 5-60

5.12 S11 369 TESTING5.12.1 SETPOINTS PAGE 11 MENU ......................................................................... 5-615.12.2 SIMULATION MODE ....................................................................................... 5-615.12.3 PRE-FAULT SETUP ........................................................................................ 5-625.12.4 FAULT SETUP................................................................................................. 5-635.12.5 POST- FAULT SETUP..................................................................................... 5-645.12.6 TEST OUTPUT RELAYS ................................................................................. 5-655.12.7 TEST ANALOG OUTPUTS.............................................................................. 5-65

Courtesy of NationalSwitchgear.com
Page 6: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

iv 369 Motor Management Relay GE Power Management

TABLE OF CONTENTS

6. ACTUAL VALUES 6.1 OVERVIEW6.1.1 ACTUAL VALUES MAIN MENU.........................................................................6-1

6.2 A1 STATUS6.2.1 ACTUAL VALUES PAGE 1 MENU.....................................................................6-36.2.2 MOTOR STATUS ...............................................................................................6-36.2.3 LAST TRIP DATA ...............................................................................................6-46.2.4 ALARM STATUS ................................................................................................6-46.2.5 START INHIBIT STATUS ...................................................................................6-56.2.6 DIGITAL INPUT STATUS...................................................................................6-56.2.7 OUTPUT RELAY STATUS .................................................................................6-66.2.8 REAL TIME CLOCK ...........................................................................................6-6

6.3 A2 METERING DATA6.3.1 ACTUAL VALUES PAGE 2 MENU.....................................................................6-76.3.2 CURRENT METERING ......................................................................................6-76.3.3 VOLTAGE METERING.......................................................................................6-86.3.4 POWER METERING ..........................................................................................6-86.3.5 BACKSPIN METERING......................................................................................6-96.3.6 LOCAL RTD........................................................................................................6-96.3.7 REMOTE RTD ..................................................................................................6-106.3.8 DEMAND METERING ......................................................................................6-116.3.9 PHASORS ........................................................................................................6-11

6.4 A3 LEARNED DATA6.4.1 ACTUAL VALUES PAGE 3 MENU...................................................................6-136.4.2 MOTOR DATA..................................................................................................6-136.4.3 LOCAL RTD MAXIMUMS.................................................................................6-146.4.4 REMOTE RTD MAXIMUMS .............................................................................6-15

6.5 A4 STATISTICAL DATA6.5.1 ACTUAL VALUES PAGE 4 MENU...................................................................6-166.5.2 TRIP COUNTERS ............................................................................................6-166.5.3 MOTOR STATISTICS.......................................................................................6-17

6.6 A5 EVENT RECORD6.6.1 ACTUAL VALUES PAGE 5 MENU...................................................................6-186.6.2 EVENT 01.........................................................................................................6-18

6.7 A6 RELAY INFORMATION6.7.1 ACTUAL VALUES PAGE 6 MENU...................................................................6-196.7.2 MODEL INFORMATION...................................................................................6-196.7.3 FIRMWARE VERSION .....................................................................................6-19

7. APPLICATIONS 7.1 269-369 COMPARISON7.1.1 369 AND 269PLUS COMPARISON ...................................................................7-1

7.2 369 FAQs7.2.1 FREQUENTLY ASKED QUESTIONS (FAQs)....................................................7-2

7.3 369 DOs and DON’Ts7.3.1 DOs and DON’Ts................................................................................................7-5

a DOs............................................................................................................ 7-5b DON'Ts ...................................................................................................... 7-6

7.4 CT SPECIFICATION AND SELECTION7.4.1 CT SPECIFICATION ..........................................................................................7-7

a 369 CT WITHSTAND................................................................................. 7-7b CT SIZE AND SATURATION .................................................................... 7-7

7.4.2 CT SELECTION..................................................................................................7-7

7.5 PROGRAMMING EXAMPLE7.5.1 PROGRAMMING EXAMPLE..............................................................................7-9

7.6 APPLICATIONS7.6.1 MOTOR STATUS DETECTION........................................................................7-137.6.2 SELECTION OF COOL TIME CONSTANTS....................................................7-147.6.3 THERMAL MODEL...........................................................................................7-15

Courtesy of NationalSwitchgear.com
Page 7: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay v

TABLE OF CONTENTS

7.6.4 RTD BIAS FEATURE....................................................................................... 7-167.6.5 THERMAL CAPACITY USED CALCULATION................................................ 7-177.6.6 START INHIBIT................................................................................................ 7-187.6.7 2φ CT CONFIGURATION ................................................................................ 7-207.6.8 GROUND FAULT DETECTION ON UNGROUNDED SYSTEMS ................... 7-217.6.9 RTD CIRCUITRY ............................................................................................. 7-227.6.10 REDUCED RTD LEAD NUMBER APPLICATION ........................................... 7-237.6.11 TWO WIRE RTD LEAD COMPENSATION ..................................................... 7-247.6.12 AUTO TRANSFORMER STARTER WIRING .................................................. 7-24

8. TESTING 8.1 TEST SETUP8.1.1 INTRODUCTION................................................................................................ 8-18.1.2 SECONDARY INJECTION TEST SETUP ......................................................... 8-1

8.2 HARDWARE FUNCTIONAL TESTING8.2.1 PHASE CURRENT ACCURACY TEST ............................................................. 8-28.2.2 VOLTAGE INPUT ACCURACY TEST ............................................................... 8-28.2.3 GROUND (1A/5A) ACCURACY TEST............................................................... 8-38.2.4 50:0.025 GROUND ACCURACY TEST............................................................. 8-38.2.5 RTD ACCURACY TEST .................................................................................... 8-48.2.6 DIGITAL INPUTS AND TRIP COIL SUPERVISION .......................................... 8-58.2.7 ANALOG INPUTS AND OUTPUTS ................................................................... 8-58.2.8 OUTPUT RELAYS ............................................................................................. 8-6

8.3 ADDITIONAL FUNCTIONAL TESTING8.3.1 OVERLOAD CURVE TEST ............................................................................... 8-78.3.2 POWER MEASUREMENT TEST ...................................................................... 8-78.3.3 VOLTAGE PHASE REVERSAL TEST............................................................... 8-88.3.4 SHORT CIRCUIT TEST..................................................................................... 8-8

9. COMMISSIONING 9.1 COMMISSIONING SETPOINTS9.1.1 SETPOINTS TABLE .......................................................................................... 9-1

10. COMMUNICATIONS 10.1 OVERVIEW10.1.1 ELECTRICAL INTERFACE.............................................................................. 10-110.1.2 PROFIBUS COMMUNICATIONS .................................................................... 10-110.1.3 MODBUS COMMUNICATIONS....................................................................... 10-1

10.2 PROFIBUS PROTOCOL10.2.1 369MMR-DP PARAMETERIZATOIN............................................................... 10-210.2.2 369MMR-DP CONFIGURATION ..................................................................... 10-210.2.3 369MMR-DP DIAGNOSTICS........................................................................... 10-5

10.3 MODBUS RTU PROTOCOL10.3.1 DATA FRAME FORMAT AND DATA RATE .................................................... 10-810.3.2 DATA PACKET FORMAT ................................................................................ 10-810.3.3 ERROR CHECKING ........................................................................................ 10-810.3.4 CRC-16 ALGORITHM...................................................................................... 10-910.3.5 TIMING............................................................................................................. 10-910.3.6 SUPPORTED MODBUS FUNCTIONS ............................................................ 10-910.3.7 ERROR RESPONSES................................................................................... 10-10

10.4 MEMORY MAP10.4.1 MEMORY MAP INFORMATION .................................................................... 10-1110.4.2 USER DEFINABLE MEMORY MAP AREA ................................................... 10-1110.4.3 EVENT RECORDER...................................................................................... 10-1110.4.4 WAVEFORM CAPTURE................................................................................ 10-1110.4.5 MODBUS MEMORY MAP ............................................................................. 10-1210.4.6 FORMAT CODES .......................................................................................... 10-64

Courtesy of NationalSwitchgear.com
Page 8: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

vi 369 Motor Management Relay GE Power Management

TABLE OF CONTENTS

A. REVISIONS A.1 CHANGE NOTESA.1.1 REVISION HISTORY .............................................................A-1A.1.2 MAJOR UPDATES FOR 369-BC ...........................................A-1A.1.3 MAJOR UPDATES FOR 369-BB ...........................................A-1A.1.4 MAJOR UPDATES FOR 369-BA ...........................................A-1A.1.5 MAJOR UPDATES FOR 369-B9............................................A-2A.1.6 MAJOR UPDATES FOR 369-B8............................................A-2A.1.7 MAJOR UPDATES FOR 369-B7............................................A-2

A.2 WARRANTYA.2.1 WARRANTY INFORMATION.................................................A-3

INDEX

Courtesy of NationalSwitchgear.com
Page 9: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 1-1

1 INTRODUCTION 1.1 ORDERING

11 INTRODUCTION 1.1 ORDERING 1.1.1 GENERAL OVERVIEW

The 369 Motor Management Relay is a digital relay that provides protection and monitoring for three phase motors andtheir associated mechanical systems. A unique feature of the 369 is its ability to ‘learn’ individual motor parameters and toadapt itself to each application. Values such as motor inrush current, cooling rates and acceleration time may be used toimprove the 369’s protective capabilities.

The 369 offers optimum motor protection where other relays cannot, by using the FlexCurve™ custom overload curve, orone of the fifteen standard curves.

The 369 has one RS232 front panel port and three RS485 rear ports. The Modbus RTU protocol is standard to all ports.Setpoints can be entered via the front keypad or by using the 369PC software and a computer. Status, actual values andtroubleshooting information are also available via the front panel display or via communications. A simulation mode andpickup indicator allow testing and verification of correct operation without requiring a relay test set.

As an option, the 369 can individually monitor up to 12 RTDs. These can be from the stator, bearings, ambient or drivenequipment. The type of RTD used is software selectable. Optionally available as an accessory is the remote RTD modulewhich can be linked to the 369 via a fibre optic or RS485 connection.

The optional metering package provides VT inputs for voltage and power elements. It also provides metering of V, kW, kvar,kVA, PF, Hz, and MWhrs. Three additional user configurable analog outputs are included with this option along with oneanalog output included as part of the base unit.

The Back-Spin Detection (B) option enables the 369 to detect the flow reversal of a pump motor and enable timely and safemotor restarting. 369 options are available when ordering the relay or as upgrades to the relay in the field. Field upgradesare via an option enabling passcode available from GE Power Management, which is unique to each relay and option.

1.1.2 ORDERING

Select the basic model and the desired features from the selection guide below:

Notes: One Analog Output is now available with the 369 base model. The other three Analog Outputs canbe obtained by purchasing the metering or backspin options.The control power (HI or LO) must be specified with all orders. If a feature is not required, a 0 must beplaced in the order code. All order codes have 9 digits. The 369 is available in a non-drawout version only.

Examples: 369-HI-R-0-0-0 369 with HI voltage control power and 12 RTD inputs369-LO-0-M-0-0 369 relay with LO voltage control power and metering option

Location: GE Power Management215 Anderson AvenueMarkham, OntarioCanada L6E 1B3Tel: (905) 294-6222, 1-800-547-8629 (North America)Fax: (905) 201-2098Web Page: http://www.GEindustrial.com/pm; e-mail: [email protected]

369 S S S S S

369 | | | | | Base unit (no RTD)

HI | | | | 50-300 VDC / 40-265 VAC control power

LO | | | | 20-60 VDC / 20-48 VAC control power

R | | | Optional 12 RTD inputs (built-in)

0 | | | No optional RTD inputs

M | | Optional metering package

B | | Optional backspin detection (incl. metering)

0 | | No optional metering or backspin detection

F | Optional Fiber Optic Port

0 | No optional Fiber Optic Port

E Optional Modbus/TCP protocol interface

P Optional Profibus protocol interface

0 No optional Profibus protocol interface

Courtesy of NationalSwitchgear.com
Page 10: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

1-2 369 Motor Management Relay GE Power Management

1.1 ORDERING 1 INTRODUCTION

11.1.3 ACCESSORIES

369PC software: Setup and monitoring software provided free with each relay.

RRTD: Remote RTD Module. Connects to the 369 via a fibre optic or RS485 connection. Allows remote meter-ing and programming for up to 12 RTDs. Complete with connecting fiber optic cable.

F485: Converts communications between RS232 and RS485 / fibre optic. Used to interface a computer tothe relay.

CT: 50, 75, 100, 150, 200, 300, 350, 400, 500, 600, 750, 1000 (1A or 5A secondaries)

HGF: Ground CTs (50:0.025) used for sensitive earth fault detection on high resistance grounded systems.

515: Blocking and test module. Provides effective trip blocking and relay isolation.

DEMO: Metal carry case in which 369 is mounted.

FPC15: Remote faceplate cable, 15'.

1.1.4 FIRMWARE HISTORY

1.1.5 PC PROGRAM (SOFTWARE) HISTORY

FIRMWARE REVISION BRIEF DESCRIPTION OF CHANGE RELEASE DATE

53CMB110.000 Production Release June 14, 1999

53CMB111.000 Changes to Backspin Detection algorithm June 24, 1999

53CMB112.000 Changes to Backspin Detection algorithm July 2, 1999

53CMB120.000 Capability to work with the Remote RTD module October 15, 1999

53CMB130.000 Improvements to the Remote RTD communications January 3, 2000

53CMB140.000 Changes to Backspin Detection algorithm and improved RS232 communications March 27, 2000

53CMB145.000 Minor firmware changes June 9, 2000

53CMB160.000 Profibus protocol, waveform capture, phasor display, single analog output, demand power and current, power consumption

October 12, 2000

53CMB161.000 Minor firmware changes October 19, 2000

53CMB162.000 Minor firmware changes November 30, 2000

53CMB170.000 Autorestart feature added February 9, 2001

53CMB180.000 Modbus/TCP feature added June 15, 2001

PC PROGRAM REVISION

BRIEF DESCRIPTION OF CHANGES RELEASE DATE

1.10 Production Release June 14, 1999

1.20 Capability to work with the Remote RTD module October 15, 1999

1.30 Capability to communicate effectively with version 1.30 firmware January 3, 2000

1.40 Changes made for new firmware release March 27, 2000

1.45 Changes made for new firmware release June 9, 2000

1.60 Profibus protocol, waveform capture, phasor display, single analog output, demand power and current, power consumption

October 23, 2000

1.70 Changes made for new firmware release February 9, 2001

1.80 Changes made for new firmware release June 7, 2001

Courtesy of NationalSwitchgear.com
Page 11: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 1-3

1 INTRODUCTION 1.1 ORDERING

11.1.6 369 FUNCTIONAL SUMMARY

Figure 1–1: FRONT AND REAR VIEW840702BF.CDR

FIBER OPTIC DATA LINK ( F )For harsh enviroments and orhook up to RRTD

PROFIBUS PORT (P)MODBUS/TCP PORT ( E )

BACKSPIN DETECTION ( B )0-480V RMS

3 x RS485 Ports3 Independent modbuschannels

1 ANALOG OUTPUT ( Base Unit )3 ANALOG OUTPUTS (M, B)

VOLTAGE INPUTS ( M )0-240V wye or delta VTconnections.

GROUND CT INPUTS5A, 1A and 50:0.25 taps

12 RTD INPUTS ( R )Field selectable type

CURRENT INPUTS3 Phase and ground CT inputs5A, 1A, taps

CONTROL POWERHI: 50-300 VDC/40-265 VACLO: 20-60 VDC / 20-48 VAC

4 OUTPUT RELAYSProgrammable alarm and tripconditions activated byprogrammable setpoints,switch input, remotecommunication control

Customer AccessibleFuse

DIGITAL INPUTS

DISPLAY40 Character alpha-numericLCD display for viewingactual values, causesof alarms and trips, andprogramming setpoints

STATUS INDICATORS

HELP KEYHelp key can be pressed atany time to provide additionalinformation

COMPUTER INTERFACERS232 comm port for con-necting to a PC. Use fordownloading setpoints,monitoring, data collection &printing reports.

KEYPADUsed to select the displayof actual values, causes ofalarms, causes of trips, faultdiagnosis, and to programsetpoints

Rugged, corrosion andflame retardent case.

STATUS INDICATORS4 LEDs indicate when anoutput is activated. Whenan LED is lit, the cause ofthe output relay operationwill be shown on the display.

indicates that aself-diagnostic test failed.SERVICE LED

LEDs indicate if motor isbackspinning, RRTD isconnected, metering isenabled and com. status

Courtesy of NationalSwitchgear.com
Page 12: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

1-4 369 Motor Management Relay GE Power Management

1.1 ORDERING 1 INTRODUCTION

11.1.7 RELAY LABEL DEFINITION

1. The 369 order code at the time of leaving the factory.

2. The serial number of the 369.

3. The firmware installed in the 369 at the factory. Note that this may no longer be the currently installed firmware as itmay upgraded in the field. The current firmware revision may be checked in the Actual Values section of the 369.

4. Specifications for the output relay contacts.

5. Certifications the 369 conforms with or has been approved to.

6. Factory installed options. These are based on the order code. Note that the 369 may have had options upgraded in thefield. The Actual Values section of the 369 may be checked to verify this.

7. Control power ratings for the 369 as ordered. Based on the HI/LO rating from the order code.

8. Pollution degree.

9. Overvoltage Category.

10. IP code.

11. Modification number for any factory ordered mods. Note that the 369 may have had modifications added in the field.The Actual Values section of the 369 may be checked to verify this.

12. Insulative voltage rating.

CEg

INPUT POWER:

MODEL: 369-HI-R-B-F-P

MAXIMUM CONTACT RATING250 VAC 8A RESISTIVE

1/4 HP 125 VAC 1/2 HP 250 VAC

SERIAL No: M53B01001056

FIRMWARE: 53CMB180.000

POLLUTION DEGREE: 2 IP CODE: 50X

50-300 VDC

40-265 VAC

485mA MAX.

50/60Hz or DCMOD:

12 RTDs:

BACKSPIN

FIBER OPTIC PORT

PROFIBUS

OPTIONS

INSULATIVE VOLTAGE: 2

NONEOVERVOLTAGE CATAGORY: II

1

7

2

8

3

9

4

10 11

5 6

12840350A7.CDR

UL

Courtesy of NationalSwitchgear.com
Page 13: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 2-1

2 PRODUCT DESCRIPTION 2.1 OVERVIEW

2

2 PRODUCT DESCRIPTION 2.1 OVERVIEW 2.1.1 GUIDEFORM SPECIFICATIONS

Motor protection and management shall be provided by a digital relay. Protective functions shall include:

• phase overload standard curves (51)

• overload by custom programmable curve (51)

• I2t modeling (49)

• current unbalance / single phase detection (46)

• starts per hour and time between starts

• short circuit (50)

• ground fault (50G/50N 51G/51N)

• mechanical jam / stall

Optional functions shall include:

• under / overvoltage (27/59)

• phase reversal (47)

• underpower (37)

• power factor (55)

• stator / bearing overtemperature with twelve (12) inde-pendent RTD inputs (49/38)

• backspin detection

Management functions shall include:

• statistical data

• pre-trip data (last 40 events)

• ability to learn, display and integrate critical parame-ters to maximize motor protection

• a keypad with 40 character display

• flash memory

The relay shall be capable of displaying important metering functions, including phase voltages, kilowatts, kvars, power fac-tor, frequency and MWhr. In addition, undervoltage and low power factor alarm and trip levels shall be field programmable.The communications interface shall include one front RS232 port and three independent rear RS485 ports with supportingPC software, thus allowing easy setpoint programming, local retrieval of information and flexibility in communication withSCADA and engineering workstations.

2.1.2 METERED QUANTITIES

METERED QUANTITY UNITS OPTION

Phase Currents and Current Demand Amps

Motor Load × FLA

Unbalance Current %

Ground Current Amps

Input Switch Status Open / Closed

Relay Output Status (De) Energized

RTD Temperature °C or °F R

Backspin Frequency Hz B

Phase/Line Voltages Volts M

Frequency Hz M

Power Factor lead / lag M

Real Power and Real Power Demand Watts M

Reactive Power and Reactive Power Demand Vars M

Apparent Power and Apparent Power Demand VA M

Real Power Consumption kWhrs M

Reactive Power Consumption/Generation ±kvarhrs M

Courtesy of NationalSwitchgear.com
Page 14: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

2-2 369 Motor Management Relay GE Power Management

2.1 OVERVIEW 2 PRODUCT DESCRIPTION

2

2.1.3 PROTECTION FEATURES

ANSI/IEEE DEVICE

PROTECTION FEATURES OPTION TRIP ALARM BLOCKSTART

14 Speed Switch •

27 Undervoltage M • • •

37 Undercurrent / Underpower /M • •

38 Bearing RTD R or RRTD • •

46 Current Unbalance • •

47 Voltage Phase Reversal M •

49 Stator RTD R or RRTD • •

50 Short Circuit & Backup •

50G/51G Ground Fault & Ground Fault Backup • •

51 Overload • • •

55 Power Factor M • •

59 Overvoltage M • •

66 Starts per Hour/Time Between Starts •

74 Alarm •

81 Over/Under Frequency M • •

86 Lockout •

87 Differential Switch •

General Switch • •

Reactive Power M • •

Thermal Capacity •

Start Inhibit (thermal capacity available) •

Restart Block (Backspin Timer) •

Mechanical Jam • •

Acceleration Timer •

Ambient RTD R or RRTD • •

Short/Low temp RTD R or RRTD •

Broken/Open RTD R or RRTD •

Loss of RRTD Communications RRTD •

Trip Counter •

Self Test/Service •

Backspin Detection B •

Current Demand •

kW Demand M •

kvar Demand M •

kVA Demand M •

Starter Failure •

Reverse Power M •

Courtesy of NationalSwitchgear.com
Page 15: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 2-3

2 PRODUCT DESCRIPTION 2.1 OVERVIEW

2

2.1.4 ADDITIONAL FEATURES

Figure 2–1: SINGLE LINE DIAGRAM

FEATURE OPTION FEATURE OPTION

Modbus RTU Communications Protocol Modbus RTU Communications Protocol

Profibus DP rear communication port P Profibus DP rear communication port P

User Definable Baud Rate (1200-19200) User Definable Baud Rate (1200-19200)

Flash Memory for easy firmware updates Flash Memory for easy firmware updates

Front RS232 communication port Front RS232 communication port

Rear RS485 communication port Rear RS485 communication port

Rear fiber optic port F Rear fiber optic port F

RTD type is user definable R or RRTD RTD type is user definable R or RRTD

4 User Definable Analog Outputs(0 to 1 mA, 0 to 20 mA, 4 to 20 mA)

M 4 User Definable Analog Outputs (0 to 1 mA, 0 to 20 mA, 4 to 20 mA)

M

Windows based PC program for setting up and monitoring

Windows based PC program for setting up and monitoring

50G52

4 ISOLATEDANALOGOUTPUTS

METERINGV, W, Var, VA, PF, Hz

METERINGA, Celsius51 37

50BACKUP

OPTIONAL METERING (M)

BUSVV

55

50

27 47 59

14

87

49 38

86

74

14

87

SPEED DEVICE

3

DIFFERENTIAL

INPUTS

RTDs

AMBIENT AIR

BREAKEROR FUSED

CONTACTOR

RS232

START

RS485RS485RS485

STATORBEARINGAMBIENT

840701B1.CDR

RELAY CONTACTS

AMBIENTSTATOR

BEARING

50G51G

4666

Courtesy of NationalSwitchgear.com
Page 16: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

2-4 369 Motor Management Relay GE Power Management

2.2 TECHNICAL SPECIFICATIONS 2 PRODUCT DESCRIPTION

2

2.2 TECHNICAL SPECIFICATIONS Specifications are subject to change without notice.

2.2.1 INPUTS

CONTROL POWERLO range: DC: 20 to 60 V DC

AC: 20 to 48 V AC at 50/60 Hz

HI range: DC: 50 to 300 V DCAC: 40 to 265 V AC at 50/60 Hz

Power: nominal: 20 VA; maximum: 65 VA

Holdup: non-failsafe trip: 200 ms; failsafe trip: 100 ms

FUSET 3.15 A H 250 V (5 × 20 mm)

Timelag high breaking capacity

PHASE CURRENT INPUTS (CT)CT input (rated): 1 A and 5 A secondary

CT primary: 1 to 5000 A

Range: 0.05 to 20 x CT primary Amps

Full Scale: 20 x CT primary Amps or 65535 A maximum

Frequency: 50/60 Hz

Conversion: True RMS, 1.04 ms/sample

Accuracy: at ≤ 2 x CT: ±0.5% of 2 x CTat > 2 x CT: ±1.0% of 20 x CT

PHASE CT BURDEN

PHASE CT CURRENT WITHSTAND

DIGITAL / SWITCH INPUTSInputs: 6 optically isolated

Input type: Dry Contact (< 800 Ω)

Function: Programmable

GROUND CURRENT INPUT (GF CT)CT Input (rated): 1 A/5 A secondary and 50:0.025

CT Primary: 1 to 5000 A (1 A/5 A)

Range: 0.1 to 1.0 × CT primary (1 A/5 A)0.05 to 16.0 A (50:0.025)

Full Scale: 1.0 × CT primary (1 A/5 A)25 A (50:0.025)

Frequency: 50/60 Hz

Conversion: True RMS 1.04ms/sample

Accuracy: ±1.0% of full scale (1 A/5 A)±0.07 A at <1 A (50:0.025)±0.20 A at <16 A (50:0.025)

GROUND CT BURDEN

GROUND CT CURRENT WITHSTAND

PHASE/LINE VOLTAGE INPUT (VT) (Option M)VT ratio: 1.00 to 240.00:1 in steps of 0.01

VT Secondary: 240 V AC (full scale)

Range: 0.05 to 1.00 × full scale

Frequency: 50/60 Hz

Conversion: True RMS 1.04 ms/sample

Accuracy: ±1.0% of full scale

Burden: >200 kΩMax. Continuous: 280 V AC

BSD INPUTS (Option B)Frequency: 1 to 120 Hz

Dynamic BSD range: 20 mV to 480 V RMS

Accuracy: ±0.02 Hz

Burden: >200 kΩ

RTD INPUTS (Option R)Wire Type: 3 wire

Sensor Type: 100 Ω platinum (DIN 43760), 100 Ω nickel, 120 Ω nickel, 10 Ω copper

RTD sensing current: 3 mA

Range: –40 to 200°C or –40 to 392°FAccuracy: ±2°C or ±4°FLead Resistance: 25 Ω max. for Pt and Ni type;

3 Ω max. for Cu type

Isolation: 36 Vpk

PHASE CT INPUT (A) BURDEN

VA (Ω)

1 A 1 0.03 0.03

5 0.64 0.03

20 11.7 0.03

5 A 5 0.07 0.003

25 1.71 0.003

100 31 0.003

PHASE CT WITHSTAND TIME

1 s 2 s continuous

1 A 100 × CT 40 × CT 3 × CT

5 A 100 × CT 40 × CT 3 × CT

GROUND CT INPUT (A) BURDEN

VA (Ω)

1 A 1 0.04 0.036

5 0.78 0.031

20 6.79 0.017

5 A 5 0.07 0.003

25 1.72 0.003

100 25 0.003

50:0.025 0.025 0.24 384

0.1 2.61 261

0.5 37.5 150

GROUND CT WITHSTAND TIME

1 s 2 s continuous

1 A 100 × CT 40 × CT 3 × CT

5 A 100 × CT 40 × CT 3 × CT

50:0.025 10 A 5 A 150 mA

Courtesy of NationalSwitchgear.com
Page 17: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 2-5

2 PRODUCT DESCRIPTION 2.2 TECHNICAL SPECIFICATIONS

2

2.2.2 OUTPUTS

ANALOG OUTPUTS (Option M)

Accuracy: ±1% of full scale

Isolation: 50 V isolated active source

OUTPUT RELAYS

2.2.3 METERING

POWER METERING (OPTION M) EVENT RECORDCapacity: last 40 events

Triggers: trip, inhibit, power fail, alarms, self test,waveform capture

WAVEFORM CAPTURELength: 3 buffers containing 16 cycles of all current

and voltage channels

Trigger Position: 1 to 100% pre-trip to post-trip

Trigger: trip, manually via communications or digital input

2.2.4 COMMUNICATIONS

FRONT PORTType: RS232, non-isolated

Baud Rate: 1200 to 19200

Protocol: Modbus® RTU

BACK PORTS (3)Type: RS485

Baud Rate: 1200 to 19200

Protocol: Modbus® RTU

36V Isolation (together)

FIBER OPTIC PORT (Option F)Optional Use: RTD remote module hookup

Baud Rate: 1200 to 19200

Protocol: Modbus® RTU

Fiber Sizes: 50/125, 62.5/125, 100/140, and 200 µm

PROFIBUS PORT (Option P)Type: RS485

Baud Rate: 1200 baud to 12 Mbaud

Protocol: Profibus DP

2.2.5 PROTECTION ELEMENTS

51 OVERLOAD/STALL/THERMAL MODELCurve Shape: 1 to 15 standard, custom

Curve Biasing: unbalance, temperature, hot/cold ratio,cool time constants

Pickup Level: 1.01 to 1.25 × FLA

Pickup Accuracy: as per phase current inputs

Dropout Level: 96 to 98% of pickup

Timing Accuracy: ±100 ms or ±2% of total trip time

THERMAL CAPACITY ALARMPickup Level: 1 to 100% TC in steps of 1

Pickup Accuracy: ±2%

Dropout Level: 96 to 98% of pickup

Timing Accuracy: ±100 ms

PROGRAMMABLE

OUTPUT 0 to 1 mA 0 to 20 mA 4 to 20 mA

MAX LOAD 2400 Ω 600 Ω 600 ΩMAX OUTPUT 1.01 mA 20.2 mA 20.2 mA

RESISTIVE LOAD (pf = 1)

INDUCTIVE LOAD (pf = 0.4)(L/R - 7ms)

RATED LOAD 8 A @ 250 V AC8 A @ 30 V DC

3.5 A @ 250 V AC3.5 A @ 30 V DC

CARRY CURRENT 8A

MAX SWITCHING CAPACITY

2000 VA240 W

875 VA170 W

MAX SWITCHING V 380 V AC 125 V DC

MAX SWITCHING I 8 A 3.5 A

OPERATE TIME <10 ms (5 ms typical)

CONTACT MATERIAL silver alloy

PARAMETER ACCURACY(FULL SCALE)

RESOLUTION RANGE

kW ±2% 1 kW 0 to 65535

kvar ±2% 1 kvar ±32000

kVA ±2% 1 kVA 0 to 65535

kWh ±2% 0.001 MWh 0 to 65535

±kvarh ±2% 0.001 Mvarh ±32000

Power Factor ±1% 0.01 ±0.00 to 1.00

Frequency ±0.02 Hz 0.01 Hz 20.00 to 300.00

kW Demand ±2% 1 kW 0 to 65535

kvar Demand ±2% 1 kvar ±32000

kVA Demand ±2% 1 kVA 0 to 65535

Amp Demand ±2% 1 A 0 to 65535

Courtesy of NationalSwitchgear.com
Page 18: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

2-6 369 Motor Management Relay GE Power Management

2.2 TECHNICAL SPECIFICATIONS 2 PRODUCT DESCRIPTION

2

OVERLOAD ALARMPickup Level: 1.01 to 1.50 × FLA in steps of 0.01

Pickup Accuracy: as per phase current inputs

Dropout Level: 96 to 98% of pickup

Time Delay: 0.1 to 60.0 s in steps of 0.1

Timing Accuracy: ±100 ms or ±2% of total trip time

50 SHORT CIRCUITPickup Level: 2.0 to 20.0 × CT in steps of 0.1

Pickup Accuracy: as per phase current inputs

Dropout Level: 96 to 98% of pickup

Time Delay: 0 to 255.00 s in steps of 0.01 s

Backup Delay: 0.10 to 255.00 s in steps of 0.01 s

Timing Accuracy: +50 ms for delays <50 ms±100 ms or ±0.5% of total trip time

MECHANICAL JAMPickup Level: 1.01 to 6.00 × FLA in steps of 0.01

Pickup Accuracy: as per phase current inputs

Dropout Level: 96 to 98% of pickup

Time Delay: 0.5 to 125.0 s in steps of 0.5

Timing Accuracy: ±250 ms or ±0.5% of total trip time

37 UNDERCURRENTPickup Level: 0.10 to 0.99 × FLA in steps of 0.01

Pickup Accuracy: as per phase current inputs

Dropout Level: 102 to 104% of pickup

Time Delay: 1 to 255 s in steps of 1

Start Delay: 0 to 15000 s in steps of 1

Timing Accuracy: ±500 ms or ±0.5% of total time

46 UNBALANCEPickup Level: 4 to 30% in steps of 1

Pickup Accuracy: ±2%

Dropout Level: 1 to 2% below pickup

Time Delay: 1 to 255 s in steps of 1

Start Delay: 0 to 5000 s in steps of 1

Timing Accuracy: ±500 ms or ±0.5% of total time

50G/51G 50N/51N GROUND FAULTPickup Level: 0.10 to 1.00 × CT for 1 A/5 A CT

0.25 to 25.00 A for 50:0.025 CT

Pickup Accuracy: as per ground current inputs

Dropout Level: 96 to 98% of pickup

Time Delay: 0 to 255.00 s in steps of 0.01 s

Backup Delay: 0.01 to 255.00 s in steps of 0.01 s

Timing Accuracy: +50 ms for delays <50 ms±100 ms or ±0.5% of total trip time

ACCELERATION TRIPPickup Level: motor start condition

Dropout Level: motor run, trip or stop condition

Time Delay: 1.0 to 250.0 s in steps of 0.1

Timing Accuracy: ±100 ms or ±0.5% of total time

38/49 RTD and RRTD PROTECTIONPickup Level: 1 to 200°C or 34 to 392°FPickup Accuracy: ±2°C or ±4°FDropout Level: 96 to 98% of pickup above 80°C

Time Delay: <5 s

OPEN RTD ALARMPickup Level: detection of an open RTD

Pickup Accuracy: >1000 ΩDropout Level: 96 to 98% of pickup

Time Delay: <5 s

SHORT/LOW TEMP RTD ALARMPickup Level: <–40°C or –40°FPickup Accuracy: ±2°C or ±4°FDropout Level: 96 to 98% of pickup

Time Delay: <5 s

LOSS OF RRTD COMMS ALARMPickup Level: no communication

Time Delay: 2 to 5 s

27 UNDERVOLTAGEPickup Level: 0.50 to 0.99 × rated in steps of 0.01

Pickup Accuracy: as per phase voltage inputs

Dropout Level: 102 to 104% of pickup

Time Delay: 0.0 to 255.0 s in steps of 0.1

Start Delay: separate level for start conditions

Timing Accuracy: +75 ms for delays <50 ms±100 ms or ±0.5% of total trip time

59 OVERVOLTAGEPickup Level: 1.01 to 1.25 × rated in steps of 0.01

Pickup Accuracy: as per phase voltage inputs

Dropout Level: 96 to 98% of pickup

Time Delay: 0.0 to 255.0 s in steps of 0.1

Timing Accuracy: ±100 ms or ±0.5% of total trip time

47 VOLTAGE PHASE REVERSALPickup Level: phase reversal detected

Time Delay: 500 to 700 ms

81 UNDERFREQUENCYPickup Level: 20.00 to 70.00 Hz in steps of 0.01

Pickup Accuracy: ±0.02 Hz

Dropout Level: 0.05 Hz

Time Delay: 0.0 to 255.0 s in steps of 0.1

Start Delay: 0 to 5000 s in steps of 1

Timing Accuracy: ±100 ms or ±0.5% of total trip time

81 OVERFREQUENCYPickup Level: 20.00 to 70.00 Hz in steps of 0.01

Pickup Accuracy: ±0.02 Hz

Dropout Level: 0.05 Hz

Time Delay: 0.0-255.0 s in steps of 0.1

Start Delay: 0-5000 s in steps of 1

Timing Accuracy: ±100 ms or ±0.5% of total trip time

55 LEAD POWER FACTORPickup Level: 0.99 to 0.05 in steps of 0.01

Pickup Accuracy: ±0.02

Dropout Level: 0.01 of pickup

Time Delay: 0.1 to 255.0 s in steps of 0.1

Start Delay: 0 to 5000 s in steps of 1

Timing Accuracy: ±300 ms or ±0.5% of total trip time

Courtesy of NationalSwitchgear.com
Page 19: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 2-7

2 PRODUCT DESCRIPTION 2.2 TECHNICAL SPECIFICATIONS

2

55 LAG POWER FACTORPickup Level: 0.99 to 0.05 in steps of 0.01

Pickup Accuracy: ±0.02

Dropout Level: 0.01 of pickup

Time Delay: 0.1 to 255.0 s in steps of 0.1

Start Delay: 0 to 5000 s in steps of 1

Timing Accuracy: ±300 ms or ±0.5% of total trip time

POSITIVE REACTIVE POWERPickup Level: 1 to 25000 in steps of 1

Pickup Accuracy: ±2%

Dropout Level: 96 to 98% of pickup

Time Delay: 0.1 to 255.0 s in steps of 0.1

Start Delay: 0 to 5000 s in steps of 1

Timing Accuracy: ±300 ms or ±0.5% of total trip time

NEGATIVE REACTIVE POWERPickup Level: 1 to 25000 kvar in steps of 1

Pickup Accuracy: ±2%

Dropout Level: 96 to 98% of pickup

Time Delay: 0.1 to 255.0 s in steps of 0.1

Start Delay: 0 to 5000 s in steps of 1

Timing Accuracy: ±300 ms or ±0.5% of total trip time

37 UNDERPOWERPickup Level: 1 to 25000 kW in steps of 1

Pickup Accuracy: ±2%

Dropout Level: 102 to 104% of pickup

Time Delay: 0.1 to 255.0 s in steps of 0.1

Start Delay: 0 to 15000 s in steps of 1

Timing Accuracy: ±300 ms or ±0.5% of total trip time

REVERSE POWERPickup Level: 1 to 25000 kW in steps of 1

Pickup Accuracy: ±2%

Dropout Level: 102 to 104% of pickup

Time Delay: 0.2 to 30.0 s in steps of 0.1

Start Delay: 0 to 50000 s in steps of 1

Timing Accuracy: ±300 ms or ±0.5% of total trip time

87 DIFFERENTIAL SWITCHTime Delay: <200 ms

14 SPEED SWITCHTime Delay: 0.5 to 100.0 s in steps of 0.5

Timing Accuracy: ±200 ms or ±0.5% of total trip time

GENERAL SWITCHTime Delay: 0.1 to 5000.0 s in steps of 0.1

Start Delay: 0 to 5000 s in steps of 1

Timing Accuracy: ±200 ms or ±0.5% of total trip time

DIGITAL COUNTERPickup: on count equaling level

Time Delay: <200 ms

BACKSPIN DETECTIONDynamic BSD: 20 mV to 480 V RMS

Pickup Level: 3 to 300 Hz in steps of 1

Dropout Level: 2 to 30 Hz in steps or 1

Level Accuracy: ±0.02 Hz

Timing Accuracy: ±500 ms or ±0.5% of total trip time

2.2.6 MONITORING ELEMENTS

STARTER FAILUREPickup Level: motor run condition when tripped

Dropout Level: motor stopped condition

Time Delay: 10 to 1000 ms in steps of 10

Timing Accuracy: ±100 ms or ±0.5% of total trip time

CURRENT DEMAND ALARMDemand Period: 5 to 90 min. in steps of 1

Pickup Level: 10 to 100000 A in steps of 1

Pickup Accuracy: as per phase current inputs

Dropout Level: 96 to 98% of pickup

Time Delay: <2 min.

kW DEMAND ALARMDemand Period: 5 to 90 min. in steps of 1

Pickup Level: 1 to 50000 kW in steps of 1

Pickup Accuracy: ±2%

Dropout Level: 96 to 98% of pickup

Time Delay: <2 min.

kvar DEMAND ALARMDemand Period: 5 to 90 min. in steps of 1

Pickup Level: 1 to 50000 kvar in steps of 1

Pickup Accuracy: ±2%

Dropout Level: 96 to 98% of pickup

Time Delay: <2 min.

kVA DEMAND ALARMDemand Period: 5 to 90 min in steps of 1

Pickup Level: 1 to 50000 kVA in steps of 1

Pickup Accuracy: ±2%

Dropout Level: 96 to 98% of pickup

Time Delay: <2 min.

TRIP COUNTERPickup: on count equaling level

Time Delay: <200 ms

2.2.7 CONTROL ELEMENTS

REDUCED VOLTAGE STARTTransition Level: 25 to 300% FLA in steps of 1

Transition Time: 1 to 250 sec. in steps of 1

Transition Control: Current, Timer, Current and Timer

Courtesy of NationalSwitchgear.com
Page 20: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

2-8 369 Motor Management Relay GE Power Management

2.2 TECHNICAL SPECIFICATIONS 2 PRODUCT DESCRIPTION

2

2.2.8 ENVIRONMENTAL SPECIFICATIONS

AMBIENT TEMPERATUREOperating Range: –40°C to +60°CStorage Range: –40°C to +80°C

NOTE: For 369 units with the Profibus option, the Operating andStorage ranges are as follows:

Operating Range: +5°C to +60°C

Storage Range: +5°C to +80°C

HUMIDITYUp to 95% non condensing

DUST/MOISTUREIP50

VENTILATION

No special ventilation required as long as ambient temperatureremains within specifications. Ventilation may be required in enclo-sures exposed to direct sunlight.

OVERVOLTAGE CATEGORY II

CLEANINGMay be cleaned with a damp cloth.

The 369 must be powered up at least once per year to prevent deterioration of electrolytic capacitors.

2.2.9 APPROVALS / CERTIFICATION

ISO: Designed and manufactured to an ISO9001 registered process.

CSA: CSA approved

UL: UL recognized

CE: Conforms to EN 55011/CISPR 11, EN50082-2, IEC 947-1, 1010-1

2.2.10 TYPE TEST STANDARDS

SURGE WITHSTAND CAPABILITYANSI/IEEE C37.90.1 Oscillatory (2.5 kV/1 MHz)

ANSI/IEEE C37.90.1 Fast Rise (5 kV/10 ns)

IEC EN61000-4-4, Level 4

INSULATION RESISTANCEIEC255-5

IMPULSE TESTPer IEC 255-5 Section 8

DIELECTRIC STRENGTH:

ANSI/IEEE C37.90

IEC 255-6

CSA C22.2

ELECTROSTATIC DISCHARGEEN61000-4-2, Level 3

IEC 801-2

SURGE IMMUNITYEN61000-4-5

CURRENT WITHSTANDANSI/IEEE C37.90

IEC 255-6

RFIANSI/IEEE C37.90.2, 35 V/m

EN61000-4-3

EN50082-2 @ 10 V

CONDUCTED/RADIATED EMISSIONSEN 55011 (CISPR 11)

TEMPERATURE/HUMIDITY WITH ACCURACYANSI/IEEE C37.90

IEC 255-6

IEC 68-2-38 Part 2

VIBRATIONIEC 255-21-1 Class 1

IEC 255-21-2 Class 1

VOLTAGE DEVIATIONEN61000-4-11

MAGNETIC FIELD IMMUNITYEN61000-4-8

2.2.11 PRODUCTION TESTS

DIELECTRIC STRENGTHAll high voltage inputs at 2 kV AC for 1 minute

BURN IN8 hours @ 60°C sampling plan

CALIBRATION AND FUNCTIONALITY100% hardware functionality tested

100% calibration of all metered quantities

NOTE

Courtesy of NationalSwitchgear.com
Page 21: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 3-1

3 INSTALLATION 3.1 MECHANICAL INSTALLATION

3

3 INSTALLATION 3.1 MECHANICAL INSTALLATION 3.1.1 MECHANICAL INSTALLATION

The 369 is contained in a compact plastic housing with the keypad, display, communication port, and indicators/targets onthe front panel. The unit should be positioned so the display and keypad are accessible. To mount the relay, make cutoutand drill mounting holes as shown below. Mounting hardware (bolts and washers) is provided with the relay. Although therelay is internally shielded to minimize noise pickup and interference, it should be mounted away from high current conduc-tors or sources of strong magnetic fields.

Figure 3–1: PHYSICAL DIMENSIONS

Figure 3–2: SPLIT MOUNTING DIMENSIONS

Courtesy of NationalSwitchgear.com
Page 22: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

3-2 369 Motor Management Relay GE Power Management

3.2 TERMINAL IDENTIFICATION 3 INSTALLATION

3

3.2 TERMINAL IDENTIFICATION 3.2.1 369 TERMINAL LIST

TERMINAL WIRING CONNECTION1 RTD1 +

2 RTD1 –

3 RTD1 COMPENSATION

4 RTD1 SHIELD

5 RTD2 +

6 RTD2 –

7 RTD2 COMPENSATION

8 RTD2 SHIELD

9 RTD3 +

10 RTD3 –

11 RTD3 COMPENSATION

12 RTD3 SHIELD

13 RTD4 +

14 RTD4 –

15 RTD4 COMPENSATION

16 RTD4 SHIELD

17 RTD5 +

18 RTD5 –

19 RTD5 COMPENSATION

20 RTD5 SHIELD

21 RTD6 +

22 RTD6 –

23 RTD6 COMPENSATION

24 RTD6 SHIELD

25 RTD7 +

26 RTD7 –

27 RTD7 COMPENSATION

28 RTD7 SHIELD

29 RTD8 +

30 RTD8 –

31 RTD8 COMPENSATION

32 RTD8 SHIELD

33 RTD9 +

34 RTD9 –

35 RTD9 COMPENSATION

36 RTD9 SHIELD

37 RTD10 +

38 RTD10 –

39 RTD10 COMPENSATION

40 RTD10 SHIELD

41 RTD11 +

42 RTD11 –

43 RTD11 COMPENSATION

44 RTD11 SHIELD

45 RTD12 +

46 RTD12 –

47 RTD12 COMPENSATION

48 RTD12 SHIELD

51 SPARE SW

52 SPARE SW COMMON

53 DIFFERENTIAL INPUT SW

54 DIFFERENTIAL INPUT SW COMMON

55 SPEED SW

56 SPEED SW COMMON

57 ACCESS SW

58 ACCESS SW COMMON

59 EMERGENCY RESTART SW

60 EMERGENCY RESTART SW COMMON

61 EXTERNAL RESET SW

62 EXTERNAL RESET SW COMMON

71 COMM1 RS485 +

72 COMM1 RS485 –

73 COMM1 SHIELD

74 COMM2 RS485 +

75 COMM2 RS485 –

76 COMM2 SHIELD

77 COMM3 RS485 +

78 COMM3 RS485 –

79 COMM3 SHIELD

80 ANALOG OUT 1

81 ANALOG OUT 2

82 ANALOG OUT 3

83 ANALOG OUT 4

84 ANALOG COM

85 ANALOG SHIELD

90 BACKSPIN VOLTAGE

91 BACKSPIN NEUTRAL

92 PHASE A CURRENT 5A

93 PHASE A CURRENT 1A

94 PHASE A COMMON

95 PHASE B CURRENT 5A

96 PHASE B CURRENT 1A

97 PHASE B COMMON

98 PHASE C CURRENT 5A

99 PHASE C CURRENT 1A

100 PHASE C COMMON

101 NEUT/GND CURRENT 50:0.025A

102 NEUT/GND CURRENT 1A

103 NEUT/GND CURRENT 5A

104 NEUT/GND COMMON

105 PHASE A VOLTAGE

106 PHASE A NEUTRAL

107 PHASE B VOLTAGE

108 PHASE B NEUTRAL

109 PHASE C VOLTAGE

110 PHASE C NEUTRAL

111 TRIP NC

112 TRIP COMMON

113 TRIP NO

114 ALARM NC

115 ALARM COMMON

116 ALARM NO

117 AUX1 NC

118 AUX1 COMMON

119 AUX1 NO

120 AUX2 NC

121 AUX2 COMMON

122 AUX2 NO

123 POWER FILTER GROUND

124 POWER LINE

125 POWER NEUTRAL

126 POWER SAFETY

TERMINAL WIRING CONNECTION

Courtesy of NationalSwitchgear.com
Page 23: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 3-3

3 INSTALLATION 3.2 TERMINAL IDENTIFICATION

3

3.2.2 269 TO 369 CONVERSION TERMINAL LIST

269 WIRING CONNECTION 3691 RTD1 + 1

2 RTD1 COMPENSATION 3

3 RTD1 – 2

4 RTD1 SHIELD 4

5 RTD2 + 5

6 RTD2 COMPENSATION 7

7 RTD2 – 6

8 RTD2 SHIELD 8

9 RTD3 + 9

10 RTD3 COMPENSATION 11

11 RTD3 – 10

12 RTD3 SHIELD 12

71 RTD4 + 13

70 RTD4 COMPENSATION 15

69 RTD4 – 14

68 RTD4 SHIELD 16

67 RTD5 + 17

66 RTD5 COMPENSATION 19

65 RTD5 – 18

64 RTD5 SHIELD 20

63 RTD6 + 21

62 RTD6 COMPENSATION 23

61 RTD6 – 22

60 RTD6 SHIELD 24

13 RTD7 + 25

14 RTD7 COMPENSATION 27

15 RTD7 – 26

16 RTD7 SHIELD 28

17 RTD8 + 29

18 RTD8 COMPENSATION 31

19 RTD8 – 30

20 RTD8 SHIELD 32

21 RTD9 + 33

22 RTD9 COMPENSATION 35

23 RTD9 – 34

24 RTD9 SHIELD 36

25 RTD10 + 37

26 RTD10 COMPENSATION 39

27 RTD10 – 38

28 RTD10 SHIELD 40

44 SPARE SW 51

45 SPARE SW COMMON 52

48 DIFFERENTIAL INPUT SW 53

49 DIFFERENTIAL INPUT SW COMMON 54

50 SPEED SW 55

51 SPEED SW COMMON 56

52 ACCESS SW 57

53 ACCESS SW COMMON 58

54 EMERGENCY RESTART SW 59

55 EMERGENCY RESTART SW COM 60

56 EXTERNAL RESET SW 61

57 EXTERNAL RESET SW COMMON 62

47 COMM1 RS485 + 71

46 COMM1 RS485 – 72

88 COMM1 SHIELD 73

59 ANALOG OUT 1 80

58 ANALOG COMMON 84

83 PHASE A CURRENT 1A 93

82 PHASE A COMMON 94

81 PHASE A CURRENT 5A 92

80 PHASE B CURRENT 1A 96

79 PHASE B COMMON 97

78 PHASE B CURRENT 5A 95

77 PHASE C CURRENT 1A 99

76 PHASE C COMMON 100

75 PHASE C CURRENT 5A 98

73 NEUTRAL/GROUND COMMON 104

72 NEUTRAL/GROUND CURRENT 5A 103

74 NEUT/GND CURRENT 50:0.025A 101

29 TRIP NC 111

30 TRIP COMMON 112

31 TRIP NO 113

32 ALARM NC 114

33 ALARM COMMON 115

34 ALARM NO 116

35 AUX1 NC 117

36 AUX1 COMMON 118

37 AUX1 NO 119

38 AUX2 NC 120

39 AUX2 COMMON 121

40 AUX2 NO 122

42 POWER FILTER GROUND 123

41 POWER LINE 124

43 POWER NEUTRAL 125

Terminals not available on the 36984 MTM B+ N/A

85 MTM A– N/A

269 WIRING CONNECTION 369

Courtesy of NationalSwitchgear.com
Page 24: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

3-4 369 Motor Management Relay GE Power Management

3.2 TERMINAL IDENTIFICATION 3 INSTALLATION

3

3.2.3 MTM-369 CONVERSION TERMINAL LIST

3.2.4 MPM-369 CONVERSION TERMINAL LIST

MTM WIRING CONNECTION 3691 POWER FILTER GROUND 123

2 PHASE A VOLTAGE 105

3 PHASE B VOLTAGE 107

4 PHASE B VOLTAGE 107

5 PHASE C VOLTAGE 109

6 PHASE A COM 94

7 PHASE A CURRENT 5A 92

8 PHASE A CURRENT 1A 93

9 PHASE B COM 97

10 PHASE B CURRENT 5A 95

11 PHASE B CURRENT 1A 96

12 PHASE C COM 100

13 PHASE C CURRENT 5A 98

14 PHASE C CURRENT 1A 99

15 COMM1 RS485 + 71

16 COMM1 RS485 – 72

17 COMM1 SHIELD 73

18 ANALOG OUT 1 80

19 ANALOG OUT1 COM 84

20 ANALOG OUT 2 81

21 ANALOG OUT 2 COM 84

22 ANALOG OUT 3 82

23 ANALOG OUT 3 COM 84

24 ANALOG OUT 4 83

25 ANALOG OUT 4 COM 84

26 ANALOG SHIELD 85

27 ALARM NC 114

28 ALARM COM 115

29 ALARM NO 116

31 SPARE SW 51

32 SPARE SW COM 52

34 POWER LINE 124

35 POWER NEUTRAL 125

Terminals not available on the 369:30 PULSE OUTPUT (P/O) N/A

33 SW.B N/A

MTM WIRING CONNECTION 369

MPM WIRING CONNECTION 3691 PHASE A VOLTAGE 105

2 PHASE B VOLTAGE 107

3 PHASE C VOLTAGE 109

4 PHASE NEUTRAL 108

5 POWER FILTER GROUND 123

6 POWER SAFETY 126

7 POWER NEUTRAL 125

8 POWER LINE 124

9 PHASE A CURRENT 5A 92

10 PHASE A CURRENT 1A 93

11 PHASE A COM 94

12 PHASE B CURRENT 5A 95

13 PHASE B CURRENT 1A 96

14 PHASE B COM 97

15 PHASE C CURRENT 5A 98

16 PHASE C CURRENT 1A 99

17 PHASE C COM 100

28 ANALOG OUT 1 80

27 ANALOG OUT 2 81

26 ANALOG OUT 3 82

25 ANALOG OUT 4 83

24 ANALOG COM 84

21 ANALOG SHIELD 85

43 ALARM NC 114

44 ALARM COM 115

45 ALARM NO 116

46 COMM1 SHIELD 73

47 COMM1 RS485 – 72

48 COMM1 RS485 + 71

Terminals not available on the 36931 SWITCH INPUT 1 N/A

32 SWITCH INPUT 2 N/A

33 SWITCH COM N/A

MPM WIRING CONNECTION 369

Courtesy of NationalSwitchgear.com
Page 25: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 3-5

3 INSTALLATION 3.2 TERMINAL IDENTIFICATION

3

3.2.5 TERMINAL LAYOUT

Figure 3–3: TERMINAL LAYOUT

840720B3.CDR

111

4836

3534

3332

31

3029

2827

2625

4746

4544

43

4241

4039

3837

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

5152

5354

5556

5758

5960

6162

91

90

242312

1110

98

76

54

32

1

2221

2019

1817

1615

1413

92

93

94

95

96

97

98

99

100

101

102 104

105 106

107

108

109

110103

71

Comm

AnalogOutput

Spare

7374757677787980818283848586

72

RTD Digital Inputs

RTD

Courtesy of NationalSwitchgear.com
Page 26: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

3-6 369 Motor Management Relay GE Power Management

3.3 ELECTRICAL INSTALLATION 3 INSTALLATION

3

3.3 ELECTRICAL INSTALLATION 3.3.1 TYPICAL WIRING DIAGRAM

Figure 3–4: TYPICAL WIRING

369Motor ManagementRelay

GROUND

BUS

840700BC.CDR

DB-9(front)

STATOR

WINDING 1

METER

load

PLC

SCADA

RS485

PF +

Watts

cpm-

Shield

Shield

-

STATOR

WINDING 2

STATOR

WINDING 3

STATOR

WINDING 4

STATOR

WINDING 5

STATOR

WINDING 6

MOTOR

BEARING 1

MOTOR

BEARING 2

PUMP

BEARING 1

PUMP

BEARING 2

PUMP

CASE

AMBIENT

369

TXD

TXDRXD

RXD

SGND SGND

COMPUTER

25 PIN

CONNECTOR

9 PIN

CONNECTOR

(5 Amp CT)

Twisted

Pair

CONTROL

POWER

380VAC/125VDC

NOTE

RELAY CONTACTS SHOWN

WITH

CONTROL POWER REMOVED

RTD1

ST

CONNECTION

50/125 uM FIBER

62.5/125 uM FIBER

100/140 uM FIBER

PC

RTD12

A

B

C

L

N

C(B)

A

B(C)

HGF-CT

MOTOR

VA VN VB VN VC VN

VOLTAGE INPUTS

105 108106 109107 110

CURRENT INPUTSWITH METERING OPTION (M)

Neut/Gnd Back Spin

Option (B)

COM50:

0.025A5A VN1A

102 104 103 101OPTIONAL

9091

CHANNEL 1

OP

TIO

N ( R

)

CHANNEL 2 CHANNEL 3

REMOTE

RTD

MODULE

RS485 RS485 RS485FIBER

71 74 7773 76 7972 75 78

82

81

83

4

12

16

20

24

28

32

36

40

44

48

8

3

11

15

19

23

27

31

35

39

43

47

7

2

10

14

18

22

26

30

34

38

42

46

6

1

9

13

17

21

25

29

33

37

41

45

5

Com

Com

Com

Com

Com

Com

Com

Com

Com

Com

Com

Com

shld.

shld.shld.

shld.

shld.

shld.

shld.

shld.

shld.

shld.

shld.

shld.

5

9

4 3 2 1

8 7 6

shld.

SHLD SHLD SHLD Tx Rx

1

3

4

AN

AL

OG

OU

TP

UT

S

OP

TIO

N

(M,B

)

RTD1

RTD3

RTD4

RTD5

RTD6

RTD7

RTD8

RTD9

RTD10

RTD11

RTD12

RTD2

SPARE

DIFFERENTIAL

RELAY

RTD

ALARM

SELF TEST

ALARM

ALARM

KEYSWITCH

OR JUMPER

SPEED SWITCH

DIFFERENTIAL

RELAY

SPEED

SWITCH

ACCESS

SWITCH

EMERGENCY

RESTART

EXTERNAL

RESET

DIG

ITA

L IN

PU

TS

51

59

61

52

60

62

53

54

55

56

57

58

111

126

125

124

123

112

113

114

115

116

117

118

119

120

121

122

OU

TP

UT

RE

LA

YS

TRIP

ALARM

AUX. 1

AUX. 2

FILTER GROUND

LINE +

NEUTRAL -

SAFTY GROUNDCO

NT

RO

L

PO

WE

R

CR

369 PC

PROGRAM

87

14

OPTION (F)

11 8

22 3

66 6

44 20

88 5

33 2

77 4

55 7

99 22

R

Profibus

Option (P)

GE Power Management

5A 5A1A

Phase A Phase CPhase B

COM 1A COM 5A COM1A

92 93 94 95 96 97 98 99 100

85

84Com-

shld.

80

2

Courtesy of NationalSwitchgear.com
Page 27: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 3-7

3 INSTALLATION 3.3 ELECTRICAL INSTALLATION

3

3.3.2 TYPICAL WIRING

The 369 can be connected to cover a broad range of applications and wiring will vary depending upon the user’s protectionscheme. This section will cover most of the typical 369 interconnections.

In this section, the terminals have been logically grouped together for explanatory purposes. A typical wiring diagram forthe 369 is shown above in Figure 3–4: TYPICAL WIRING on page 3–6 and the terminal arrangement has been detailed inFigure 3–3: TERMINAL LAYOUT on page 3–5. For further information on applications not covered here, refer to Chapter 7:APPLICATIONS or contact the factory for further information.

Hazard may result if the product is not used for intended purposes. This equipment can only be servicedby trained personnel.

3.3.3 CONTROL POWER

VERIFY THAT THE CONTROL POWER SUPPLIED TO THE RELAY IS WITHIN THE RANGE COVERED BYTHE ORDERED 369 RELAY’S CONTROL POWER.

The 369 has a built-in switchmode supply. It can operate with either AC or DC voltage applied to it.

Extensive filtering and transient protection has been incorporated into the 369 to ensure reliable operation in harsh indus-trial environments. Transient energy is removed from the relay and conducted to ground via the ground terminal. This termi-nal must be connected to the cubicle ground bus using a 10 AWG wire or a ground braid. Do not daisy-chain grounds withother relays or devices. Each should have its own connection to the ground bus.

The internal supply is protected via a 3.15 A slo-blo fuse that is accessible for replacement. If it must be replaced ensurethat it is replaced with a fuse of equal size (see FUSE on page 2–4).

3.3.4 PHASE CURRENT (CT) INPUTS

The 369 requires one CT for each of the three motor phase currents to be input into the relay. There are no internal groundconnections for the CT inputs. Refer to Chapter 7: APPLICATIONS for a information on two CT connections.

The phase CTs should be chosen such that the FLA of the motor being protected is no less than 50% of the rated CT pri-mary. Ideally, to ensure maximum accuracy and resolution, the CTs should be chosen such that the FLA is 100% of CT pri-mary or slightly less. The maximum CT primary is 5000 A.

The 369 will measure 0.05 to 20 × CT primary rated current. The CTs chosen must be capable of driving the 369 burden(see specifications) during normal and fault conditions to ensure correct operation. See Section 7.4: CT SPECIFICATIONAND SELECTION on page 7–7 for information on calculating total burden and CT rating.

For the correct operation of many protective elements, the phase sequence and CT polarity is critical. Ensure that the con-vention illustrated in Figure 3–4: TYPICAL WIRING on page 3–6 is followed.

Table 3–1: 369 POWER SUPPLY RANGES

369 POWER SUPPLY AC RANGE DC RANGE

HI 40 to 265 V 50 to 300 V

LO 20 to 48 V 20 to 60 V

WARNING

CAUTION

Courtesy of NationalSwitchgear.com
Page 28: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

3-8 369 Motor Management Relay GE Power Management

3.3 ELECTRICAL INSTALLATION 3 INSTALLATION

3

3.3.5 GROUND CURRENT INPUTS

The 369 has an isolating transformer with separate 1 A, 5 A, and sensitive HGF (50:0.025) ground terminals. Only oneground terminal type can be used at a time. There are no internal ground connections on the ground current inputs.

The maximum ground CT primary for the 1 A and 5 A taps is 5000 A. Alternatively the sensitive ground input, 50:0.025, canbe used to detect ground current on high resistance grounded systems.

The ground CT connection can either be a zero sequence (core balance) installation or a residual connection. Note thatonly 1 A and 5 A secondary CTs may be used for the residual connection. A typical residual connection is illustrated inbelow. The zero-sequence connection is shown in the typical wiring diagram. The zero-sequence connection is recom-mended. Unequal saturation of CTs, CT mismatch, size and location of motor, resistance of the power system, motor coresaturation density, etc. may cause false readings in the residually connected ground fault circuit.

Figure 3–5: TYPICAL RESIDUAL CONNECTION

3.3.6 ZERO SEQUENCE GROUND CT PLACEMENT

The exact placement of a zero sequence CT to properly detect ground fault current is shown below. If the CT is placed overa shielded cable, capacitive coupling of phase current into the cable shield during motor starts may be detected as groundcurrent unless the shield wire is also passed through the CT window. Twisted pair cabling on the zero sequence CT is rec-ommended.

Figure 3–6: ZERO SEQUENCE CT

840710B1.CDR

A

B

C

RESIDUAL CURRENT

CONNECTION

CURRENT INPUTS

Phase A Neut/GndPhase CPhase B

93 94 92 96 97 95 99 100 98 102 104 103 101

1A 1ACOM 5A COM 50:0.025ACOM 5A 1A 5A 5ACOM 1A

Courtesy of NationalSwitchgear.com
Page 29: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 3-9

3 INSTALLATION 3.3 ELECTRICAL INSTALLATION

3

3.3.7 PHASE VOLTAGE (VT/PT) INPUTS

The 369 has three channels for AC voltage inputs each with an internal isolating transformer. There are no internal fuses orground connections on these inputs. The maximum VT ratio is 240:1. These inputs are only enabled when the meteringoption (M) is ordered.

The 369 accepts either open delta or wye connected VTs (see Figure 3–7: WYE/DELTA CONNECTION below). The volt-age channels are connected wye internally, which means that the jumper shown on the delta connection between thephase B input and the VT neutral terminals must be installed.

Polarity and phase sequence for the VTs is critical for correct power and rotation measurement and should be verifiedbefore starting the motor. As long as the polarity markings on the primary and secondary windings of the VT are aligned,there is no phase shift. The markings can be aligned on either side of the VT. VTs are typically mounted upstream of themotor breaker or contactor. Typically, a 1 A fuse is used to protect the voltage inputs.

Figure 3–7: WYE/DELTA CONNECTION

3.3.8 BACKSPIN VOLTAGE INPUTS

The Backspin voltage input is only operational if the optional backspin detection (B) feature has been purchased for therelay. This input allows the 369 to sense whether the motor is spinning after the primary power has been removed (breakeror contactor opened).

These inputs must be supplied by a separate VT mounted downstream (motor side) of the breaker or contactor. The correctwiring is illustrated below.

Figure 3–8: BACKSPIN VOLTAGE WIRING

840713A4.CDR

VA VAVN VNVB VBVN VNVC VCVN VN

VOLTAGE INPUTS

WYE VT CONNECTION DELTA VT CONNECTION

VOLTAGE INPUTS

WITH METERING OPTION (M) WITH METERING OPTION (M)

105 105

A A

B B

C C

107 107109 109106 106108 108110 110

91

A

C

B

N VBACKSPIN

90

840731A2.CDR

VOLTAGE ON MOTOR SIDE

OF BREAKER MAY BE - OR - N

Tx M

Courtesy of NationalSwitchgear.com
Page 30: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

3-10 369 Motor Management Relay GE Power Management

3.3 ELECTRICAL INSTALLATION 3 INSTALLATION

3

3.3.9 RTD INPUTS

The 369 can monitor up to 12 RTD inputs for Stator, Bearing, Ambient, or Other temperature applications. The type of eachRTD is field programmable as: 100 Ω Platinum (DIN 43760), 100 Ω Nickel, 120 Ω Nickel, or 10 Ω Copper. RTDs must bethe three wire type. There are no provisions for the connection of thermistors.

The 369 RTD circuitry compensates for lead resistance, provided that each of the three leads is the same length. Leadresistance should not exceed 25 Ω per lead for platinum and nickel type RTDs or 3 Ω per lead for Copper type RTDs.

Shielded cable should be used to prevent noise pickup in industrial environments. RTD cables should be kept close togrounded metal casings and avoid areas of high electromagnetic or radio interference. RTD leads should not be run adja-cent to or in the same conduit as high current carrying wires.

The shield connection terminal of the RTD is grounded in the 369 and should not be connected to ground at the motor oranywhere else to prevent noise pickup from circulating currents.

If 10 Ω Copper RTDs are used special care should be taken to keep the lead resistance as low as possible to maintainaccurate readings.

Figure 3–9: RTD INPUTS

3.3.10 DIGITAL INPUTS

DO NOT CONNECT LIVE CIRCUITS TO THE 369 DIGITAL INPUTS. THEY ARE DESIGNED FOR DRY CON-TACT CONNECTIONS ONLY.

Other than the ACCESS switch input the other 5 digital inputs are programmable. These programmable digital inputs havedefault settings to match the functions of the 269Plus switch inputs (differential, speed, emergency restart, remote resetand spare). However in addition to their default settings they can also be programmed for use as generic inputs to set uptrips and alarms or for monitoring purposes based on external contact inputs.

A twisted pair of wires should be used for digital input connections.

4

Com

ShieldShield

Hot

Compensation

Return

12

1

2

3

SAFETY GROUND

RT

DS

EN

SIN

G

RT

D#1

369 RELAYMOTOR

STARTERMOTOR3 WIRE SHIELDED CABLE

RTD

TERMINALS

IN MOTOR

STARTER

RTD TERMINALS

AT MOTOR

Maximum total lead resistance

25 ohms (Platinum & Nickel RTDs)

3 ohms (Copper RTDs)

Route cable in separate conduit from

current carrying conductors

RTD IN

MOTOR

STATOR

OR

BEARING

840717A2.CDR

CAUTION

Courtesy of NationalSwitchgear.com
Page 31: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 3-11

3 INSTALLATION 3.3 ELECTRICAL INSTALLATION

3

3.3.11 ANALOG OUTPUTS

The 369 provides 1 analog current output channel as part of the base unit and 3 additional analog outputs with the meteringoption (M). These outputs are field programmable to a full-scale range of either 0 to 1 mA (into a maximum 2.4 kΩ imped-ance) and 4 to 20 mA or 0 to 20 mA (into a maximum 600 Ω impedance).

As shown in the typical wiring diagram (Figure 3–4: TYPICAL WIRING on page 3–6), these outputs share one commonreturn. Polarity of these outputs must be observed for proper operation.

Shielded cable should be used for connections, with only one end of the shield grounded, to minimize noise effects. Theanalog output circuitry is isolated. Transorbs limit this isolation to ±36 V with respect to the 369 safety ground.

If an analog voltage output is required, a burden resistor must be connected across the input of the SCADA or measuringdevice (see the figure below). Ignoring the input impedance of the input,

For 0-1 mA, for example, if 5 V full scale is required to correspond to 1 mA

For 4-20 mA, this resistor would be

Figure 3–10: ANALOG OUTPUT VOLTAGE CONNECTION

3.3.12 REMOTE DISPLAY

The 369 display can be separated and mounted remotely up to 15 feet away from the main relay. No separate source ofcontrol power is required for the display module. A 15 feet standard shielded network cable is used to make the connectionbetween the display module and the main relay. A recommended and tested cable is available from GE Power Manage-ment. The cable should be wired as far away as possible from high current or voltage carrying cables or other sources ofelectrical noise.

In addition the display module must be grounded if mounted remotely. A ground screw is provided on the back of the dis-play module to facilitate this. A 12 AWG wire is recommended and should be connected to the same ground bus as themain relay unit.

The 369 relay will still function and protect the motor without the display connected.

RLOADVFULL SCALE

IMAX----------------------------------=

RLOADVFULL SCALE

IMAX---------------------------------- 5 V

0.001 A--------------------- 5000 Ω= = =

RLOADVFULL SCALE

IMAX---------------------------------- 5 V

0.020 A--------------------- 250 Ω= = =

840714A3.CDR

80

SCADA

OR

PLC

OR

METERING

DEVICE

V +

V -

R

Com-

Shield

An

alo

g O

utp

uts

82

84

81

83

85

1

2

3

4

Courtesy of NationalSwitchgear.com
Page 32: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

3-12 369 Motor Management Relay GE Power Management

3.3 ELECTRICAL INSTALLATION 3 INSTALLATION

3

3.3.13 OUTPUT RELAYS

The 369 provides four (4) form C output relays. They are labeled Trip, Aux 1, Aux 2, and Alarm. Each relay has normallyopen (NO) and normally closed (NC) contacts and can switch up to 8 A at either 250 V AC or 30 V DC with a resistive load.The NO or NC state is determined by the ‘no power’ state of the relay outputs.

All four output relays may be programmed for fail-safe or non-fail-safe operation. When in fail-safe mode, output relay acti-vation or a loss of control power will cause the contacts to go to their power down state.

For example:

• A fail-safe NO contact closes when the 369 is powered up (if no prior unreset trip conditions) and will open when acti-vated (tripped) or when the 369 loses control power.

• A non-fail-safe NO contact remains open when the 369 is powered up (unless a prior unreset trip condition) and willclose only when activated (tripped). If control power is lost while the output relay is activated (NO contacts closed) theNO contacts will open.

Thus, in order to cause a trip on loss of control power to the 369, the Trip relay should be programmed as fail-safe. See thefigure below for typical wiring of contactors and breakers for fail-safe and non-fail-safe operation. Output relays remainlatched after activation if the fault condition persists or the protection element has been programmed as latched. Thismeans that once this relay has been activated it remains in the active state until the 369 is manually reset.

The Trip relay cannot be reset if a timed lockout is in effect. Lockout time will be adhered to regardless of whether controlpower is present or not. The relay contacts may be reset if motor conditions allow, by pressing the RESET key, using theREMOTE RESET switch or via communications. The Emergency Restart feature overrides all features to reset the 369.

The rear of the 369 relay shows output relay contacts in their power down state.

In locations where system voltage disturbances cause voltage levels to dip below the control powerrange listed in specifications, any relay contact programmed as fail-safe may change state. Therefore, inany application where the ‘process’ is more critical than the motor, it is recommended that the trip relaycontacts be programmed as non-fail-safe. If, however, the motor is more critical than the ‘process’ thenprogram the trip contacts as fail-safe.

Figure 3–11: HOOKUP / FAIL & NON-FAILSAFE MODES

WARNING

840716A4.CDR

Courtesy of NationalSwitchgear.com
Page 33: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 3-13

3 INSTALLATION 3.3 ELECTRICAL INSTALLATION

3

3.3.14 RS485 COMMUNICATIONS

Three independent two-wire RS485 ports are provided. If option (F), the fiber optic port, is installed and used the COMM 3,RS485 port, may not be used. The RS485 ports are isolated as a group.

Up to 32 369s (or other devices) can be daisy-chained together on a single serial communication channel without exceed-ing the driver capability. For larger systems, additional serial channels must be added. Commercially available repeatersmay also be used to increase the number of relays on a single channel to a maximum of 254. Note that there may only beone master device per serial communication link.

Connections should be made using shielded twisted pair cables (typically 24 AWG). Suitable cables should have a charac-teristic impedance of 120 Ω (e.g. Belden #9841) and total wire length should not exceed 4000 ft. Commercially availablerepeaters can be used to extend transmission distances.

Voltage differences between remote ends of the communication link are not uncommon. For this reason, surge protectiondevices are internally installed across all RS485 terminals. Internally, an isolated power supply with an optocoupled datainterface is used to prevent noise coupling. The source computer/PLC/SCADA system should have similar transient protec-tion devices installed, either internally or externally, to ensure maximum reliability.

To ensure that all devices in a daisy-chain are at the same potential, it is imperative that the common ter-minals of each RS485 port are tied together and grounded in one location only, at the master. Failure todo so may result in intermittent or failed communications.

Correct polarity is also essential. 369 relays must be wired with all ‘+’ terminals connected together, and all ‘–’terminals connected together. Each relay must be daisy-chained to the next one. Avoid star or stub connected configura-tions. The last device at each end of the daisy-chain should be terminated with a 120 Ω ¼ watt resistor in series with a 1 nFcapacitor across the ‘+’ and ‘–’ terminals. Observing these guidelines will result in a reliable communication system that isimmune to system transients.

Figure 3–12: RS485 WIRING

CAUTION

Courtesy of NationalSwitchgear.com
Page 34: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

3-14 369 Motor Management Relay GE Power Management

3.4 REMOTE RTD MODULE (RRTD) 3 INSTALLATION

3

3.4 REMOTE RTD MODULE (RRTD) 3.4.1 MECHANICAL INSTALLATION

The optional remote RTD module is designed to be mounted near the motor. This eliminates the need for multiple RTDcables to run back from the motor which may be in a remote location to the switchgear. Although the module is internallyshielded to minimize noise pickup and interference, it should be mounted away from high current conductors or sources ofstrong magnetic fields.

The remote RTD module physical dimensions and mounting (drill diagram) are shown below. Mounting hardware (bolts andwashers) and instructions are provided with the module.

Figure 3–13: REMOTE RTD DIMENSIONS

Figure 3–14: REMOTE RTD REAR VIEW

FIBER OPTIC DATA LINK (F)For harsh environments

DIGITAL INPUTS(IO)

Communications(3)-RS485 Com Ports

ANALOG OUTPUT(IO)

813701A4.CDR

CONTROL POWERHI: 50-300VDC/40-265VACLO: 20-60VDC/20-48VAC

Customer Accessiblefuse

12 RTD INPUTSfield selectable type

4 OUTPUT RELAYS (IO)Programmable alarm andtrip conditions activatedby programmable setpoints,digital inputs and remotecommunication control.

Courtesy of NationalSwitchgear.com
Page 35: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 3-15

3 INSTALLATION 3.4 REMOTE RTD MODULE (RRTD)

3

3.4.2 ELECTRICAL INSTALLATION

Figure 3–15: REMOTE RTD MODULE

369Motor Management Relay

g

g

813703A5.CDR

FIBER

RxTx

STATOR

WINDING 1

STATOR

WINDING 2

STATOR

WINDING 3

STATOR

WINDING 4

STATOR

WINDING 5

STATOR

WINDING 6

MOTOR

BEARING 1

MOTOR

BEARING 2

PUMP

BEARING 1

PUMP

BEARING 2

PUMP

CASE

AMBIENT

4

12

16

20

24

28

32

36

40

44

48

8

3

11

15

19

23

27

31

35

39

43

47

7

2

10

14

18

22

26

30

34

38

42

46

6

1

9

13

17

21

25

29

33

37

41

45

5

Com

Com

Com

Com

Com

Com

Com

Com

Com

Com

Com

Com

shld.

shld.shld.

shld.

shld.

shld.

shld.

shld.

shld.

shld.

shld.

shld.

shld.

RTD1

RTD3

RTD4

RTD5

RTD6

RTD7

RTD8

RTD9

RTD10

RTD11

RTD12

RTD2

GROUND

BUS

METER

HottestStator

RTD1

RTD2

PLC

SCADA

RS485

+

cpm-

Shield

Shield

-

CONTROL

POWER

380VAC / 125VDC

L

N

CHANNEL 1 CHANNEL 2 CHANNEL 3

RS485 RS485 RS485FIBER

71 74 7773 76 7972 75 78

80

82

84

85

81

83

Com-

shld.

SHLD SHLD SHLD Tx Rx

1

2

3

4

AN

AL

OG

OU

TP

UT

S

OP

TIO

N (

IO)

RTD HI

ALARM

SELF TEST

ALARM

ALARM

RTD trip

Flow

Value

Pressure

Value

111

126

125

124

123

112

113

114

115

116

117

118

119

120

121

122

OU

TP

UT

RE

LA

YS

OP

TIO

N(I

O)

TRIP

ALARM

AUX. 1

AUX. 2

FILTER GROUND

LINE +

NEUTRAL -

SAFTY GROUNDCO

NT

RO

L

PO

WE

R

WITH OPTION (F)

INPUT 1

INPUT 3

INPUT 6

INPUT 2

INPUT 4

INPUT 5

DIG

ITA

L IN

PU

TS

O

PT

ION

(IO

)

51

59

61

52

60

62

53

54

55

56

57

58

GE Power Management

GE Power Management

RRTDRemote RTD Module

Courtesy of NationalSwitchgear.com
Page 36: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

3-16 369 Motor Management Relay GE Power Management

3.5 CT INSTALLATION 3 INSTALLATION

3

3.5 CT INSTALLATION 3.5.1 PHASE CT INSTALLATION

Figure 3–16: PHASE CT INSTALLATION

Courtesy of NationalSwitchgear.com
Page 37: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 3-17

3 INSTALLATION 3.5 CT INSTALLATION

3

3.5.2 5 AMP GROUND CT INSTALLATION

Figure 3–17: 5A GROUND CT INSTALLATION

Courtesy of NationalSwitchgear.com
Page 38: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

3-18 369 Motor Management Relay GE Power Management

3.5 CT INSTALLATION 3 INSTALLATION

3

3.5.3 HGF (50:0.025) GROUND CT INSTALLATION

Figure 3–18: HGF (50:0.025) GROUND CT INSTALLATION - 3" AND 5" WINDOW

Figure 3–19: HGF (50:0.025) GROUND CT INSTALLATION - 8" WINDOW

GE Power Management

Courtesy of NationalSwitchgear.com
Page 39: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 4-1

4 USER INTERFACES 4.1 FACEPLATE INTERFACE

4

4 USER INTERFACES 4.1 FACEPLATE INTERFACE 4.1.1 DISPLAY

All messages are displayed on a 40-character LCD display to make them visible under poor lighting conditions and fromvarious viewing angles. Messages are displayed in plain English and do not require the aid of an instruction manual fordeciphering. While the keypad and display are not actively being used, the display will default to user defined status mes-sages. Any trip, alarm, or start inhibit will automatically override the default messages and appear on the display.

Contrast Adjustment and Lamp Test: Press the [HELP] key for 2 seconds to initiate lamp test. The contrast can also beadjusted now as required. Use the [VALUE] up and down keys to adjust the contrast. Press the [ENTER] key to save theadjustment when completed.

4.1.2 LED INDICATORS

There are ten LED indicators, as follows:

• TRIP Trip relay has operated (energized)

• ALARM Alarm relay has operated (energized)

• AUX 1 Auxiliary relay has operated (energized)

• AUX 2 Auxiliary relay has operated (energized)

• SERVICE Relay in need of technical service.

• BSD Relay has detected a backspin condition on a stopped motor

• RRTD RRTD module communication indication

• METERING 369 has option M or B installed

• COM 1 Channel 1 RS485 communication indication

• COM 2 Channel 2 RS485 communication indication

Figure 4–1: LED INDICATORS

4.1.3 RS232 PROGRAM PORT

This port is intended for connection to a portable PC. Setpoint files may be created at any location and downloaded throughthis port using the 369PC software. Local interrogation of Setpoints and Actual Values is also possible. New firmware maybe downloaded to the 369 flash memory through this port. Upgrading of the relay firmware does not require a hardwareEPROM change.

TRIP BSD

ALARM RRTD

AUX 1AUX 1 METERING

AUX 2AUX 2 COM 1COM 1

SERVICE COM 2

Courtesy of NationalSwitchgear.com
Page 40: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

4-2 369 Motor Management Relay GE Power Management

4.1 FACEPLATE INTERFACE 4 USER INTERFACES

4

4.1.4 KEYPAD

The 369 messages are organized into pages under the main headings, Setpoints and Actual Values. The [SETPOINTS]key is used to navigate through the page headers of the programmable parameters. The [ACTUAL VALUES] key is used tonavigate through the page headers of the measured parameters.

Each page is broken down further into logical subgroups of messages. The [PAGE] up and down keys may be used to nav-igate through the subgroups.

• [SETPOINTS]: This key may be used to navigate through the page headers of the programmable parameters. Alter-nately, one can press this key followed by using the Page Up / Page Down keys.

• [ACTUAL VALUES]: This key is used to navigate through the page headers of the measured parameters. Alternately,one can scroll through the pages by pressing the Actual Values key followed by using the Page Up / Page Down keys.

• [PAGE]: The Page Up/ Page Down keys may be used to scroll through page headers for both Setpoints and ActualValues.

• [LINE]: Once the required page is found, the Line Up/ Line Down keys may be used to scroll through the sub-headings.

• [VALUE]: The Value Up and Value Down keys are used to scroll through variables in the Setpoint programming mode.It will increment and decrement numerical Setpoint values, or alter yes/no options.

• [RESET]: The reset key may be used to reset a trip or latched alarm, provided it has been activated by selecting thelocal reset.

• [ENTER] The key is dual purpose. It is used to enter the subgroups or store altered setpoint values.

• [CLEAR] The key is also dual purpose. It may be used to exit the subgroups or to return an altered setpoint to its origi-nal value before it has been stored.

• [HELP]: The help key may be pressed at any time for context sensitive help messages; such as the Setpoint range,etc.

To enter setpoints, select the desired page header. Then press the [LINE UP] / [LINE DOWN] keys to scroll through thepage and find the desired subgroup. Once the desired subgroup is found, press the [VALUE UP] / [VALUE DOWN] keys toadjust the setpoints. Press the [ENTER] key to save the setpoint or the [CLEAR] key to revert back to the old setpoint.

4.1.5 SETPOINT ENTRY

In order to store any setpoints, Terminals 57 and 58 (access terminals) must be shorted (a key switch may be used forsecurity). There is also a Setpoint Passcode feature that may be enabled to restrict access to setpoints. The passcodemust be entered to allow the changing of setpoint values. A passcode of 0 effectively turns off the passcode feature andonly the access jumper is required for changing setpoints.

If no key is pressed for 30 minutes, access to setpoint values will be restricted until the passcode is entered again. To pre-vent setpoint access before the 30 minutes expires, the unit may be turned off and back on, the access jumper may beremoved, or the SETPOINT ACCESS setpoint may be changed to Restricted. The passcode cannot be entered until termi-nals 57 and 58 (access terminals) are shorted.

Setpoint changes take effect immediately, even when motor is running. It is not recommended, however, to change set-points while the motor is running as any mistake could cause a nuisance trip.

Refer to Section 5.2.2: SETPOINT ACCESS on page 5–4 for a detailed description of the setpoint access procedure.

Courtesy of NationalSwitchgear.com
Page 41: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 4-3

4 USER INTERFACES 4.2 369PC INTERFACE

4

4.2 369PC INTERFACE 4.2.1 HARDWARE & SOFTWARE REQUIREMENTS

The following minimum requirements must be met for the 369PC Program to properly operate on a computer.

Processor: Minimum 486, Pentium or higher recommended.

Memory: Minimum 4 MB RAM, 16 MB recommended. Minimum 540 K of conventional memory.

Hard Drive: 20 MB free space required before installation of PC program.

O/S: Minimum Windows 3.1 or Windows 3.11 for Workgroups, Windows NT or Windows 95/98 (recommended). Windows 2000/MEWindows 3.1 users must ensure that SHARE.EXE is installed.

Other: CD-ROM or internet capability to load 369PC(if neither is available, 3.5” floppy disks can be ordered from the factory)

If 369PC is currently installed, note the path and directory name. It will be required during upgrading.

The 369PC software is included on the GE Power Management Products CD that accompanied the 369. If your PC doesnot have CD-ROM capability, the software may be downloaded from the GE Power Management website at www.GEin-dustrial.com/pm or ordered on 3.5” floppy disks from the nearest GE Power Management office.

All 369 relays come with the GE Power Management Products CD. Since this CD is essentially a “snapshot” ofthe GE Power Management website, the procedures for installation from the CD and the Web are identical. How-ever, the website will always contain the newest versions and is recommended for upgrading the software.

4.2.2 INSTALLING 369PC

Installation of the 369PC software is accomplished as follows.

1. Ensure that Windows is running and functional on the local PC

2. Insert the GE Power Management Products CD into your CD-ROM drive or point your web browser to the GE PowerManagement website at www.GEindustrial.com/pm . With Windows 95/98, the Products CD will launch the welcomescreen automatically (alternately, you may open the index.htm file in the Products CD root directory). Since theProducts CD is essentially a “snapshot” of the GE Power Management website, the procedures for installation from theCD and the Web are identical from this point forward.

3. Click the Index By Product Name item from the main page menu and select the 369 Motor Management Relay fromthe product list to open the 369 product page.

4. Click the Software menu item from the Product Resources list to proceed to the 369 software page.

5. The latest version of the 369PC software will be shown. Click the 369PC Program item to download the installationprogram to your local PC. Run the installation program and follow the prompts to install the software to the desireddirectory. When complete, a new GE Power Management group window will appear containing the 369PC icon.

4.2.3 UPGRADING 369PC

The following procedure determines if the currently installed version of 369PC requires upgrading:

1. Run the 369PC software.

2. Select the Help > About 369PC menu item.

3. Compare the version shown in this window with the version on the Products CD or website. If the installed version islower than the version on the CD or web, then 369PC needs to be upgraded.

4. To upgrade the 369PC software, follow the installation instructions shown in Section 4.2.2: INSTALLING 369PC onpage 4–3. The installation program will automatically upgrade the 369PC software.

NOTE

Courtesy of NationalSwitchgear.com
Page 42: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

4-4 369 Motor Management Relay GE Power Management

4.2 369PC INTERFACE 4 USER INTERFACES

4

4.2.4 CONFIGURATION

1. Connect the computer containing the 369PC software to the relay via one of the RS485 ports or directly via the RS232faceplate port.

2. Run the 369PC software. Once the 369PC program starts to operate, it does not automatically communicate with therelay unless it is enabled to do so (see the Startup Mode option below). The LED status and display message shownwill match actual relay state if communications is established.

3. To setup communications, select Communication > Computer menu item.

Figure 4–2: COMMUNICATION / COMPUTER WINDOW

4. Set Slave Address to match that programmed into relay.

5. Set Communication Port# to the computer port connected to the relay.

6. Set Baud Rate and Parity to match that programmed into relay.

7. Set Control Type to type used.

8. Set Startup Mode to the desired startup (communicate or file)

9. Select ON to enable communications with new settings.

4.2.5 UPGRADING RELAY FIRMWARE

1. To upgrade the relay firmware, connect a computer to the 369 via the front RS232 port. Then run the 369PC programand establish communications with the relay.

2. Select the Communication > Upgrade Firmware menu item. The following window will appear:

3. Select Yes to proceed or No to abort. Remember, all previously programmed setpoints will be erased! If you have notalready created a setpoint file, it is highly recommended that the current setpoints be saved to disk by following theprocedure in Section 4.2.6: CREATING A NEW SETPOINT FILE on page 4–5 before continuing with the firmwareupgrade.

4. The Load Firmware window will appear. Locate the firmware file to load into the relay and select OK to proceed orCancel to quit the firmware upgrade.

Courtesy of NationalSwitchgear.com
Page 43: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 4-5

4 USER INTERFACES 4.2 369PC INTERFACE

4

5. The Upload Firmware dialog box shown below will appear. This provides one last chance to cancel the firmwareupgrade. Select Yes to proceed, No to load a different firmware file, or Cancel to end the firmware upgrade. This willbe the last chance to cancel the firmware upgrade – all previously programmed setpoints will be erased!

6. The 369PC software automatically puts the relay into upload mode and then begin loading the file selected.

7. When loading is complete, the relay will require programming. To reload the previously programmed setpoints, see theprocedure in Section 4.2.8: DOWNLOADING A SETPOINT FILE TO THE 369 on page 4–6.

4.2.6 CREATING A NEW SETPOINT FILE

1. To create a new setpoint file, run the 369PC Program. It is not necessary to have a 369 relay connected to the com-puter to create the file. The 369PC status bar will indicate that the program is in “Editing File” mode and “Not Commu-nicating”.

2. From the Setpoint menu, choose the appropriate setpoints section to program, for example, S2 System Setup > Out-put Relay Setup to enter output relay setup setpoints.

Figure 4–3: OUTPUT RELAY SETUP WINDOW

3. When you are finished programming a page, select OK and store the information to the PC’s scratchpad memory(note: this action does store the information as a file on a disk).

4. Repeat steps 2 to 3 until all the desired setpoints are programmed.

5. Select the File > Save As menu item to store these setpoints to the disk. Enter the location and file name of the set-point file with a file extension of ‘.369’ and select OK.

6. The file is now saved. See Section 4.2.8: DOWNLOADING A SETPOINT FILE TO THE 369 on page 4–6 for instruc-tions on reloading this file to the 369.

Courtesy of NationalSwitchgear.com
Page 44: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

4-6 369 Motor Management Relay GE Power Management

4.2 369PC INTERFACE 4 USER INTERFACES

4

4.2.7 EDITING A SETPOINT FILE

The following procedure describes how to edit setpoint files.

1. Run the 369PC software. It is not necessary to have a 369 relay connected to the computer. If 369PC is not communi-cating with the relay, the status bar will indicate that the program is in “Editing File” mode and “Not Communicating”.

2. If the 369PC program is communicating, select the Communication > Computer menu item to launch the COMMU-NICATION/COMPUTER window (see Figure 4–2: COMMUNICATION / COMPUTER WINDOW on page 4–4) and setCommunicate to Off . Click OK to turn off communications to the relay and place 369PC in “Editing File” mode.

3. Open a setpoint file by selecting the File > Open menu item. Locate the appropriate 369 setpoint files (ending with theextension 369) and select OK.

Note that 369PC can open both 369 and 269 setpoint files. For instructions on using 269 setpoint files with the 369,see Section 4.2.10: CONVERTING 269 SETPOINT FILES TO 369 on page 4–8.

4. From the Setpoints menu item, choose the appropriate setpoints section to program; for example, System Setup >Output Relay Setup to edit the output relay setup setpoints. When you have finished editing a page, select OK tostore the information to the PC’s scratchpad memory (NOTE: this action does store the information as a file on a disk).

5. Repeat Step 4 until all the desired setpoints are edited. Select the File > Save As menu item to store this file to disk.Enter the location and file name of the setpoint file with a file extension of ‘.369’.

6. The file is now saved to disk. See Section 4.2.8: DOWNLOADING A SETPOINT FILE TO THE 369 on page 4–6 forinstructions on downloading this file to the 369.

4.2.8 DOWNLOADING A SETPOINT FILE TO THE 369

The following procedure describes how to download setpoint files to the 369.

1. To download a pre-programmed setpoint file to the 369, run 369PC and establish communications with the connectedrelay via the faceplate RS232 port or through the RS485 connector.

2. Select the File > Open menu item to locate the setpoint file to be loaded into the relay. Click OK to load.

3. When the file is completely loaded, the 369PC software will break communications with the connected relay and thestatus bar changes to indicate “Editing File”, “Not Communicating”.

4. Select the File > Send Info To Relay menu item to download the setpoint file to the connected relay.

5. When the file is completely downloaded, the status bar will revert back to “Communicating”. The relay now contains allthe setpoints as programmed in the setpoint file.

If an attempt is made to download a setpoint file with a revision number that does not match the relay firmwarerevision, the following message type will appear:

See Section 4.2.9: UPGRADING SETPOINT FILE TO NEW REVISION on page 4–7 for instructions on upgrad-ing the setpoint file.

NOTE

Courtesy of NationalSwitchgear.com
Page 45: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 4-7

4 USER INTERFACES 4.2 369PC INTERFACE

4

4.2.9 UPGRADING SETPOINT FILE TO NEW REVISION

The following procedure describes how to upgrade setpoint file revisions. It may be necessary to upgrade the revision codefor a previously saved setpoint file when the 369 firmware is upgraded.

1. To upgrade the revision of a previously saved setpoint file, run the 369PC software and establish communications withthe 369 through the front RS232 port or through the RS485 connector.

2. Select the Actual > A6 Relay Information menu item and record the Main Software revision number (for example,53CMB130.000, where 130 is the main revision identifier and refers to firmware version 1.30).

Figure 4–4: RELAY INFORMATION WINDOW

3. Select the File > Open menu item and select the setpoint file to be downloaded to the connected relay. When the file isopen, the 369PC software will be in “File Editing” mode and “Not Communicating”.

4. Select the File > Properties menu item and note the version code of the setpoint file.

Figure 4–5: SETPOINT FILE PROPERTIES

5. If the Version code (e.g. 1.4X above) differs the firmware revision (noted in step 2 as 130), select the revision codethat matches the firmware from the pull-down tab. For example: for firmware revision 53CMB170.000 and current set-point revision as 1.61; change the Version code to 1.7X to upgrade.

369 firmware versions 1.10 and 1.12 are not compatible with newer versions. A new setpoint file mustbe created!

6. Select the File > Save menu item to save the setpoint file.

7. To download the upgraded setpoint file to the 369, see Section 4.2.8: DOWNLOADING A SETPOINT FILE TO THE369 on page 4–6.

NOTE

Courtesy of NationalSwitchgear.com
Page 46: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

4-8 369 Motor Management Relay GE Power Management

4.2 369PC INTERFACE 4 USER INTERFACES

4

4.2.10 CONVERTING 269 SETPOINT FILES TO 369

The 369PC software can convert a 269 setpoint file to a 369 setpoint file. These feature makes it extremely easy to replacea 269 with a 369.

1. Load a 269 setpoint file by selecting the File > Open menu item. Select the path where the 269 setpoint file is locatedand click OK to open.

2. The following warning may appear alerting you that not all of the setpoints can be converted. Click Yes to continue.

3. A second warning appears alerting you to the exceptions or the setpoints that could not be converted. Take note ofthese setpoints and enter the affected setpoints after conversion is complete. Click OK to continue.

4. The setpoint file has now been converted. Manual configure the setpoints that did not convert in Steps 2 and 3. Savethe file under a different name with the File > Save As menu item. Select the path to save the file and the name of thefile. Click OK when complete.

5. The setpoint can now be downloaded to the 369. Refer to 4.2.8: DOWNLOADING A SETPOINT FILE TO THE 369 onpage 4–6 for more information.

4.2.11 PRINTING

This procedure describes how to print a list of the 369 setpoints and/or actual values.

1. Start 369PC. It is not necessary to establish communications.

2. Select the File > Open menu item to open a previously saved setpoint file, orestablish communications with a connected 369 unit.

3. Select the File > Print Setup menu item. The following window will appear.

• Select Actual Values to print a list of actual values.

• Select Setpoints (All) or Setpoints (Enabled Features) to print a list of setpoints.

• Select User Definable Memory Map to print the user-definable memory map.

4. Click OK to close the Window.

5. Select the File > Print menu item to send the setpoint/actual values file to the connected printer.

Courtesy of NationalSwitchgear.com
Page 47: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 4-9

4 USER INTERFACES 4.2 369PC INTERFACE

4

4.2.12 TRENDING

Trending from the 369 can be accomplished via the 369PC. Many different parameters can be trended and graphed atsampling periods from 1 second up to 1 hour. The parameters which can be trended by 369PC are:

1. To use the Trending function, run the 369PC program and establish communications with a connected 369 relay.Select the Actual > Trending menu item to open the Trending window (see Figure 4–7: TRENDING VIEW on page 4–10).

2. Press the Setup button to enter the Graph Attribute page shown below.

Figure 4–6: GRAPH ATTRIBUTE PAGE

3. Program the Graphs to display by selecting the pull down menu beside each Graph Description. Change the Color ,Style, Width, Group #, and Spline selection as desired.

4. Select the same Group # for all parameters to be scaled together.

5. Select Save to store these Graph Attributes, and OK to close this window.

6. In the Trending window, select the Sample Rate , click the check boxes of the Graphs to be displayed, and select RUNto begin the trending sampling.

7. Print will copy the window to the system printer. More information for navigating through Trending can be found underHelp .

8. The Trending File Setup button can be used to write the graph data to a file in a standard spreadsheet format. Ensurethat the Write Trended Data to File box is checked, and that the Sample Rate is at a minimum of 5 seconds. Set thefile capacity limit to the amount of memory available for trended data.

Currents/Voltages

Phase Currents A,B,C Avg. Phase Current Motor Load Current Unbalance

Ground Current Voltages Vab, Vbc, Vca Van, Vbn & Vcn

Power

Power Factor Real Power (kW) Reactive Power (kvar) Apparent Power (kVA)

Positive Watthours Positive Varhours Negative Varhours

Temperature

Hottest Stator RTD RTDs 1 through 12 RRTDs 1 through 12

Other

Thermal Capacity Used System Frequency

Courtesy of NationalSwitchgear.com
Page 48: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

4-10 369 Motor Management Relay GE Power Management

4.2 369PC INTERFACE 4 USER INTERFACES

4

Figure 4–7: TRENDING VIEW

4.2.13 WAVEFORM CAPTURE

The 369PC software can capture waveforms from the 369 at the instant of a trip. Sixteen (16) cycles can be captured andthe trigger point can be adjusted to anywhere within the set cycles. The last 3 waveform events are viewable.

The waveforms captured are:

• Phase Currents A, B, and C

• Ground Current

• Voltages AN, BN, CN if Wye connected or AB and CB if open delta connected.

1. To use the Waveform Capture function, run 369PC and establish communications with the 369 relay.

2. Select the Actual > Waveform Capture menu item to open the Waveform Capture window (see Figure 4–8: WAVE-FORM CAPTURE VIEW on page 4–11)

3. The waveform of phase A current of the last trip of the 369 will appear. The date and time of this trip is displayed on thetop of the window. The RED vertical line indicates the trigger point of the relay.

4. Press the Setup button to enter the Graph Attribute page.

5. Program the graphs to display by selecting the pull down menu beside each Graph Description. Change the Color ,Style, Width, Group #, and Spline selection as desired.

6. Select the same Group # for all parameters to be scaled together.

7. Select Save to store these Graph Attributes, and OK to close this window.

8. In the Waveform Capture window, click the check boxes of the Graphs to be displayed,

9. The Save button can be used to store the current image on the screen, and Open can be used to recall a savedimage. Print will copy the window to the system printer. More information for navigating through Waveform Capture canbe found under Help .

Mode SelectClick on these buttons to view

Cursor Line 1, Cursor Line 2, or Delta (difference)

values for the graph.

LevelDisplays the value of the Graph

at the active Cursor Line.

WaveformThe trended data

from the 369.

Check BoxToggle the Check Box to

view the desired graphs.

ButtonsPrint, Setup (to edit Graph Attribute)

Zoom In, Zoom Out.

Cursor LinesMove Lines: Move mouse pointer

over the cursor line. Hold the left

mouse button and drag the

Cursor Line to the new location.

Courtesy of NationalSwitchgear.com
Page 49: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 4-11

4 USER INTERFACES 4.2 369PC INTERFACE

4

Figure 4–8: WAVEFORM CAPTURE VIEW

4.2.14 PHASORS

The 369PC program can be used to view the phasor diagram of three phase currents and voltages. The phasors are forphase voltages A, B, and C, and phase currents A, B, and C

1. To use the Phasor Metering function, run 369PC and establish communications with the 369 relay.

2. Select the Actual > Metering Data menu item then click on the Phasors tab on the Metering Data Window. The phasordiagram and the values of voltage phasors, and current phasors are displayed.

Figure 4–9: PHASOR DATA VIEW

3. Note that the longer arrows are the voltage phasors and the shorter arrows are the current phasors. Va and Ia are thereferences (i.e. zero degree phase) and the lagging angle is clockwise.

WaveformThe waveform data

from the 369.

Trigger AgentDisplay the cause of

Trip.

Date/TimeDisplays the Date and

Time of the Trip.

TriggerClick to manually Trigger and

Capture waveforms.

Mode SelectClick on these buttons to view

Cursor Line 1, Cursor Line 2, or Delta (difference)

values for the graphs.

LevelDisplays the value

of the graph at the

Solid Cursor Line.

Check BoxToggle the Check Box to

view the desired graphs.

ButtonsPrint, Help

Save (to save graph values to a file)

Open (to open a graph file)

Zoom In, Zoom Out

Cursor LinesMove Lines: Move mouse pointer over

the Cursor Line.

Hole the left mouse button and drag

the Cursor Line to the new location.

Voltage LevelDisplays the value and the angle

of Voltage Phasors

Current PhasorShort Arrow

Voltage PhasorLong Arrow

Current LevelDisplays the value and the angle

of Current Phasors

Courtesy of NationalSwitchgear.com
Page 50: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

4-12 369 Motor Management Relay GE Power Management

4.2 369PC INTERFACE 4 USER INTERFACES

4

4.2.15 EVENT RECORDING

The 369PC software can be used to view the 369 Event Recorder. The Event Recorder stores motor and system informa-tion each time an event occurs (i.e. motor trip). The Event Recorder stores up to 40 events, where EVENT01 is the oldestevent. EVENT01 is overwritten when the number of events exceeds 40.

1. To use the Event Recording function, run 369PC and establish communications with the 369 relay.

2. Select the Actual > Event Recording menu item to open the Event Recording Window. The Event Recording Windowdisplays the list of events with the most current event displayed on top.

Figure 4–10: EVENT RECORDER VIEW

3. Press the View Data button to view the details of selected events. The Event Record Selector at the top of the ViewData Window allows the user to scroll through different events.

4. Select Save to store the details of the selected events to a file, Print to send the events to the system printer, and OKto close the window.

4.2.16 TROUBLESHOOTING

This section provides some procedures for troubleshooting the 369PC when troubles are encountered within the Window-sTM Environment, e.g. General Protection Fault (GPF), Missing Window, Problems in Opening/Saving Files, andApplication Error .

If the 369 program causes WindowsTM system errors:

• Make sure the PC computer program is installed and meets the minimum requirements.

• Make sure only one copy of 369PC is running at a given time: 369PC cannot multi-task.

DisplayDisplays the date of last event and

the total number of events since last

clear

Event ListingList of Events with the most

recent displayed on top

View DataClick to display the details of

selected Events

Event Select ButtonsPush the All button to

Select all Events

Push the None button to

Clear all selections

Clear EventsPush the Clear Events button to

clear the Event Listing from memory

Courtesy of NationalSwitchgear.com
Page 51: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-1

5 SETPOINTS 5.1 OVERVIEW

5

5 SETPOINTS 5.1 OVERVIEW 5.1.1 SETPOINTS MAIN MENU

S1 SETPOINTS369 SETUP

SETPOINT ACCESSSee page 5–4.

DISPLAY PREFERENCESSee page 5–5.

369 COMMUNICATIONSSee page 5–6.

REAL TIME CLOCKSee page 5–8.

WAVEFORM CAPTURESee page 5–8.

MESSAGE SCRATCHPADSee page 5–9.

DEFAULT MESSAGESSee page 5–9.

CLEAR\PRESET DATASee page 5–10.

FACTORY SERVICESee page 5–10.

S2 SETPOINTSSYSTEM SETUP

CT/VT SETUPSee page 5–11.

MONITORING SETUPSee page 5–12.

OUTPUT RELAY SETUPSee page 5–16.

CONTROL FUNCTIONSSee page 5–17.

S3 SETPOINTSOVERLOAD PROTECTION

THERMAL MODELSee page 5–22.

OVERLOAD CURVESSee page 5–23.

OVERLOAD ALARMSee page 5–31.

S4 SETPOINTSCURRENT ELEMENTS

SHORT CIRCUITSee page 5–32.

MECHANICAL JAMSee page 5–33.

Courtesy of NationalSwitchgear.com
Page 52: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-2 369 Motor Management Relay GE Power Management

5.1 OVERVIEW 5 SETPOINTS

5

UNDERCURRENTSee page 5–34.

CURRENT UNBALANCESee page 5–35.

GROUND FAULTSee page 5–36.

S5 SETPOINTSMOTOR START/INHIBITS

ACCELERATION TRIPSee page 5–38.

START INHIBITSee page 5–39.

BACKSPIN DETECTIONSee page 5–40.

S6 SETPOINTSRTD TEMPERATURE

LOCAL RTDPROTECTION

See page 5–41.

REMOTE RTDPROTECTION

See page 5–42.

OPEN RTD ALARMSee page 5–44.

SHORT/LOW TEMP RTDALARM

See page 5–45.

LOSS OF RRTDCOMMS ALARM

See page 5–45.

S7 SETPOINTSVOLTAGE ELEMENTS

UNDERVOLTAGESee page 5–46.

OVERVOLTAGESee page 5–47.

PHASE REVERSALSee page 5–48.

UNDERFREQUENCYSee page 5–48.

OVERFREQUENCYSee page 5–49.

S8 SETPOINTSPOWER ELEMENTS

LEAD POWER FACTORSee page 5–51.

LAG POWER FACTORSee page 5–51.

Courtesy of NationalSwitchgear.com
Page 53: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-3

5 SETPOINTS 5.1 OVERVIEW

5

POSITIVE REACTIVEPOWER (kvar)

See page 5–52.

NEGATIVE REACTIVEPOWER (kvar)

See page 5–53.

UNDERPOWERSee page 5–53.

REVERSE POWERSee page 5–54.

S9 SETPOINTSDIGITAL INPUTS

SPARE SWITCHSee page 5–55.

EMERGENCY RESTARTSee page 5–55.

DIFFERENTIAL SWITCHSee page 5–56.

SPEED SWITCHSee page 5–56.

REMOTE RESETSee page 5–56.

S10 SETPOINTSANALOG OUTPUTS

ANALOG OUTPUT 1See page 5–59.

ANALOG OUTPUT 2

ANALOG OUTPUT 3

ANALOG OUTPUT 4

S11 SETPOINTS369 TESTING

SIMULATION MODESee page 5–61.

PRE-FAULT SETUPSee page 5–62.

FAULT SETUPSee page 5–63.

POST-FAULT SETUPSee page 5–64.

TEST OUTPUT RELAYSSee page 5–65.

TEST ANALOG OUTPUTSSee page 5–65.

Courtesy of NationalSwitchgear.com
Page 54: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-4 369 Motor Management Relay GE Power Management

5.2 S1 369 SETUP 5 SETPOINTS

5

5.2 S1 369 SETUP 5.2.1 SETPOINTS PAGE 1 MENU

These setpoints deal with the non-protective setup and operation of the 369.

5.2.2 SETPOINT ACCESS

PATH: S1 369 SETUP SETPOINT ACCESS

There are two levels of access security: Read Only and Read & Write. The access terminals (Terminals 57 and 58) must beshorted to gain read/write access via the front panel. The Front Panel Access displays the level of access based on thecondition of the access switch.

Read Only: Setpoints and Actual Values may be viewed but, not changed.Read & Write: Permits viewing of Actual Values as well as changing and storing of Setpoints

Communication access can be changed with the 369PC. The setpoint access menu is located in the Setpoint > S1 Setupmenu item. An access tab is shown only when communicating with a relay. To set a password, click on the Change Pass-word button, then enter and verify a new passcode when prompted. After a passcode is entered, Setpoint Access changesto Read Only. When setpoints are changed through 369PC during Read Only access, the passcode must be enteredbefore the new setpoint is stored. To allow extended write access, click Allow Write Access and enter the passcode. Tochange the access level back to Read Only, click Restrict Write Access . If no setpoints are stored for longer than 30 min-utes, or if control power is cycled, access automatically reverts to Read Only.

If the access level is Read/Write, write access to setpoints is automatic and a 0 password need not be entered. If the pass-word is not known, consult the factory service department with the ENCRYPTED COMM PASSCODE value to be decoded.

S1 SETPOINTS369 SETUP

SETPOINT ACCESSSee page 5–4.

DISPLAY PREFERENCESSee page 5–5.

369 COMMUNICATIONSSee page 5–6.

REAL TIME CLOCKSee page 5–8.

WAVEFORM CAPTURESee page 5–8.

MESSAGE SCRATCHPADSee page 5–9.

DEFAULT MESSAGESSee page 5–9.

CLEAR\PRESET DATASee page 5–10.

FACTORY SERVICESee page 5–10.

SETPOINT ACCESS FRONT PANEL ACCESS:Read & Write

Range: Read Only, Read & Write

COMM ACCESSRead & Write

Range: Read Only, Read & Write

ENCRYPTED COMMPASSCODE: AIKFBAIK

Range: 8 Alphabetic characters

Courtesy of NationalSwitchgear.com
Page 55: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-5

5 SETPOINTS 5.2 S1 369 SETUP

5

5.2.3 DISPLAY PREFERENCES

PATH: S1 369 SETUP DISPLAY PREFERENCES

Some of the message characteristics can be modified to suit different situations preferences setpoints.

If no keys are pressed for a period of time longer than the default message timeout, the 369 automatically displays a seriesof default messages. This time can be modified to ensure messages remain on the screen long enough during program-ming or reading of actual values. Each default message remains on the screen for the default message cycle time.

The contrast of the LCD display can be changed for different lighting conditions. If the display is unreadable (dark or light)press the [HELP] key for 2 seconds. This will put the relay in manual contrast adjustment mode. Use the value up or downkeys to adjust the contrast level. Press the [ENTER] key when complete.

The display update interval controls how often the display is updated. If the displayed readings are fluctuating, the time maybe increased to smooth out the readings. Temperatures may be displayed in either Celsius or Fahrenheit degrees. RTDsetpoints are programmed in Celsius only.

DISPLAY PREFERENCES DEFAULT MESSAGECYCLE TIME: 20 s

Range: 5 to 100 s in steps of 1

DEFAULT MESSAGETIMEOUT: 300 s

Range: 10 to 900 s in steps of 1

CONTRAST ADJUSTMENT:145

Range: 0 to 255Display darkens as number is increased.

FLASH MESSAGEDURATION: 2s

Range: 1-10 s in steps of 1

TEMPERATURE DISPLAY:Celsius

Range: Celsius, FahrenheitShown if option R installed or RRTD added

Courtesy of NationalSwitchgear.com
Page 56: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-6 369 Motor Management Relay GE Power Management

5.2 S1 369 SETUP 5 SETPOINTS

5

5.2.4 369 COMMUNICATIONS

PATH: S1 369 SETUP 369 COMMUNICATIONS

369 COMMUNICATIONS SLAVE ADDRESS:254

Range: 1 to 254 in steps of 1

COMPUTER RS232BAUD RATE: 19200

Range: 1200, 2400, 4800, 9600, 19200

COMPUTER RS232PARITY: None

Range: None, Odd, Even

CHANNEL 1 RS485BAUD RATE: 19200

Range: 1200, 2400, 4800, 9600, 19200

CHANNEL 1 RS485PARITY: None

Range: None, Odd, Even

CHANNEL 2: RS485BAUD RATE: 19200

Range: 1200, 2400, 4800, 9600, 19200

CHANNEL 2: RS485PARITY: None

Range: None, Odd, Even

CHANNEL 3APPLICATION: Modbus

Range: Modbus, RRTD

CHANNEL 3CONNECTION: RS485

Range: RS485, Fiber

CHANNEL 3 RS485BAUD RATE: 19200

Range: 1200, 2400, 4800, 9600, 19200

CHANNEL 3 RS485PARITY: None

Range: None, Odd, Even

PROFIBUS ADDRESS:125

Range: 1 to 126 in steps of 1Shown only in models with Profibus (Option P)

IP ADDRESSOCTET 1: 127

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

IP ADDRESSOCTET 2: 0

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

IP ADDRESSOCTET 3: 0

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

IP ADDRESSOCTET 4: 1

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

SUBNET MASKOCTET 1: 255

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

SUBNET MASKOCTET 2: 255

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

SUBNET MASKOCTET 3: 255

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

SUBNET MASKOCTET 4: 0

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

Courtesy of NationalSwitchgear.com
Page 57: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-7

5 SETPOINTS 5.2 S1 369 SETUP

5

The 369 is equipped with four independent serial ports. The RS232 port is for local use and responds regardless of the pro-grammed slave address. The rear RS485 communication ports are addressed. If an RRTD module is used in conjunctionwith the 369, channel 3 must be used for communication between the two devices and the CHANNEL 3 APPLICATION set-point must be set to "RRTD" (note that the corresponding setting on the RRTD must be set to "MODBUS"). A fiber optic port(Option F) may be ordered for channel 3. If the channel 3 fiber optic port is used, the channel 3 RS485 connection is dis-abled.

The RS232 port may be connected to a personal computer running 369PC. This may be used for downloading and upload-ing setpoints files, viewing actual values, and upgrading the 369 firmware. See Section 4.2: 369PC INTERFACE on page4–3 for details on using 369PC.

The RS485 ports support a subset of the Modbus RTU protocol. Each port must have a unique address between 1 and254. Address 0 is the broadcast address listened to by all relays. Addresses need not be sequential; however, no twodevices can have the same address. Generally, each addition to the link uses the next higher address, starting at 1. A max-imum of 32 devices can be daisy-chained and connected to a DCS, PLC, or PC using the RS485 ports. A repeater may beused to allow more than 32 relays on a single link.

The Profibus-DP protocol is supported with the optional Profibus protocol interface (option P). The bus address as Profi-bus-DP node is set with the PROFIBUS ADDRESS setpoint, with an address range from 1 to 126. Address 126 is used onlyfor commissioning purposes and should not be used to exchange user data.

The Modbus/TCP protocol is also supported with the optional Modbus/TCP protocol interface (option E).

GATEWAY ADD.OCTET 1: 127

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

GATEWAY ADD.OCTET 2: 0

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

GATEWAY ADD.OCTET 3: 0

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

GATEWAY ADD.OCTET 4: 1

Range: 0 to 255 in steps of 1Shown only in models with Modbus/TCP (Option E)

Courtesy of NationalSwitchgear.com
Page 58: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-8 369 Motor Management Relay GE Power Management

5.2 S1 369 SETUP 5 SETPOINTS

5

5.2.5 REAL TIME CLOCK

PATH: S1 369 SETUP REAL TIME CLOCK

The time/date stamp is used to track events for diagnostic purposes. The date and time are preset but may be enteredmanually. A battery backed internal clock runs continuously even when power is off. It has the same accuracy as an elec-tronic watch approximately ±1 minute per month. It may be periodically corrected either manually through the keypad or viathe clock update command over the serial link using 369PC.

Enter the current date using two digits for the month, two digits for the day, and four digits for the year. For example, July15, 2001 is entered as "07 15 2001". If entered from the keypad, the new date takes effect the moment the [ENTER] key ispressed. Enter the current time, by using two digits for the hour in 24 hour time, two digits for the minutes, and two digits forthe seconds. If entered from the keypad, the new time will take effect the moment the [ENTER] key is pressed.

If the serial communication link is used, then all the relays can keep time in synchronization with each other. A new clocktime is pre-loaded into the memory map via the communications port by a remote computer to each relay connected on thecommunications channel. The computer broadcasts (address 0) a “set clock” command to all relays. Then all relays in thesystem begin timing at the exact same instant. There can be up to 100 ms of delay in receiving serial commands so theclock time in each relay is ±100 ms, ± the absolute clock accuracy, in the PLC or PC (see Chapter 10: COMMUNICATIONSfor information on programming the time and synchronizing commands.)

5.2.6 WAVEFORM CAPTURE

PATH: S1 369 SETUP WAVEFORM CAPTURE

Waveform capture records contain waveforms captured at the sampling rate as well as contextual information at the pointof trigger. These records are triggered by trip functions, digital input set to capture or via the PC program.

Multiple waveforms are captured simultaneously for each record: Ia, Ib, Ic, Ig, Va, Vb, and Vc.

The trigger position is programmable as a percent of the total buffer size (e.g. 10%, 50%, 75%, etc.). The trigger positiondetermines the number of pre and post fault cycles the record will be divided into. The relay sampling rate is 16 samplesper cycle.

REAL TIME CLOCK SET MONTH:01

Range: 1 to 12 in steps of 1

SET DAY:01

Range: 1 to 31 in steps of 1

SET YEAR:2001

Range: 1998 to 2097 in steps of 1

SET HOUR:00

Range: 0 to 23 in steps of 1

SET MINUTE:00

Range: 0 to 59 in steps of 1

SET SECOND:00

Range: 0 to 59 in steps of 1

WAVEFORM CAPTURE TRIGGER POSITION:50 %

Range: 0 to 100% in steps of 1

Courtesy of NationalSwitchgear.com
Page 59: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-9

5 SETPOINTS 5.2 S1 369 SETUP

5

5.2.7 MESSAGE SCRATCHPAD

PATH: S1 369 SETUP MESSAGE SCRATCHPAD

Five different 40-character message screens can be programmed. These messages may be notes that pertain to the 369installation. This can be useful for reminding operators to perform certain tasks. The messages are entered through the anyof the communications ports. The 369PC software should be used to enter these messages.

5.2.8 DEFAULT MESSAGES

PATH: S1 369 SETUP DEFAULT MESSAGES

MESSAGE SCRATCHPAD Text 1 Range: 2 x 20 alphanumeric

Text 2 Range: 2 x 20 alphanumeric

Text 3 Range: 2 x 20 alphanumeric

Text 4 Range: 2 x 20 alphanumeric

Text 5 Range: 2 x 20 alphanumeric

DEFAULT MESSAGES DEFAULT TO CURRENTMETERING: No

Range: Yes, No

DEFAULT TO MOTORLOAD: No

Range: Yes, No

DEFAULT TO DELTAVOLTAGE METERING: No

Range: Yes, NoOnly shown if option M installed

DEFAULT TO POWERFACTOR: No

Range: Yes, NoOnly shown if option M installed

DEFAULT TO POSITIVEWATTHOURS: No

Range: Yes, NoOnly shown if option M installed

DEFAULT TO REALPOWER: No

Range: Yes, NoOnly shown if option M installed

DEFAULT TO REACTIVEPOWER: No

Range: Yes, No Only shown if option M installed

DEFAULT TO HOTTESTSTATOR RTD: No

Range: Yes, NoOnly shown if option R or RRTD installed

DEFAULT TO TEXTMESSAGE 1: No

Range: Yes, No

DEFAULT TO TEXTMESSAGE 2: No

Range: Yes, No

DEFAULT TO TEXTMESSAGE 3: No

Range: Yes, No

DEFAULT TO TEXTMESSAGE 4: No

Range: Yes, No

Courtesy of NationalSwitchgear.com
Page 60: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-10 369 Motor Management Relay GE Power Management

5.2 S1 369 SETUP 5 SETPOINTS

5

The 369 displays a series of default messages. These default messages appear after the value for the DEFAULT MESSAGECYCLE TIME expires and there are no active trips, alarms or start inhibits. See Section 5.2.3: DISPLAY PREFERENCES onpage 5–5 for details on setting time delays and message durations.

The default messages can be selected from the list above including the five user definable messages from the messagescratchpad.

5.2.9 CLEAR/PRESET DATA

PATH: S1 369 SETUP CLEAR/PRESET DATA

These commands may be used to clear various historical data. This is useful on new installations or to preset informationon existing installations where new equipment has been installed. The PRESET DIGITAL COUNTER setpoint appears only ifone of the digital inputs has been configured as a digital input counter.

5.2.10 FACTORY SERVICE

PATH: S1 369 SETUP FACTORY SERVICE

This section is for use by GE Power Management personnel for testing and calibration purposes.

DEFAULT TO TEXTMESSAGE 5: No

Range: Yes, No

CLEAR/PRESET DATA CLEAR ALL DATA:No

Range: No, Yes

CLEAR LAST TRIPDATA: No

Range: No, Yes

CLEAR TRIPCOUNTERS: No

Range: No, Yes

CLEAR EVENTRECORD: No

Range: No, YesClears all 40 events

CLEAR RTDMAXIMUMS: No

Range: No, Yes

CLEAR PEAK DEMANDDATA: No

Range: No, Yes

CLEAR MOTORDATA: No

Range: No, Yes. Clears learned acceleration time,starting current, thermal capacity, and statistics.

CLEAR ENERGY DATA:NO

Range: No, Yes

PRESET MWh:0

Range: 0 to 65535 MWh in steps of 1Can be preset or cleared by storing 0

PRESET POSITIVEkvarh: 0

Range: 0 to 65535 kvarh in steps of 1Can be preset or cleared by storing 0

PRESET NEGATIVEkvarh: 0

Range: 0 to 65535 kvarh in steps of 1Can be preset or cleared by storing 0

PRESET DIGITALCOUNTER: 0

Range: 0 to 65535 in steps of 1Can be preset or cleared by storing 0

FACTORY SERVICE FACTORY SERVICEPASSCODE: 0

Range: 0 to 65535

Courtesy of NationalSwitchgear.com
Page 61: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-11

5 SETPOINTS 5.3 S2 SYSTEM SETUP

5

5.3 S2 SYSTEM SETUP 5.3.1 SETPOINTS PAGE 2 MENU

These setpoints are critical to the operation of the 369 protective and metering features and elements. Most protective ele-ments are based on the information input for the CT/VT SETUP and OUTPUT RELAY SETUP. Additional monitoring alarmsand control functions of the relay are also set here.

5.3.2 CT/VT SETUP

PATH: S2 SYSTEM SETUP CT/VT SETUP

PHASE CT PRIMARY:

Enter the phase CT primary here. The phase CT secondary (1 A or 5A) is determined by terminal connection to the 369.The phase CT should be chosen such that the motor FLA is between 50% and 100% of the phase CT primary. Ideally themotor FLA should be as close to 100% of phase CT primary as possible, never more. The phase CT class or type shouldalso be chosen such that the CT can handle the maximum potential fault current with the attached burden without having itsoutput saturate. Information on how to determine this if required is available in Section 7.4: CT SPECIFICATION ANDSELECTION on page 7–7.

MOTOR FLA:

The motor FLA (full load amps or full load current) must be entered. This value may be taken from the motor nameplate ormotor data sheets.

S2 SETPOINTSSYSTEM SETUP

CT/VT SETUPSee page 5–11.

MONITORING SETUPSee page 5–12.

OUTPUT RELAY SETUPSee page 5–16.

CONTROL FUNCTIONSSee page 5–17.

CT/VT SETUP PHASE CT PRIMARY:500

Range: 1 to 5000 in steps of 1

MOTOR FLA:10

Range: 1 to 5000 in steps of 1

GROUND CT TYPE:5

Range: None, 5A secondary, 1A secondary, 50:0.025

GROUND CT PRIMARY:100:5

Range: 1 to 5000 in steps of 1Only shown for 5A and 1A secondary CT

VT CONNECTION TYPE:None

Range: None, Open Delta, WyeOnly shown if option M or B installed

VT RATIO:35:1

Range: 1.00:1 to 240.00:1Not shown if VT Connection Type set to None

MOTOR RATED VOLTAGE:4160

Range: 100 to 20000 in steps of 1Not shown if VT Connection Type set to None

NOMINAL FREQUENCY:60 Hz

Range: 50, 60

SYSTEM PHASESEQUENCE: ABC

Range: ABC, ACBNot shown if VT Connection Type set to None

Courtesy of NationalSwitchgear.com
Page 62: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-12 369 Motor Management Relay GE Power Management

5.3 S2 SYSTEM SETUP 5 SETPOINTS

5

GROUND CT TYPE / GROUND CT PRIMARY:

The GROUND CT TYPE and GROUND CT PRIMARY (if 5 A or 1 A secondary) must be entered here. For high resistancegrounded systems, sensitive ground detection is possible with the 50:0.025 CT. On solidly or low resistance grounded sys-tems where fault current can be quite high, a 1 A or 5 A CT should be used for either zero-sequence (core balance) orresidual ground sensing. If a residual connection is used with the phase CTs, the phase CT primary must also be enteredfor the ground CT primary. As with the phase CTs the type of ground CT should be chosen to handle all potential fault levelswithout saturating.

VT CONNECTION TYPE / VT RATIO / MOTOR RATED VOLTAGE:

These voltage related setpoints are visible only if the 369 has metering installed.

The manner in which the voltage transformers are connected must be entered here or none if VTs are not used. The VTturns ratio must be chosen such that the secondary voltage of the VTs is between 40 and 240 V when the primary is atmotor nameplate voltage. All voltage protection features are programmed as a percent of motor nameplate or rated voltagewhich represents the rated motor design voltage line to line.

For example: If the motor nameplate voltage is 4160 V and the VTs are 4160/120 open-delta, program the following:

VT CONNECTION TYPE: Open DeltaVT RATIO: 34.67:1MOTOR RATED VOLTAGE: 4160 V

NOMINAL FREQUENCY:

Enter the nominal system frequency here. This setpoint allows the 369 to determine the internal sampling rate for maximumaccuracy. Frequency is normally determined from the Va voltage input. If however this voltage drops below the minimumvoltage threshold the Ia current input will be used.

SYSTEM PHASE SEQUENCE:

If the phase sequence for a given system is ACB rather than the standard ABC the phase sequence may be changed. Thissetpoint allows the 369 to properly calculate phase reversal and power quantities and is only visible if the 369 has meteringinstalled.

5.3.3 MONITORING SETUP

a) TRIP COUNTER

PATH: S2 SYSTEM SETUP MONITORING SETUP TRIP COUNTER

When the Trip Counter is enabled and the alarm pickup level is reached, an alarm will occur. To reset the alarm the tripcounter must be cleared (see Section 5.2.9: CLEAR/PRESET DATA on page 5–10 for details) or the pickup level increasedand the reset key pressed (if a latched alarm).

The trip counter alarm can be used to monitor and alarm when a predefined number of trips occur. This would then promptthe operator or supervisor to investigate the causes of the trips that have occurred. Details of individual trip counters can befound in the Motor Statistics section of Actual Values page 4 (see Section 6.5.3: MOTOR STATISTICS on page 6–17).

MONITORING SETUP TRIP COUNTER

TRIP COUNTERALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARMRELAYS: Alarm

Range: None, Alarm, Aux1, Aux2, orcombinations of them

ALARM PICKUP LEVEL:25 Trips

Range: 1 to 50000 in steps of 1

TRIP COUNTER ALARMEVENTS: Off

Range: On, Off

Courtesy of NationalSwitchgear.com
Page 63: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-13

5 SETPOINTS 5.3 S2 SYSTEM SETUP

5

b) STARTER FAILURE

PATH: S2 SYSTEM SETUP MONITORING SETUP STARTER FAILURE

If the Starter Failure alarm feature is enabled, any time the 369 initiates a trip, the 369 will monitor the Starter Status input(if assigned to "Spare Switch" in S9 DIGITAL INPUTS ) and the motor current. If the starter status contacts do not changestate or motor current does not drop to zero after the programmed time delay, an alarm will occur. The time delay should beslightly longer than the breaker or contactor operating time. In the event that an alarm does occur, if Breaker was chosen asthe starter type, the alarm will be Breaker Failure. If on the other hand, Contactor was chosen for starter type, the alarm willbe Welded Contactor.

c) DEMAND:

PATH: S2 SYSTEM SETUP MONITORING SETUP CURRENT DEMAND

MONITORING SETUP TRIP COUNTER

STARTER FAILURE

STARTER FAILERALARM: Off

Range: Off, Latched, Unlatched

STARTER TYPE:Breaker

Range: Breaker, Contactor

ASSIGN ALARMRELAYS: Alarm

Range: None, Alarm, Aux1, Aux2, orcombinations of them

STARTER FAILUREDELAY:100 ms

Range: 10 to 1000 ms in steps of 10

STARTER FAILUREALARM EVENTS:

Range: ON, OFF

MONITORING SETUP TRIP COUNTER

STARTER FAILURE

CURRENT DEMAND

CURRENT DEMANDPERIOD: 15 min

Range: 5 to 90 min in steps of 1

CURRENT DEMANDALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARMRELAYS: Alarm

Range: None, Alarm, Aux1, Aux2, orcombinations of them

CURRENT DEMANDALARM LEVEL: 100 A

Range: 1 to 65000 A in steps of 1

CURRENT DEMANDALARM EVENTS: Off

Range: On, Off

kW DEMAND

Courtesy of NationalSwitchgear.com
Page 64: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-14 369 Motor Management Relay GE Power Management

5.3 S2 SYSTEM SETUP 5 SETPOINTS

5

The 369 can measure the demand of the motor for several parameters (current, kW, kvar, kVA). The demand values maybe of interest for energy management programs where processes may be altered or scheduled to reduce overall demandon a feeder. An alarm will occur if the limit of any of the enabled demand elements is reached.

Demand is calculated in the following manner. Every minute, an average magnitude is calculated for current, +kW, +kvar,and kVA based on samples taken every 5 seconds. These values are stored in a FIFO (First In, First Out buffer). The sizeof the buffer is determined by the period selected for the setpoint. The average value of the buffer contents is calculatedand stored as the new demand value every minute. Demand for real and reactive power is only positive quantities (+kWand +kvar).

kW DEMANDPERIOD: 15 min

Range: 5 to 90 min in steps of 1

kW DEMANDALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARMRELAYS: Alarm

Range: None, Alarm, Aux1, Aux2, orcombinations of them

kW DEMAND ALARMLEVEL: 100 kW

Range: 1 to 50000 kW in steps of 1

kW DEMAND ALARMEVENTS: Off

Range: On, Off

kvar DEMAND

kvar DEMANDPERIOD: 15 min

Range: 5 to 90 min. in steps of 1

kvar DEMANDALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARMRELAYS: Alarm

Range: None, Alarm, Aux1, Aux2, orcombinations of them

kvar DEMAND ALARMLEVEL: 100 kvar

Range: 1 to 50000 in steps of 1

kvar DEMAND ALARMEVENTS: Off

Range: On, Off

kVA DEMAND

kVA DEMANDPERIOD: 15 min

Range: 5 to 90 min in steps of 1

kVA DEMANDALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARMRELAYS: Alarm

Range: None, Alarm, Aux1, Aux2, orcombinations of them

kVA DEMAND ALARMLEVEL: 100 kVA

Range: 1 to 50000 in steps of 1

kVA DEMAND ALARMEVENTS: Off

Range: On, Off

Courtesy of NationalSwitchgear.com
Page 65: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-15

5 SETPOINTS 5.3 S2 SYSTEM SETUP

5

where: N = programmed demand period in minutes and n = time in minutes

d) SELF-TEST RELAY ASSIGNMENT:

PATH: S2 SYSTEM SETUP MONITORING SETUP TRIP COUNTER

The 369 performs self-diagnostics of the hardware circuitry. The relay programmed as the Self-Test relay activates upon afailure of any self-diagnostic tests.

MONITORING SETUP TRIP COUNTER

STARTER FAILURE

CURRENT DEMAND

kW DEMAND

kvar DEMAND

kVA DEMAND

SELF TEST MODE

RELAYS: None Range: None, Trip, Aux1, Aux2, or combinationsof them

DEMAND 1N---- Average n( )

n 1=

N

∑=

ROLLING DEMAND (15 min. window)

0

20

40

60

80

100

120

140

160

t=0 t+10 t+20 t+30 t+40 t+50 t+60 t+70 t+80 t+90 t+100

TIME

Courtesy of NationalSwitchgear.com
Page 66: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-16 369 Motor Management Relay GE Power Management

5.3 S2 SYSTEM SETUP 5 SETPOINTS

5

5.3.4 OUTPUT RELAY SETUP

PATH: S2 SYSTEM SETUP OUTPUT RELAY SETUP

TRIP / AUX1 / AUX2 / ALARM RELAY RESET MODE:

A latched relay (caused by a protective elements alarm or trip) may be reset at any time, providing that the condition thatcaused the relay operation is no longer present. Unlatched elements will automatically reset when the condition thatcaused them has cleared. Reset location is defined in the following table.

TRIP / AUX1 / AUX2 / ALARM OPERATION:

These setpoints allow the choice of relay output operation to fail-safe or non-failsafe. Relay latchcode however, is definedindividually for each protective element.

Failsafe operation causes the output relay to be energized in its normal state and de-energized when activated by a protec-tion element. A failsafe relay will also change state (if not already activated by a protection element) when control power isremoved from the 369. Conversely a non-failsafe relay is de-energized in its normal non-activated state and will not changestate when control power is removed from the 369 (if not already activated by a protection element).

The choice of failsafe or non-failsafe operation is usually determined by the motor’s application. In situations where the pro-cess is more critical than the motor, non-failsafe operation is typically programmed. In situations where the motor is morecritical than the process, failsafe operation is programmed.

OUTPUT RELAY SETUP TRIP RELAY RESETMODE: All Resets

Range: All Resets, Remote Only, Local Only

TRIP RELAYOPERATION: FS

Range: FS (=failsafe), NFS (=non-failsafe)

AUX1 RELAY RESETMODE: All Resets

Range: All Resets, Remote Only, Local Only

AUX1 RELAYOPERATION: NFS

Range: FS (=failsafe), NFS (=non-failsafe)

AUX2 RELAY RESETMODE: All Resets

Range: All Resets, Remote Only, Local Only

AUX2 RELAYOPERATION: NFS

Range: FS (=failsafe), NFS (=non-failsafe)

ALARM RELAY RESETMODE: All Resets

Range: All Resets, Remote Only, Local Only

ALARM RELAYOPERATION: NFS

Range: FS (failsafe), NFS (=non-failsafe)

RESET MODE RESET PERFORMED VIA

All Resets keypad, digital input, communications

Remote Only digital input, communications

Local Only keypad

Courtesy of NationalSwitchgear.com
Page 67: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-17

5 SETPOINTS 5.3 S2 SYSTEM SETUP

5

5.3.5 CONTROL FUNCTIONS

PATH: S2 SYSTEM SETUP CONTROL FUNCTIONS

SERIAL COMMUNICATION CONTROL:

If enabled, the motor may be remotely started and stopped via Modbus® communications. Refer to the Modbus ProtocolReference Guide (available from the Modbus website at www.modbus.org ) for details on sending commands (functioncode 5). When a Stop command is sent the Trip relay will activate for 1 second to complete the trip coil circuit for a breakerapplication or break the coil circuit for a contactor application. When a Start command is issued the relay assigned for start-ing control will activate for 1 second to complete the close coil circuit for a breaker application or complete the coil circuit fora contactor application.

The Serial Communication Control functions may also be used to reset the relay and activate a waveform capture. Refer tothe Modbus Protocol Reference Guide (available from the Modbus website at www.modbus.org ) for more information.

5.3.6 REDUCED VOLTAGE START TIMER

PATH: S2 SYSTEM SETUP CONTROL FUNCTIONS REDUCED VOLTAGE

The 369 is capable of controlling the transition of a reduced voltage starter from reduced to full voltage. That transition maybe based on "Current Only", "Current and Timer", or "Current or Timer" (whichever comes first). When the 369 measuresthe transition of no motor current to some value of motor current, a 'Start' is assumed to be occurring (typically current willrise quickly to a value in excess of FLA, e.g. 3 × FLA). At this point, the REDUCED VOLTAGE START TIMER will be initializedwith the programmed value in seconds.

CONTROL FUNCTIONS SERIAL COMMUNICATIONCONTROL

SERIAL COMMUNICATIONCONTROL: Off

Range: On, Off

ASSIGN STARTCONTROL RELAYS: Aux1

Range: None, Alarm, Aux1, Aux2 orcombinations of them

REDUCED VOLTAGESee page 5–17.

AUTORESTARTSee page 5–19.

REDUCED VOLTAGE REDUCED VOLTAGESTARTING: Off

Range: On, Off

ASSIGN CONTROLRELAYS: None

Range: None, Alarm, Aux1, Aux2, Alarm & Aux1, Alarm& Aux2, Aux1 & Aux2, Alarm & Aux1 & Aux2

TRANSITION ONCurrent Only

Range: Current Only, Current or Timer, Current andTimer

REDUCED VOLTAGESTART LEVEL: 100%FLA

Range: 25 to 300% FLA in steps of 1

REDUCED VOLTAGESTART TIMER: 200 s

Range: 1 to 500 s in steps of 1

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, Trip & Aux1, Trip &Aux2, Aux1 & Aux2, Trip & Aux1&Aux2

Courtesy of NationalSwitchgear.com
Page 68: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-18 369 Motor Management Relay GE Power Management

5.3 S2 SYSTEM SETUP 5 SETPOINTS

5

• If "Current Only" is selected, when the motor current falls below the programmed Transition Level, transition will be ini-tiated by activating the assigned output relay for 1 second. If the timer expires before that transition is initiated, anIncomplete Sequence Trip will occur activating the assigned trip relay(s).

• If "Current or Timer" is selected, when the motor current falls below the programmed Transition Level, transition will beinitiated by activating the assigned output relay for 1 second. If the timer expires before that transition is initiated, thetransition will be initiated regardless.

• If "Current and Timer" is selected, when the motor current falls below the programmed Transition Level and the timerexpires, transition will be initiated by activating the assigned output relay for 1 second. If the timer expires before cur-rent falls below the Transition Level, an Incomplete Sequence Trip will occur activating the assigned trip relay(s).

Figure 5–1: REDUCED VOLTAGE START CONTACTOR CONTROL CIRCUIT

Figure 5–2: REDUCED VOLTAGE STARTING CURRENT CHARACTERISTIC

If this feature is used, Starter Status Switch input must be either from a common control contact or a parallelcombination of Auxiliary ‘a’ contacts or a series combination of Auxiliary ‘b’ contacts from the reduced voltagecontactor and the full voltage contactor. Once transition is initiated, the 369 will assume the motor is still runningfor at least 2 seconds. This will prevent the 369 from recognizing an additional start if motor current goes to zeroduring an open transition.

CC1CC1

CC2CC2

369

BLOCK TRIP

STOPSTART

369

R3 Aux.CC1 SEAL-IN

REDUCED VOLTAGE

CONTACTOR

When the current falls below

the Transition Level and/or the

Timer expires, the Auxiliary Relay

activates for 1 secondMotor Amps

(% FLA)

Transition

Level

FLA

3 x FLA

Transition Time

signifies

Open Transition

time

NOTE

Courtesy of NationalSwitchgear.com
Page 69: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-19

5 SETPOINTS 5.3 S2 SYSTEM SETUP

5

Figure 5–3: REDUCED VOLTAGE STARTER AUXILIARY A STATUS INPUT

Figure 5–4: REDUCED VOLTAGE STARTER AUXILIARY B STATUS INPUT

5.3.7 AUTORESTART

PATH: S2 SYSTEM SETUP CONTROL FUNCTIONS AUTORESTART

The 369 can be configured to automatically restart a motor in the event of a trip. When enabled, a restart timer will beloaded with the programmed timer values and trigger a designated output contact to operate when the timer expires. Thiscontact can be wired with OR logic in the start circuit of the motor. This feature is very useful in remote pumping applica-tions where the pumping station may be unmanned and an autoreclosure of contacts or breakers is required.

The autorestart implementation requires specific criteria to be present to allow motor restarting. The 369 will not attempt torestart after any Short Circuit or Ground Fault trip, and only one autorestart is attempted after an Overload trip, provided theSingle Shot Restart feature is enabled. In this mode, the 369 start inhibit will be active for the lockout time upon the secondconsecutive Overload trip. The 369 also requires that TRIP RELAY RESET MODE be set to "Remote Only" or "All Resets".Upon determination of a successful restart attempt, the SERIAL COMMUNICATION CONTROL must be enabled and an outputcontact assigned in the ASSIGNED START CONTROL RELAYS setpoint (these settings are found in S2 SYSTEM SETUP \ CON-TROL FUNCTIONS). The 369 uses the logic shown in Figure 5–5: AUTORESTART LOGIC on the following page to deter-mine restart conditions.

The Autorestart Delay Timer is calculated as follows:

Total Delay = RESTART DELAY + (total restarts × PROGRESSIVE DELAY) + HOLD DELAY

AUTORESTART AUTORESTART ENABLED:No

Range: Yes, No

TOTAL RESTARTS:1

Range: 0 to 20000 in steps of 1

RESTART DELAYDELAY: 0 s

Range: 0 to 20000 s in steps of 1

PROGRESSIVE DELAYDELAY: 0 s

Range: 0 to 20000 s in steps of 1

HOLD DELAYDELAY: 0 s

Range: 0 to 20000 s in steps of 1

BUS VALID ENABLED:No

Range: Yes, No

BUS VALID LEVEL:100%

Range: 15 to 100% of Motor Rated Voltage, in steps of 1

51

52

51

52

Courtesy of NationalSwitchgear.com
Page 70: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-20 369 Motor Management Relay GE Power Management

5.3 S2 SYSTEM SETUP 5 SETPOINTS

5

The base delay time is set with the RESTART DELAY setpoint. The PROGRESSIVE DELAY setpoint is used to progressivelyadd time to the total restart delay based upon the number of restarts. The HOLD DELAY is used to sequentially staggerrestarts of a series of motors on a bus in the event of the entire bus being brought online. For example, four motors on abus may have settings of 60, 120, 180, and 240 seconds, respectively. In the event of a common fault, the motors arebrought online in sequence. The minimizes the effect of voltage sag on the bus when each motor is brought online.

The last criteria for a valid restart attempt is determined by the BUS VALID ENABLED/LEVELS setpoints. When enabled, the369 determines the average line voltage at the motor prior to restart and blocks an attempt if the voltage is below the BUSVALID LEVEL setpoint. The setpoint is in terms of the S2 SYSTEM SETUP \ CT/VT SETUP \ MOTOR RATED VOLTAGE setpoint.The 369 only examines this threshold at the instant of issuing a restart command to the designated output contact. Thisgives time for the bus to settle after the trip has occurred. This setpoint is only available if the Metering Option (M) isenabled.

Figure 5–5: AUTORESTART LOGIC

Motor Running

Trip

AutoRestart

Enabled

Yes

Yes

No

No

Reset Attempt Yes

No

Restart Attempts

> Max Restarts

Setting

Yes Abort Restart

No

Change Trip Contact

State

Cause of Trip NOT

Short Circuit or

Ground Fault

Yes

No

Cause of Trip =

Thermal Overload

One Shot Restart On

Overload Enabled

Yes

Abort Restart

Second Attempt on

Overload Restart

No

Abort Restart and load

Overload Start Inhibit

Timer

Yes

Autorestart_Delay =

(Restart Attempts x

Progressive Timer Delay)+

Restart Delay +

Hold Timer Delay

Yes

Close Start Relay

AutoRestart Delay

Active

Any Trip Active

or Bus Invalid

Yes

No

No

Bus Valid Enabled

No

Yes

No

No

Any Trip Active Abort Restart

No

Yes

Yes

Courtesy of NationalSwitchgear.com
Page 71: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-21

5 SETPOINTS 5.4 S3 OVERLOAD PROTECTION

5

5.4 S3 OVERLOAD PROTECTION 5.4.1 SETPOINTS PAGE 3 MENU

Heat is one of the principle enemies of motor life. When a motor is specified, the purchaser communicates to the manufac-turer what the loading conditions, duty cycle, environment and pertinent information about the driven load such as startingtorque. The manufacturer then provides a stock motor or builds a motor that should have a reasonable life under those con-ditions. The purchaser should request all safe stall, acceleration and running thermal limits for all motors they receive inorder to effectively program the 369.

Motor thermal limits are dictated by the design of the stator and the rotor. Motors have three modes of operation: lockedrotor or stall (rotor is not turning), acceleration (rotor is coming up to speed), and running (rotor turns at near synchronousspeed). Heating occurs in the motor during each of these conditions in very distinct ways. Typically, during motor starting,locked rotor, and acceleration conditions, the motor is rotor limited. That is, the rotor approaches its thermal limit before thestator. Under locked rotor conditions, voltage is induced in the rotor at line frequency, 50 or 60 Hz. This voltage causes acurrent to flow in the rotor, also at line frequency, and the heat generated (I2R) is a function of the effective rotor resistance.At 50 / Hz, the rotor cage reactance causes the current to flow at the outer edges of the rotor bars. The effective resistanceof the rotor is therefore at a maximum during a locked rotor condition as is rotor heating. When the motor is running at ratedspeed, the voltage induced in the rotor is at a low frequency (approximately 1 Hz) and therefore, the effective resistance ofthe rotor is reduced quite dramatically. During running overloads, the motor thermal limit is typically dictated by statorparameters. Some special motors might be all stator or all rotor limited. During acceleration, the dynamic nature of themotor slip dictates that rotor impedance is also dynamic, and a third overload thermal limit characteristic is necessary.

Typical thermal limit curves are shown below. The motor starting characteristic is shown for a high inertia load at 80% volt-age. If the motor started quicker, the distinct characteristics of the thermal limit curves would not be required and the run-ning overload curve would be joined with locked rotor safe stall times to produce a single overload curve.

Figure 5–6: TYPICAL TIME-CURRENT AND THERMAL LIMIT CURVES (ANSI/IEEE C37.96)

S3 SETPOINTSOVERLOAD PROTECTION

THERMAL MODELSee page 5–22.

OVERLOAD CURVESSee page 5–23.

OVERLOAD ALARMSee page 5–31.

1

10

8

6

4

2

100

80

60

40

20

200

300

400

0 100 200 300 400 500 600 % CURRENT

TIM

E-S

EC

ON

DS

HIGH

INERTIA

MOTOR RUNNING OVERLOAD

A

G

B

C

A,B,AND C ARE THE

ACCELERATION THERMAL LIMIT

CURVES AT 100%, 90%, AND

80%VOLTAGE, REPECTIVELY

E,F, AND G ARE THE

SAFE STALL THERMAL LIMIT

TIMES AT 100%, 90%, AND

80%VOLTAGE, REPECTIVELY

E

F

806827A1.CDR

Courtesy of NationalSwitchgear.com
Page 72: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-22 369 Motor Management Relay GE Power Management

5.4 S3 OVERLOAD PROTECTION 5 SETPOINTS

5

5.4.2 THERMAL MODEL

PATH: S3 OVERLOAD PROTECTION THERMAL MODEL

The primary protective function of the 369 is the thermal model. It consists of five key elements: the overload curve andpickup level, unbalance biasing, motor cooling time constants, and temperature biasing based on Hot/Cold motor informa-tion and measured stator RTD temperature.

The 369 integrates both stator and rotor heating into one model. Motor heating is reflected in the THERMAL CAPACITYUSED actual value. If stopped for a long period of time, the motor will be at ambient temperature and THERMAL CAPACITYUSED should be zero. If the motor is in overload, a trip will occur once the thermal capacity used reaches 100%. Insulationdoes not immediately melt when a motor’s thermal limit is exceeded. Rather, the rate of insulation degradation reaches apoint where the motor life will be significantly reduced if the condition persists. The thermal capacity used alarm may beused as a warning of an impending overload trip.

THERMAL MODEL OVERLOAD PICKUPLEVEL: 1.01 x FLA

Range: 1.01 to 1.25 in steps of 0.01

THERMAL CAPACITYALARM: Off

Range: Off, Latched, Unlatched

ASSIGN TC ALARMRELAYS: Alarm

Range: None, Alarm, Aux1, Aux2, or combinations ofthem

TC ALARM LEVEL:75 % Used

Range: 1 to 100% in steps of 1

THERMAL CAPACITYALARM EVENTS: No

Range: No, Yes

ASSIGN TC TRIPRELAYS: Trip

Range: None, Trip, Aux1, Aux2 or combinations of them(TC trip always on and latched)

ENABLE UNBALANCEBIAS OF TC: No

Range: No, Yes

UNBALANCE BIASK FACTOR: Learned

Range: Learned, 1 to 29 in steps of 1Only shown if Unbalance Bias is enabled

HOT/COLD SAFE STALLRATIO: 1.00

Range: 0.01 to 1.00 in steps of 0.01

ENABLE LEARNED COOLTIME: No

Range: No, Yes

RUNNING COOL TIMECONSTANT: 15 min.

Range: 1 to 500 min. in steps of 1Not shown if Learned Cool time is enabled

STOPPED COOL TIMECONSTANT: 30 min.

Range: 1 to 500 min. in steps of 1Not shown if Learned Cool time is enabled

ENABLE RTD BIASING:No

Range: No, Yes

RTD BIAS MINIMUM:40 °C

Range: 1to RTD BIAS MID POINTOnly shown if RTD biasing is enabled

RTD BIAS MID POINT:120 °C

Range: RTD BIAS MINIMUM to MAXIMUM Only shown if RTD biasing is enabled

RTD BIAS MAXIMUM:155 °C

Range: RTD BIAS MID POINT to 200Only shown if RTD biasing is enabled

Courtesy of NationalSwitchgear.com
Page 73: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-23

5 SETPOINTS 5.4 S3 OVERLOAD PROTECTION

5

5.4.3 OVERLOAD CURVES

PATH: S3 OVERLOAD PROTECTION OVERLOAD CURVES

OVERLOAD CURVE SELECT CURVE STYLE:Standard

Range: Standard, Custom

STANDARD OVERLOADCURVE NUMBER: 4

Range: 1 to 15 in steps of 1Only seen if curve style is selected as Standard

TIME TO TRIP AT1.01xFLA: 17415s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT1.05xFLA: 3415 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT1.10xFLA: 1667 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT1.20xFLA: 795 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT1.30xFLA: 507 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT1.40xFLA: 365 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT1.50xFLA: 280 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT1.75xFLA: 170 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT2.00xFLA: 117 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT2.25xFLA: 86 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT2.50xFLA: 67 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT2.75xFLA: 53 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT3.00xFLA: 44 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT3.25xFLA: 37 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT3.50xFLA: 31 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT3.75xFLA: 27 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT4.00xFLA: 23 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT4.25xFLA: 21 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

Courtesy of NationalSwitchgear.com
Page 74: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-24 369 Motor Management Relay GE Power Management

5.4 S3 OVERLOAD PROTECTION 5 SETPOINTS

5

a) STANDARD OVERLOAD CURVE:

The overload curve accounts for motor heating during stall, acceleration, and running in both the stator and the rotor. TheOVERLOAD PICKUP setpoint dictates where the running overload curve begins as the motor enters an overload condition.This is useful for service factor motors as it allows the pickup level to be defined. The curve is effectively cut off at currentvalues below this pickup.

Motor thermal limits consist of three distinct parts based on the three conditions of operation, locked rotor or stall, accelera-tion, and running overload. Each of these curves may be provided for both a hot motor and a cold motor. A hot motor isdefined as one that has been running for a period of time at full load such that the stator and rotor temperatures have set-tled at their rated temperature. A cold motor is defined as a motor that has been stopped for a period of time such that thestator and rotor temperatures have settled at ambient temperature. For most motors, the distinct characteristics of themotor thermal limits are formed into one smooth homogeneous curve. Sometimes only a safe stall time is provided. This isacceptable if the motor has been designed conservatively and can easily perform its required duty without infringing on thethermal limit. In this case, the protection can be conservative and process integrity is not compromised. If a motor has beendesigned very close to its thermal limits when operated as required, then the distinct characteristics of the thermal limitsbecome important.

The 369 overload curve can take one of two formats: Standard or Custom Curve. Regardless of which curve style isselected, the 369 will retain thermal memory in the form of a register called THERMAL CAPACITY USED . This register isupdated every 100 ms using the following equation:

where: time_to_trip = time taken from the overload curve at Ieq as a function of FLA.

The overload protection curve should always be set slightly lower than the thermal limits provided by the manufacturer. Thiswill ensure that the motor is tripped before the thermal limit is reached.

TIME TO TRIP AT4.50xFLA: 18 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT4.75xFLA: 16 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT5.00xFLA: 15 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT5.50xFLA: 12 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT6.00xFLA: 10 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT6.50xFLA: 9 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT7.00xFLA: 7 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT7.50xFLA: 6 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT8.00xFLA: 6 S

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT10.0xFLA: 6 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT15.0xFLA: 6 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TIME TO TRIP AT20.0xFLA: 6 s

Range: 0 to 32767 s in steps of 1Only seen if curve style is Custom

TCusedt TCusedt 100 ms–100 ms

time_to_trip------------------------------- 100%×+=

Courtesy of NationalSwitchgear.com
Page 75: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-25

5 SETPOINTS 5.4 S3 OVERLOAD PROTECTION

5

If the motor starting times are well within the safe stall times, it is recommended that the 369 Standard Overload Curves beused. The standard overload curves are a series of 15 curves with a common curve shape based on typical motor thermallimit curves (see Figure 5–7: 369 STANDARD OVERLOAD CURVES on page 5–25 and Figure 5–7: 369 STANDARDOVERLOAD CURVES on page 5–25).

Figure 5–7: 369 STANDARD OVERLOAD CURVES

x1

x15

100000

10000

1000

100

10

1.00

0.10 1.00

MULTIPLE OF FULL LOAD AMPS

TIM

EIN

SE

CO

ND

S

10 100 1000

840719A1.CDR

Courtesy of NationalSwitchgear.com
Page 76: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-26 369 Motor Management Relay GE Power Management

5.4 S3 OVERLOAD PROTECTION 5 SETPOINTS

5

Above 8.0 x Pickup, the trip time for 8.0 is used. This prevents the overload curve from acting as aninstantaneous element.

The Standard Overload Curves equation is:

Table 5–1: 369 STANDARD OVERLOAD CURVES

PICKUPLEVEL(× FLA)

STANDARD CURVE MULTIPLIERS

× 1 × 2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 × 10 × 11 × 12 × 13 × 14 × 15

1.01 4353.6 8707.2 13061 17414 21768 26122 30475 34829 39183 43536 47890 52243 56597 60951 65304

1.05 853.71 1707.4 2561.1 3414.9 4268.6 5122.3 5976.0 6829.7 7683.4 8537.1 9390.8 10245 11098 11952 12806

1.10 416.68 833.36 1250.0 1666.7 2083.4 2500.1 2916.8 3333.5 3750.1 4166.8 4583.5 5000.2 5416.9 5833.6 6250.2

1.20 198.86 397.72 596.58 795.44 994.30 1193.2 1392.0 1590.9 1789.7 1988.6 2187.5 2386.3 2585.2 2784.1 2982.9

1.30 126.80 253.61 380.41 507.22 634.02 760.82 887.63 1014.4 1141.2 1268.0 1394.8 1521.6 1648.5 1775.3 1902.1

1.40 91.14 182.27 273.41 364.55 455.68 546.82 637.96 729.09 820.23 911.37 1002.5 1093.6 1184.8 1275.9 1367.0

1.50 69.99 139.98 209.97 279.96 349.95 419.94 489.93 559.92 629.91 699.90 769.89 839.88 909.87 979.86 1049.9

1.75 42.41 84.83 127.24 169.66 212.07 254.49 296.90 339.32 381.73 392.15 466.56 508.98 551.39 593.81 636.22

2.00 29.16 58.32 87.47 116.63 145.79 174.95 204.11 233.26 262.42 291.58 320.74 349.90 379.05 408.21 437.37

2.25 21.53 43.06 64.59 86.12 107.65 129.18 150.72 172.25 193.78 215.31 236.84 258.37 279.90 301.43 322.96

2.50 16.66 33.32 49.98 66.64 83.30 99.96 116.62 133.28 149.94 166.60 183.26 199.92 216.58 233.24 249.90

2.75 13.33 26.65 39.98 53.31 66.64 79.96 93.29 106.62 119.95 133.27 146.60 159.93 173.25 186.58 199.91

3.00 10.93 21.86 32.80 43.73 54.66 65.59 76.52 87.46 98.39 109.32 120.25 131.19 142.12 153.05 163.98

3.25 9.15 18.29 27.44 36.58 45.73 54.87 64.02 73.16 82.31 91.46 100.60 109.75 118.89 128.04 137.18

3.50 7.77 15.55 23.32 31.09 38.87 46.64 54.41 62.19 69.96 77.73 85.51 93.28 101.05 108.83 116.60

3.75 6.69 13.39 20.08 26.78 33.47 40.17 46.86 53.56 60.25 66.95 73.64 80.34 87.03 93.73 100.42

4.00 5.83 11.66 17.49 23.32 29.15 34.98 40.81 46.64 52.47 58.30 64.13 69.96 75.79 81.62 87.45

4.25 5.12 10.25 15.37 20.50 25.62 30.75 35.87 41.00 46.12 51.25 56.37 61.50 66.62 71.75 76.87

4.50 4.54 9.08 13.63 18.17 22.71 27.25 31.80 36.34 40.88 45.42 49.97 54.51 59.05 63.59 68.14

4.75 4.06 8.11 12.17 16.22 20.28 24.33 28.39 32.44 36.50 40.55 44.61 48.66 52.72 56.77 60.83

5.00 3.64 7.29 10.93 14.57 18.22 21.86 25.50 29.15 32.79 36.43 40.08 43.72 47.36 51.01 54.65

5.50 2.99 5.98 8.97 11.96 14.95 17.94 20.93 23.91 26.90 29.89 32.88 35.87 38.86 41.85 44.84

6.00 2.50 5.00 7.49 9.99 12.49 14.99 17.49 19.99 22.48 24.98 27.48 29.98 32.48 34.97 37.47

6.50 2.12 4.24 6.36 8.48 10.60 12.72 14.84 16.96 19.08 21.20 23.32 25.44 27.55 29.67 31.79

7.00 1.82 3.64 5.46 7.29 9.11 10.93 12.75 14.57 16.39 18.21 20.04 21.86 23.68 25.50 27.32

7.50 1.58 3.16 4.75 6.33 7.91 9.49 11.08 12.66 14.24 15.82 17.41 18.99 20.57 22.15 23.74

8.00 1.39 2.78 4.16 5.55 6.94 8.33 9.71 11.10 12.49 13.88 15.27 16.65 18.04 19.43 20.82

10.00 1.39 2.78 4.16 5.55 6.94 8.33 9.71 11.10 12.49 13.88 15.27 16.65 18.04 19.43 20.82

15.00 1.39 2.78 4.16 5.55 6.94 8.33 9.71 11.10 12.49 13.88 15.27 16.65 18.04 19.43 20.82

20.00 1.39 2.78 4.16 5.55 6.94 8.33 9.71 11.10 12.49 13.88 15.27 16.65 18.04 19.43 20.82

NOTE

time_to_tripcurve_multiplier 2.2116623×

0.02530337 pickup 1–( )2× 0.05054758 pickup 1–( )×+----------------------------------------------------------------------------------------------------------------------------------------------------=

Courtesy of NationalSwitchgear.com
Page 77: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-27

5 SETPOINTS 5.4 S3 OVERLOAD PROTECTION

5

b) CUSTOM OVERLOAD CURVE:

If the motor starting current begins to infringe on the thermal damage curves, it may be necessary to use a custom curve toensure successful starting without compromising motor protection. Furthermore, the characteristics of the starting thermaldamage curve (locked rotor and acceleration) and the running thermal damage curves may not fit together very smoothly.In this instance, it may be necessary to use a custom curve to tailor protection to the motor thermal limits so the motor maybe started successfully and used to its full potential without compromising protection. The distinct parts of the thermal limitcurves now become more critical. For these conditions, it is recommended that the 369 custom curve thermal model beused. The custom overload curve of the 369 allows the user to program their own curve by entering trip times for 30 pre-determined current levels. The 369 smooths the areas between these points to make the protection curve.

It can be seen below that if the running overload thermal limit curve were smoothed into one curve with the locked rotoroverload curve, the motor could not start at 80% line voltage. A custom curve is required.

Figure 5–8: CUSTOM CURVE EXAMPLE

During the interval of discontinuity, the longer of the two trip times is used to reduce the chance of nui-sance tripping during motor starts.

MULTIPLE OF FULL LOAD CURRENT SETPOINT

TIM

ETO

TRIP

INSEC

ON

DS

0.1

1.0

10

100

1000

10000

0.5

1

10

10

0

10

00

840730A2.CDR

6500 HP, 13800 VOLT INDUCED DRAFT FAN MOTOR

TYPICAL CUSTOM CURVE

1

2

3

4

5

2

3

4

5

1 PROGRAMMED CUSTOM CURVE

RUNNING SAFETIME (STATOR LIMIT)

ACCELERATION SAFETIME (ROTOR LIMIT)

MOTOR CURRENT @ 100% VOLTAGE

MOTOR CURRENT @ 80% VOLTAGE

g GE Power Management

NOTE

Courtesy of NationalSwitchgear.com
Page 78: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-28 369 Motor Management Relay GE Power Management

5.4 S3 OVERLOAD PROTECTION 5 SETPOINTS

5

5.4.4 UNBALANCE BIAS

Unbalanced phase currents cause additional rotor heating not accounted for by electromechanical relays and may not beaccounted for in some electronic protective relays. When the motor is running, the rotor rotates in the direction of the posi-tive-sequence current at near synchronous speed. Negative-sequence current, having a phase rotation opposite to thepositive sequence current, and hence, opposite to the rotor rotation, generates a rotor voltage that produces a substantialrotor current. This induced current has a frequency approximately twice the line frequency: 100 Hz for a 50 Hz system,120 Hz for a 60 Hz system. Skin effect in the rotor bars at this frequency causes a significant increase in rotor resistance,and therefore a significant increase in rotor heating. This extra heating is not accounted for in the motor manufacturer ther-mal limit curves, since these curves assume positive-sequence currents only from a perfectly balanced supply and motordesign.

The 369 measures the percentage unbalance for the phase currents. The thermal model may be biased to reflect the addi-tional heating caused by negative-sequence current, present during an unbalance when the motor is running. This is doneby creating an equivalent motor heating current that takes into account the unbalanced current effect along with the aver-age phase current. This current is calculated as follows:

where: Ieq = equivalent unbalance biased heating currentIavg = average RMS phase current measuredUB% = unbalance percentage measured (100% = 1, 50% = 0.5, etc.)k = unbalance bias k factor

The figure on the left shows motor derating as a function of voltage unbalance as recommended by the American organiza-tion NEMA (National Electrical Manufacturers Association). Assuming a typical induction motor with an inrush of 6 × FLAand a negative sequence impedance of 0.167, voltage unbalances of 1, 2, 3, 4, and 5% equal current unbalances of 6, 12,18, 24, and 30% respectively. Based on this assumption, the figure on the right below illustrates the amount of motor derat-ing for different values of k entered for the setpoint UNBALANCE BIAS K FACTOR . Note that the curve for k = 8 is almostidentical to the NEMA derating curve.

Figure 5–9: MEDIUM MOTOR DERATING FACTOR DUE TO UNBALANCED VOLTAGE

If a k value of 0 is entered, the unbalance biasing is defeated and the overload curve will time out against the measured perunit motor current. The k value may be calculated as:

The 369 can also learn the unbalance bias k factor. It is recommended that the learned k factor not be enable until themotor has had at least five successful starts. The calculation of the learned k factor is as follows:

IeqIavg 1 k UB%( )× 2

+

FLA------------------------------------------------------=

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0 1 2 3 4 5

PERCENT VOLTAGE UNBALANCE

DE

RAT

ING

FAC

TOR

k=2

k=4

k=6

k=8

k=100.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0 1 2 3 4 5

PERCENT VOLTAGE UNBALANCE

DE

RAT

ING

FAC

TOR

NEMA GE POWER MANAGEMENT

k 175

ILR2

----------= (typical estimate); k 230

ILR2

----------= (conservative estimate), where ILR is the per unit locked rotor current

k 175

ILSC FLA⁄( )2---------------------------------= where ILSC learned start current, FLA Full Load Amps setpoint= =

Courtesy of NationalSwitchgear.com
Page 79: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-29

5 SETPOINTS 5.4 S3 OVERLOAD PROTECTION

5

5.4.5 MOTOR COOLING

The thermal capacity used quantity is reduced in an exponential manner when the motor is stopped or current is below theoverload pickup setpoint. This reduction simulates motor cooling. The motor cooling time constants should be entered forboth the stopped and running cases. A stopped motor will normally cool significantly slower than a running motor. Note thatthe cool time constant is one fifth the total cool time from 100% thermal capacity used down to 0% thermal capacity used.

The 369 can learn and estimate the stopped and running cool time constants for a motor. Calculation of a cool time con-stant is performed whenever the motor state transitions from starting to running or from running to stopped. The learnedcool times are based on the cooling rate of the hottest stator RTD, the hot/cold ratio, the ambient temperature (40 if noambient RTD), the measured motor load and the programmed service factor or overload pickup. Learned values shouldonly be enabled for motors that have been started, stopped and run at least five times.

Note that any learned cool time constants are mainly based on stator RTD information. Cool time, for starting, is typically arotor limit. The use of stator RTDs can only render an approximation. The learned values should only be used if the real val-ues are not available from the motor manufacturer. Motor cooling is calculated using the following formulas:

where: TCused = thermal capacity usedTCused_start = TC used value caused by overload conditionTCused_end = TC used value set by the hot/cold curve ratio when motor is running = '0' when motor is stopped.t = time in minutesτ = cool time constant (running or stopped)Ieq = equivalent motor heating currentoverload_pickup = overload pickup setpoint as a multiple of FLAhot/cold = hot/cold curve ratio

5.4.6 HOT/COLD CURVE RATIO

The motor manufacturer will sometimes provide thermal limit information for a hot/cold motor. The 369 thermal model willadapt for these conditions if the Hot/Cold Curve Ratio is programmed. The value entered for this setpoint dictates the levelof thermal capacity used that the relay will settle at for levels of current that are below the Overload Pickup Level. When themotor is running at a level that is below the Overload Pickup Level, the thermal capacity used will rise or fall to a valuebased on the average phase current and the entered Hot/Cold Curve Ratio. Thermal capacity used will either rise at a fixedrate of 5% per minute or fall as dictated by the running cool time constant.

where: TCused_end = Thermal Capacity Used if Iper_unit remains steady stateIeq = equivalent motor heating currenthot/cold = HOT/COLD CURVE RATIO setpoint

The hot/cold curve ratio may be determined from the thermal limit curves if provided or the hot and cold safe stall times.Simply divide the hot safe stall time by the cold safe stall time. If hot and cold times are not provided, there can be no differ-entiation and the hot/cold curve ratio should be entered as 1.00.

TCused TCused_start TCused_end–( ) e t– τ⁄( )⋅ TCused_end+=

TCused_end Ieq 1 hotcold-----------–

100%××=

TCused_end Ieq 1 hotcold-----------–

100%××=

Courtesy of NationalSwitchgear.com
Page 80: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-30 369 Motor Management Relay GE Power Management

5.4 S3 OVERLOAD PROTECTION 5 SETPOINTS

5

Figure 5–10: THERMAL MODEL COOLING

5.4.7 RTD BIAS

The 369 thermal replica operates as a complete and independent model. The thermal overload curves however, are basedsolely on measured current, assuming a normal 40°C ambient and normal motor cooling. If there is an unusually high ambi-ent temperature, or if motor cooling is blocked, motor temperature will increase. If the motor stator has embedded RTDs,the 369 RTD bias feature should be used to correct the thermal model.

The RTD bias feature is a two part curve constructed using three points. If the maximum stator RTD temperature is belowthe RTD Bias Minimum setpoint (typically 40°C), no biasing occurs. If the maximum stator RTD temperature is above theRTD Bias Maximum setpoint (typically at the stator insulation rating or slightly higher), then the thermal memory is fullybiased and thermal capacity is forced to 100% used. At values in between, the present thermal capacity used created bythe overload curve and other elements of the thermal model is compared to the RTD Bias thermal capacity used from theRTD Bias curve. If the RTD Bias thermal capacity used value is higher, then that value is used from that point onward. TheRTD Bias Center point should be set at the rated running temperature of the motor. The 369 will automatically determinethe thermal capacity used value for the center point using the Hot/Cold Safe stall ratio setpoint.

At temperatures less than the RTD_Bias_Center temperature,

At temperatures greater than the RTD_Bias_Center temperature,

0

25

50

75

100

0 30 60 90 120 150 180

Time in Minutes

The

rmal

Cap

acity

Use

d

Cool Time Constant= 15 minTCused_start= 85%Hot/Cold Ratio= 80%Ieq/Overload Pickup= 80%

0

25

50

75

100

0 30 60 90 120 150 180

Time in Minutes

The

rmal

Cap

acity

Use

d

Cool Time Constant= 15 minTCused_start= 85%Hot/Cold Ratio= 80%Ieq/Overload Pickup= 100%

0

25

50

75

100

0 30 60 90 120 150 180

Time in Minutes

The

rmal

Cap

acity

Use

d Cool Time Constant= 30 minTCused_start= 100%Hot/Cold Ratio= 80%Motor Stopped after Overload TripTCused_end= 0%

0

25

50

75

100

0 30 60 90 120 150 180

Time in Minutes

The

rmal

Cap

acity

Use

d Cool Time Constant= 30 minTCused_start= 85%Hot/Cold Ratio= 80%Motor Stopped after running Rated LoadTCused_end= 0%

80% LOAD 100% LOAD

MOTOR STOPPED MOTOR TRIPPED

TCused@RTD_Bias_Center 1 hotcold-----------–

100%×=

RTD_Bias_TCusedTactual Tmin–

Tcenter Tmin–------------------------------------ TCused@RTD_Bias_Center×=

Courtesy of NationalSwitchgear.com
Page 81: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-31

5 SETPOINTS 5.4 S3 OVERLOAD PROTECTION

5

where: RTD_Bias_TCused = TC used due to hottest stator RTDTactual = Actual present temperature of hottest stator RTDTmin = RTD Bias minimum setpoint (ambient temperature)Tcenter = RTD Bias center setpoint (motor running temperature)Tmax = RTD Bias max setpoint (winding insulation rating temperature)TCused@RTD_Bias_Center = TC used defined by HOT/COLD SAFE STALL RATIO setpoint

In simple terms, the RTD bias feature is real feedback of measured stator temperature. This feedback acts as correction ofthe thermal model for unforeseen situations. Since RTDs are relatively slow to respond, RTD biasing is good for correctionand slow motor heating. The rest of the thermal model is required during starting and heavy overload conditions whenmotor heating is relatively fast.

It should be noted that the RTD bias feature alone cannot create a trip. If the RTD bias feature forces the thermal capacityused to 100%, the motor current must be above the overload pickup before an overload trip occurs. Presumably, the motorwould trip on programmed stator RTD temperature setpoint at that time.

Figure 5–11: RTD BIAS CURVE

5.4.8 OVERLOAD ALARM

PATH: S3 OVERLOAD PROTECTION OVERLOAD ALARM

An overload alarm will occur only when the motor is running and the current rises above the programmed OVERLOADALARM LEVEL . The overload alarm is disabled during a start. An application of an unlatched overload alarm is to signal aPLC that controls the load on the motor, whenever the motor is too heavily loaded.

OVERLOAD ALARM OVERLOADALARM: Off

Range: Off, Latched, Unlatched

OVERLOAD ALARMLEVEL: 1.01 x FLA

Range: 1.01 to 1.50 in steps of 0.01

ASSIGN O/L ALARMRELAYS: Alarm

Range: None, Alarm, Aux1, Aux2, or combinations ofthem

OVERLOAD ALARMDELAY: 1 s

Range: 0.1 to 60.0 s in steps of 0.1

OVERLOAD ALARMEVENTS: Off

Range: On, Off

RTD_Bias_TCusedTactual Tcenter–

Tmax Tcenter–----------------------------------------- 100 TCused@RTD_Bias_Center–( )× TCused@RTD_Bias_Center+=

Maximum Stator RTD Temperature

The

rmal

Cap

acity

Use

d

0

20

40

60

80

100

-50 0 50 100 150 200 250

RTD Bias Maximum

RTD Bias Center PointRTD Bias Minimum

Hot/Cold = 0.85

Rated Temperature=130 C

Insulation Rating=155 C

Courtesy of NationalSwitchgear.com
Page 82: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-32 369 Motor Management Relay GE Power Management

5.5 S4 CURRENT ELEMENTS 5 SETPOINTS

5

5.5 S4 CURRENT ELEMENTS 5.5.1 SETPOINTS PAGE 4 MENU

These elements deal with functions that are based on the current readings of the 369 from the external phase and/orground CTs. All models of the 369 include these features.

5.5.2 SHORT CIRCUIT

PATH: S4 CURRENT ELEMENTS SHORT CIRCUIT

Care must be taken when turning on this feature. If the interrupting device (contactor or circuit breaker) isnot rated to break the fault current, this feature should be disabled. Alternatively, this feature may beassigned to an auxiliary relay and connected such that it trips an upstream device that is capable of break-ing the fault current.

Once the magnitude of either phase A, B, or C exceeds the Pickup Level × Phase CT Primary for a period of time specifiedby the delay, a trip will occur. Note the delay is in addition to the 45 ms instantaneous operate time.

There is also a backup trip feature that can be enabled. The backup delay should be greater than the short circuit delayplus the breaker clearing time. If a short circuit trip occurs with the backup on, and the phase current to the motor persistsfor a period of time that exceeds the backup delay, a second backup trip will occur. It is intended that this second trip beassigned to Aux1 or Aux2 which would be dedicated as an upstream breaker trip relay.

S4 SETPOINTSCURRENT ELEMENTS

SHORT CIRCUITSee page 5–32.

MECHANICAL JAMSee page 5–33.

UNDERCURRENTSee page 5–34.

CURRENT UNBALANCESee page 5–35.

GROUND FAULTSee page 5–36.

SHORT CIRCUIT SHORT CIRCUITTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations of them

SHORT CIRCUIT TRIPLEVEL: 10.0 x CT

Range: 2.0 to 20.0 x CT in steps of 0.1

ADD S/C TRIPDELAY: 0.00 s

Range: 0 to 255.00 s in steps of 0.010 = Instantaneous

SHORT CIRCUIT TRIPBACKUP: Off

Range: Off, Latched, Unlatched

ASSIGN BACKUP RELAY:Aux1

Range: None, Aux1, Aux2, or combinations of them

ADD S/C BACKUP TRIPDELAY: 0.20 s

Range: 0 to 255.00 s in steps of 0.01

NOTE

Courtesy of NationalSwitchgear.com
Page 83: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-33

5 SETPOINTS 5.5 S4 CURRENT ELEMENTS

5

Various situations (e.g. charging a long line to the motor or power factor correction capacitors) may cause transient inrushcurrents during motor starting that may exceed the Short Circuit Pickup level for a very short period of time. The Short Cir-cuit time delay is adjustable in 10 ms increments. The delay can be fine tuned to an application such that it still respondsvery fast, but rides through normal operational disturbances. Normally, the Phase Short Circuit time delay will be set asquick as possible, 0 ms. Time may have to be increased if nuisance tripping occurs.

When a motor starts, the starting current (typically 6 × FLA for an induction motor) has an asymmetrical component. Thisasymmetrical current may cause one phase to see as much as 1.6 times the normal RMS starting current. If the short cir-cuit level was set at 1.25 times the symmetrical starting current, it is probable that there would be nuisance trips duringmotor starting. As a rule of thumb the short circuit protection is typically set to at least 1.6 times the symmetrical startingcurrent value. This allows the motor to start without nuisance tripping.

Both the main Short Circuit delay and the backup delay start timing when the current exceeds the Short CircuitPickup level.

5.5.3 MECHANICAL JAM

PATH: S4 CURRENT ELEMENTS MECHANICAL JAM

After a motor start, once the magnitude of any one of either phase A, B, or C exceeds the Trip/Alarm Pickup Level × FLA fora period of time specified by the Delay, a Trip/Alarm will occur. This feature may be used to indicate a stall condition whenrunning. Not only does it protect the motor by taking it off-line quicker than the thermal model (overload curve), it may alsoprevent or limit damage to the driven equipment that may occur if motor starting torque persists on jammed or brokenequipment.

The pickup level for the Mechanical Jam Trip should be set higher than motor loading during normal operations, but lowerthan the motor stall level. Normally the delay would be set to the minimum time delay, or set such that no nuisance tripsoccur due to momentary load fluctuations.

MECHANICAL JAM MECHANICAL JAMALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinations ofthem

MECHANICAL JAM ALARMLEVEL: 1.50 x FLA

Range: 1.01 to 6.00 in steps of 0.01

MECHANICAL JAM ALARMDELAY: 1.0 s

Range: 0.5 to 125.0 s in steps of 0.5

MECHANICAL JAM ALARMEVENTS: Off

Range: On, Off

MECHANICAL JAMTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations of them

MECHANICAL JAM TRIPLEVEL: 1.50 x FLA

Range: 1.01 to 6.00 in steps of 0.01

MECHANICAL JAMTRIP DELAY: 1.0 s

Range: 0.5 to 125.0 s in steps of 0.5

NOTE

Courtesy of NationalSwitchgear.com
Page 84: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-34 369 Motor Management Relay GE Power Management

5.5 S4 CURRENT ELEMENTS 5 SETPOINTS

5

5.5.4 UNDERCURRENT

PATH: S4 CURRENT ELEMENTS UNDERCURRENT

If enabled, once the magnitude of either phase A, B or C falls below the pickup level × FLA for a period of time specified bythe Delay, a trip or alarm will occur. The undercurrent element is an indication of loss of load to the motor. Thus, the pickuplevel should be set lower than motor loading levels during normal operations. The undercurrent element is active when themotor is starting or running.

The undercurrent element can be blocked upon the initiation of a motor start for a period of time specified by the U/C BlockFrom Start setpoint (e.g. this block may be used to allow pumps to build up head before the undercurrent element trips). Avalue of 0 means undercurrent protection is immediately enabled upon motor starting (no block). If a value other than 0 isentered, the feature will be disabled from the time a start is detected until the time entered expires.

APPLICATION EXAMPLE:

If a pump is cooled by the liquid it pumps, loss of load may cause the pump to overheat. Undercurrent protection shouldthus be enabled. If the motor loading should never fall below 0.75 × FLA, even for short durations, the Undercurrent Trippickup could be set to 0.70 and the Undercurrent Alarm to 0.75. If the pump is always started loaded, the block from startfeature should be disabled (programmed as 0).

Time delay is typically set as quick as possible, 1 second.

UNDERCURRENT BLOCK UNDERCURRENTFROM START: 0 s

Range: 0 to 15000 s in steps of 1

UNDERCURRENTALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinations ofthem

UNDERCURRENT ALARMLEVEL: 0.70 x FLA

Range: 0.10 to 0.99 in steps of 0.01

UNDERCURRENT ALARMDELAY: 1 s

Range: 1 to 255 s in steps of 1

UNDERCURRENT ALARMEVENTS: Off

Range: On, Off

UNDERCURRENTTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations of them

UNDERCURRENT TRIPLEVEL: 0.70 x FLA

Range: 0.10 to 0.99 in steps of 0.01

UNDERCURRENT TRIPDELAY: 1 s

Range: 1 to 255 s in steps of 1

Courtesy of NationalSwitchgear.com
Page 85: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-35

5 SETPOINTS 5.5 S4 CURRENT ELEMENTS

5

5.5.5 CURRENT UNBALANCE

PATH: S4 CURRENT ELEMENTS CURRENT UNBALANCE

Unbalanced three phase supply voltages are a major cause of induction motor thermal damage. Causes of unbalance caninclude: increased resistance in one phase due to a pitted or faulty contactor, loose connections, unequal tap settings in atransformer, non-uniformly distributed three phase loads, or varying single phase loads within a plant. The most seriouscase of unbalance is single phasing – that is, the complete loss of one phase. This can be caused by a utility supply prob-lem or a blown fuse in one phase and can seriously damage a three phase motor. A single phase trip will occur in 2 sec-onds if the Unbalance trip is on and the level exceeds 30%. A single phase trip will also activate if the Motor Load is above30% and at least one of the phase currents is zero. Single phasing protection is disabled if the Unbalance Trip is turned Off.

During balanced conditions in the stator, current in each motor phase is equal, and the rotor current is just sufficient to pro-vide the turning torque. When the stator currents are unbalanced, a much higher current is induced into the rotor due to itslower impedance to the negative sequence current component present. This current is at twice the power supply frequencyand produces a torque in the opposite direction to the desired motor output. Usually the increase in stator current is smalland timed overcurrent protection takes a long time to trip. However, the much higher induced rotor current can cause exten-sive rotor damage in a short period of time. Motors can tolerate different levels of current unbalance depending on the rotordesign and heat dissipation characteristics.

To prevent nuisance trips/alarms on lightly loaded motors when a much larger unbalance level will not damage the rotor,the unbalance protection will automatically be defeated if the average motor current is less than 30% of the full load current(IFLA) setting. Unbalance is calculated as follows:

where: Iavg = average phase currentImax = current in a phase with maximum deviation from IavgIFLA = motor full load amps setting

CURRENT UNBALANCE BLOCK UNBALANCE FROMSTART: 0 s

Range: 0 to 5000 s in steps of 1

CURRENT UNBALANCEALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinations ofthem

UNBALANCE ALARMLEVEL: 15 %

Range: 4 to 30% in steps of 1

UNBALANCE ALARMDELAY: 1 s

Range: 1 to 255 s in steps of 1

UNBALANCE ALARMEVENTS: Off

Range: On, Off

CURRENT UNBALANCETRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations of them

UNBALANCE TRIPLEVEL: 20 %

Range: 4 to 30% in steps of 1

UNBALANCE TRIPDELAY: 1 s

Range: 1 to 255 s in steps of 1

If Iavg IFLA, Unbalance≥Imax Iavg–

Iavg----------------------------- 100×= If Iavg IFLA, Unbalance<

Imax Iavg–

IFLA----------------------------- 100×=

Courtesy of NationalSwitchgear.com
Page 86: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-36 369 Motor Management Relay GE Power Management

5.5 S4 CURRENT ELEMENTS 5 SETPOINTS

5

Unbalance protection is recommended at all times. When setting the unbalance pickup level, it should be noted that a 1%voltage unbalance typically translates into a 6% current unbalance. Therefore, in order to prevent nuisance trips or alarms,the pickup level should not be set too low. Also, since short term unbalances are common, a reasonable delay should beset to avoid nuisance trips or alarms. It is recommended that the unbalance thermal bias feature be used to bias the Ther-mal Model to account for rotor heating that may be caused by cyclic short term unbalances.

5.5.6 GROUND FAULT

PATH: S4 CURRENT ELEMENTS GROUND FAULT

Once the magnitude of ground current exceeds the Pickup Level for a period of time specified by the Delay, a trip and/oralarm will occur. There is also a backup trip feature that can be enabled. If the backup is On, and a Ground Fault trip hasinitiated, and the ground current persists for a period of time that exceeds the backup delay, a second ‘backup’ trip willoccur. It is intended that this second trip be assigned to Aux1 or Aux2 which would be dedicated as an upstream breakertrip relay. The Ground Fault Trip Backup delay must be set to a time longer than the breaker clearing time.

Care must be taken when turning On this feature. If the interrupting device (contactor or circuit breaker)is not rated to break ground fault current (low resistance or solidly grounded systems), the featureshould be disabled. Alternately, the feature may be assigned to an auxiliary relay and connected suchthat it trips an upstream device that is capable of breaking the fault current.

GROUND FAULT GROUND FAULTALARM: Off

Range: Off, Latched, Unlatched

ASSIGN G/F ALARMRELAYS: Alarm

Range: None, Alarm, Aux1, Aux2, or combinations ofthem

GROUND FAULT ALARMLEVEL: 0.10 x CT

Range: 0.10 to 1.00 x CT in steps of 0.01Only shown if G/F CT is 1A or 5A

GROUND FAULT ALARMLEVEL: 0.25 A

Range:0.25 to 25.00 A in steps of 0.01Only shown if G/F CT is 50:0.025

GROUND FAULT ALARMDELAY: 0.00 s

Range: 0.00 to 255.00 s in steps of 0.01s

GROUND FAULT ALARMEVENTS: Off

Range: On, Off

GROUND FAULTTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations of them

GROUND FAULT TRIPLEVEL: 0.20 x CT

Range: 0.10 to 1.00 x CT in steps of 0.01Only shown if G/F CT is 1A or 5A

GROUND FAULT TRIPLEVEL: 0.25 A

Range: 0.25 to 25.00 A in steps of 0.01Only shown if G/F CT is 50:0.025

GROUND FAULT TRIPDELAY: 0.00 s

Range: 0 to 255.00 s in steps of 0.01

GROUND FAULT TRIPBACKUP: Off

Range: Off, Latched, Unlatched

ASSIGN G/F BACKUPRELAYS: Aux2

Range: None, Aux1, Aux2, or combinations of them

G/F TRIP BACKUPDELAY: 0.20 s

Range: 0.01 to 255.00s in steps of 0.01

NOTE

Courtesy of NationalSwitchgear.com
Page 87: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-37

5 SETPOINTS 5.5 S4 CURRENT ELEMENTS

5

Various situations (e.g. contactor bounce) may cause transient ground currents during motor starting that may exceed theGround Fault Pickup levels for a very short period of time. The delay can be fine tuned to an application such that it stillresponds very fast, but rides through normal operational disturbances. Normally, the Ground Fault time delays will be set asquick as possible, 0 ms. Time may have to be increased if nuisance tripping occurs.

Special care must be taken when the ground input is wired to the phase CTs in a residual connection. When a motor starts,the starting current (typically 6 × FLA for an induction motor) has an asymmetrical component. This asymmetrical currentmay cause one phase to see as much as 1.6 times the normal RMS starting current. This momentary DC component willcause each of the phase CTs to react differently and the net current into the ground input of the 369 will not be negligible. A20 ms block of the ground fault elements when the motor starts enables the 369 to ride through this momentary ground cur-rent signal.

Both the main Ground Fault delay and the backup delay start timing when the Ground Fault current exceeds thepickup level.

NOTE

Courtesy of NationalSwitchgear.com
Page 88: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-38 369 Motor Management Relay GE Power Management

5.6 S5 MOTOR START / INHIBITS 5 SETPOINTS

5

5.6 S5 MOTOR START / INHIBITS 5.6.1 SETPOINTS PAGE 5 MENU

These setpoints deal with those functions that prevent the motor from restarting once stopped until a set condition clearsand/or a set time expires. None of these functions will trip a motor that is already running.

5.6.2 ACCELERATION TRIP

PATH: S5 MOTOR START/INHIBITS ACCELERATION TRIP

The 369 Thermal Model is designed to protect the motor under both starting and overload conditions. The AccelerationTimer trip feature may be used in addition to that protection. If for example, the motor should always start in 2 seconds, butthe safe stall time is 8 seconds, there is no point letting the motor remain in a stall condition for 7 or 8 seconds when thethermal model would take it off line. Furthermore, the starting torque applied to the driven equipment for that period of timecould cause severe damage.

If enabled, the Acceleration Timer trip element will function as follows: A motor start is assumed to be occurring when the369 measures the transition of no motor current to some value of motor current. Typically current will rise quickly to a valuein excess of FLA (e.g. 6 x FLA). At this point, the Acceleration Timer will be initialized with the entered value in seconds. Ifthe current does not fall below the overload curve pickup level before the timer expires, an acceleration trip will occur. If theacceleration time of the motor is variable, this feature should be set just beyond the longest acceleration time.

Some motor soft starters may allow current to ramp up slowly while others may limit current to less thanFull Load Amps throughout the start. In these cases, as a generic relay that must protect all motors, the369 cannot differentiate between a motor that has a slow ramp up time and one that has completed a startand gone into an overload condition. Therefore, if the motor current does not rise to greater than full loadwithin 1 second on start, the acceleration timer feature is ignored. In any case, the motor is still protectedby the overload curve.

S5 SETPOINTSMOTOR START/INHIBITS

ACCELERATION TRIPSee page 5–38.

START INHIBITSSee page 5–39.

BACKSPIN DETECTION See page 5–40.Only shown if option B installed

ACCELERATION TRIP ACCELERATIONTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations of them

ACCELERATION TIMEFROM START: 10.0 s

Range: 1.0 to 250.0 s in steps of 0.1

NOTE

Courtesy of NationalSwitchgear.com
Page 89: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-39

5 SETPOINTS 5.6 S5 MOTOR START / INHIBITS

5

5.6.3 START INHIBITS

PATH: S5 MOTOR START/INHIBITS START INHIBITS

SINGLE SHOT RESTART: Enabling this feature will allow the motor to be restarted immediately after an overload trip hasoccurred. To accomplish this, a reset will cause the 369 to decrease the accumulated thermal capacity to zero. However, ifa second overload trip occurs within one hour of the first, another immediate restart will not be permitted. The displayedlockout time must then be allowed to expire before the motor can be started.

START INHIBIT: The Start Inhibit feature is intended to help prevent tripping of the motor during a start if there is insufficientthermal capacity for a start. The average value of thermal capacity used from the last five successful starts is multiplied by1.25 and stored as thermal capacity used on start. This 25% margin is used to ensure that a motor start will be successful.If the number is greater than 100%, 100% is stored as thermal capacity used on start. A successful motor start is one inwhich phase current rises from 0 to greater than overload pickup and then, after acceleration, falls below the overloadcurve pickup level. If the Start Inhibit feature is enabled, each time the motor is stopped, the amount of thermal capacityavailable (100% – Thermal Capacity Used) is compared to the THERMAL CAPACITY USED ON START . If the thermal capac-ity available does not exceed the THERMAL CAPACITY USED ON START , or is not equal to 100%, the Start Inhibit willbecome active until there is sufficient thermal capacity. When an inhibit occurs, the lockout time will be equal to the timerequired for the motor to cool to an acceptable temperature for a start. This time will be a function of the COOL TIME CON-STANT STOPPED programmed. If this feature is turned Off, thermal capacity used must reduce to 15% before an overloadlockout resets. This feature should be turned off if the load varies for different starts.

MAX STARTS/HOUR PERMISSIBLE: A motor start is assumed to be occurring when the 369 measures the transition of nomotor current to some value of motor current. At this point, one of the STARTS/HOUR timers is loaded with 60 minutes.Even unsuccessful start attempts will be logged as starts for this feature. Once the motor is stopped, the number of startswithin the past hour is compared to the number of starts allowable. If the two are the same, an inhibit will occur. If an inhibitoccurs, the lockout time will be equal to one hour less the longest time elapsed since a start within the past hour. An Emer-gency restart will clear the oldest start time remaining.

TIME BETWEEN STARTS: A motor start is assumed to be occurring when the 369 measures the transition of no motor cur-rent to some value of motor current. At this point, the Time Between Starts timer is loaded with the entered time. Evenunsuccessful start attempts will be logged as starts for this feature. Once the motor is stopped, if the time elapsed since themost recent start is less than the TIME BETWEEN STARTS setpoint, an inhibit will occur. If an inhibit occurs, the lockout timewill be equal to the time elapsed since the most recent start subtracted from the TIME BETWEEN STARTS setpoint.

RESTART BLOCK: Restart Block may be used to ensure that a certain amount of time passes between stopping a motorand restarting that motor. This timer feature may be very useful for some process applications or motor considerations. If amotor is on a down-hole pump, after the motor stops, the liquid may fall back down the pipe and spin the rotor backwards.It would be very undesirable to start the motor at this time. In another scenario, a motor may be driving a very high inertiaload. Once the supply to the motor is disconnected, the rotor may continue to turn for a long period of time as it decelerates.The motor has now become a generator and applying supply voltage out of phase may result in catastrophic failure.

ASSIGN INHIBIT RELAY: The relay(s) assigned here will be used for all blocking/inhibit elements in this section. Theassigned relay will activate only when the motor is stopped. When a block/inhibit condition times out or is cleared, theassigned relay will automatically reset itself.

START INHIBITS ENABLE SINGLE SHOTRESTART: No

Range: No, Yes

ENABLESTART INHIBIT: No

Range: No, Yes

MAX STARTS/HOURPERMISSIBLE: Off

Range: 1 to 5 in steps of 1, Off (0)

TIME BETWEEN STARTSPERMISSIBLE: Off

Range: 1 to 500 min. in steps of 1, Off (0)

RESTART BLOCK:Off

Range: 1 to 50000 s in steps of 1, Off (0)

ASSIGN BLOCK RELAYTRIP & AUX2

Range: None, Trip, Aux1, Aux2, or combinations

Courtesy of NationalSwitchgear.com
Page 90: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-40 369 Motor Management Relay GE Power Management

5.6 S5 MOTOR START / INHIBITS 5 SETPOINTS

5

NOTES FOR ALL INHIBITS AND BLOCKS:

1. In the event of control power loss, all lockout times will be saved. Elapsed time will be recorded and decremented fromthe inhibit times whether control power is applied or not. Upon control power being re-established to the 369, allremaining inhibits (have not time out) will be re-activated.

2. If the motor is started while an inhibit is active an event titled ‘Start while Blocked’ will be recorded.

5.6.4 BACKSPIN DETECTION

PATH: S5 MOTOR START/INHIBITS BACKSPIN DETECTION

Immediately after the motor is stopped, backspin detection commences and a backspin start inhibit is activated to preventthe motor from being restarted. The backspin frequency is sensed through the BSD voltage input. If the measured fre-quency is below the programmed Minimum Permissible Frequency, the backspin start inhibit will be removed. The time forthe motor to reach the Minimum Permissible Frequency is calculated throughout the backspin state. If the BSD frequencysignal is lost prior to reaching the Minimum Permissible Frequency, the inhibit remains active until the predication time hasexpired. The calculated Predication Time and the Backspin State can be viewed in Voltage metering section of Actual Val-ues page 2.

APPLICATION:

Backspin protection is typically used on down hole pump motors which can be located several kilometers underground.Check valves are often used to prevent flow reversal when the pump stops. Very often however, the flow reverses due tofaulty or non existent check valves, causing the pump impeller to rotate the motor in the reverse direction. Starting themotor during this period of reverse rotation (back-spinning) may result in motor damage. Backspin detection ensures thatthe motor can only be started when the motor has slowed to within acceptable limits. Without backspin detection a longtime delay had to be used as a start permissive to ensure the motor had slowed to a safe speed.

These setpoints are only visible when option B has been installed.

BACKSPIN DETECTION ENABLE BACKSPINSTART INHIBIT: No

Range: No, YesOnly shown if B option installed

MINIMUM PERMISSIBLEFREQUENCY: 0.00 Hz

Range: 0 to 9.99 Hz in steps of 0.01Shown only if backspin start inhibit is enabled

PREDICTION ALGORITHMEnabled

Range: Disabled, EnabledShown only if backspin start inhibit is enabled

ASSIGN BSD RELAY:Aux2

Range: None, Trip, Aux1, Aux2, or combinationsSeen only if backspin start inhibit is enabled

NUM OF MOTOR POLES:2

Range: 2 to 16 in steps of 2Shown only if backspin start inhibit is enabled

NOTE

Courtesy of NationalSwitchgear.com
Page 91: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-41

5 SETPOINTS 5.7 S6 RTD TEMPERATURE

5

5.7 S6 RTD TEMPERATURE 5.7.1 SETPOINTS PAGE 6 MENU

These setpoints deal with the RTD overtemperature elements of the 369. The Local RTD Protection setpoints will only beseen if the 369 has option R installed. The Remote RTD Protection setpoints will only be seen if the 369 has the RRTDaccessory enabled. Both can be enabled and used at the same time and have the same functionality.

5.7.2 LOCAL RTD PROTECTION

PATH: S6 RTD TEMPERATURE LOCAL RTD PROTECTION

S6 SETPOINTSRTD TEMPERATURE

LOCAL RTDPROTECTION

See page 5–41.

REMOTE RTDPROTECTION

See page 5–42.

REMOTE RTD MODULE 1

REMOTE RTD MODULE 2

REMOTE RTD MODULE 3

REMOTE RTD MODULE 4

OPEN RTD ALARMSee page 5–44.

SHORT/LOW TEMP RTDALARM

See page 5–45.

LOSS OF RRTDCOMMS ALARM

See page 5–45.

LOCAL RTDPROTECTION

LOCAL RTD 1

RTD 1 APPLICATION:None

Range: None, Stator, Bearing, Ambient, Other

RTD 1 TYPE:100 Ohm Platinum

Range: 10 Ohm Copper, 100 Ohm Nickel, 120Ohm Nickel, 100 Ohm Platinum; seen only ifRTD 1 Application is other than None.

RTD 1 NAME:RTD 1

Range: 8 character alphanumeric; seen only ifRTD 1 Application is other than None.

RTD 1 ALARM:Off

Range: Off, Latched, Unlatched; seen only ifRTD 1 Application is other than None.

RTD 1 ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, orcombinations; seen only if RTD 1Application is other than None.

RTD 1 ALARMLEVEL: 130 °C

Range: 1 to 200°C in steps of 134 to 392°F in steps of 1;

only if RTD 1 Application is other than None.

RTD 1 HI ALARM:Off

Range: Off, Latched, Unlatched; seen only ifRTD 1 Application is other than None.

Courtesy of NationalSwitchgear.com
Page 92: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-42 369 Motor Management Relay GE Power Management

5.7 S6 RTD TEMPERATURE 5 SETPOINTS

55.7.3 REMOTE RTD PROTECTION

PATH: S6 RTD TEMPERATURE REMOTE RTD PROTECTION

RTD 1 HI ALARMRELAYS: Aux1

Range: None, Alarm, Aux1, Aux2, orcombinations; seen only if RTD 1Application is other than None.

RTD 1 HI ALARMLEVEL: 130 °C

Range: 1 to 200°C in steps of 134 to 392°F in steps of 1;

only if RTD 1 Application is other than None.

RECORD RTD 1 ALARMSAS EVENTS: No

Range: No, Yes; seen only if RTD 1 Applicationis other than None.

RTD 1 TRIP:Off

Range: Off, Latched, Unlatched; seen only ifRTD 1 Application is other than None.

RTD 1 TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, orcombinations; seen only if RTD 1Application is other than None.

RTD 1 TRIPLEVEL: 130 °C

Range: 1 to 200°C in steps of 134 to 392°F in steps of 1;

only if RTD 1 Application is other than None.

ENABLE RTD 1 TRIPVOTING: Off

Range: Off, RTD 1-12, All Stator; seen only ifRTD 1 Application is other than None.

LOCAL RTD 2

LOCAL RTD 12

REMOTE RTDPROTECTION

REMOTE RTD MODULE 1

REMOTE RTD 1

RRTD 1 APPLICATION:None

Range: None, Stator, Bearing, Ambient, Other

RRTD 1 TYPE:100 Ohm Platinum

Range: 10 Ohm Copper, 100 Ohm Nickel, 120 Ohm Nickel, 100 OhmPlatinum.

RRTD 1 NAME:RRTD1

Range: 8 character alphanumericSeen only if RRTD 1 Application is other than None

RRTD 1 ALARM:Off

Range: Off, Latched, UnlatchedSeen only if RRTD 1 Application is other than None

RRTD 1 ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinationsSeen only if RRTD 1 Application is other than None

RRTD 1 ALARMLEVEL: 130 °C

Range: 1 to 200°C or 34 to 392°F in steps of 1Seen only if RRTD 1 Application is other than None

RRTD 1 HI ALARM:Off

Range: Off, Latched, UnlatchedSeen only if RRTD 1 Application is other than None

Courtesy of NationalSwitchgear.com
Page 93: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-43

5 SETPOINTS 5.7 S6 RTD TEMPERATURE

5

APPLICATION: Each individual RTD may be assigned an application. A setting of "None" turns an individual RTD off. OnlyRTDs with the application set to "Stator" are used for RTD biasing of the thermal model. If an RTD application is set to"Ambient", then its is used in calculating the learned cool time of the motor.

TYPE: Each RTD is individually assigned the RTD type it is connected to. Multiple types may be used with a single 369.

NAME: Each RTD may have 8 character name assigned to it. This name is used in alarm and trip messages.

ALARM / HI ALARM / TRIP: Each RTD can be programmed for separate Alarm, Hi Alarm and Trip levels and relays. Tripsare automatically stored as events. Alarms and Hi Alarms are stored as events only if the Record Alarms as Events set-point for that RTD is set to Yes.

TRIP VOTING: This feature provides added RTD trip reliability in situations where malfunction and nuisance tripping iscommon. If enabled, the RTD trips only if the RTD (or RTDs) to be voted with are also above their trip level. For example, ifRTD 1 is set to vote with All Stator RTDs, the 369 will only trip if RTD 1 is above its trip level and any one of the other statorRTDs is also above its own trip level. RTD voting is typically only used on Stator RTDs and typically done between adjacentRTDs to detect hot spots.

Stator RTDs can detect heating due to non overload (current) conditions such as blocked or inadequate cooling and venti-lation or high ambient temperature as well as heating due to overload conditions. Bearing or other RTDs can detect over-heating of bearings or auxiliary equipment.

RRTD1 HI ALARMRELAY: Aux1

Range: None, Alarm, Aux1, Aux2, or combinationsSeen only if RRTD 1 Application is other than None

RRTD 1 HI ALARMLEVEL: 130 °C

Range: 1 to 200°C or 34 to 392°F in steps of 1Seen only if RRTD 1 Application is other than None

RECORD RRTD 1 ALARMSAS EVENTS: No

Range: No, YesSeen only if RRTD 1 Application is other than None

RRTD 1 TRIP:Off

Range: Off, Latched, UnlatchedSeen only if RRTD 1 Application is other than None

RRTD 1 TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinationsSeen only if RRTD 1 Application is other than None

RRTD 1 TRIPLEVEL: 130 °C

Range: 1 to 200°C or 34 to 392°F in steps of 1Seen only if RRTD 1 Application is other than None

ENABLE RRTD 1 TRIPVOTING: Off

Range: Off, RRTD 1 to 12, All StatorSeen only if RRTD 1 Application is other than None

REMOTE RTD 2

REMOTE RTD 12

REMOTE RTD MODULE 2

REMOTE RTD MODULE 4

Courtesy of NationalSwitchgear.com
Page 94: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-44 369 Motor Management Relay GE Power Management

5.7 S6 RTD TEMPERATURE 5 SETPOINTS

5

5.7.4 OPEN RTD ALARM

PATH: S6 RTD TEMPERATURE OPEN RTD ALARM

The 369 has an Open RTD Sensor Alarm. This alarm will look at all RTDs that have been assigned an application otherthan "None" and determine if an RTD connection has been broken. When a broken sensor is detected, the assigned outputrelay will operate and a message will appear on the display identifying the RTD that is broken. It is recommended that if thisfeature is used, the alarm be programmed as latched so that intermittent RTDs are detected and corrective action may betaken.

Table 5–2: RTD RESISTANCE TO TEMPERATURE

TEMPERATURE RTD RESISTANCE (IN OHMS)

°C °F 100 Ω PtDIN 43760

120 Ω Ni 100 Ω Ni 10 Ω Cu

–40 –40 84.27 92.76 79.13 7.49

–30 –22 88.22 99.41 84.15 7.88

–20 –4 92.16 106.15 89.23 8.26

–10 14 96.09 113.00 94.58 8.65

0 32 100.00 120.00 100.0 9.04

10 50 103.90 127.17 105.6 9.42

20 68 107.79 134.52 111.2 9.81

30 86 111.67 142.06 117.1 10.19

40 104 115.54 149.79 123.0 10.58

50 122 119.39 157.74 129.1 10.97

60 140 123.24 165.90 135.3 11.35

70 158 127.07 174.25 141.7 11.74

80 176 130.89 182.84 148.3 12.12

90 194 134.70 191.64 154.9 12.51

100 212 138.50 200.64 161.8 12.90

110 230 142.29 209.85 168.8 13.28

120 248 146.06 219.29 176.0 13.67

130 266 149.82 228.96 183.3 14.06

140 284 153.58 238.85 190.9 14.44

150 302 157.32 248.95 198.7 14.83

160 320 161.04 259.30 206.6 15.22

170 338 164.76 269.91 214.8 15.61

180 356 168.47 280.77 223.2 16.00

190 374 172.46 291.96 231.6 16.39

200 392 175.84 303.46 240.0 16.78

OPEN RTD ALARM OPEN RTDALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinations

OPEN RTD ALARMEVENTS: Off

Range: Off, On

Courtesy of NationalSwitchgear.com
Page 95: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-45

5 SETPOINTS 5.7 S6 RTD TEMPERATURE

5

5.7.5 SHORT/LOW TEMP RTD ALARM

PATH: S6 RTD TEMPERATURE SHORT/LOW TEMP RTD ALARM

The 369 has an RTD Short/Low Temperature alarm. This function tracks all RTDs that have an application other than"None" to determine if an RTD has either a short or a very low temperature (less than –40°C). When a short/low tempera-ture is detected, the assigned output relay will operate and a message will appear on the display identifying the RTD thatcaused the alarm. It is recommended that if this feature is used, the alarm be programmed as latched so that intermittentRTDs are detected and corrective action may be taken.

5.7.6 LOSS OF RRTD COMMS ALARM

PATH: S6 RTD TEMPERATURE LOSS OF RRTD COMMS ALARM

The 369, if connected to a RRTD module, will monitor communications between them. If for some reason communicationsis lost or interrupted the 369 can issue an alarm indicating the failure. This feature is useful to ensure that the remote RTDsare continuously being monitored.

SHORT/LOW TEMP RTDALARM

SHORT/LOW TEMP RTDALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinations

SHORT/LOW TEMP ALARMEVENTS: Off

Range: Off, On

LOSS OF RRTDCOMMS ALARM

LOSS OF RRTD COMMSALARM: OFF

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinations

LOSS OF RRTD COMMSEVENTS: Off

Range: Off, On

Courtesy of NationalSwitchgear.com
Page 96: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-46 369 Motor Management Relay GE Power Management

5.8 S7 VOLTAGE ELEMENTS 5 SETPOINTS

5

5.8 S7 VOLTAGE ELEMENTS 5.8.1 SETPOINTS PAGE 7 MENU

These elements are not used by the 369 unless the M or B option is installed and the VT CONNECTION TYPE setpoint (seeSection 5.3.2: CT/VT SETUP on page 5–11) is set to something other than "None".

5.8.2 UNDERVOLTAGE

PATH: S7 VOLTAGE ELEMENTS UNDERVOLTAGE

S7 SETPOINTSVOLTAGE ELEMENTS

UNDERVOLTAGESee page 5–46.

OVERVOLTAGESee page 5–47.

PHASE REVERSALSee page 5–48.

UNDERFREQUENCYSee page 5–48.

OVERFREQUENCYSee page 5–49.

UNDERVOLTAGE U/V ACTIVE IF MOTORSTOPPED: No

Range: No, Yes

UNDERVOLTAGEALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2 or combinations

STARTING U/V ALARMPICKUP: 0.85xRATED

Range: 0.50 to 0.99 in steps of 0.01

RUNNING U/V ALARMPICKUP: 0.85xRATED

Range: 0.50 to 0.99 in steps of 0.01

UNDERVOLTAGE ALARMDELAY: 3.0 S

Range: 0.0 to 255.0 s in steps of 0.1

UNDERVOLTAGE ALARMEVENTS: Off

Range: Off, On

UNDERVOLTAGETRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2 or combinations

STARTING U/V TRIPPICKUP: 0.80xRATED

Range: 0.50 to 0.99 in steps of 0.01

RUNNING U/V TRIPPICKUP: 0.80xRATED

Range: 0.50 to 0.99 in steps of 0.01

UNDERVOLTAGE TRIPDELAY: 1.0s

Range: 0.0 to 255.0 s in steps of 0.1

Courtesy of NationalSwitchgear.com
Page 97: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-47

5 SETPOINTS 5.8 S7 VOLTAGE ELEMENTS

5

If enabled, an undervoltage trip or alarm occurs once the magnitude of either Vab, Vbc, or Vca falls below the runningpickup level while running or the starting pickup level while starting, for a period of time specified by the alarm or trip delay(pickup levels are multiples of motor nameplate voltage).

An undervoltage on a running motor with a constant load results in increased current. The relay thermal model typicallypicks up this condition and provides adequate protection. However, this setpoint may be used in conjunction with time delayto provide additional protection that may be programmed for advance warning by tripping.

The U/V ACTIVE IF MOTOR STOPPED setpoint may be used to prevent nuisance alarms or trips when the motor is stopped.If "No" is programmed the undervoltage element will be blocked from operating whenever the motor is stopped (no phasecurrent and starter status indicates breaker or contactor open). If the load is high inertia, it may be desirable to ensure thatthe motor is tripped off line or prevented from starting in the event of a total loss or decrease in line voltage. Programming"Yes" for the block setpoint will ensure that the motor is tripped and may be restarted only after the bus is re-energized.

APPLICATION:

An undervoltage of significant proportion that persists while starting a synchronous motor may prevent the motor from com-ing up to rated speed within the rated time. An undervoltage may be an indication of a system fault. To protect a synchro-nous motor from being restarted while out of step it may be necessary to use undervoltage to take the motor offline beforea reclose is attempted.

5.8.3 OVERVOLTAGE

PATH: S7 VOLTAGE ELEMENTS OVERVOLTAGE

If enabled, once the magnitude of either Vab, Vbc, or Vca rises above the Pickup Level for a period of time specified by theDelay, a trip or alarm will occur (pickup levels are multiples of motor nameplate voltage).

An overvoltage on running motor with a constant load will result in decreased current. However, iron and copper lossesincrease, causing an increase in motor temperature. The current overload relay will not pickup this condition and provideadequate protection. Therefore, the overvoltage element may be useful for protecting the motor in the event of a sustainedovervoltage condition.

The Undervoltage and Overvoltage alarms and trips are activated based upon the phase to phase voltageregardless of the VT connection type.

OVERVOLTAGE OVERVOLTAGEALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2 or combinations

OVERVOLTAGE ALARMPICKUP: 1.05xRATED

Range: 1.01 to 1.25 x RATED in steps of 0.01

OVERVOLTAGE ALARMDELAY: 3.0s

Range: 0.0 to 255.0 s in steps of 0.1

OVERVOLTAGE ALARMEVENTS: Off

Range: Off, On

OVERVOLTAGETRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations

OVERVOLTAGE TRIPPICKUP: 1.10xRATED

Range: 1.01 to 1.25 x RATED in steps of 0.01

OVERVOLTAGE TRIPDELAY: 1.0s

Range: 0.0 to 255.0 s in steps of 0.1

NOTE

Courtesy of NationalSwitchgear.com
Page 98: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-48 369 Motor Management Relay GE Power Management

5.8 S7 VOLTAGE ELEMENTS 5 SETPOINTS

5

5.8.4 PHASE REVERSAL

PATH: S7 VOLTAGE ELEMENTS PHASE REVERSAL

The 369 can detect the phase rotation of the three phase voltage. If the phase reversal feature is turned on when all 3phase voltages are greater than 50% motor nameplate voltage and the phase rotation of the three phase voltages is not thesame as the setpoint, a trip and block start will occur in 500 ms to 700 ms.

5.8.5 UNDERFREQUENCY

PATH: S7 VOLTAGE ELEMENTS UNDERFREQUENCY

Once the frequency of the phase AN or AB voltage (depending on wye or delta connection) falls below the underfrequencypickup level, a trip or alarm will occur.

APPLICATION:

This feature may be useful for load shedding applications on large motors. It could also be used to load shed an entirefeeder if the trip was assigned to an upstream breaker. Underfrequency can also be used to detect loss of power to a syn-chronous motor. Due to motor generation, sustained voltage may prevent quick detection of power loss. Therefore, toquickly detect the loss of system power, the decaying frequency of the generated voltage as the motor slows can be used.

The Underfrequency element is not active when the motor is stopped.

PHASE REVERSAL PHASE REVERSALTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations

UNDERFREQUENCY BLOCK UNDERFREQUENCYFROM START:

Range: 0 to 5000 s in steps of 1

UNDERFREQUENCYALARM:

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinations

UNDERFREQUENCY ALARMLEVEL: 59.50 Hz

Range: 20.00 to 70.00 Hz in steps of 0.01

UNDERFREQUENCY ALARMDELAY: 1.0s

Range: 0.0 to 255.0 s in steps of 0.1

UNDERFREQUENCY ALARMEVENTS: Off

Range: Off, On

UNDERFREQUENCYTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations

UNDERFREQUENCY TRIPLEVEL: 59.50 Hz

Range: 20.00 to 70.00 Hz in steps of 0.01

UNDERFREQUENCY TRIPDELAY: 1.0s

Range: 0.0 to 255.0 s in steps of 0.1

Courtesy of NationalSwitchgear.com
Page 99: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-49

5 SETPOINTS 5.8 S7 VOLTAGE ELEMENTS

5

5.8.6 OVERFREQUENCY

PATH: S7 VOLTAGE ELEMENTS OVERFREQUENCY

Once the frequency of the phase AN or AB voltage (depending on wye or delta connection) rises above the overfrequencypickup level, a trip or alarm will occur.

APPLICATION:

This feature may be useful for load shedding applications on large motors. It could also be used to load shed an entirefeeder if the trip was assigned to an upstream breaker.

The Overfrequency element is not active when the motor is stopped.

OVERFREQUENCY BLOCK OVERFREQUENCYFROM START: 1 s

Range: 0 to 5000 s in steps of 1

OVERFREQUENCYALARM:

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinations

OVERFREQUENCY ALARMLEVEL: 60.50 Hz

Range: 20.00 to 70.00 Hz in steps of 0.01

OVERFREQUENCY ALARMDELAY: 1.0s

Range: 0.0 to 255.0 s in steps of 0.1

OVERFREQUENCY ALARMEVENTS: Off

Range: Off, On

OVERFREQUENCYTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations

OVERFREQUENCY TRIPLEVEL: 60.50 Hz

Range: 20.00 to 70.00 Hz in steps of 0.01

OVERFREQUENCY TRIPDELAY: 1.0s

Range: 0.0 to 255.0 s in steps of 0.1

Courtesy of NationalSwitchgear.com
Page 100: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-50 369 Motor Management Relay GE Power Management

5.9 S8 POWER ELEMENTS 5 SETPOINTS

5

5.9 S8 POWER ELEMENTS 5.9.1 SETPOINTS PAGE 8 MENU

These protective elements rely on CTs and VTs being installed and setpoints programmed. The power elements are onlyshown if the 369 has option M or B installed. By convention, an induction motor consumes Watts and vars. This condition isdisplayed on the 369 as +Watts and +vars. A synchronous motor can consume Watts and vars or consume Watts and gen-erate vars. These conditions are displayed on the 369 as +Watts, +vars, and +Watts, –vars respectively.

Figure 5–12: POWER MEASUREMENT CONVENTIONS

S8 SETPOINTSPOWER ELEMENTS

LEAD POWER FACTORSee page 5–51.

LAG POWER FACTORSee page 5–51.

POSITIVE REACTIVEPOWER (kvar)

See page 5–52.

NEGATIVE REACTIVEPOWER (kvar)

See page 5–53.

UNDERPOWERSee page 5–53.

REVERSE POWERSee page 5–54.

I 1

I 2

I 3

I 4

^

^

^

^

Courtesy of NationalSwitchgear.com
Page 101: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-51

5 SETPOINTS 5.9 S8 POWER ELEMENTS

5

5.9.2 LEAD POWER FACTOR

PATH: S8 POWER ELEMENTS LEAD POWER FACTOR

If the 369 is applied on a synchronous motor, it is desirable not to trip or alarm on power factor until the field has beenapplied. Therefore, this feature can be blocked until the motor comes up to speed and the field is applied. From that pointforward, the power factor trip and alarm elements will be active. Once the power factor is less than the lead level, for thespecified delay, a trip or alarm will occur indicating a lead condition.

The lead power factor alarm can be used to detect over-excitation or loss of load.

5.9.3 LAG POWER FACTOR

PATH: S8 POWER ELEMENTS LAG POWER FACTOR

LEAD POWER FACTOR BLOCK LEAD PFFROM START: 1 s

Range: 0 to 5000 s in steps of 1

LEAD POWER FACTORALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2 or combinations

LEAD POWER FACTORALARM LEVEL: 0.30

Range: 0.05 to 0.99 in steps of 0.01

LEAD POWER FACTORALARM DELAY: 1.0s

Range: 0.1 to 255.0 s in steps of 0.1

LEAD POWER FACTORALARM EVENTS: Off

Range: Off, On

LEAD POWER FACTORTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2 or combinations

LEAD POWER FACTORTRIP LEVEL: 0.30

Range: 0.05 to 0.99 in steps of 0.01

LEAD POWER FACTORTRIP DELAY: 1.0s

Range: 0.1 to 255.0 s in steps of 0.1

LAG POWER FACTOR BLOCK LAG PFFROM START: 1 s

Range: 0 to 5000 s in steps of 1

LAG POWER FACTORALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinations

LAG POWER FACTORALARM LEVEL: 0.85

Range: 0.05 to 0.99 in steps of 0.01

LAG POWER FACTORALARM DELAY: 1.0s

Range: 0.1 to 255.0 s in steps of 0.1

LAG POWER FACTORALARM EVENTS: Off

Range: Off, On

Courtesy of NationalSwitchgear.com
Page 102: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-52 369 Motor Management Relay GE Power Management

5.9 S8 POWER ELEMENTS 5 SETPOINTS

5

If the 369 is applied on a synchronous motor, it is desirable not to trip or alarm on power factor until the field has beenapplied. Therefore, this feature can be blocked until the motor comes up to speed and the field is applied. From that pointforward, the power factor trip and alarm elements will be active. Once the power factor is less than the lag level, for thespecified delay, a trip or alarm will occur indicating lag condition.

The power factor alarm can be used to detect loss of excitation and out of step for a synchronous motor.

5.9.4 POSITIVE REACTIVE POWER

PATH: S8 POWER ELEMENTS POSITIVE REACTIVE POWER

If the 369 is applied on a synchronous motor, it is desirable not to trip or alarm on kvar until the field has been applied.Therefore, this feature can be blocked until the motor comes up to speed and the field is applied. From that point forward,the kvar trip and alarm elements will be active. Once the kvar level exceeds the positive level, for the specified delay, a tripor alarm will occur indicating a positive kvar condition. The reactive power alarm can be used to detect loss of excitationand out of step.

LAG POWER FACTORTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2 or combinations

LAG POWER FACTORTRIP LEVEL: 0.80

Range: 0.05 to 0.99 in steps of 0.01

LAG POWER FACTORTRIP DELAY: 1.0s

Range: 0.1 to 255.0 s in steps of 0.1

POSITIVE REACTIVEPOWER (kvar)

BLOCK +kvar ELEMENTFROM START: 1 s

Range: 0 to 5000 s in steps of 1

POSITIVE kvarALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2 or combinations

POSITIVE kvar ALARMLEVEL: 10 kvar

Range: 1 to 25000 kvar in steps of 1

POSITIVE kvarALARM DELAY: 1.0 s

Range: 0.1 to 255.0 s in steps of 0.1

POSITIVE kvarALARM EVENTS: Off

Range: Off, On

POSITIVE kvarTRIP:

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2 or combinations

POSITIVE kvar TRIPLEVEL: 25 kvar

Range: 1 to 25000 kvar in steps of 1

POSITIVE kvarTRIP DELAY: 1.0 s

Range: 0.1 to 255.0 s in steps of 0.1

Courtesy of NationalSwitchgear.com
Page 103: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-53

5 SETPOINTS 5.9 S8 POWER ELEMENTS

5

5.9.5 NEGATIVE REACTIVE POWER

PATH: S8 POWER ELEMENTS NEGATIVE REACTIVE POWER

When using the 369 on a synchronous motor, it is desirable not to trip or alarm on kvar until the field has been applied. Assuch, this feature can be blocked until the motor comes up to speed and the field is applied. From that point forward, thekvar trip and alarm elements will be active. Once the kvar level exceeds the negative level for the specified delay, a trip oralarm occurs, indicating a negative kvar condition. The reactive power alarm can be used to detect overexcitation or loss ofload.

5.9.6 UNDERPOWER

PATH: S8 POWER ELEMENTS UNDERPOWER

NEGATIVE REACTIVEPOWER (kvar)

BLOCK -kvar ELEMENTFROM START: 1 s

Range: 0 to 5000 s in steps of 1

NEGATIVE kvarALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinations

NEGATIVE kvar ALARMLEVEL: 10 kvar

Range: 1 to 25000 kvar in steps of 1

NEGATIVE kvarALARM DELAY: 1.0 s

Range: 0.1 to 255.0 s in steps of 0.1

NEGATIVE kvarALARM EVENTS: Off

Range: Off, On

NEGATIVE kvarTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations

NEGATIVE kvar TRIPLEVEL: 25 kvar

Range: 1 to 25000 kvar in steps of 1

NEGATIVE kvarTRIP DELAY: 1.0s

Range: 0.1 to 255.0 s in steps of 0.1

UNDERPOWER BLOCK UNDERPOWERFROM START: 1 s

Range: 0 to 15000 s in steps of 1

UNDERPOWERALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2 or combinations

UNDERPOWER ALARMLEVEL: 2 kW

Range: 1 to 25000 kW in steps of 1

UNDERPOWERALARM DELAY: 1 s

Range: 0.5 to 255.0 s in steps of 0.5

UNDERPOWERALARM EVENTS: Off

Range: Off, On

Courtesy of NationalSwitchgear.com
Page 104: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-54 369 Motor Management Relay GE Power Management

5.9 S8 POWER ELEMENTS 5 SETPOINTS

5

If enabled, a trip or alarm occurs when the magnitude of 3∅ total real power falls below the pickup level for a period of timespecified by the delay. The underpower element is active only when the motor is running and will be blocked upon the initi-ation of a motor start for a period of time defined by the BLOCK UNDERPOWER FROM START setpoint (e.g. this block may beused to allow pumps to build up head before the underpower element trips or alarms). A value of 0 means the feature is notblocked from start; otherwise the feature is disabled when the motor is stopped and also from the time a start is detecteduntil the time entered expires. The pickup level should be set lower than motor loading during normal operations.

Underpower may be used to detect loss of load conditions. Loss of load conditions will not always cause a significant lossof current. Power is a more accurate representation of loading and may be used for more sensitive detection of load loss orpump cavitation. This may be especially useful for detecting process related problems.

5.9.7 REVERSE POWER

PATH: S8 POWER ELEMENTS REVERSE POWER

If enabled, once the magnitude of 3∅ total real power exceeds the pickup level in the reverse direction (negative kW) for aperiod of time specified by the delay, a trip or alarm will occur.

The minimum magnitude of power measurement is determined by the phase CT minimum of 5% rated CTprimary. If the level for reverse power is set below that level, a trip or alarm will only occur once the phasecurrent exceeds the 5% cutoff.

UNDERPOWERTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations

UNDERPOWER TRIPLEVEL: 1 kW

Range: 1 to 25000 kW in steps of 1

UNDERPOWERTRIP DELAY: 1 s

Range: 0.5 to 255.0 s in steps of 0.5

REVERSE POWER BLOCK REVERSE POWERFROM START: 1 s

Range: 0 to 50000 s in steps of 1

REVERSE POWERALARM: Off

Range: Off, Latched, Unlatched

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combination

REVERSE POWER ALARMLEVEL: 1 kW

Range: 1 to 25000 kW in steps of 1

REVERSE POWERALARM DELAY: 1.0 s

Range: 0.5 to 30.0 s in steps of 0.5

REVERSE POWERALARM EVENTS: Off

Range: Off, On

REVERSE POWERTRIP: Off

Range: Off, Latched, Unlatched

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinations

REVERSE POWER TRIPLEVEL: 1 kW

Range: 1 to 25000 kW in steps of 1

REVERSE POWERTRIP DELAY: 1.0 s

Range: 0.5 to 30 s in steps of 0.5

NOTE

Courtesy of NationalSwitchgear.com
Page 105: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-55

5 SETPOINTS 5.10 S9 DIGITAL INPUTS

5

5.10 S9 DIGITAL INPUTS 5.10.1 SETPOINTS PAGE 9 MENU

The Access switch is predefined and is non programmable.

5.10.2 SPARE SWITCH

PATH: S9 DIGITAL INPUTS SPARE SWITCH

See Section 5.10.7: DIGITAL INPUT FUNCTIONS on page 5–57 for an explanation of the spare switch functions.

In addition to the normal selections, the Spare Switch may be used as a starter status contact input. An auxiliary ‘a’ typecontact follows the state of the main contactor or breaker and an auxiliary ‘b’ type contact is in the opposite state. This fea-ture is recommended for use on all motors. It is essential for proper operation of start inhibits (i.e., Starts/Hour, TimeBetween Starts, Start Inhibit, Restart Block, Backspin Start Inhibit), especially when the motor may be run lightly orunloaded.

A motor stop condition is detected when the current falls below 5% of CT. When SPARE SWITCH is programmed as "StarterStatus", motor stop conditions are detected when the current falls below 5% of CT and the breaker is open. Enabling theStarter Status and wiring the breaker contactor to the Spare Switch eliminates nuisance lockouts initiated by the 369 if themotor (synchronous or induction) is running unloaded or idling, and if the STARTS/HOUR, TIME BETWEEN STARTS , STARTINHIBIT, RESTART BLOCK , and BACKSPIN START INHIBIT are programmed.

5.10.3 EMERGENCY RESTART

PATH: S9 DIGITAL INPUTS EMERGENCY RESTART

See Section 5.10.7: DIGITAL INPUT FUNCTIONS on page 5–57 for an explanation of the emergency restart functions. Inaddition to the normal selections, the Emergency Restart Switch may be used as a emergency restart input to the 369 tooverride protection for the motor.

When the emergency restart switch is closed all trip and alarm functions are reset. Thermal capacity used is set to zero andall protective elements are disabled until the switch is opened. Starts per hour are also reduced by one each time the switchis closed.

S9 SETPOINTSDIGITAL INPUTS

SPARE SWITCHSee page 5–55.

EMERGENCY RESTARTSee page 5–55.

DIFFERENTIAL SWITCHSee page 5–56.

SPEED SWITCHSee page 5–56.

REMOTE RESETSee page 5–56.

SPARE SWITCH SPARE SW FUNCTION:Off

Range: Off, Starter Status, General, Digital Counter,Waveform Capture, Simulate Pre-Fault, SimulateFault, Simulate Pre-Fault to Fault

STARTER AUX CONTACTTYPE: 52a

Range: 52a, 52bOnly seen if function is Starter Status

EMERGENCY RESTART EMERGENCY FUNCTION:Emergency Restart

Range: Off, Emergency Restart, General, Digital Counter,Waveform Capture, Simulate Pre-Fault, SimulateFault, Simulate Pre-Fault to Fault

NOTE

Courtesy of NationalSwitchgear.com
Page 106: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-56 369 Motor Management Relay GE Power Management

5.10 S9 DIGITAL INPUTS 5 SETPOINTS

5

5.10.4 DIFFERENTIAL SWITCH

PATH: S9 DIGITAL INPUTS DIFFERENTIAL SWITCH

See Section 5.10.7: DIGITAL INPUT FUNCTIONS on page 5–57 for an explanation of differential switch functions.

In addition to the normal selections, the Differential Switch may be used as a contact input for a separate external 86 (differ-ential trip) relay. Contact closure will cause the 369 relay to issue a differential trip.

5.10.5 SPEED SWITCH

PATH: S9 DIGITAL INPUTS SPEED SWITCH

See Section 5.10.7: DIGITAL INPUT FUNCTIONS on page 5–57 for an explanation of speed switch functions.

In addition to the normal selections, the Speed Switch may be used as an input for an external speed switch. This allowsthe 369 to utilize a speed device for locked rotor protection. During a motor start, if no contact closure occurs within the pro-grammed time delay, a trip will occur. The speed input must be opened for a speed switch trip to be reset.

5.10.6 REMOTE RESET

PATH: S9 DIGITAL INPUTS REMOTE RESET

See Section 5.10.7: DIGITAL INPUT FUNCTIONS on page 5–57 for an explanation of remote reset functions.

In addition to the normal selections, the Remote Reset may be used as a contact input to reset the relay.

DIFFERENTIAL SWITCH DIFF SW FUNCTION:Differential Switch

Range: Off, Differential Switch, General, Digital Counter,Waveform Capture, Simulate Pre-Fault, SimulateFault, Simulate Pre-Fault to Fault

ASSIGN DIFF RELAY:Trip

Range: None, Trip, Aux1, Aux2 or combinationsOnly seen if function is Differential Switch

SPEED SWITCH SPEED SW FUNCTION:Speed Switch

Range: Off, Speed Switch, General, Digital Counter,Waveform Capture, Simulate Pre-Fault, SimulateFault, Simulate Pre-Fault to Fault

SPEED SW TRIP RELAY:Trip

Range: None, Trip, Aux1, Aux2 or combinationsOnly seen if function is Speed Switch

SPEED SWITCH TIMEDELAY: 2.0s

Range: 0.5 to 100.0s in steps of 0.5Only seen if function is Speed Switch

REMOTE RESET REMOTE SW FUNCTION:Remote Reset

Range: Off, Remote Reset, General, Digital Counter,Waveform Capture, Simulate Pre-Fault, SimulateFault, Simulate Pre-Fault to Fault

Courtesy of NationalSwitchgear.com
Page 107: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-57

5 SETPOINTS 5.10 S9 DIGITAL INPUTS

5

5.10.7 DIGITAL INPUT FUNCTIONS

a) GENERAL

Any of the programmable digital inputs may be selected and programmed as a separate General Switch Input.

xxxxx refers to the configurable switch input name which includes Spare, Emergency, Differential, Speed, or RemoteReset

b) DIGITAL COUNTER

Only one digital input may be selected as a digital counter at a time. User defined units and counter name may be definedand these will appear on all counter related actual value and alarm messages. To clear a digital counter alarm, the alarmlevel must be increased or the counter must be cleared or preset to a lower value.

xxxxx SW FUNCTION:General

GENERAL SWITCHNAME: General

Range: 12 character alphanumericOnly seen if function is selected as General

GENERAL SWITCHTYPE: NO

Range: NO (normally open), NC (normally closed)Only seen if function is selected as General

BLOCK INPUT FROMSTART: 0 s

Range: 0 - 5000 s in steps of 1Only seen if function is selected as General

GENERAL SWITCHALARM: Off

Range: Off, Latched, UnlatchedOnly seen if function is selected as General

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinationsOnly seen if function is selected as General

GENERAL SWITCHALARM DELAY: 5.0 s

Range: 0.1 to 5000.0 s in steps of 0.1Only seen if function is selected as General

RECORD ALARMS ASEVENTS: No

Range: No, YesOnly seen if function is selected as General

GENERAL SWITCHTRIP: Off

Range: Off, Latched, UnlatchedOnly seen if function is selected as General

ASSIGN TRIP RELAYS:Trip

Range: None, Trip, Aux1, Aux2, or combinationsOnly seen if function is selected as General

GENERAL SWITCHTRIP DELAY: 5.0 s

Range: 0.1 to 5000.0 s in steps of 0.1Only seen if function is selected as General

xxxxx SW FUNCTION:Digital Counter

COUNTERNAME: Counter

Range: 8 character alphanumericOnly seen if function is Digital Counter

COUNTERUNITS: Units

Range: 6 character alphanumericOnly seen if function is Digital Counter

COUNTERTYPE: Increment

Range: Increment, DecrementOnly seen if function is Digital Counter

DIGITAL COUNTERALARM: Off

Range: Off, Latched, UnlatchedOnly seen if function is Digital Counter

ASSIGN ALARM RELAYS:Alarm

Range: None, Alarm, Aux1, Aux2, or combinations. Onlyseen if function is Digital Counter

COUNTER ALARM LEVEL:100

Range: 0 to 65535 in steps of 1Only seen if function is Digital Counter

RECORD ALARMS ASEVENTS: No

Range: No, YesOnly seen if function is Digital Counter

Courtesy of NationalSwitchgear.com
Page 108: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-58 369 Motor Management Relay GE Power Management

5.10 S9 DIGITAL INPUTS 5 SETPOINTS

5

c) WAVEFORM CAPTURE

The Waveform Capture setting for the digital inputs allows the 369 to capture a waveform upon command (contact closure).The captured waveforms can then be displayed via the 369PC program.

d) SIMULATE PRE-FAULT

The Simulate Pre-Fault setting for the digital inputs allows the 369 to start simulating the pre-fault settings as programmed.This is typically used for relay or system testing.

e) SIMULATE FAULT

The Simulate Fault setting for the digital inputs allows the 369 to start simulating the fault settings as programmed. This istypically used for relay or system testing.

f) SIMULATE PRE-FAULT to FAULT

The Simulate Pre-Fault to Fault setting for the digital inputs allows the 369 to start simulating the pre-fault to fault settingsas programmed. This is typically used for relay or system testing.

Courtesy of NationalSwitchgear.com
Page 109: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-59

5 SETPOINTS 5.11 S10 ANALOG OUTPUTS

5

5.11 S10 ANALOG OUTPUTS 5.11.1 SETPOINTS PAGE 10 MENU

5.11.2 ANALOG OUTPUTS

PATH: S10 ANALOG OUTPUTS ANALOG OUTPUT 1,2,3,4

S10 SETPOINTSANALOG OUTPUTS

ANALOG OUTPUT 1

ANALOG OUTPUT 2

ANALOG OUTPUT 3

ANALOG OUTPUT 4

ANALOG OUTPUT 1 ANALOG OUTPUT 1:DISABLED

Range: Disabled, Enabled

ANALOG OUTPUT 1RANGE: 0-1 mA

Range: 0–1mA, 0–20 mA, 4–20 mA

ANALOG OUTPUT 1Phase A Current

Range: See Analog Output selection table

ANALOG OUTPUT 1MIN: 0 A

Range: See Analog Output selection table

ANALOG OUTPUT 1MAX: 100 A

Range: See Analog Output selection table

ANALOG OUTPUT 2 See Analog Output 1 for details

ANALOG OUTPUT 3 See Analog Output 1 for details

ANALOG OUTPUT 4 See Analog Output 1 for details

Courtesy of NationalSwitchgear.com
Page 110: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-60 369 Motor Management Relay GE Power Management

5.11 S10 ANALOG OUTPUTS 5 SETPOINTS

5

5.11.3 ANALOG OUTPUT PARAMETER SELECTION

Table 5–3: ANALOG OUTPUT PARAMETERS

PARAMETER NAME RANGE /UNITS STEP DEFAULT

MINIMUM MAXIMUM

Phase A Current 0 to 65535 A 1 0 100

Phase B Current 0 to 65535 A 1 0 100

Phase C Current 0 to 65535 A 1 0 100

Avg. Phase Current 0 to 65535 A 1 0 100

AB Line Voltage 50 to 20000 V 1 3200 4500

BC Line Voltage 50 to 20000 V 1 3200 4500

CA Line Voltage 50 to 20000 V 1 3200 4500

Avg. Line Voltage 50 to 20000 V 1 3200 4500

Phase AN Voltage 50 to 20000 V 1 1900 2500

Phase BN Voltage 50 to 20000 V 1 1900 2500

Phase CN Voltage 50 to 20000 V 1 1900 2500

Avg. Phase Voltage 50 to 20000 V 1 1900 2500

Hottest Stator RTD –40 to +200°C or –40 to +392°F 1 0 200

RTD #1 to 12 –40 to +200°C or –40 to +392°F 1 –40 200

Remote RTD #1 to 12 –40 to +200°C or –40 to +392°F 1 –40 200

Power Factor 0.01 to 1.00 lead/lag 0.01 0.8 lag 0.8 lead

Reactive Power –32768 to 32768 kvar 1 0 750

Real Power –32768 to 32768 kW 1 0 1000

Apparent Power 0 to 50000 kVA 1 0 1250

Thermal Capacity Used 0 to 100% 1 0 100

Relay Lockout Time 0 to 500 minutes 1 0 150

Current Demand 0 to 65535 A 1 0 700

kvar Demand 0 to 50000 kvar 1 0 1000

kW Demand 0 to 50000 kW 1 0 1250

kVA Demand 0 to 50000 kVA 1 0 1500

Motor Load 0.00 to 20.00 × FLA 0.01 0.00 1.25

Courtesy of NationalSwitchgear.com
Page 111: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-61

5 SETPOINTS 5.12 S11 369 TESTING

5

5.12 S11 369 TESTING 5.12.1 SETPOINTS PAGE 11 MENU

5.12.2 SIMULATION MODE

PATH: S11 369 TESTING SIMULATION MODE

The 369 may be placed in several simulation modes. This simulation may be useful for several purposes. First, it may beused to understand the operation of the 369 for learning or training purposes. Second, simulation may be used during star-tup to verify that control circuitry operates as it should in the event of a trip, alarm, or block start. In addition, simulation maybe used to verify that setpoints had been set properly in the event of fault conditions.

Simulation mode may be entered only if the motor is stopped and there are no trips, alarms, or block starts active. The val-ues entered as Pre-Fault Values will be substituted for the measured values in the 369 when the simulation mode is 'Simu-late Pre-Fault'. The values entered as Fault Values will be substituted for the measured values in the 369 when thesimulation mode is 'Simulate Fault'. And, the values entered as Post-Fault Values will be substituted for the measured val-ues in the 369 when the simulation mode is 'Simulate Post-Fault'. If the simulation mode: Pre-Fault to Fault is selected, thePre-Fault values will be substituted for the period of time specified by the delay, followed by the Fault values. Likewise, ifthe simulation mode: Fault to Post-Fault is selected, the Fault values will be substituted for the period of time specified bythe delay, followed by the Post-Fault values. If a trip occurs, simulation mode will revert to Off. Selecting 'Off' for the simula-tion mode will also place the 369 back in service. If the 369 measures phase current or control power is cycled, simulationmode will automatically revert to Off.

S11 SETPOINTS369 TESTING

SIMULATION MODE

PRE-FAULT SETUPSee page 5–62.

FAULT SETUPSee page 5–63.

POST-FAULT SETUPSee page 5–64.

FORCE OUTPUT RELAYSSee page 5–65.

FORCE ANALOG OUTPUTSSee page 5–65.

SIMULATION MODE SIMULATION MODE:Off

Range: Off, Simulate Pre-Fault, Simulate Fault, SimulatePost Fault, Pre-Fault to Fault, Fault to Post-Fault

PRE-FAULT TO FAULTTIME DELAY: 10 s

Range: 0 to 300 s in steps of 1Only shown if in Pre-Fault to Fault mode

FAULT TO POST-FAULTTIME DELAY: 10 s

Range: 0 to 300 s in steps of 1Only shown if in Pre-Fault to Fault mode

Courtesy of NationalSwitchgear.com
Page 112: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-62 369 Motor Management Relay GE Power Management

5.12 S11 369 TESTING 5 SETPOINTS

5

5.12.3 PRE-FAULT SETUP

PATH: S11 369 TESTING PRE-FAULT SETUP

The values entered under Pre-Fault Setup will be substituted for the real metred values when the simulation mode is in Pre-Fault mode.

PRE-FAULT SETUP: PRE-FAULT CURRENTPHASE A: 0.00x CT

Range: 0.00 to 20.00 x CT in steps of 0.01

PRE-FAULT CURRENTPHASE B: 0.00x CT

Range: 0.00 to 20.00 x CT in steps of 0.01

PRE-FAULT CURRENTPHASE C: 0.00x CT

Range: 0.00 to 20.00 x CT in steps of 0.01

PRE-FAULT CURRENTGROUND: 0.0 A

Range: 0.0 to 5000.0 A in steps of 0.1 (1A/5A), 0.00 to25.00 A in steps of 0.01 (50: 0.025 CT)

PRE-FAULT VOLTAGEPHASE A: 0.00x RATED

Range: 0.00 to 1.10 x RATED in steps of 0.01

PRE-FAULT VOLTAGEPHASE B: 0.00x RATED

Range: 0.00 to 1.10 x RATED in steps of 0.01

PRE-FAULT VOLTAGEPHASE C: 0.00x RATED

Range: 0.00 to 1.10 x RATED in steps of 0.01

PRE-FAULT CURRENTLAGS VOLTAGE: 0 °

Range: 0 to 359° in steps of 1

PRE-FAULT SYSTEMFREQUENCY: 60.0 Hz

Range: 25.0 to 70.0 Hz in steps of 0.1

PRE-FAULT STATOR RTDTEMPERATURE: 40 °

Range: –40 to 200° in steps of 1

PRE-FAULT BEARINGRTD TEMP: 40 °

Range: –40 to 200° in steps of 1

PRE-FAULT OTHER RTDTEMPERATURE: 40 °

Range: –40 to 200° in steps of 1

PRE-FAULT AMBIENTRTD TEMP: 40 °

Range: –40 to 200° in steps of 1

Courtesy of NationalSwitchgear.com
Page 113: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-63

5 SETPOINTS 5.12 S11 369 TESTING

5

5.12.4 FAULT SETUP

PATH: S11 369 TESTING FAULT SETUP

The values entered under Fault Setup will be substituted for the real metered values when the simulation mode is in Faultmode.

FAULT SETUP: FAULT CURRENTPHASE A: 0.00x CT

Range: 0.00 to 20.00 x CT in steps of 0.01

FAULT CURRENTPHASE B: 0.00x CT

Range: 0.00 to 20.00 x CT in steps of 0.01

FAULT CURRENTPHASE C: 0.00x CT

Range: 0.00 to 20.00 x CT in steps of 0.01

FAULT CURRENTGROUND: 0.0 A

Range: 0.0 to 5000.0 A in steps of 0.1 (1A/5A), 0.00 to25.00 A in steps of 0.01 (50: 0.025 CT)

FAULT VOLTAGEPHASE A: 0.00x RATED

Range: 0.00 to 1.10 x RATED in steps of 0.01

FAULT VOLTAGEPHASE B: 0.00x RATED

Range: 0.00 to 1.10 x RATED in steps of 0.01

FAULT VOLTAGEPHASE C: 0.00x RATED

Range: 0.00 to 1.10 x RATED in steps of 0.01

FAULT CURRENT LAGSVOLTAGE: 0 °

Range: 0 to 359° in steps of 1

FAULT SYSTEMFREQUENCY: 60.0 Hz

Range: 25.0 to 70.0 Hz in steps of 0.1

FAULT STATOR RTDTEMPERATURE: 40 °

Range: –40 to 200° in steps of 1

FAULT BEARING RTDTEMPERATURE: 40 °

Range: –40 to 200° in steps of 1

FAULT OTHER RTDTEMPERATURE: 40 °

Range: –40 to 200° in steps of 1

FAULT AMBIENT RTDTEMPERATURE: 40 °

Range: –40 to 200° in steps of 1

Courtesy of NationalSwitchgear.com
Page 114: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-64 369 Motor Management Relay GE Power Management

5.12 S11 369 TESTING 5 SETPOINTS

5

5.12.5 POST- FAULT SETUP

PATH: S11 369 TESTING POST-FAULT SETUP

POST-FAULT SETUP: POST-FAULT CURRENTPHASE A: 0.00x CT

Range: 0.00 to 20.00 x CT in steps of 0.01

POST-FAULT CURRENTPHASE B: 0.00x CT

Range: 0.00 to 20.00 x CT in steps of 0.01

POST-FAULT CURRENTPHASE C: 0.00x CT

Range: 0.00 to 20.00 x CT in steps of 0.01

POST-FAULT CURRENTGROUND: 0.0 A

Range: 0.0 to 5000.0 A in steps of 0.1 (1A/5A), 0.00 to25.00 A in steps of 0.01 (50: 0.025 CT)

POST-FAULT VOLTAGEPHASE A: 0.00x RATED

Range: 0.00 to 1.10 x RATED in steps of 0.01

POST-FAULT VOLTAGEPHASE B: 0.00x RATED

Range: 0.00 to 1.10 x RATED in steps of 0.01

POST-FAULT VOLTAGEPHASE C: 0.00x RATED

Range: 0.00 to 1.10 x RATED in steps of 0.01

POST-FAULT CURRENTLAGS VOLTAGE: 0 °

Range: 0 to 359° in steps of 1

POST-FAULT SYSTEMFREQUENCY: 60.0 Hz

Range: 25.0 to 70.0 Hz in steps of 0.1

POST-FAULT STATORRTD TEMP: 40 °

Range: –40 to 200° in steps of 1

POST-FAULT BEARINGRTD TEMP: 40 °

Range: –40 to 200° in steps of 1

POST-FAULT OTHER RTDTEMPERATURE: 40 °

Range: –40 to 200° in steps of 1

POST-FAULT AMBIENTRTD TEMP: 40 °

Range: –40 to 200° in steps of 1

Courtesy of NationalSwitchgear.com
Page 115: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 5-65

5 SETPOINTS 5.12 S11 369 TESTING

5

5.12.6 TEST OUTPUT RELAYS

PATH: S11 369 TESTING TEST OUTPUT RELAYS

The Test Output Relay feature provides a method of performing checks on all relay contact outputs. The feature can alsobe used for control purposes while the motor is running. The forced state overrides the normal operation of the relay out-put.

The forced state, if enabled (energized or de-energized), forces the selected relay into the programmed state for as long asthe programmed duration. After the programmed duration expires, the forced state will return to disabled and relay opera-tion will return to normal. If the duration is programmed as Static, the forced state will remain in effect until changed or dis-abled. If control power to the 369 is interrupted, any forced relay condition will be removed.

5.12.7 TEST ANALOG OUTPUTS

PATH: S11 369 TESTING TEST ANALOG OUTPUTS

In addition to the simulation modes, the Test Analog Output setpoints may be used during startup or testing to verify that theanalog outputs are functioning correctly. It may also be used when the motor is running to give manual or communicationcontrol of an analog output. Forcing an analog output overrides its normal functionality.

When the Force Analog Outputs Function is enabled, the output will reflect the forced value as a percentage of the range 4to 20 mA, 0 to 20 mA, or 0 to 1 mA. Selecting Off will place the analog output channels back in service, reflecting theparameters programmed to each.

TEST OUTPUT RELAYS FORCE TRIP RELAY:Disabled

Range: Disabled, Energized, De-energized

FORCE TRIP RELAYDURATION: Static

Range: Static, 1 to 300 s in steps of 1

FORCE AUX1 RELAY:Disabled

Range: Disabled, Energized, De-energized

FORCE AUX1 RELAYDURATION: Static

Range: Static, 1 to 300 s in steps of 1

FORCE AUX2 RELAY:Disabled

Range: Disabled, Energized, De-energized

FORCE AUX2 RELAY:DURATION: Static

Range: Static, 1 to 300 s in steps of 1

FORCE ALARM RELAY:Disabled

Range: Disabled, Energized, De-energized

FORCE ALARM RELAYDURATION: Static

Range: Static, 1 to 300 s in steps of 1

TEST ANALOG OUTPUTS FORCE ANALOGOUTPUT 1: Off

Range: Off, 1 to 100% in steps of 1

FORCE ANALOGOUTPUT 2: Off

Range: Off, 1 to 100% in steps of 1

FORCE ANALOGOUTPUT 3: Off

Range: Off, 1 to 100% in steps of 1

FORCE ANALOGOUTPUT 4: Off

Range: Off, 1 to 100% in steps of 1

Courtesy of NationalSwitchgear.com
Page 116: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

5-66 369 Motor Management Relay GE Power Management

5.12 S11 369 TESTING 5 SETPOINTS

5

Courtesy of NationalSwitchgear.com
Page 117: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 6-1

6 ACTUAL VALUES 6.1 OVERVIEW

6

6 ACTUAL VALUES 6.1 OVERVIEW 6.1.1 ACTUAL VALUES MAIN MENU

A1 ACTUAL VALUESSTATUS

MOTOR STATUSSee page 6–3.

LAST TRIP DATASee page 6–4.

ALARM STATUSSee page 6–4.

START INHIBIT STATUSSee page 6–5.

DIGITAL INPUT STATUSSee page 6–5.

OUTPUT RELAY STATUSSee page 6–6.

REAL TIME CLOCKSee page 6–6.

A2 ACTUAL VALUESMETERING DATA

CURRENT METERINGSee page 6–7.

VOLTAGE METERINGSee page 6–8.

POWER METERINGSee page 6–8.

BACKSPIN METERINGSee page 6–9.

LOCAL RTDSee page 6–9.

REMOTE RTDSee page 6–10.

DEMAND METERINGSee page 6–11.

PHASORSSee page 6–11.

Courtesy of NationalSwitchgear.com
Page 118: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

6-2 369 Motor Management Relay GE Power Management

6.1 OVERVIEW 6 ACTUAL VALUES

6

A3 ACTUAL VALUESLEARNED DATA

MOTOR DATASee page 6–13.

LOCAL RTD MAXIMUMSSee page 6–14.

REMOTE RTD MAXIMUMSSee page 6–15.

A4 ACTUAL VALUESSTATISTICAL DATA

TRIP COUNTERSSee page 6–16.

MOTOR STATISTICSSee page 6–17.

A5 ACTUAL VALUESEVENT RECORD

EVENT: 40See page 6–18.

EVENT: 39

EVENT: 2

EVENT: 1

A6 ACTUAL VALUESRELAY INFORMATION

MODEL INFORMATIONSee page 6–19.

FIRMWARE VERSIONSee page 6–19.

Courtesy of NationalSwitchgear.com
Page 119: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 6-3

6 ACTUAL VALUES 6.2 A1 STATUS

6

6.2 A1 STATUS 6.2.1 ACTUAL VALUES PAGE 1 MENU

6.2.2 MOTOR STATUS

PATH: A1 STATUS MOTOR STATUS

These messages describe the status of the motor at the current point in time. The Motor Status message indicates the cur-rent state of the motor.

The Motor Thermal Capacity Used message indicates the current level which is used by the overload and cooling algo-rithms. The Estimated Trip Time On Overload is only active for the Overload motor status.

A1 ACTUAL VALUESSTATUS

MOTOR STATUSSee page 6–3.

LAST TRIP DATASee page 6–4.

ALARM STATUSSee page 6–4.

START INHIBIT STATUSSee page 6–5.

DIGITAL INPUT STATUSSee page 6–5.

OUTPUT RELAY STATUSSee page 6–6.

REAL TIME CLOCKSee page 6–6.

MOTOR STATUS MOTOR STATUS:Stopped

Range: Stopped, Starting, Running, Overload, Tripped

MOTOR THERMALCAPACITY USED: 0%

Range: 0 to 100% in steps of 1

ESTIMATED TRIP TIMEON OVERLOAD: Never

Range: Never, 0 to 65500 s in steps of 1

MOTOR STATE DEFINITION

Stopped phase current = 0 A and starter status input = breaker/contactor open

Starting motor previously stopped and phase current has gone from 0 to > FLA

Running FLA > phase current > 0 or starter status input = breaker/contactor closed and motor was previously running

Overload motor previously running and phase current now > FLA

Tripped a trip has been issued and not cleared

Courtesy of NationalSwitchgear.com
Page 120: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

6-4 369 Motor Management Relay GE Power Management

6.2 A1 STATUS 6 ACTUAL VALUES

6

6.2.3 LAST TRIP DATA

PATH: A1 STATUS LAST TRIP DATA

Immediately prior to a trip, the 369 takes a snapshot of the metered parameters along with the cause of trip and the dateand time and stores this as pre-trip values. This allows for ease of troubleshooting when a trip occurs. Instantaneous tripson starting (< 50 ms) may not allow all values to be captured. These values are overwritten when the next trip occurs. Theevent record shows details of the last 40 events including trips.

6.2.4 ALARM STATUS

PATH: A1 STATUS ALARM STATUS

Any active trips or alarms may be viewed here. If there is more than one active trip or alarm, using the Line Up and Downkeys will cycle through all the active alarm messages. If the [LINE UP] and [LINE DOWN] keys are not pressed, the activemessages will automatically cycle. The current level causing the alarm is displayed along with the alarm name.

LAST TRIP DATA CAUSE OF LAST TRIP:No Trip to date

Range: No Trip to Date, cause of trip

TIME OF LAST TRIP:00:00:00

Range: hour: min: seconds

DATE OF LAST TRIP:Jan 01 1999

Range: month day year

A: 0 B: 0C: 0 A Pretrip

Range: 0 to 100000 A in steps of 1

MOTOR LOADPretrip 0.00 x FLA

Range: 0.00 to 20.00 in steps of 0.01

CURRENT UNBALANCEPretrip: 0%

Range: 0 to 100% in steps of 1

GROUND CURRENTPretrip: 0.00 Amps

Range: 0.0 to 5000.0 in steps of 0.1 (1A/5A CT)0.00 to 25.00 in steps of 0.01 (50: 0.025 A CT)

HOTTEST STATOR RTDRTD#1 0°C Pretrip

Range: –40 to +200 °C in steps of 1Only shown if a stator RTD is programmed

Vab: 0 Vbc: 0Vca: 0 V Pretrip

Range: 0 to 20000 in steps of 1Only shown if VT connection is programmed

Van: 0 Vbn: 0Vcn: 0 V Pretrip

Range: 0 to 20000 in steps of 1Only shown if VT connection is Wye

SYSTEM FREQUENCYPretrip: 0.00 Hz

Range: 0.00, 15.00 to 120.00 in steps of 0.01Only shown if VT connection is programmed

0 kW 0 kVA0 kvar Pretrip

Range: –50000 to +50000 in steps of 1Only shown if VT connection is programmed

POWER FACTORPretrip: 1.00

Range: 0.00 lag to 1 to 0.00 leadOnly shown if VT connection is programmed

DIAGNOSTIC MESSAGES No Trips or Alarmsare Active

Range: No Trips or Alarms are Active, active alarmname and level, active trip name

Courtesy of NationalSwitchgear.com
Page 121: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 6-5

6 ACTUAL VALUES 6.2 A1 STATUS

6

6.2.5 START INHIBIT STATUS

PATH: A1 STATUS START INHIBIT STATUS

OVERLOAD LOCKOUT TIMER: Determined from the thermal model, this is the remaining amount of time left before thethermal capacity available will be sufficient to allow another start and the start inhibit will be removed.

SELECT INHIBIT TIMER: If enabled this timer will indicate the remaining time for the Thermal Capacity to reduce to a levelto allow for a safe start according to the Start Inhibit setpoints.

STARTS/HOUR TIMER: If enabled this display will indicate the number of starts within the last hour by showing the timeremaining in each. The oldest start will be on the left. Once the time of one start reaches 0, it is no longer considered a startwithin the hour and is removed from the display and any remaining starts are shifted over to the left.

TIME BETWEEN STARTS TIMER: If enabled this timer will indicate the remaining time from the last start before the startinhibit will be removed and another start may be attempted. This time is measure from the beginning of the last motor start.

RESTART BLOCK TIMER: If enabled this display will reflect the amount of time since the last motor stop before the startblock will be removed and another start may be attempted.

6.2.6 DIGITAL INPUT STATUS

PATH: A1 STATUS DIGITAL INPUT STATUS

The present state of the digital inputs will be displayed here.

START INHIBIT STATUS OVERLOAD LOCKOUTTIMER: None

Range: 1 to 9999 min. in steps of 1

START INHIBITTIMER: None

Range: 1 to 999 min. in steps of 1

STARTS/HOUR TIMERS:0 0 0 0 0 min

Range: 1 to 60 min. in steps of 1

TIME BETWEEN STARTSTIMER: None

Range: 1 to 500 min. in steps of 1

RESTART BLOCK TIMER:None

Range: 1 to 50000 s in steps of 1

DIGITAL INPUT STATUS EMERGENCY RESTART:Open

Range: Open, ClosedNote: Programmed input name displayed

DIFFERENTIAL RELAY:Open

Range: Open, ClosedNote: Programmed input name displayed

SPEED SWITCH:Open

Range: Open, ClosedNote: Programmed input name displayed

RESET:Open

Range: Open, ClosedNote: Programmed input name displayed

ACCESS:Open

Range: Open, ClosedNote: Programmed input name displayed

SPARE:Open

Range: Open, ClosedNote: Programmed input name displayed

Courtesy of NationalSwitchgear.com
Page 122: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

6-6 369 Motor Management Relay GE Power Management

6.2 A1 STATUS 6 ACTUAL VALUES

6

6.2.7 OUTPUT RELAY STATUS

PATH: A1 STATUS OUTPUT RELAY STATUS

The present state of the output relays will be displayed here. Energized indicates that the NO contacts are now closed andthe NC contacts are now open. De-energized indicates that the NO contacts are now open and the NC contacts are nowclosed. Forced indicates that the output relay has been commanded into a certain state.

6.2.8 REAL TIME CLOCK

PATH: A1 STATUS REAL TIME CLOCK

The date and time from the 369 real time clock may be viewed here.

OUTPUT RELAY STATUS TRIP: De–energized Range: Energized, De–energized, Forced

ALARM: De–energized Range: Energized, De–energized, Forced

AUX 1: De–energized Range: Energized, De–energized, Forced

AUX 2: De–energized Range: Energized, De–energized, Forced

REAL TIME CLOCK DATE: 01/01/1999TIME: 00:00:00

Range: month/day/year, hour: minute: second

Courtesy of NationalSwitchgear.com
Page 123: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 6-7

6 ACTUAL VALUES 6.3 A2 METERING DATA

6

6.3 A2 METERING DATA 6.3.1 ACTUAL VALUES PAGE 2 MENU

6.3.2 CURRENT METERING

PATH: A2 METERING DATA CURRENT METERING

All measured current values are displayed here. Note that the unbalance level is de-rated below FLA. See the unbalancesetpoint for more details.

A2 ACTUAL VALUESMETERING DATA

CURRENT METERING

VOLTAGE METERINGSee page 6–8.

POWER METERINGSee page 6–8.

BACKSPIN METERINGSee page 6–9.

LOCAL RTDSee page 6–9.

REMOTE RTDSee page 6–10.

DEMAND METERINGSee page 6–11.

PHASORSSee page 6–11.

CURRENT METERING A: 0 B: 0C: 0 Amps

Range: 0 to 65535 A in steps of 1

AVERAGE PHASECURRENT: 0 Amps

Range: 0 to 65535 A in steps of 1

MOTOR LOAD:0.00 X FLA

Range: 0.00 to 20.00 in steps of 0.01

CURRENT UNBALANCE:0%

Range: 0 to 100% in steps of 1

GROUND CURRENT:0.0 Amps

Range: 0.0 to 5000.0 in steps of 0.1 (1A/5A CT)0.0 to 25.0 in steps of 0.1 (50: 0.025 A CT)

Courtesy of NationalSwitchgear.com
Page 124: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

6-8 369 Motor Management Relay GE Power Management

6.3 A2 METERING DATA 6 ACTUAL VALUES

6

6.3.3 VOLTAGE METERING

PATH: A2 METERING DATA VOLTAGE METERING

Measured voltage parameters will be displayed here. If option M or B has not been installed, the following message willappear when attempting to enter this section.

6.3.4 POWER METERING

PATH: A2 METERING DATA POWER METERING

The values for three phase power metering, consumption and generation will be displayed here. If option M or B has notbeen installed the following message will appear when attempting to enter this section.

VOLTAGE METERING Vab: 0 Vbc: 0Vca: 0 V RMS φ- φ

Range: 0 to 20000 V in steps of 1Only shown if a VT connection programmed

AVERAGE LINEVOLTAGE: 0 V

Range: 0 to 20000 V in steps of 1Only shown if VT connection programmed

Va: 0 Vb: 0Vc: 0 V RMS φ-N

Range: 0 to 20000 V in steps of 1Only shown if a Wye connection programmed

AVERAGE PHASEVOLTAGE: 0 V

Range: 0 to 20000 V in steps of 1Only shown if a Wye connection programmed

SYSTEM FREQUENCY:0.00 Hz

Range: 0.00, 15.00 to 120.00 Hz in steps of 0.01

THIS FEATURE NOTINSTALLED

POWER METERING POWER FACTOR:1.00

Range: 0.00 to 1.00 lag or leadOnly shown if VT connection programmed

REAL POWER:0 kW

Range: 0 to ±50000 kW in steps of 1Only shown if VT connection programmed

REAL POWER:0 hp

Range: 0 to 65000 hp in steps of 1Only shown if VT connection programmed

REACTIVE POWER:0 kvar

Range: 0 to ±50000 kvar in steps of 1Only shown if VT connection programmed

APPARENT POWER:0 kVA

Range: 0 to 50000 kVA in steps of 1Only shown if VT connection programmed

POSITIVE WATTHOURS:0 MWh

Range: 0 to 65535 in steps of 1Only shown if VT connection programmed

POSITIVE VARHOURS:0 kvarh

Range: 0 to 65535 in steps of 1Only shown if VT connection programmed

NEGATIVE VARHOURS:0 kvarh

Range: 0 to 65535 in steps of 1Only shown if VT connection programmed

THIS FEATURE NOTINSTALLED

Courtesy of NationalSwitchgear.com
Page 125: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 6-9

6 ACTUAL VALUES 6.3 A2 METERING DATA

6

6.3.5 BACKSPIN METERING

PATH: A2 METERING DATA BACKSPIN METERING

Backspin metering parameters will be displayed here. If option B has not been installed, the following message will appearwhen attempting to enter this section.

6.3.6 LOCAL RTD

PATH: A2 METERING DATA LOCAL RTD

BACKSPIN METERING BACKSPIN FREQUENCY:0.00 Hz

Range: 0 to 120 Hz in steps of 0.01Only shown if option B installed and enabled.

BACKSPIN DETECTIONSTATE:No_BSD_Running

Range: Motor Running, No Backspin, Slowdown,Acceleration, Backspinning, Prediction, Soon to Restart.Shown only if backspin start inhibit is enabled

BACKSPIN PREDICTIONTIMER:30 s

Range: 0 to 50000 s in steps of 1. Shown only if backspinstart inhibit is enabled and predication timer is enabled.

THIS FEATURE NOTINSTALLED

LOCAL RTD HOTTEST STATOR RTDNUMBER: 1

Range: None, 1 to 12 in steps of 1

HOTTEST STATOR RTDTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #1TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #2TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #3TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #4TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #5TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #6TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #7TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #8TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #9TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #10TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #11TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #12TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

Courtesy of NationalSwitchgear.com
Page 126: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

6-10 369 Motor Management Relay GE Power Management

6.3 A2 METERING DATA 6 ACTUAL VALUES

6

The temperature level of all 12 internal RTDs will be displayed here if the 369 has option R enabled. The programmedname of each RTD (if changed from the default) will appear as the first line of each message. If option R has not beeninstalled, the following message appears when attempting to enter this section.

6.3.7 REMOTE RTD

PATH: A2 METERING DATA REMOTE RTD

The temperature level of all 12 remote RTDs will be displayed here if programmed and connected to a RRTD module. Thename of each RRTD (if changed from the default) will appear as the first line of each message. If option R has not beeninstalled, the following message will appear when attempting to enter this section.

If communications with the RRTD module is lost, the following message will appear:

THIS FEATURE NOTINSTALLED

REMOTE RTD HOTTEST STATOR RRTDNUMBER: 1

Range: None, 1 to 12 in steps of 1

HOTTEST STATOR RTDTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #1TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #2TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #3TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #4TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #5TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #6TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #7TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #8TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #9TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #10TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #11TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #12TEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

THIS FEATURE NOTINSTALLED

RRTD MODULECOMMUNICATIONS LOST

Courtesy of NationalSwitchgear.com
Page 127: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 6-11

6 ACTUAL VALUES 6.3 A2 METERING DATA

6

6.3.8 DEMAND METERING

PATH: A2 METERING DATA DEMAND METERING

The values for current and power demand are displayed here. Peak demand information can be cleared using theCLEAR PEAK DEMAND command located in S1 369 SETUP \ CLEAR/PRESET DATA . Demand is only shown for positive real(kW) and reactive (kvar) powers. Only the current demand will be visible if options M or B are not installed.

6.3.9 PHASORS

PATH: A2 METERING DATA PHASORS

All angles shown are with respect to the reference phasor. The reference phasor is based on the VT connection type. In theevent that option M has not been installed, Van for Wye is 0 V, or Vab for Delta is 0 V, Ia will be used as the reference phasor.

DEMAND METERING CURRENTDEMAND: 0 Amps

Range: 0 to 65535 A in steps of 1

REAL POWERDEMAND: 0 kW

Range: 0 to 50000 kW in steps of 1Only shown if VT connection programmed

REACTIVE POWERDEMAND: 0 kvar

Range: –32000 to 32000 kvar in steps of 1Only shown if VT connection programmed

APPARENT POWERDEMAND: 0 kVA

Range: 0 to 50000 kVA in steps of 1Only shown if VT connection programmed

PEAK CURRENTDEMAND: 0 Amps

Range: 0 to 65535 A in steps of 1

PEAK REAL POWERDEMAND: 0 kW

Range: 0 to 50000 kW in steps of 1Only shown if VT connection programmed

PEAK REACTIVE POWERDEMAND: 0 kvar

Range: –32000 to 32000 kvar in steps of 1Only shown if VT connection programmed

PEAK APPARENT POWERDEMAND: 0 kVA

Range: 0 to 50000 kVA in steps of 1Only shown if VT connection programmed

PHASORS Ia PHASOR:0 Degrees Lag

Range: 0 to 359 degrees in steps of 1

Ib PHASOR:0 Degrees Lag

Range: 0 to 359 degrees in steps of 1

Ic PHASOR:0 Degrees Lag

Range: 0 to 359 degrees in steps of 1

Va PHASOR:0 Degrees Lag

Range: 0 to 359 degrees in steps of 1Only shown if VT connection programmed

Vb PHASOR:0 Degrees Lag

Range: 0 to 359 degrees in steps of 1Only shown if VT connection programmed

Vc PHASOR:0 Degrees Lag

Range: 0 to 359 degrees in steps of 1Only shown if VT connection programmed

Reference Phasor VT Connection Type

Ia None

Van Wye

Vab Delta

Courtesy of NationalSwitchgear.com
Page 128: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

6-12 369 Motor Management Relay GE Power Management

6.3 A2 METERING DATA 6 ACTUAL VALUES

6

Note that the phasor display is not intended to be used as a protective metering element. Its prime purpose is to diagnoseerrors in wiring connections.

To aid in wiring, the following tables can be used to determine if VTs and CTs are on the correct phase and their polarity iscorrect. Problems arising from incorrect wiring are extremely high unbalance levels (CTs), erroneous power readings (CTsand VTs), or phase reversal trips (VTs). To correct wiring, simply start the motor and record the phasors. Using the followingtables along with the recorded phasors, system rotation, VT connection type, and motor power factor, the correct phasorscan be determined. Note that Va (Vab if delta) is always assumed to be 0° and is the reference for all angle measurements.

Common problems include: Phase currents 180° from proper location (CT polarity reversed)Phase currents or voltages 120° or 240° out (CT/VT on wrong phase)

Table 6–1: THREE PHASE WYE VT CONNECTION

ABCROTATION

72.5°= 0.3 PF LAG

45°= 0.7 PF LAG

0°= 1.00 PF

–45°= 0.7 PF LEAD

–72.5°= 0.2 PF LEAD

Va 0 0° lag 0° lag 0° lag 0

Vb 120 120 120 120 120Vc 240 240 240 240 240

Ia 75 45 0 315 285

Ib 195 165 120 75 45

Ic 315 285 240 195 165

kW + + + + +

kvar + + 0 – –kVA + + + (= kW) + +

ACBROTATION

72.5°= 0.3 PF LAG

45°= 0.7 PF LAG

0°= 1.00 PF

–45°= 0.7 PF LEAD

–72.5°= 0.2 PF LEAD

Va 0 0° lag 0° lag 0° lag 0

Vb 240 240 240 240 240Vc 120 120 120 120 120

Ia 75 45 0 315 285

Ib 315 285 240 195 165

Ic 195 165 120 75 45

kW + + + + +

kvar + + 0 – –kVA + + + (= kW) + +

Table 6–2: THREE PHASE OPEN DELTA VT CONNECTION

ABCROTATION

72.5°= 0.3 PF LAG

45°= 0.7 PF LAG

0°= 1.00 PF

–45°= 0.7 PF LEAD

–72.5°= 0.3 PF LEAD

Va 0 0° 0° 0° 0

Vb ---- ---- ---- ---- ----Vc 300 300 300 300 300

Ia 100 75 30 345 320

Ib 220 195 150 105 80

Ic 340 315 270 225 200

kW + + + + +

kvar + + 0 – –kVA + + + (= kW) + +

ACBROTATION

72.5°= 0.3 PF LAG

45°= 0.7 PF LAG

0°= 1.00 PF

–45°= 0.7 PF LEAD

–72.5°= 0.3 PF LEAD

Va 0 0° 0° 0° 0

Vb ---- ---- ---- ---- ----

Vc 60 60 60 60 60Ia 45 15 330 285 260

Ib 285 255 210 165 140

Ic 165 135 90 45 20

kW + + + + +

kvar + + 0 – –

kVA + + + (= kW) + +

Courtesy of NationalSwitchgear.com
Page 129: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 6-13

6 ACTUAL VALUES 6.4 A3 LEARNED DATA

6

6.4 A3 LEARNED DATA 6.4.1 ACTUAL VALUES PAGE 3 MENU

This page contains the data the 369 learns to adapt itself to the motor protected.

6.4.2 MOTOR DATA

PATH: A3 LEARNED DATA MOTOR DATA

The learned values for acceleration time and starting current are the average of the individual values acquired for the lastfive successful starts. The value for starting current is used when learned k factor is enabled.

The learned value for starting capacity is the amount of thermal capacity required for a start that has been determined bythe 369 from the last five successful motor starts. The last five learned start capacities are averaged and a 25% safety mar-gin is factored in. This is done to guarantee enough thermal capacity available to start the motor. The Start Inhibit feature,when enabled, uses this value in determining lockout time.

The learned cool time constants and unbalance k factor are displayed here. The learned value is the average of the last fivemeasured constants. These learned cool time constants are used only when ENABLE LEARNED COOL TIMES feature of thethermal model is set to "Yes". The learned unbalance k factor is the average of the last five calculated k factors. Thelearned k factor is only used when unbalance biasing of thermal capacity is set on and to learned.

It should be noted that learned values are calculated even when the features requiring them are turned off. None of thelearned features should be used until at least five successful motor starts and stops have been accomplished.

A3 ACTUAL VALUESLEARNED DATA

MOTOR DATASee page 6–13.

LOCAL RTD MAXIMUMSSee page 6–14.

REMOTE RTD MAXIMUMSSee page 6–15.

MOTOR DATA LEARNED ACCELERATIONTIME: 0.0 s

Range: 1.0 to 250.0 s in steps of 0.1

LEARNED STARTINGCURRENT: 0 A

Range: 0 to 100000 A in steps of 1

LEARNED STARTINGCAPACITY: 85%

Range: 0 to 100% in steps of 1%

LEARNED RUNNING COOLTIME CONST.: 0 min

Range: 0 to 500 min in steps of 1

LEARNED STOPPED COOLTIME CONST.: 0 min

Range: 0 to 500 min in steps of 1

LAST STARTINGCURRENT: 0 A

Range: 0 to 100000 A in steps of 1

LAST STARTINGCAPACITY: 85%

Range: 0 to 100% in steps of 1%

LAST ACCELERATIONTIME: 0.0 s

Range: 1.0 to 250.0 s in steps of 0.1

AVERAGE MOTOR LOADLEARNED: 0.00 X FLA

Range: 0.00 to 20.00 x FLA in steps of 0.01

LEARNED UNBALANCE kFACTOR: 0

Range: 0 to 29 in steps of 1

Courtesy of NationalSwitchgear.com
Page 130: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

6-14 369 Motor Management Relay GE Power Management

6.4 A3 LEARNED DATA 6 ACTUAL VALUES

6

Values for starting capacity, starting current, and acceleration time are displayed for the last start. The average motor loadwhile running is also displayed here. The motor load is averaged over a 15 minute sliding window.

Clearing motor data (see Section 5.2.9: CLEAR/PRESET DATA on page 5–10) resets these values to their default settings.

6.4.3 LOCAL RTD MAXIMUMS

PATH: A3 LEARNED DATA LOCAL RTD MAXIMUMS

The maximum temperature level of all 12 internal RTDs will be displayed here if the 369 has option R enabled. The pro-grammed name of each RTD (if changed from the default) will appear as the first line of each message. If option R has notbeen installed, the following message will appear when attempting to enter this section.

If options R is enabled and no RTDs are programmed, the following message will appear when an attempt is made to enterthis group of messages.

LOCAL RTD MAXIMUMS RTD #1 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #2 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #3 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #4 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #5 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #6 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #7 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #8 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #9 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #10 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #11 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RTD #12 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

THIS FEATURE NOTINSTALLED

NO RTDs PROGRAMMED

Courtesy of NationalSwitchgear.com
Page 131: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 6-15

6 ACTUAL VALUES 6.4 A3 LEARNED DATA

6

6.4.4 REMOTE RTD MAXIMUMS

PATH: A3 LEARNED DATA REMOTE RTD MAXIMUMS

The maximum temperature level of all 12 remote RTDs will be displayed here if the 369 has been programmed and con-nected to a RRTD module. The programmed name of each RTD (if changed from the default) will appear as the first line ofeach message. If an RRTD module is connected and no RRTDs are programmed, the following message will appear whenan attempt is made to enter this group of messages.

REMOTE RTD MAXIMUMS RRTD #1 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #2 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #3 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #4 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #5 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #6 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #7 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #8 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #9 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #10 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #11 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

RRTD #12 MAXIMUMTEMPERATURE: 40°C

Range: –40 to 200°C or –40 to 392°FNo RTD = open, Shorted = shorted RTD

NO RRTDs PROGRAMMED

Courtesy of NationalSwitchgear.com
Page 132: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

6-16 369 Motor Management Relay GE Power Management

6.5 A4 STATISTICAL DATA 6 ACTUAL VALUES

6

6.5 A4 STATISTICAL DATA 6.5.1 ACTUAL VALUES PAGE 4 MENU

6.5.2 TRIP COUNTERS

PATH: A4 STATISTICAL DATA TRIP COUNTERS

A4 ACTUAL VALUESSTATISTICAL DATA

TRIP COUNTERS

MOTOR STATISTICSSee page 6–17.

TRIP COUNTERS TOTAL NUMBER OFTRIPS: 0

Range: 0 to 50000 in steps of 1

INCOMPLETE SEQUENCETRIPS: 0

Range: 0 to 50000 in steps of 1

SWITCHTRIPS: 0

Range: 0 to 50000 in steps of 1

OVERLOADTRIPS: 0

Range: 0 to 50000 in steps of 1

SHORT CIRCUITTRIPS: 0

Range: 0 to 50000 in steps of 1

MECHANICAL JAMTRIPS: 0

Range: 0 to 50000 in steps of 1

UNDERCURRENTTRIPS: 0

Range: 0 to 50000 in steps of 1

CURRENT UNBALANCETRIPS: 0

Range: 0 to 50000 in steps of 1

SINGLE PHASETRIPS: 0

Range: 0 to 50000 in steps of 1

GROUND FAULTTRIPS: 0

Range: 0 to 50000 in steps of 1

ACCELERATIONTRIPS: 0

Range: 0 to 50000 in steps of 1

STATOR RTDTRIPS: 0

Range: 0 to 50000 in steps of 1

BEARING RTDTRIPS: 0

Range: 0 to 50000 in steps of 1

OTHER RTDTRIPS: 0

Range: 0 to 50000 in steps of 1

AMBIENT RTDTRIPS: 0

Range: 0 to 50000 in steps of 1

UNDER VOLTAGETRIPS: 0

Range: 0 to 50000 in steps of 1

OVER VOLTAGETRIPS: 0

Range: 0 to 50000 in steps of 1

Courtesy of NationalSwitchgear.com
Page 133: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 6-17

6 ACTUAL VALUES 6.5 A4 STATISTICAL DATA

6

A breakdown of the number of trips by type is displayed here. When the total reaches 50000, the counter resets to 0 on thenext trip and continues counting. This information can be cleared in the Clear/Preset Data section of setpoints page one.The date the counters are cleared will be recorded.

6.5.3 MOTOR STATISTICS

PATH: A4 STATISTICAL DATA MOTOR STATISTICS

The number of motor starts and emergency restarts is recorded here. This information may be useful when troubleshootinga motor failure or in understanding the history and use of a motor for maintenance purposes. When either of these countersreaches 50000, it will automatically be reset to 0.

Motor running hours displays the amount of time that the 369 has detected the motor in a running state (current appliedand/or starter status indicating contactor/breaker closed).

The motor starts, emergency restarts and running hours counters may be cleared in setpoints page 1, preset/clear datasection, by clearing motor data.

The digital counter will be displayed when one of the digital inputs has been set up as a digital counter. The digital countermay be cleared in setpoints page 1, preset/clear data section, by clearing or presetting the digital counter. When the digitalcounter reaches 65535, it will automatically be reset by the 369 to 0.

PHASE REVERSALTRIPS: 0

Range: 0 to 50000 in steps of 1

UNDERFREQUENCYTRIPS: 0

Range: 0 to 50000 in steps of 1

OVERFREQUENCYTRIPS: 0

Range: 0 to 50000 in steps of 1

LEAD POWER FACTORTRIPS: 0

Range: 0 to 50000 in steps of 1

LAG POWER FACTORTRIPS: 0

Range: 0 to 50000 in steps of 1

POSITIVE REACTIVETRIPS: 0

Range: 0 to 50000 in steps of 1

NEGATIVE REACTIVETRIPS: 0

Range: 0 to 50000 in steps of 1

UNDERPOWER TRIPS:0

Range: 0 to 50000 in steps of 1

REVERSE POWER:0

Range: 0 to 50000 in steps of 1

TRIP COUNTERS LASTCLEARED: 01/01/1999

Range: 0 to 50000 in steps of 1

MOTOR STATISTICS NUMBER OF MOTORSTARTS: 0

Range: 0 to 50000 in steps of 1

NUMBER OF EMERGENCYRESTARTS: 0

Range: 0 to 50000 in steps of 1

MOTOR RUNNING HOURS:0 hrs

Range: 0 to 100000 in steps of 1

DIGITAL COUNTER:0

Range: 0 to 65535 in steps of 1Shown if counter set to a digital input

Courtesy of NationalSwitchgear.com
Page 134: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

6-18 369 Motor Management Relay GE Power Management

6.6 A5 EVENT RECORD 6 ACTUAL VALUES

6

6.6 A5 EVENT RECORD 6.6.1 ACTUAL VALUES PAGE 5 MENU

6.6.2 EVENT 01

PATH: A5 EVENT RECORD EVENT 01

A breakdown of the last 65535 events is available here along with the cause of the event and the date and time. All tripsautomatically trigger an event. Alarms only trigger an event if turned on for that alarm. Loss or application of control power,service alarm and emergency restart opening and closing also triggers an event. After 65535 events have been recorded,the oldest one is removed when a new one is added. The event record may be cleared in the setpoints page 1, clear/presetdata, clear event record section.

A5 ACTUAL VALUESEVENT RECORD

EVENT: 40

EVENT: 39

EVENT: 02

EVENT: 01

EVENT 01 TIME OF EVENT 0100:00:00:00

Time: hours / minutes / seconds / hundreds of seconds

DATE OF EVENT 01Jan. 01, 1999

Date: month / day / year

A: 0 B: 0C: 0 A E: 01

Range: 0 to 65535 A in steps of 1

MOTOR LOAD0.00 X FLA E: 01

Range: 0.00 to 20.00 x FLA in steps of 0.01

CURRENT UNBALANCE:0% E: 01

Range: 0 to 100% in steps of 1

GROUND CURRENT:0.0 Amps E: 01

Range:0.0 to 5000.0 A steps of 0.1 (1A/5A CT)0.00 to 25.00 A steps of 0.01 (50: 0.025 A CT)

HOTTEST STATORRTD 1: 0°C E: 01

Range: –40 to 200°C or –40 to 392°F,No RTD = open, Shorted = shorted RTD

Vab: 0 Vbc: 0Vca: 0 V E: 01

Range: 0 to 20000 V in steps of 1Only shown if VT Connection Programmed Delta

Van: 0 Vbn: 0Vcn: 0 V E: 01

Range: 0 to 20000 V in steps of 1Only shown if VT Connection Programmed Wye

SYSTEM FREQUENCY:0.00 Hz E: 01

Range: 0.00, 15.00 to 120 Hz in steps of 1Only shown if VT Connection Programmed

0 kW 0 kVA0 kvar E: 01

Range: –50000 to +50000 in steps of 1Only shown if VT Connection Programmed

POWER FACTOR:1.00 E: 01

Range: 0.00 lag to 1 to 0.00 leadOnly shown if VT Connection Programmed

Courtesy of NationalSwitchgear.com
Page 135: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 6-19

6 ACTUAL VALUES 6.7 A6 RELAY INFORMATION

6

6.7 A6 RELAY INFORMATION 6.7.1 ACTUAL VALUES PAGE 6 MENU

6.7.2 MODEL INFORMATION

PATH: A6 RELAY INFORMATION MODEL INFORMATION

369 model and manufacture information may be viewed here. The last calibration date is the date the relay was last cali-brated at GE Power Management.

6.7.3 FIRMWARE VERSION

PATH: A6 RELAY INFORMATION FIRMWARE VERSION

This information reflects the revisions of the software currently running in the 369. This information should be noted andrecorded before calling for technical support or service.

A6 ACTUAL VALUESRELAY INFORMATION

MODEL INFORMATION

FIRMWARE VERSION

MODEL INFORMATION SERIAL NUMBER:MXXXXXXXX

Range: See Autolabel.

INSTALLED OPTIONS:369-HI-R-M-0-0

Range: 369 HI/LO, R/0, M/B/0, F/0, P/0

MANUFACTUREDATE: Jan. 01 1999

Range: month/day/year

LAST CALIBRATIONDATE: Jan. 01 1999

Range: month/day/year

FIRMWARE VERSION FIRMWARE REVISION:XXXXXXXX

BOOT REVISION:XXXXXXXX

MODIFICATION NUMBER:000

Courtesy of NationalSwitchgear.com
Page 136: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

6-20 369 Motor Management Relay GE Power Management

6.7 A6 RELAY INFORMATION 6 ACTUAL VALUES

6

Courtesy of NationalSwitchgear.com
Page 137: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-1

7 APPLICATIONS 7.1 269-369 COMPARISON

7

7 APPLICATIONS 7.1 269-369 COMPARISON 7.1.1 369 AND 269PLUS COMPARISON

Table 7–1: COMPARISON BETWEEN 369 AND 269Plus

369 269Plus

All options can be turned on or added in the field Must be returned for option change or add other devices

Current and optional voltage inputs are included on all relays Current inputs only. Must use additional meter device to obtain voltage and power measurements.

Optional 12 RTDs with an additional 12 RTDs available with the RRTD. All RTDs are individually configured(100P, 100N, 120N, 10C)

10 RTDs not programmable, must be specified at time of order.

Fully programmable digital inputs No programmable digital inputs

4 programmable analog outputs assignable to 49 parameters 1 Analog output programmable for 5 parameters

1 RS232 (19.2K baud), 3 RS485 (1200 TO 19.2K baud programmable) communication ports. Also Optional profibus port and optional fiber optics port

1 RS485 Communication port (2400 baud maximum)

Flash memory firmware upgrade thru PC software and comm port EPROM must be replaced to change firmware

EVENT RECORDER: time and date stamp last 40 events. Records all trips and selectable alarms

Displays cause of last trip and last event

OSCILLOGRAPHY: up to 64 cycles at 16 samples/cycle for last event(s)

N/A

TESTING\SIMULATION function to force relays, analog outputs and simulate metered values

Exercise relays, force RTDs, force analog output

Programmable text message(s) N/A

Backspin frequency detection and backspin timer Backspin timer

Starter failure indication N/A

Measures up to 20 x CT at 16 samples/cycle Measures up to 12 x CT at 12 samples/cycle

15 standard overload curves 8 standard overload curves

Remote display is standard Remote display with mod

Courtesy of NationalSwitchgear.com
Page 138: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-2 369 Motor Management Relay GE Power Management

7.2 369 FAQs 7 APPLICATIONS

7

7.2 369 FAQs 7.2.1 FREQUENTLY ASKED QUESTIONS (FAQs)

1. What is the difference between Firmware and Software?

Firmware is the program running inside the relay, which is responsible for all relay protection and control elements.Software is the program running on the PC, which is used to communicate with the relay and provide relay controlremotely in a user friendly format.

2. How can I obtain copies of the latest manual and PC software?

I need it now!: via the GE Power Management website at http://www.GEindustrial.com/pm

I guess I can wait: fax a request to the GE Power Management Literature department at (905) 201-2113

3. Cannot communicate through the front port (RS232).

Check the following settings:

• Communication Port (COM1, COM2, COM3 etc.) on PC or PLC

• Parity settings must match between the relay and the master (PC or PLC)

• Baud rate setting on the master (PC or PLC) must match RS232 baud rate on the 369 relay.

• Cable has to be a straight through cable, do not use null modem cables where pin 2 and 3 are transposed

• Check the pin outs of RS232 cable (TX - pin 2, RX - pin 3, GND - pin 5)

4. Cannot communicate with RS485.

Check the following settings:

• Communication Port (COM1, COM2, COM3 etc.) on PC or PLC

• Parity settings must match between the relay and the master (PC or PLC)

• Baud rate must match between the relay and the master

• Slave address polled must match between the relay and the master

• Is terminating filter circuit present?

• Are you communicating in half duplex? (369 communicates in half duplex mode only)

• Is wiring correct? (“+” wire should go to “+” terminal of the relay, and “–” goes to “–” terminal)

• Is the RS485 cable shield grounded? (shielding diminishes noise from external EM radiation)

Check the appropriate communication port LED on the relay. The LED should be solidly lit when communicating prop-erly. The LED will blink on and off when the relay has communication difficulties and the LED will be off if no activitydetected on communication lines.

5. Can the 4 wire RS485 (full duplex) be used with 369?

No, the 369 communicates in 2-wire half duplex mode only. However, there are commercial RS485 converters that willconvert a 4 wire to a 2 wire system.

6. Can the 369 be used on Variable Frequency Drives (VFD)?

Yes. Consider the following tables showing the 369 input current frequency response at 50 and 60 Hz:

MEASUREDFREQUENCY

(60 Hz)

ERROR (% FULL SCALE) MEASUREDFREQUENCY

(50 Hz)

ERROR (% FULL SCALE)

≤ 2 x CT > 2 x CT ≤ 2 x CT > 2 x CT

25 Hz –17.80 –5.03 25 Hz –11.90 –1.54

45 Hz –2.75 –0.75 45 Hz –0.25 –0.14

55 Hz –0.30 –0.04 50 Hz –0.40 –0.03

60 Hz –0.40 –0.01 55 Hz –0.15 –0.04

65 Hz –0.30 –0.01 65 Hz –0.90 –0.28

90 Hz –1.15 –0.34 90 Hz –0.20 –0.10

105 Hz –0.65 –0.12 105 Hz 0.00 0.00

135 Hz –0.30 –0.14 135 Hz –0.35 –0.16

Courtesy of NationalSwitchgear.com
Page 139: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-3

7 APPLICATIONS 7.2 369 FAQs

7

The above results indicate a worst-case scenario at the lowest end of the frequency spectrum. Lower frequencies aretypically experienced during initial motor starting. The starting settings can be adjusted to compensate for these differ-ences during the short duration of the motor start. During normal motor operating conditions above 25 Hz, the 369 fre-quency response is such that compensation is not required for current-based protection elements.

7. Cannot store setpoint into the relay.

Check and ensure the ACCESS switch is shorted, and check for any PASSCODE restrictions.

8. The 369 relay displays incorrect power reading, yet the power system is balanced. What could be the possiblereasons?

It is highly possible that the secondary wiring to the relay is not correct. Incorrect power can be read when any of the A,B, or C phases are swapped, a CT or VT is wired backwards, or the relay is programmed as ABC sequence when thepower system is actually ACB and vice versa. The easiest way to verify is to check the voltage and the current phasorreadings on the 369 relay and ensure that each respective voltage and current angles match.

9. What are the merits of a residual ground fault connection versus a core balance connection?

The use of a zero sequence (core balance) CT to detect ground current is recommended over the G/F residual con-nection. This is especially true at motor starting. During across-the-line starting of large motors, care must be taken toprevent the high inrush current from operating the ground element of the 369. This is especially true when using theresidual connection of 2 or 3 CTs.

In a residual connection, the unequal saturation of the current transformers, size and location of motor, size of powersystem, resistance in the power system from the source to the motor, type of iron used in the motor core & saturationdensity, and residual flux levels may all contribute to the production of a false residual current in the secondary or relaycircuit. The common practice in medium and high voltage systems is to use low resistance grounding. By using the“doughnut CT” scheme, such systems offer the advantages of speed and reliability without much concern for startingcurrent, fault contribution by the motor, or false residual current.

When a zero sequence CT is used, a voltage is generated in the secondary winding only when zero sequence currentis flowing in the primary leads. Since virtually all motors have their neutrals ungrounded, no zero sequence current canflow in the motor leads unless there is a ground fault on the motor side.

10. Can I send a 269 setpoint file to a 369 relay?

Yes. Using the 369PC software, a 269 setpoint file can be sent to the 369. Note that any settings/features not in the269 setpoint file are set to default values on the 369. All setpoints should be confirmed before operating the relay.

11. Can I use an 86 lockout on the 369?

Yes, but if an external 86 lockout device is used and connected to the 369, ensure the 369 is reset prior to attemptingto reset the lockout switch. If the 369 is still tripped, it will immediately re-trip the lockout switch. Also, if the lockoutswitch is held reset, the high current draw of the switch coil may cause damage to itself and/or the 369 output relay.

12. Can I assign more than one output relay to be blocked when using Start Inhibits?

Yes, but keep in mind that if two output relays are wired in series to inhibit a start it is possible that another elementcould be programmed to control one or both of the relays. If this is happening and the other element is programmedwith a longer delay time, this will make it seem as if the Start Inhibit is not working properly when in fact, it is.

13. Can I name a digital input?

Yes. By configuring the digital input as "General" a menu will appear that will allow naming.

14. Can I apply an external voltage to the digital inputs on the 369?

No. The 369 uses an internal voltage to operate the digital inputs. Applying an external voltage may cause damage tothe internal circuitry.

15. No display, no characters on the display but there is a backlight.

Check the contrast using the help button. Press and hold the help button for 2 seconds. When all the LED’s are illumi-nated press the value up key to darken the contrast or value down key to lighten the contrast. When the desired con-trast is selected press the enter key to accept the change.

16. Can I upload setpoint files from previous versions to the latest version of firmware?

Yes, with the exception of setpoint files from versions 1.10 and 1.12. Unfortunately these setpoint files must be rewrit-ten, as they are not compatible.

Courtesy of NationalSwitchgear.com
Page 140: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-4 369 Motor Management Relay GE Power Management

7.2 369 FAQs 7 APPLICATIONS

7

17. What method does the 369 use to calculate current unbalance?

The 369 uses the NEMA method. Previous revisions of the 369 manual have incorrectly included a functional test thatmeasured the ratio of negative sequence current to positive sequence current. The NEMA method is as follows:

If Iavg ≥ IFLA, then

where: Iavg = average phase currentImax = current in a phase with maximum derivation from IavgIFLA = motor full load amps setting

If Iavg < IFLA, then

To prevent nuisance trips/alarms on lightly loaded motors when a much larger unbalance level will not damage therotor, the unbalance protection will automatically be defeated if the average motor current is less than 30% of the fullload current (IFLA) setting.

18. I need to update the options for my 369/RRTD in the field, can I do this?

Yes. All options of the 369/RRTD can be turned on or added in the field. To do this contact the factory.

19. Can I test my output relays?

Yes, but keep in mind that the output relays cannot be forced into a different state while the motor is running.

20. Is the communication interface for Profibus RS232 or RS485?

It is RS485. The 9-pin connector on the rear of the 369 is the connector used by the manufacturer of the Profibus cardand although it is a DB-9, the electrical interface is RS485.

21. Can I use the options enabler code to upgrade my 369 in the field to get the Profibus option?

Yes, but keep in mind that there is a Profibus card that is required and is not installed in units that were not orderedfrom the factory with the Profibus option.

22. Can the 369 be used as a remote unit, similar to the 269 remote?

Yes. Every 369 can be used as remote. When ordering the 369, an external 15 foot cable must be ordered.

23. Can the RRTD module be used as a standalone unit?

Yes. The RRTD unit with the IO option, has 4 output relays, 6 digital inputs and 4 analog outputs. With this option theRRTD can provide temperature protection.

UnbalanceImax Iavg–

Iavg-------------------------- 100×=

UnbalanceImax Iavg–

IFLA-------------------------- 100×=

Courtesy of NationalSwitchgear.com
Page 141: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-5

7 APPLICATIONS 7.3 369 DOs and DON’Ts

7

7.3 369 DOs and DON’Ts 7.3.1 DOs and DON’Ts

a) DOs

Always check the power supply rating before applying power to the relay

Applying voltage greater than the maximum rating to the power supply (e.g. 120 V AC to the low-voltage rated powersupply) could result in component damage to the relay's power supply. This will result in the unit no longer being ableto power up.

Ensure that the 369 nominal phase current of 1 A or 5 A matches the secondary rating and the connections of theconnected CTs

Unmatched CTs may result in equipment damage or inadequate protection.

Ensure that the source CT and VT polarity match the relay CT and VT polarity

Polarity of the Phase CTs is critical for power measurement, and residual ground current detection (if used). Polarity ofthe VTs is critical for correct power measurement and voltage phase reversal operation.

Properly ground the 369

Connect both the Filter Ground (terminal 123) and Safety Ground (terminal 126) of the 369 directly to the mainGROUND BUS. The benefits of proper grounding of the 369 are numerous, e.g,

• Elimination of nuisance tripping

• Elimination of internal hardware failures

• Reliable operation of the relay

• Higher MTBF (Mean Time Between Failures)

• It is recommended that a tinned copper braided shielding and bonding cable be used. A Belden 8660 cable orequivalent should be used as a minimum to connect the relay directly to the ground bus.

Grounding of Phase and Ground CTs

All Phase and Ground CTs must be grounded. The potential difference between the CT's ground and the ground busshould be minimal (ideally zero).

It is highly recommended that the two CT leads be twisted together to minimize noise pickup, especially when thehighly sensitive 50:0.025 Ground CT sensor is used.

RTDs

Consult the application notes of the 369 Instruction Manual for the full description of the 369 RTD circuitry and the dif-ferent RTD wiring schemes acceptable for proper operation. However, for best results the following recommendationsshould be adhered to:

a) Use a 3 wire twisted, shielded cable to connect the RTDs from the motor to the 369. The shields should be con-nected to the proper terminals on the back of the 369.

b) RTD shields are internally connected to the 369 ground (terminal #126) and must not be grounded anywhere else.

c) RTD signals can be characterized as very small, sensitive signals. Therefore, cables carrying RTD signals shouldbe routed as far away as possible from power carrying cables such as power supply and CT cables.

d) If after wiring the RTD leads to the 369, the RTD temperature displayed by the Relay is zero, then check for thefollowing conditions:

1. Shorted RTD2. RTD hot and compensation leads are reversed, i.e. hot lead in compensation terminal and compensation lead

in hot terminal.

RS485 Communications Port

The 369 can provide direct or remote communications (via a modem). An RS232 to RS485 converter is used to tie it toa PC/PLC or DCS system. The 369 uses the Modicon MODBUS® RTU protocol (functions 03, 04, & 16) to interfacewith PCs, PLCs, and DCS systems.

RS485 communications was chosen to be used with the 369 because it allows communications over long distances ofup to 4000 ft. However, care must be taken for it to operate properly and trouble free. The recommendations listedbelow must be followed to obtain reliable communications:

Courtesy of NationalSwitchgear.com
Page 142: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-6 369 Motor Management Relay GE Power Management

7.3 369 DOs and DON’Ts 7 APPLICATIONS

7

a) A twisted, shielded pair (preferably a 24 gauge Belden 9841 type or 120 equivalent) must be used and routedaway from power carrying cables, such as power supply and CT cables.

b) No more than 32 devices can co-exist on the same link. If however, more than 32 devices should be daisy chainedtogether, a REPEATER must be used. Note that a repeater is just another RS232 to RS485 converter device. Theshields of all 369 units should also be daisy chained together and grounded at the MASTER (PC/PLC) only. Thisis due to the fact that if shields are grounded at different points, a potential difference between grounds might existresulting in placing one or more of the transceiver chips (chip used for communications) in an unknown state, i.e.not receiving nor sending. The corresponding 369 communications might be erroneous, intermittent or unsuccess-ful.

c) Two sets of 120 Ω / 0.5 W resistor and 1 nF / 50 V capacitor in series must be used (value matches the character-istic impedance of the line). One set at the 369 end, connected between the positive and negative terminals (#46& #47 on 369) and the second at the other end of the communications link. This is to prevent reflections and ring-ing on the line. If a different value resistor is used, it runs the risk of over loading the line and communicationsmight be erroneous, intermittent or totally unsuccessful.

d) It is highly recommended that connection from the 369 communication terminals be made directly to the interfac-ing Master Device (PC/PLC/DCS), without the use of stub lengths and/or terminal blocks. This is also to minimizeringing and reflections on the line.

b) DON'Ts

Don’t apply direct voltage to the Digital Inputs.

There are 6 switch inputs (Spare Input; Differential Input; Speed Switch; Access; Emergency Restart; External Reset)that are designed for dry contact connections only. Applying direct voltage to the inputs, it may result in componentdamage to the digital input circuitry.

Grounding of the RTDs should not be done in two places.

When grounding at the 369, only one Return lead need be grounded as all are hard-wired together internally. No errorwill be introduced into the RTD reading by grounding in this manner.

Running more than one RTD Return lead back will cause significant errors as two or more parallel paths for returnhave been created.

Don’t reset an 86 Lockout switch before resetting the 369.

If an external 86 lockout device is used and connected to the 369, ensure that the 369 is reset prior to attempting toreset the lockout switch. If the 369 is still tripped, it will immediately re-trip the lockout switch. Also if the lockout switchis held reset, the high current draw of the lockout switch coil may cause damage to itself and/or the 369 output relay.

Courtesy of NationalSwitchgear.com
Page 143: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-7

7 APPLICATIONS 7.4 CT SPECIFICATION AND SELECTION

7

7.4 CT SPECIFICATION AND SELECTION 7.4.1 CT SPECIFICATION

a) 369 CT WITHSTAND

Withstand is important when the phase or ground CT has the capability of driving a large amount of current into the inter-posing CTs in the relay. This typically occurs on retrofit installations when the CTs are not sized to the burden of the relay.Electronic relays typically have low burdens (8 mΩ for 369), while the older electromechanical relays have typically highburdens (1 Ω).

For high current ground faults, the system will be either low resistance or solidly grounded. The limiting factor that deter-mines the ground fault current that can flow in these types of systems is the source capacity. Withstand is not important forground fault on high resistance grounded systems. On these systems, a resistor makes the connection from source toground at the source (generator, transformer). The resistor value is chosen so that in the event of a ground fault, the currentthat flows is limited to a low value, typically 5, 10, or 20 A.

Since the potential for very large faults exists (ground faults on high resistance grounded systems excluded), the fault mustbe cleared as quickly as possible. It is therefore recommended that the time delay for short circuit and high ground faults beset to instantaneous. Then the duration for which the 369 CTs subjected to high withstand will be less than 250 ms (369reaction time is less than 50ms + breaker clearing time).

Care must be taken to ensure that the interrupting device is capable of interrupting the potential fault. Ifnot, some other method of interrupting the fault should be used, and the feature in question should be dis-abled (e.g. a fused contactor relies on fuses to interrupt large faults).

The 369 CTs were subjected to high currents for 1 second bursts. The CTs were capable of handling 500 A (500 A relatesto a 100 times the CT primary rating). If the time duration required is less than 1 second, the withstand level will increase.

b) CT SIZE AND SATURATION

The rating (as per ANSI/IEEE C57.13.1) for relaying class CTs may be given in a format such as: 2.5C100, 10T200, T1OO,10C50, or C200. The number preceding the letter represents the maximum ratio correction; no number in this positionimplies that the CT accuracy remains within a 10% ratio correction from 0 to 20 times rating.

The letter is an indication of the CT type:

• A 'C' (formerly L) represents a CT with a low leakage flux in the core where there is no appreciable effect on the ratiowhen used within the limits dictated by the class and rating. The 'C' stands for calculated; the actual ratio correctionshould be different from the calculated ratio correction by no more than 1%. A 'C' type CT is typically a bushing, win-dow, or bar type CT with uniformly distributed windings.

• A 'T' (formerly H) represents a CT with a high leakage flux in the core where there is significant effect on CT perfor-mance. The 'T' stands for test; since the ratio correction is unpredictable, it is to be determined by test. A 'T' type CT istypically primary wound with unevenly distributed windings. The subsequent number specifies the secondary termi-nal voltage that may be delivered by the full winding at 20 times rated secondary current without exceeding the ratiocorrection specified by the first number of the rating. (Example: a 10C100 can develop 100 V at 20 × 5 A, therefore anappropriate external burden would be 1 Ω or less to allow 20 times rated secondary current with less than 10% ratiocorrection.) Note that the voltage rating is at the secondary terminals of the CT and the internal voltage drop across thesecondary resistance must be accounted for in the design of the CT. There are seven voltage ratings: 10, 20, 50, 100,200, 400, and 800. If a CT comes close to a higher rating, but does not meet or exceed it, then the CT must be rated tothe lower value.

In order to determine how much current CTs can output, the secondary resistance of the CT is required. This resistance willbe part of the equation as far as limiting the current flow. This is determined by the maximum voltage that may be devel-oped by the CT secondary divided by the entire secondary resistance, CT secondary resistance included.

7.4.2 CT SELECTION

The 369 phase CT should be chosen such that the FLA (FLC) of the motor falls within 50 to 100% of the CT primary rating.For example, if the FLA of the motor is 173 A, a primary CT rating of 200, 250, or 300 can be chosen (200 being the betterchoice). This provides maximum protection of the motor.

The CT selected must then be checked to ensure that it can drive the attached burden (relay and wiring and any auxiliarydevices) at maximum fault current levels without saturating. There are essentially two ways of determining if the CT is beingdriven into saturation:

NOTE

Courtesy of NationalSwitchgear.com
Page 144: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-8 369 Motor Management Relay GE Power Management

7.4 CT SPECIFICATION AND SELECTION 7 APPLICATIONS

7

1. Use CT secondary resistance.

Burden = CT secondary resistance + Wire resistance + Relay burden resistance

CT secondary voltage =

Example:

Maximum fault level = 6 kA369 burden = 0.003 ΩCT = 300:5CT secondary resistance = 0.088 ΩWire length (1 lead) = 50 mWire Size = 4.00 mm2

Ohms/km = 4.73 Ω

∴ Burden = 0.088 + (2 × 50)(4.73 / 1000) + 0.003 = 0.564 Ω

∴ CT secondary voltage = 0.564 × (6000 / (300 / 5)) = 56.4 V

Using the excitation curves for the 300:5 CT we see that the knee voltage is at 70 V, therefore this CT is acceptable forthis application.

2. Use CT class.

Burden = Wire resistance + Relay burden resistance

CT secondary voltage =

Example:

Maximum fault level = 6 kA, 369 burden = 0.003 Ω, CT = 300:5, CT class = C20,Wire length (1 lead) = 50 m, Wire Size = 4.00 mm2, Ohms/km = 4.73 Ω

∴ Burden = (2 × 50) × (4.73/1000) + 0.003 = 0.476 Ω

∴ CT secondary voltage = 0.476 × (6000 / (300 / 5)) = 47.6 V

From the CT class (C20): The amount of secondary voltage the CT can deliver to the load burden at 20 × CT withoutexceeding the 10% ratio error is 20 V. This application calls for 6000/300 = 20 × CT (Fault current / CT primary). Thusthe 10% ratio error may be exceeded.

The number in the CT class code refers to the guaranteed secondary voltage of the CT. Therefore, the maximum cur-rent that the CT can deliver can be calculated as follows:

maximum secondary current = CT class / Burden = 20 / 0.476 = 42.02 A

Figure 7–1: EQUIVALENT CT CIRCUIT

BurdenIfault maximum

CT ratio-----------------------------------×

BurdenIfault maximum

CT ratio-----------------------------------×

CT secondary resistance

Wire

resistance

Wire

resistance

Relay

burden resistance

CT class voltage

Courtesy of NationalSwitchgear.com
Page 145: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-9

7 APPLICATIONS 7.5 PROGRAMMING EXAMPLE

7

7.5 PROGRAMMING EXAMPLE 7.5.1 PROGRAMMING EXAMPLE

Information provided by a motor manufacturer can vary from nameplate information to a vast amount of data related toevery parameter of the motor. The table below shows selected information from a typical motor data sheet and Figure 7–2:MOTOR THERMAL LIMITS shows the related motor thermal limit curves. This information is required to set the 369 for aproper protection scheme.

The following is a example of how to determine the 369 setpoints. It is only a example and the setpoints should bedetermined based on the application and specific design of the motor.

Figure 7–2: MOTOR THERMAL LIMITS

Table 7–2: SELECTED INFORMATION FROM A TYPICAL MOTOR DATA SHEET

Driven equipment Reciprocating Compressor

Ambient Temperature min. –20°C; max. 41°C

Type or Motor Synchronous

Voltage 6000 V

Nameplate power 2300 kW

Service Factor 1

Insulation class F

Temperature rise stator / rotor 79 / 79 K

Max. locked rotor current 550% FLC

Locked rotor current% FLC 500% at 100% Voltage / 425% at 85% Voltage

Starting time 4 seconds at 100% Voltage / 6.5 seconds at 85% Voltage

Max. permissible starts cold / hot 3 / 2

Rated Load Current 229A at 100% Load

1

10

100

1000

9876543210 10

CURRENT P.U.

TIM

E(S

)

840736A2.CDR

1

2

3

4

369 OVERLOAD

CURVE #4

Current vs. Time Diagram

1) at V=100% rated voltage

2) at V=85% rated voltage

Thermal Limit

3) from hot condition

4) from cold condition

Courtesy of NationalSwitchgear.com
Page 146: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-10 369 Motor Management Relay GE Power Management

7.5 PROGRAMMING EXAMPLE 7 APPLICATIONS

7

Phase CT

The phase CT should be chosen such that the FLC is 50% to 100% of CT primary. Since the FLC is 229 A a 250:5, 300:5,or 400:5 CT may be chosen (a 250:5 is the better choice).

229 / 0.50 = 458 or 229 / 1.00 = 229

Motor FLC

Set the Motor Full Load Current to 229A, as per data sheets.

Ground CT

For high resistive grounded systems, sensitive ground detection is possible with the 50:0.025 CT. On solidly grounded orlow resistive grounded systems where the fault current is much higher, a 1A or 5A CT should be used. If residual groundfault connection is to be used, the ground fault CT ratio most equal the phase CT ratio. The zero sequence CT chosenneeds to be able to handle all potential fault levels without saturating.

VT Settings

The motor is going to be connected in Wye, hence, the VT connection type will be programmed as Wye. Since the motorvoltage is 6000V, the VT being used will be 6000:120. The VT ratio to be programmed into the 369 will then be 50:1 (6000/120) and the Motor Rated Voltage will be programmed to 6000V, as per the motor data sheets.

Overload Pickup

The overload pickup is set to the same as the service factor of the motor. In this case, it would be set to the lowest settingof 1.01 x FLC for the service factor of 1.

Unbalance Bias Of Thermal Capacity

Enable the Unbalance Bias of Thermal Capacity so that the heating effect of unbalance currents is added to the ThermalCapacity Used.

Unbalance Bias K Factor

The K value is used to calculate the contribution of the negative sequence current flowing in the rotor due to unbalance. Itis defined as:

, where: Rr2 = rotor negative sequence resistance, Rr1 = rotor positive sequence resistance

where: LRA = Locked Rotor Current

The above formula is based on empirical data.

The 369 has the ability to learn the K value after five successful starts. After 5 starts, turn this setpoint off so that the 369uses the learned value

Hot/Cold Curve Ratio

The hot/cold curve ratio is calculated by simply dividing the hot safe stall time by the cold safe stall time. This informationcan be extracted from the Thermal Limit curves. From Figure 7–2: MOTOR THERMAL LIMITS, we can determine that thehot safe stall time is approximately 18 seconds and the cold safe stall time is approximately 24 seconds. Therefore, theHot/Cold curve ratio should be programmed as 0.75 (18 / 24) for this example.

Running and Stopped Cool Time Constant

The running cool time is the time required for the motor to cool while running. This information is usually supplied by themotor manufacturer but is not part of the given data. The motor manufacturer should be contacted to find out what the cooltimes are.

Rr2

Rr1--------

K 175

LRA2

---------- 175

5.52

----------- 6@= =

NOTE

Courtesy of NationalSwitchgear.com
Page 147: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-11

7 APPLICATIONS 7.5 PROGRAMMING EXAMPLE

7

The Thermal Capacity Used quantity decays exponentially to simulate the cooling of the motor. The rate of cooling is basedupon the running cool time constant when the motor is running, or the stopped cool time constant when the motor isstopped. The entered cool time constant is one fifth the total cool time from 100% thermal capacity used down to 0% ther-mal capacity used.

The 369 has a unique capability of learning the cool time constant. This learned parameter is only functional if the StatorRTDs are connected to the 369. The learned cool time algorithm observes the temperature of the motor as it cools, thusdetermining the length of time required for cooling. If the cool times can not be retrieved from the motor manufacturer, thenthe Learned Cool Time must be enabled (if the stator RTDs are connected).

Motors have a fanning action when running due to the rotation of the rotor. For this reason, the running cool time is typicallyhalf of the stopped cool time.

Refer to the Selection of Cool Time application note for more details on how to determine the cool time constants when notprovided with the motor.

RTD Biasing

This will enable the temperature from the Stator RTD sensors to be included in the calculations of Thermal Capacity. Thismodel determines the Thermal Capacity Used based on the temperature of the Stators and is a separate calculation fromthe overload model for calculating Thermal Capacity Used. RTD biasing is a back up protection element which accounts forsuch things as loss of cooling or unusually high ambient temperature. There are three parameters to set: RTD Bias Min,RTD Bias Mid, RTD Bias Max.

RTD Bias Minimum

Set to 40°C which is the ambient temperature (obtained from data sheets).

RTD Bias Mid Point

The center point temperature is set to the motor’s hot running temperature and is calculated as follows:

Temperature Rise of Stator + Ambient Temperature.

The temperature rise of the stator is 79°K, obtained from the data sheets. Therefore, the RTD Center point temperature isset to 120°C (79 + 40).

RTD Bias Maximum

This setpoint is set to the rating of the insulation or slightly less. A class F insulation is used in this motor which is rated at155°C.

Overload Curve

If only one thermal limit curve is provided, the chosen overload curve should fit below it. When a hot and cold thermal limitcurve is provided, the chosen overload curve should fit between the two curves and the programmed Hot/Cold ratio is usedin the Thermal Capacity algorithm to take into account the thermal state of the motor. The best fitting 369 standard curve iscurve # 4, as seen in Figure 7–2: MOTOR THERMAL LIMITS on page 7–9.

Short Circuit Trip

The short circuit trip should be set above the maximum locked rotor current but below the short circuit current of the fuses.The data sheets indicate a maximum locked rotor current of 550% FLC or 5.5 × FLC. A setting of 6 × FLC with a instanta-neous time delay will be ideal but nuisance tripping may result due to unusually high demanding starts or starts while theload is coupled. If need be, set the S/C level higher to a maximum of 8 × FLC to override these conditions.

Mechanical Jam

If the process causes the motor to be prone to mechanical jams, set the Mechanical Jam Trip and Alarm accordingly. Inmost cases, the overload trip will become active before the Mechanical Trip, however, if a high overload curve is chosen,the Mechanical Jam level and time delay become more critical. The setting should then be set to below the overload curvebut above any normal overload conditions of the motor. The main purpose of the mechanical jam element is to protect thedriven equipment due to jammed, or broken equipment.

Undercurrent

If detection of loss of load is required for the specific application, set the undercurrent element according to the current thatwill indicate loss of load. For example, this could be programmed for a pump application to detect loss of fluid in the pipe.

Courtesy of NationalSwitchgear.com
Page 148: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-12 369 Motor Management Relay GE Power Management

7.5 PROGRAMMING EXAMPLE 7 APPLICATIONS

7

Unbalance Alarm and Trip

The unbalance settings are determined by examining the motor application and motor design. In this case, the motor beingprotected is a reciprocating compressor, in which unbalance will be a normal running condition, thus this setting should beset high. A setting of 20% for the Unbalance Alarm with a delay of 10 seconds would be appropriate and the trip may be setto 25% with a delay of 10 seconds

Ground Fault

Unfortunately, there is not enough information to determine a ground fault setting. These settings depend on the followinginformation:

1. The Ground Fault current available.

2. System Grounding - high resistive grounding, solidly grounded, etc.

3. Ground Fault CT used.

4. Ground Fault connection - zero sequence or Residual connection.

Acceleration Trip

This setpoint should be set higher than the maximum starting time to avoid nuisance tripping when the voltage is lower orfor varying loads during starting. If reduced voltage starting is used, a setting of 8 seconds would be appropriate, or if directacross the line starting is used, a setting of 5 seconds could be used.

Start Inhibit

This function should always be enabled after five successful starts to protect the motor during starting while it is alreadyhot. The 369 learns the amount of thermal capacity used at start. If the motor is hot, thus having some thermal capacity, the369 will not allow a start if the available thermal capacity is less than the required thermal capacity for a start. For moreinformation regarding start inhibit refer to application note in section 7.6.6.

Starts/Hour

Starts/Hour can be set to the # of cold starts as per the data sheet. For this example, the starts/hour would be set to 3.

Time Between Starts

In some cases, the motor manufacturer will specify the time between motor starts. In this example, this information is notgiven so this feature can be turned “Off”. However, if the information is given, the time provided on the motor data sheetsshould be programmed.

Stator RTDs

RTD trip level should be set at or below the maximum temperature rating of the insulation. This example has a class F insu-lation which has a temperature rating of 155°C, therefore the Stator RTD Trip level should be set to between 140°C to155°C. The RTD alarm level should be set to a level to provide a warning that the motor temperature is rising. For thisexample, 120°C or 130°C would be appropriate.

Bearing RTDs

The Bearing RTD alarm and trip settings will be determined by evaluating the temperature specification from the bearingmanufacturer.

Courtesy of NationalSwitchgear.com
Page 149: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-13

7 APPLICATIONS 7.6 APPLICATIONS

7

7.6 APPLICATIONS 7.6.1 MOTOR STATUS DETECTION

The 369 detects a stopped motor condition when the phase current falls below 5% of CT, and detects a starting motor con-dition when phase current is sensed after a stopped motor condition. If the motor idles at 5% of CT, several starts and stopscan be detected causing nuisance lockouts if Starts/Hour, Time Between Starts, Restart Block, Start Inhibit, or BackspinTimer are programmed. As well, the learned values, such as the Learned Starting Thermal Capacity, Learned Starting Cur-rent and Learned Acceleration time can be incorrectly calculated.

To overcome this potential problem, the Spare Digital Input can be configured to read the status of the breaker and deter-mine whether the motor is stopped or simply idling. With the spare input configured as Starter Status and the breaker aux-iliary contacts wired across the spare input terminals, the 369 senses a stopped motor condition only when the phasecurrent is below 5% of CT (or zero) AND the breaker is open. If both of these conditions are not met, the 369 will continueto operate as if the motor is running and the starting elements remain unchanged. Refer to the flowchart below for details ofhow the 369 detects motor status and how the starter status element further defines the condition of the motor.

When the Starter Status is programmed, the type of breaker contact being used for monitoring must be set. The followingare the states of the breaker auxiliary contacts in relation to the breaker:

• 52a, 52aa - open when the breaker contacts are open and closed when the breaker contacts are closed

• 52b, 52bb - closed when the breaker contacts are open and open when the breaker contacts are closed

Figure 7–3: FLOWCHART SHOWING HOW MOTOR STATUS IS DETERMINED

GET PREVIOUSM O T O R M O D E

MODE = STOP I > FLA START

I > 0

BREAKERCLOSED?

I > FLA

MODE = START

MODE = RUN

R U N

S T O P P E D

RUN IN OVERLOAD

Y

N

Y

Y

Y

Y

N

N

N

N

N

ACTIVE ORLATCHED TRIP

IS TRIPRESETABLE

RESETR E Q U E S T

RESET TRIP

TRIP

Y Y Y

N N N

PREVIOUS MODEMUST = RUN IN

O V E R L O A D

Y

Y

N

Courtesy of NationalSwitchgear.com
Page 150: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-14 369 Motor Management Relay GE Power Management

7.6 APPLICATIONS 7 APPLICATIONS

7

7.6.2 SELECTION OF COOL TIME CONSTANTS

Thermal limits are not a black and white science and there is some art to setting a protective relay thermal model. The def-inition of thermal limits mean different things to different manufacturers and quite often, information is not available. There-fore, it is important to remember what the goal of the motor protection thermal modeling is: to thermally protect the motor(rotor and stator) without impeding the normal and expected operating conditions that the motor will be subject to.

The thermal model of the 369 provides integrated rotor and stator heating protection. If cooling time constants are suppliedwith the motor data they should be used. Since the rotor and stator heating and cooling is integrated into a single model,use the longer of the cooling time constants (rotor or stator).

If however, no cooling time constants are provided, settings will have to be determined. Before determining the cool timeconstant settings, the duty cycle of the motor should be considered. If the motor is typically started and run continuously forvery long periods of time with no overload duty requirements, the cooling time constants can be large. This would make thethermal model conservative. If the normal duty cycle of the motor involves frequent starts and stops with a periodic over-load duty requirement, the cooling time constants will need to be shorter and closer to the actual thermal limit of the motor.

Normally motors are rotor limited during starting. Thus RTDs in the stator do not provide the best method of determiningcool times. Determination of reasonable settings for the running and stopped cool time constants can be accomplished inone of the following manners listed in order of preference.

1. The motor running and stopped cool times or constants may be provided on the motor data sheets or by the manufac-turer if requested. Remember that the cooling is exponential and the time constants are one fifth the total time to gofrom 100% thermal capacity used to 0%.

2. Attempt to determine a conservative value from available data on the motor. See the following example for details.

3. If no data is available an educated guess must be made. Perhaps the motor data could be estimated from other motorsof a similar size or use. Note that conservative protection is better as a first choice until a better understanding of themotor requirements is developed. Remember that the goal is to protect the motor without impeding the operating dutythat is desired.

EXAMPLE:

Motor data sheets state that the starting sequence allowed is 2 cold or 1 hot after which you must wait 5 hours beforeattempting another start.

• This implies that under a normal start condition the motor is using between 34 and 50% thermal capacity. Hence, twoconsecutive starts are allowed, but not three (i.e. 34 × 3 > 100).

• If the hot and cold curves or a hot/cold safe stall ratio are not available program 0.5 (1 hot / 2 cold starts) in as the hot/cold ratio.

• Programming Start Inhibit ‘On’ makes a restart possible as soon as 62.5% (50 × 1.25) thermal capacity is available.

• After 2 cold or 1 hot start, close to 100% thermal capacity will be used. Thermal capacity used decays exponentially(see 369 manual section on motor cooling for calculation). There will be only 37% thermal capacity used after 1 timeconstant which means there is enough thermal capacity available for another start. Program 60 minutes (5 hours) asthe stopped cool time constant. Thus after 2 cold or 1 hot start, a stopped motor will be blocked from starting for 5hours.

Since the rotor cools faster when the motor is running, a reasonable setting for the running cool time constant might be halfthe stopped cool time constant or 150 minutes.

Courtesy of NationalSwitchgear.com
Page 151: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-15

7 APPLICATIONS 7.6 APPLICATIONS

7

7.6.3 THERMAL MODEL

Figure 7–4: THERMAL MODEL BLOCK DIAGRAM

LEGENDU/B..........................UnbalanceI/P ...........................InputIavg.........................Average Three Phase CurrentIeq...........................Equivalent Average Three Phase CurrentIp.............................Positive Sequence CurrentIn.............................Negative Sequence CurrentK .............................Constant Multiplier that Equates In to IpFLC.........................Full Load CurrentFLC TCR ................FLC Thermal Capacity Reduction SetpointTC...........................Thermal Capacity usedRTD BIAS TC .........TC Value looked up from RTD Bias Curve

If Unbalance input to thermal memory is enabled, the increase in heating is reflected in the thermal model.If RTD Input to Thermal Memory is enabled, the feed-back from the RTDs will correct the thermal model.

start

U/B I/P toThermal Memory

Enabled?

Ieq = Iavg

Ieq >FLC x O/LPickup ?

Ieq > FLC

TC <FLC TCR X(Iavg/FLC)

Decrement TC toFLC TCR x (Iavg/FLC) as per

the rate defined by User's CoolRate or Learned Cool Rate

RTD BIASENABLED?

end

Add to TC as per Ieqand O/L Curve

TC >FLC TCR x(Iavg/FLC)

Add 6% TC per Minute unt i lTC = FLC TCR x (Iavg/FLC)

RTD BIAS TC >TC ?

TC = RTD BIAS TC

Ieq Ip K In= + ×2 2

Y

N

Y

Y

N

N

N

Y

Y

N

Y Y

N N

NOTE

Courtesy of NationalSwitchgear.com
Page 152: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-16 369 Motor Management Relay GE Power Management

7.6 APPLICATIONS 7 APPLICATIONS

7

7.6.4 RTD BIAS FEATURE

Figure 7–5: RTD BIAS FEATURE

LEGEND

Tmax.......................RTD Bias Maximum Temperature ValueTmin........................RTD Bias Minimum Temperature ValueHottest RTD ............Hottest Stator RTD measuredTC ...........................Thermal Capacity UsedTC RTD...................Thermal Capacity Looked up on RTD Bias Curve.TC Model ................Thermal Capacity based on the Thermal Model

START

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

RTD BIAS

ENABLED ?

HOTTEST

STATOR RTD

> Tmax

HOTTEST

STATOR RTD

<Tmin

T.C. RTD >

T.C. THERMAL

MODEL

T.C. = T.C. RTD T.C. = T.C. MODEL

T.C. = T.C. RTD =

100%

OVERLOAD ?

T.C. MODEL =

100%

END

Tmin < HOTTEST

STATOR RTD < Tmax

(T.C. LOOKED UP ON

RTD BIAS CURVE)

840739A1.CDR

TRIP

Courtesy of NationalSwitchgear.com
Page 153: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-17

7 APPLICATIONS 7.6 APPLICATIONS

7

7.6.5 THERMAL CAPACITY USED CALCULATION

The overload element uses a Thermal Capacity algorithm to determine an overload trip condition. The extent of overloadcurrent determines how fast the Thermal Memory is filled, i.e. if the current is just over FLC × O/L Pickup, Thermal Capacityslowly increases; versus if the current far exceeds the FLC pickup level, the Thermal Capacity rapidly increases. An over-load trip occurs when the Thermal Capacity Used reaches 100%.

The overload current does not necessarily have to pass the overload curve for a trip to take place. If there is ThermalCapacity already built up, the overload trip will occur much faster. In other words, the overload trip will occur at the specifiedtime on the curve only when the Thermal Capacity is equal to zero and the current is applied at a stable rate. Otherwise, theThermal Capacity increases from the value prior to overload, until a 100% Thermal Capacity is reached and an overloadtrip occurs.

It is important to chose the overload curve correctly for proper protection. In some cases it is necessary to calculate theamount of Thermal Capacity developed after a start. This is done to ensure that the 369 does not trip the motor prior to thecompletion of a start. The actual filling of the Thermal Capacity is the area under the overload current curve. Therefore, tocalculate the amount of Thermal Capacity after a start, the integral of the overload current most be calculated. Below is anexample of how to calculate the Thermal Capacity during a start:

Thermal Capacity Calculation:

1. Draw lines intersecting the acceleration curve and the overload curve. This is illustrated in Figure 7–6: THERMALLIMIT CURVES on page 7–18.

2. Determine the time at which the drawn line intersect, the acceleration curve and the time at which the drawn line inter-sects the chosen overload curve.

3. Integrate the values that have been determined.

Therefore, after this motor has completed a successful start, the Thermal Capacity would have reached approximately40%.

Table 7–3: THERMAL CAPACITY CALCULATIONS

Time Period(seconds)

Motor Starting Current(% of FLC)

Custom Curve TripTime (seconds)

Total Accumulated ThermalCapacity Used (%)

0 to 3 580 38 3 / 38 × 100 = 7.8%

3 to 6 560 41 (3 / 41 × 100) + 7.8% = 15.1%

6 to 9 540 44 (3 / 44 × 100) + 15.1% = 21.9%

9 to 12 520 47 (3 / 47 × 100) + 21.9% = 28.3%

12 to 14 500 51 (2 / 51 × 100) + 28.3% = 32.2%

14 to 15 480 56 (1 / 56 × 100) + 32.2% = 34.0%

15 to 16 460 61 (1 / 61 × 100) + 34.0% = 35.6%

16 to 17 440 67 (1 / 67 × 100) + 35.6% = 37.1%

17 to 18 380 90 (1 / 90 × 100) + 37.1% = 38.2%

18 to 19 300 149 (1 / 149 × 100) + 38.2% = 38.9%

19 to 20 160 670 (1 / 670 × 100) + 38.9% = 39.0%

Courtesy of NationalSwitchgear.com
Page 154: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-18 369 Motor Management Relay GE Power Management

7.6 APPLICATIONS 7 APPLICATIONS

7

Figure 7–6: THERMAL LIMIT CURVES

Thermal limit curves illustrate thermal capacity used calculation during a start.

7.6.6 START INHIBIT

The Start Inhibit element of the 369 provides an accurate and reliable start protection without unnecessary prolonged lock-out times causing production down time. The lockout time is based on the actual performance and application of the motorand not on the worst case scenario, as other start protection elements.

The 369 Thermal Capacity algorithm is used to establish the lockout time of the Start Inhibit element. Thermal Capacity is apercentage value that gives an indication of how hot the motor is and is derived from the overload currents (as well asUnbalance currents and RTDs if the respective biasing functions are enabled). The easiest way to understand the ThermalModeling function of the 369 is to image a bucket that holds Thermal Capacity. Once this imaginary bucket is full, an over-load trip occurs. The bucket is filled by the amount of overload current integrated over time and is compared to the pro-grammed overload curve to obtain a percentage value. The thermal capacity bucket is emptied based on the programmedrunning cool time when the current has fallen below the Full Load Current (FLC) and is running normally.

1

10

100

1000

10000

100000

Percent Full Load

Motor Manufacturer's Thermal Limit

Curve

369 Custom Overload Curve

Motor

Acceleration

Curve

44 sec.

38 sec.

9 sec.

3 sec.

Tim

e(S

eco

nd

s)

20 18010160 260220 300 340 380 420 460 500140

605580540

Courtesy of NationalSwitchgear.com
Page 155: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-19

7 APPLICATIONS 7.6 APPLICATIONS

7

Upon a start, the inrush current is very high, causing the thermal capacity to rapidly increase. The Thermal Capacity Usedvariable is compared to the amount of the Thermal Capacity required to start the motor. If there is not enough thermalcapacity available to start the motor, the 369 blocks the operator from starting until the motor has cooled to a level of ther-mal capacity to successfully start.

Assume that a motor requires 40% Thermal Capacity to start. If the motor was running in overload prior to stopping, thethermal capacity would be some value; say 80%. Under such conditions the 369 (with Start Inhibit enabled) will lockout orprevent the operator from starting the motor until the thermal capacity has decreased to 60% so that a successful motorstart can be achieved. This example is illustrated in Figure 7–7: ILLUSTRATION OF THE START INHIBIT FUNCTIONAL-ITY on page 7–19.

The lockout time is calculated as follows:

where:

The INITIAL START CAPACITY setpoint provides a value to be used instead of the TC_learned value until the relay hasobserved the five successful starts and can determine a learned value. After the initial five starts, the INITIAL STARTCAPACITY setpoint is ignored and learned value is automatically used. The learned start capacity is then updated everyfour starts. A safe margin is built into the calculation of the LEARNED START CAPACITY REQUIRED to ensure successfulcompletion of the longest and most demanding starts. The Learned Start Capacity is calculated as follows:

where: Start_TC1 = the thermal capacity required for the first startStart_TC2 = the thermal capacity required for the second start, etc.

Figure 7–7: ILLUSTRATION OF THE START INHIBIT FUNCTIONALITY

TC_used = Thermal Capacity Used

TC_learned = Learned Thermal Capacity required to start

stopped_cool_time = one of two variables will be used:1. Learned cool time is enabled, or2. Programmed stopped cool time

lockout time stopped_cool_time_constant TCused100 TClearned–--------------------------------------------

ln×=

LEARNED START CAPACITY Start_TC1 Start_TC2 Start_TC3 Start_TC4 Start_TC5+ + + +4

------------------------------------------------------------------------------------------------------------------------------------------------------------------=

Thermal Capacity

required to start40%

Thermal Capacity Used

due to Overload80%

20%

80%

60%

Thermal Capacity must

decay by 20% to 60%

in order to start the motor

Courtesy of NationalSwitchgear.com
Page 156: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-20 369 Motor Management Relay GE Power Management

7.6 APPLICATIONS 7 APPLICATIONS

7

7.6.7 2φ CT CONFIGURATION

This section illustrates how to use two CTs to sense three phase currents.

The proper configuration for using two CTs rather than three to detect phase current is shown below. Each of the two CTsacts as a current source. The current from the CT on phase ‘A’ flows into the interposing CT on the relay marked ‘A’. Fromthere, the it sums with the current flowing from the CT on phase ‘C’ which has just passed through the interposing CT onthe relay marked ‘C’. This ‘summed’ current flows through the interposing CT marked ‘B’ and splits from there to return toits respective source (CT). Polarity is very important since the value of phase ‘B’ must be the negative equivalent of'A' + 'C' for the sum of all the vectors to equate to zero. Note that there is only one ground connection. Making twoground connections creates a parallel path for the current

Figure 7–8: TWO PHASE WIRING

In the two CT configuration, the currents sum vectorially at the common point of the two CTs. The following diagram illus-trates the two possible configurations. If one phase is reading high by a factor of 1.73 on a system that is known to be bal-anced, simply reverse the polarity of the leads at one of the two phase CTs (taking care that the CTs are still tied to groundat some point). Polarity is important.

Figure 7–9: VECTORS SHOWING REVERSE POLARITY

To illustrate the point further, the diagram here shows how the current in phases 'A' and 'C' sum up to create phase 'B'.

Figure 7–10: RESULTANT PHASE CURRENT - CORRECTLY WIRED 2 φ CT SYSTEM

A

B

C

A B C

:5:5

:5:5

:5:5

:COM:COM

:COM:COM

:COM:COM

Courtesy of NationalSwitchgear.com
Page 157: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-21

7 APPLICATIONS 7.6 APPLICATIONS

7

Once again, if the polarity of one of the phases is out by 180°, the magnitude of the resulting vector on a balanced systemwill be out by a factor of 1.73.

Figure 7–11: RESULTANT PHASE CURRENT - INCORRECTLY WIRED 2 φ CT SYSTEM

On a three wire supply, this configuration will always work and unbalance will be detected properly. In the event of a singlephase, there will always be a large unbalance present at the interposing CTs of the relay. If for example phase ‘A’ was lost,phase ‘A’ would read zero while phases ‘B’ and ‘C’ would both read the magnitude of phase ‘C’. If on the other hand, phase‘B’ was lost, at the supply, ‘A’ would be 180× out of phase with phase ‘C’ and the vector addition would be zero at phase ‘B’.

7.6.8 GROUND FAULT DETECTION ON UNGROUNDED SYSTEMS

The 50:0.025 ground fault input is designed for sensitive detection of faults on a high resistance grounded system. Detec-tion of ground currents from 1 to 10 A primary translates to an input of 0.5 mA to 5 mA into the 50:0.025 tap. Understandingthis allows the use of this input in a simple manner for the detection of ground faults on ungrounded systems.

The following diagram illustrates how to use a wye-open delta voltage transformer configuration to detect phase grounding.Under normal conditions, the net voltage of the three phases that appears across the 50:0.025 input and the resistor isclose to zero. Under a fault condition, assuming the secondaries of the VTs to be 69 V, the net voltage seen by the relayand the resistor is 3Vo or 3 × 69 V = 207 V.

Figure 7–12: GROUND FAULT DETECTION ON UNGROUNDED SYSTEMS

Since the wire resistance should be relatively small in comparison to the resistor chosen, the current flow will be a functionof the fault voltage seen on the open delta transformer divided by the chosen resistor value plus the burden of the 50:0.025input (1200 Ω).

EXAMPLE:

If a pickup range of 10 to 100 V is desired, the resistor should be chosen as follows:

101 104

369

50:0.025

INPUT

101 104

369

50:0.025

INPUT

RESISTRESISTOROR

abc

Courtesy of NationalSwitchgear.com
Page 158: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-22 369 Motor Management Relay GE Power Management

7.6 APPLICATIONS 7 APPLICATIONS

7

1. 1 to 10 A pickup on the 2000:1 tap = 0.5 mA – 5 mA.

2. 10 V / 0.5 mA = 20 kΩ.

3. If the resistor chosen is 20 kΩ – 1.2 kΩ = 18.8 kΩ, the wattage should be greater than E2/R, approximately (207 V)2 /18.8 kΩ = 2.28 W. Therefore, a 5 W resistor will suffice.

The VTs must have a primary rating equal or greater than the line to line voltage, as this is the voltagethat will be seen by the unfaulted inputs in the event of a fault.

7.6.9 RTD CIRCUITRY

This section illustrates the functionality of the RTD circuitry in the 369 Motor Protection Relay.

Figure 7–13: RTD CIRCUITRY

A constant current source sends 3 mA DC down legs A and C. A 6 mA DC current returns down leg B. It may be seen that:

or

The above holds true providing that all three leads are the same length, gauge, and material, hence the same resistance.

or

Electronically, subtracting VAB from VBC leaves only the voltage across the RTD. In this manner lead length is effectivelynegated:

NOTE

RTD

COMPENSATION3 mA

RETURN6 mA

HOT840733A1.CDRC

B

A

3 mA

VAB VLeadA VLeadB+=( ) and VCB VLeadC VRTD VLeadB+ +=

VAB Vcomp Vreturn+=( ) and VCB Vhot VRTD Vreturn+ +=

RLeadA RLeadB RLeadC RLead= = =

Rcomp Rreturn Rhot RLead= = =

VCB VAB– VLead VRTD VLead+ +( ) VLead VLead+( )–=

VCB VAB– VRTD=

Courtesy of NationalSwitchgear.com
Page 159: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 7-23

7 APPLICATIONS 7.6 APPLICATIONS

7

7.6.10 REDUCED RTD LEAD NUMBER APPLICATION

The 369 requires three leads to be brought back from each RTD: Hot, Return, and Compensation. In certain situations thiscan be quite expensive. However, it is possible to reduce the number of leads so that three are required for the first RTDand only one for each successive RTD. Refer to the following diagram for wiring configuration.

Figure 7–14: REDUCED WIRING RTDs

The Hot line for each RTD is run as usual for each RTD. However, the Compensation and Return leads need only be run forthe first RTD. At the motor RTD terminal box, connect the RTD Return leads together with as short as possible jumpers. Atthe 369 relay, the Compensation leads must be jumpered together.

Note that an error is produced on each RTD equal to the voltage drop across the RTD return jumper. This error increasesfor each successive RTD added as:

VRTD1 = VRTD1

VRTD2 = VRTD2 + VJ3

VRTD3 = VRTD3 + VJ3 + VJ4

VRTD4 = VRTD4 + VJ3+ VJ4 + VJ5, etc....

This error is directly dependent on the length and gauge of the jumper wires and any error introduced by a poor connection.For RTD types other than 10C, the error introduced by the jumpers is negligible.

Although this RTD wiring technique reduces the cost of wiring, the following disadvantages must be noted:

1. There is an error in temperature readings due to lead and connection resistances. Not recommended for 10C RTDs.

2. If the RTD Return lead to the 369 or one of the jumpers breaks, all RTDs from the point of the break onwards will readopen.

3. If the Compensation lead breaks or one of the jumpers breaks, all RTDs from the point of the break onwards will func-tion without any lead compensation.

RTD #1RTD #1

369

RTD #2RTD #2

RTD #3RTD #3

RTD #4RTD #4

RTD #5RTD #5

RTD #6RTD #6

HOT

HOT

HOT

HOT

HOT

HOT

RETURN

RETURN

RETURN

RETURN

RETURN

RETURN

COMPENSATION

COMPENSATION

COMPENSATION

COMPENSATION

COMPENSATION

COMPENSATION

SHIELD

MOTORSHIELD

840732A2.CDR

1

5

9

13

17

21

2

6

10

14

18

22

3

7

11

15

19

23

24

Courtesy of NationalSwitchgear.com
Page 160: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

7-24 369 Motor Management Relay GE Power Management

7.6 APPLICATIONS 7 APPLICATIONS

7

7.6.11 TWO WIRE RTD LEAD COMPENSATION

An example of how to add lead compensation to a two wire RTD is shown below.

Figure 7–15: 2 WIRE RTD LEAD COMPENSATION

The compensation lead would be added and it would compensate for the Hot and the Return assuming they are all of equallength and gauge. To compensate for resistance of the Hot and Compensation leads, a resistor equal to the resistance ofthe Hot lead could be added to the compensation lead, though in many cases this is unnecessary.

7.6.12 AUTO TRANSFORMER STARTER WIRING

Figure 7–16: AUTO TRANSFORMER, REDUCED VOLTAGE STARTING CIRCUIT

RTD #6

COMPENSATION

RETURN

TERMINAL

369COMPENSATION

RESISTOR

MOTORRETURN

HOTHOT

840734A1.CDR

22

24

21

23

Courtesy of NationalSwitchgear.com
Page 161: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 8-1

8 TESTING 8.1 TEST SETUP

8

8 TESTING 8.1 TEST SETUP 8.1.1 INTRODUCTION

This chapter demonstrates the procedures necessary to perform a complete functional test of all the 369 hardware whilealso testing firmware/hardware interaction in the process. Testing of the relay during commissioning using a primary injec-tion test set will ensure that CTs and wiring are correct and complete.

8.1.2 SECONDARY INJECTION TEST SETUP

Figure 8–1: SECONDARY INJECTION TEST SETUP

GROUND

BUS

840726B4.CDR

DB-9(front)

(Option (P)

Profibus))

500 ohm

RTD1

PC

RTD12

R

G TIMER

STOP

TRIGGER

START

TRIGGER

START

G

R

G

A

A

A

A

R

G

L

N

C(B)

A

VA VB VC VNIA IAN IB IBN IC ICN

+

+

-

-

B(C)

VA VN VB VN VC VN

VOLTAGE INPUTS

105 108106 109107 110

1A 1ACOM

CURRENT INPUTS

Phase A

WITH METERING OPTION (M)

MULTILIN

50:.025

FREQUENCY

GENERATOR

3 PHASE VARIABLE AC TEST SET

Neut/Gnd Back Spin

Option (B)

Phase CPhase B

5A COM 50:0.025ACOM 5A 1A 5A 5A VNCOM 1A

93 94 92 96 97 95 99 100 98 102 104 103 101 9091

CHANNEL 1

OP

TIO

N ( R

)

CHANNEL 2 CHANNEL 3

REMOTE

RTD

MODULE

RS485 RS485 RS485FIBER

71 74 7773 76 7972 75 78

80

82

84

85

81

83

4

12

16

20

24

28

32

36

40

44

48

8

3

11

15

19

23

27

31

35

39

43

47

7

2

10

14

18

22

26

30

34

38

42

46

6

1

9

13

17

21

25

29

33

37

41

45

5

Com-

Com

Com

Com

Com

Com

Com

Com

Com

Com

Com

Com

Com

shld.

shld.

shld.shld.

shld.

shld.

shld.

shld.

shld.

shld.

shld.

shld.

shld.

5

9

4 3 2 1

8 7 6

shld.

SHLD SHLD SHLD Tx Rx

1

2

3

4

AN

AL

OG

OU

TP

UT

S

OP

TIO

N

(M,B

)

RTD1

RTD3

RTD4

RTD5

RTD6

RTD7

RTD8

RTD9

RTD10

RTD11

RTD12

RTD2

SPARE

DIFFERENTIAL

RELAY

SPEED

SWITCH

ACCESS

SWITCH

EMERGENCY

RESTART

EXTERNAL

RESET

DIG

ITA

L IN

PU

TS

51

59

61

52

60

62

53

54

55

56

57

58

111

126

125

124

123

112

113

114

115

116

117

118

119

120

121

122

OU

TP

UT

RE

LA

YS

TRIP

ALARM

AUX. 1

AUX. 2

FILTER GROUND

LINE +

NEUTRAL -

SAFTY GROUNDCO

NT

RO

L

PO

WE

R

369 PC

PROGRAM

OPTION (F)

0 0 0 0 0

369Motor ManagementRelay R

GE Power Management

Courtesy of NationalSwitchgear.com
Page 162: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

8-2 369 Motor Management Relay GE Power Management

8.2 HARDWARE FUNCTIONAL TESTING 8 TESTING

8

8.2 HARDWARE FUNCTIONAL TESTING 8.2.1 PHASE CURRENT ACCURACY TEST

The 369 specification for phase current accuracy is ±0.5% of 2 × CT when the injected current is less than 2 × CT. Performthe steps below to verify accuracy.

1. Alter the following setpoint:

SETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ PHASE CT PRIMARY: 1000A

2. Measured values should be within ±10A of expected. Inject the values shown in the table below and verify accuracy ofthe measured values. View the measured values in:

ACTUAL VALUES A2:\METERING DATA\CURRENT METERING

8.2.2 VOLTAGE INPUT ACCURACY TEST

The 369 specification for voltage input accuracy is ±1.0% of full scale (240 V). Perform the steps below to verify accuracy.

1. Alter the following setpoints:

SETPOINT S2:SYSTEM \ CT / VT SETUP \ VT CONNECTION TYPE: WyeSETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ VOLTAGE TRANSFORMER RATIO: 10

2. Measured values should be within ±24 V (±1 × 240 × 10) of expected. Apply the voltage values shown in the table andverify accuracy of the measured values. View the measured values in:

ACTUAL VALUES A2:\METERING DATA\VOLTAGE METERING

INJECTED CURRENT 1 A UNIT

INJECTED CURRENT 5 A UNIT

EXPECTED CURRENT READING

MEASURED CURRENT PHASE

A

MEASURED CURRENT PHASE

B

MEASURED CURRENT PHASE

C

0.1 A 0.5 A 100 A

0.2 A 1.0 A 200 A

0.5 A 2.5 A 500 A

1 A 5 A 1000 A

1.5 A 7.5 A 1500 A

2 A 10 A 2000 A

APPLIED LINE-NEUTRALVOLTAGE

EXPECTED VOLTAGE READING

MEASURED VOLTAGE A-N

MEASURED VOLTAGE B-N

MEASURED VOLTAGE C-N

30 V 300 V

50 V 500 V

100 V 1000 V

150 V 1500 V

200 V 2000 V

240 V 2400 V

Courtesy of NationalSwitchgear.com
Page 163: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 8-3

8 TESTING 8.2 HARDWARE FUNCTIONAL TESTING

8

8.2.3 GROUND (1A/5A) ACCURACY TEST

The 369 specification for the 1 A/5 A ground current input accuracy is ±0.5% of 1 × CT for the 5 A input and ±0.5% of 5 × CTfor the 1 A input. Perform the steps below to verify accuracy.

5A INPUT:

1. Alter the following setpoints:

SETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ GROUND CT TYPE: 5A SecondarySETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ GROUND CT PRIMARY: 1000 A

2. Measured values should be ±5 A. Inject the values shown in the table below into one phase only and verify accuracy ofthe measured values. View the measured values in A2: METERING DATA\CURRENT METERING

1A INPUT:

1. Alter the following setpoints:

SETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ GROUND CT TYPE: 1A SecondarySETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ GROUND CT PRIMARY: 1000 A

2. Measured values should be ±25 A. Inject the values shown in the table below into one phase only and verify accuracyof the measured values. View the measured values in A2:\METERING DATA\CURRENT METERING

8.2.4 50:0.025 GROUND ACCURACY TEST

The 369 specification for GE Power Management 50:0.025 ground current input accuracy is ±0.5% of CT rated primary(25 A). Perform the steps below to verify accuracy.

1. Alter the following setpoint:

SETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ GROUND CT TYPE: MULTILIN 50:0.025

2. Measured values should be within ±0.125 A of expected. Inject the values shown below either as primary values into aGE Power Management 50:0.025 Core Balance CT or as secondary values that simulate the core balance CT. Verifyaccuracy of the measured values. View the measured values in A2:\METERING DATA\CURRENT METERING

INJECTED CURRENT5 A UNIT

EXPECTEDCURRENTREADING

MEASUREDGROUNDCURRENT

0.5 A 100 A

1.0 A 200 A

2.5 A 500 A

5 A 1000 A

INJECTEDCURRENT1 A UNIT

EXPECTEDCURRENTREADING

MEASUREDGROUNDCURRENT

0.1 A 10 A

1 A 100 A

2.5 A 2500 A

5 A 5000 A

PRIMARY INJECTED CURRENT 50:0.025 CT

SECONDARY INJECTED CURRENT

EXPECTED CURRENTREADING

MEASURED GROUNDCURRENT

0.25 A 0.125 mA 0.25 A

1 A 0.5 mA 1.00 A

10 A 5 mA 10.00 A

25 A 12.5 mA 25.00 A

Courtesy of NationalSwitchgear.com
Page 164: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

8-4 369 Motor Management Relay GE Power Management

8.2 HARDWARE FUNCTIONAL TESTING 8 TESTING

8

8.2.5 RTD ACCURACY TEST

1. The 369 specification for RTD input accuracy is ±2°. Alter the following setpoints:

SETPOINT S6:RTD TEMPERATURE \ RTD TYPE \ STATOR RTD TYPE: 100 ohm Platinum (select desired type)

2. Measured values should be ±2°C or ±4°F. Alter the resistances applied to the RTD inputs as per the table below tosimulate RTDs and verify accuracy of the measured values. View the measured values in:

ACTUAL VALUES A2:\METERING DATA\ LOCAL RTD (and/or REMOTE RTD if using the RRTD Module)

3. Select the preferred temperature units for the display. Alter the following setpoint:

SETPOINT S1: 369 SETUP \ DISPLAY PREFERENCES \ TEMPERATURE DISPLAY: Celsius (or Fahrenheit if preferred)

4. Repeat the above measurements for the other RTD types (120 Ω Nickel, 100 Ω Nickel and 10 Ω Copper)

APPLIED RESISTANCE

100 Ω PLATINUM

EXPECTED RTD TEMPERATURE READING

MEASURED RTD TEMPERATURE99 SELECT ONE: ____(°C) ____(°F)

CELSIUS FAHRENHEIT 1 2 3 4 5 6 7 8 9 10 11 12

80.31 Ω –50°C –58°F

100.00 Ω 0°C 32°F

119.39 Ω 50°C 122°F

138.50 Ω 100°C 212°F

157.32 Ω 150°C 302°F

175.84 Ω 200°C 392°F

APPLIED RESISTANCE 120 Ω NICKEL

EXPECTED RTD TEMPERATURE READING

MEASURED RTD TEMPERATURE99 SELECT ONE: ____(°C) ____(°F)

CELSIUS FAHRENHEIT 1 2 3 4 5 6 7 8 9 10 11 12

86.17 Ω –50°C –58°F

120.00 Ω 0°C 32°F

157.74 Ω 50°C 122°F

200.64 Ω 100°C 212°F

248.95 Ω 150°C 302°F

303.46 Ω 200°C 392°F

APPLIED RESISTANCE 100 Ω NICKEL

EXPECTED RTD TEMPERATURE READING

MEASURED RTD TEMPERATURE99 SELECT ONE: ____(°C) ____(°F)

CELSIUS FAHRENHEIT 1 2 3 4 5 6 7 8 9 10 11 12

71.81 Ω –50°C –58°F

100.00 Ω 0°C 32°F

131.45 Ω 50°C 122°F

167.20 Ω 100°C 212°F

207.45 Ω 150°C 302°F

252.88 Ω 200°C 392°F

APPLIED RESISTANCE 10 Ω COPPER

EXPECTED RTD TEMPERATURE READING

MEASURED RTD TEMPERATURE99 SELECT ONE: ____(°C) ____(°F)

CELSIUS FAHRENHEIT 1 2 3 4 5 6 7 8 9 10 11 12

7.10 Ω –50°C –58°F

9.04 Ω 0°C 32°F

10.97 Ω 50°C 122°F

12.90 Ω 100°C 212°F

14.83 Ω 150°C 302°F

16.78 Ω 200°C 392°F

18.73 Ω 250°C 482°F

Courtesy of NationalSwitchgear.com
Page 165: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 8-5

8 TESTING 8.2 HARDWARE FUNCTIONAL TESTING

8

8.2.6 DIGITAL INPUTS AND TRIP COIL SUPERVISION

The digital inputs and trip coil supervision can be verified easily with a simple switch or pushbutton. Perform the stepsbelow to verify functionality of the digital inputs.

1. Open switches of all of the digital inputs and the trip coil supervision circuit.

2. View the status of the digital inputs and trip coil supervision in A1: \ STATUS \ DIGITAL INPUT STATUS

3. Close switches of all of the digital inputs and the trip coil supervision circuit.

4. View the status of the digital inputs and trip coil supervision in A1: \ STATUS \ DIGITAL INPUT STATUS

8.2.7 ANALOG INPUTS AND OUTPUTS

The 369 specification for analog input and analog output accuracy is ±1% of full scale. Perform the steps below to verifyaccuracy.

4 to 20mA ANALOG INPUT:

1. Alter the following setpoints:

SETPOINT S10:ANALOG OUTPUTS \ ANALOG OUTPUT 1 \ ANALOG RANGE: 4-20 mA (repeat for analog inputs 2 to 4)

2. Analog output values should be ±0.2 mA on the ammeter. Force the analog outputs using the following setpoints:

SETPOINT S11:TESTING\TEST ANALOG OUTPUTS \ FORCE ANALOG OUTPUT 1: 0% (enter desired percent, repeat for analog outputs 2 to 4)

3. Verify the ammeter readings for all the analog outputs

4. Repeat 1 to 3 for the other forced output settings

0 to 1mA ANALOG INPUT:

1. Alter the following setpoints:

SETPOINT S10:ANALOG OUTPUTS \ ANALOG OUTPUT 1 \ ANALOG RANGE: 0-1 mA (repeat for analog inputs 2 to 4)

2. Analog output values should be ±0.01 mA on the ammeter. Force the analog outputs using the following setpoints:

SETPOINT S11:TESTING\TEST ANALOG OUTPUTS \ FORCE ANALOG OUTPUT 1: 0%(enter desired percent, repeat for analog outputs 2 to 4)

3. Verify the ammeter readings for all the analog outputs

4. Repeat 1 to 3 for the other forced output settings.

INPUT EXPECTED STATUS(SWITCH OPEN)

99 PASS88 FAIL

EXPECTED STATUS(SWITCH CLOSED)

99 PASS88 FAIL

SPARE Open Shorted

DIFFERENTIAL RELAY Open Shorted

SPEED SWITCH Open Shorted

ACCESS SWITCH Open Shorted

EMERGENCY RESTART Open Shorted

EXTERNAL RESET Open Shorted

ANALOG OUTPUT FORCE VALUE

EXPECTED AMMETER READING

MEASURED AMMETER READING (mA)

1 2 3 4

0 4 mA

25 8 mA

50 12 mA

75 16 mA

100 20 mA

Courtesy of NationalSwitchgear.com
Page 166: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

8-6 369 Motor Management Relay GE Power Management

8.2 HARDWARE FUNCTIONAL TESTING 8 TESTING

8

0 to 20mA ANALOG INPUT:

1. Alter the following setpoints:

SETPOINT S10:ANALOG OUTPUTS \ ANALOG OUTPUT 1 \ ANALOG RANGE: 0-20 mA (repeat for analog inputs 2 to 4)

2. Analog output values should be ±0.2 mA on the ammeter. Force the analog outputs using the following setpoints:

SETPOINT S11:TESTING\TEST ANALOG OUTPUTS \ FORCE ANALOG OUTPUT 1: 0%(enter desired percent, repeat for analog outputs 2 to 4)

3. Verify the ammeter readings for all the analog outputs

4. Repeat steps 1 to 3 for the other forced output settings.

8.2.8 OUTPUT RELAYS

To verify the functionality of the output relays, perform the following steps:

1. Use the following setpoints:

SETPOINT S11:TESTING\TEST OUTPUT RELAYS\FORCE TRIP RELAY: EnergizedSETPOINT S11:TESTING\TEST OUTPUT RELAYS\FORCE TRIP RELAY DURATION: Static

2. Using the above setpoints, individually select each of the other output relays (AUX 1, AUX 2 and ALARM) and verifyoperation.

ANALOG OUTPUT FORCE VALUE

EXPECTED AMMETER READING

MEASURED AMMETER READING (mA)

1 2 3 4

0 0 mA

25 0.25 mA

50 0.5 mA

75 0.75 mA

100 1.0 mA

ANALOG OUTPUT FORCE VALUE

EXPECTED AMMETER READING

MEASURED AMMETER READING (mA)

1 2 3 4

0 0 mA

25 5 mA

50 10 mA

75 15 mA

100 20 mA

FORCE OPERATION SETPOINT

EXPECTED MEASUREMENT (99 for SHORT) ACTUAL MEASUREMENT (99 for SHORT)

R1 R2 R3 R4 R1 R2 R3 R4

no nc no nc no nc no nc no nc no nc no nc no nc

R1 Trip 99 99 99 99

R2 Auxiliary 99 99 99 99

R3 Auxiliary 99 99 99 99

R4 Alarm 99 99 99 99

Courtesy of NationalSwitchgear.com
Page 167: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 8-7

8 TESTING 8.3 ADDITIONAL FUNCTIONAL TESTING

8

8.3 ADDITIONAL FUNCTIONAL TESTING 8.3.1 OVERLOAD CURVE TEST

The 369 specification for overload curve timing accuracy is ±100 ms or ±2% of time to trip. Pickup accuracy is as per cur-rent inputs (±0.5% of 2 × CT when the injected current is < 2 × CT; ±1% of 20 × CT when the injected current is ≥ 2 × CT).

1. Perform the steps below to verify accuracy. Alter the following setpoints:

SETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ PHASE CT PRIMARY: 1000SETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ MOTOR FULL LOAD AMPS FLA: 1000SETPOINT S3:OVERLOAD PROTECTION \ OVERLOAD CURVES \ SELECT CURVE STYLE: StandardSETPOINT S3: OVERLOAD PROTECTION \ OVERLOAD CURVES \ STANDARD OVELOAD CURVE NUMBER: 4SETPOINT S3: OVERLOAD PROTECTION \ THERMAL MODEL \ OVERLOAD PICKUP LEVEL: 1.10SETPOINT S3: OVERLOAD PROTECTION \ THERMAL MODEL \ UNBALANCE BIAS K FACTOR: 0SETPOINT S3: OVERLOAD PROTECTION \ THERMAL MODEL \ HOT / COLD SAFE STALL RATIO: 1.00SETPOINT S3: OVERLOAD PROTECTION \ THERMAL MODEL \ ENABLE RTD BIASING: No

2. Any trip must be reset prior to each test. Short the emergency restart terminals momentarily immediately prior to eachoverload curve test to ensure that the thermal capacity used is zero. Failure to do so will result in shorter trip times.Inject the current of the proper amplitude to obtain the values as shown and verify the trip times. Motor load may beviewed in A2:\METERING DATA\CURRENT METERING

Thermal capacity used and estimated time to trip may be viewed in A1:\STATUS\MOTOR STATUS

8.3.2 POWER MEASUREMENT TEST

The 369 specification for reactive and apparent power is ±1.5% of 2 × CT × VT full scale @ Iavg < 2 × CT. Perform the stepsbelow to verify accuracy.

1. Alter the following setpoints:

SETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ PHASE CT PRIMARY: 1000SETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ VT CONNECTION TYPE: WyeSETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ VT RATIO: 10.00:1

2. Inject current and apply voltage as per the table below. Verify accuracy of the measured values. View the measuredvalues in A2:\METERING DATA\POWER METERING

AVERAGE PHASE CURRENT

DISPLAYED

INJECTED CURRENT1 A UNIT

PICKUP LEVEL

EXPECTED TIME TO TRIP

TOLERANCE RANGE MEASURED TIME TO TRIP

1050 A 1.05 A 1.05 never N/A

1200 A 1.20 A 1.20 795.44 s 779.53 to 811.35 s

1750 A 1.75 A 1.75 169.66 s 166.27 to 173.05 s

3000 A 3.0 A 3.00 43.73 s 42.86 to 44.60 s

6000 A 6.0 A 6.00 9.99 s 9.79 to 10.19 s

10000 A 10.0 A 10.00 5.55 s 5.44 to 5.66 s

INJECTED CURRENT / APPLIED VOLTAGE (Ia is reference vector)

POWER QUANTITY POWER FACTOR

1 A UNIT 5 A UNIT EXPECTED TOLERANCE RANGE

MEASURED EXPECTED MEASURED

Ia = 1 A∠0°Ib = 1 A∠120°Ic = 1 A∠240°

Va = 120 V∠342°Vb = 120 V∠102°Vc = 120 V∠222°

Ia = 5 A∠0°Ib = 5 A∠120°Ic = 5 A∠240°

Va = 120 V∠342°Vb = 120 V∠102°Vc = 120 V∠222°

+3424 kW 3352 to 3496 kW

0.95 lag

Ia = 1 A∠0°Ib = 1 A∠120°Ic = 1 A∠240°

Va = 120 V∠288°Vb = 120 V∠48°Vc = 120 V∠168°

Ia = 5 A∠0°Ib = 5 A∠120°Ic = 5 A∠240°

Va = 120 V∠288°Vb = 120 V∠48°Vc = 120 V∠168°

+3424 kvar 3352 to 3496 kvar

0.31 lag

Courtesy of NationalSwitchgear.com
Page 168: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

8-8 369 Motor Management Relay GE Power Management

8.3 ADDITIONAL FUNCTIONAL TESTING 8 TESTING

8

8.3.3 VOLTAGE PHASE REVERSAL TEST

The 369 can detect voltage phase rotation and protect against phase reversal. To test the phase reversal element, performthe following steps:

1. Alter the following setpoints:

SETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ VT CONNECTION TYPE: Wye or Open DeltaSETPOINT S7:VOLTAGE ELEMENTS \ PHASE REVERSAL \ PHASE REVERSAL TRIP: OnSETPOINT S7:VOLTAGE ELEMENTS \ PHASE REVERSAL \ ASSIGN TRIP RELAYS: TripSETPOINT S2: SYSTEM SETUP \ CT / VT SETUP \ SYSTEM PHASE SEQUENCE: ABC

2. Apply voltages as per the table below. Verify the 369 operation on voltage phase reversal.

8.3.4 SHORT CIRCUIT TEST

The 369 specification for short circuit timing is +40 ms or ±0.5% of total time. The pickup accuracy is as per the phase cur-rent inputs. Perform the steps below to verify the performance of the short circuit element.

1. Alter the following setpoints:

SETPOINT S2:SYSTEM SETUP \ CT / VT SETUP \ PHASE CT PRIMARY: 1000SETPOINT S4:CURRENT ELEMENTS \ SHORT CIRCUIT \ SHORT CIRCUIT TRIP: OnSETPOINT S4:CURRENT ELEMENTS \ SHORT CIRCUIT \ ASSIGN TRIP RELAYS: TripSETPOINT S4:CURRENT ELEMENTS \ SHORT CIRCUIT \ SHORT CIRCUIT PICKUP LEVEL: 5.0 x CTSETPOINT S4:CURRENT ELEMENTS \ SHORT CIRCUIT \ ADD S/C DELAY: 0

2. Inject current as per the table below, resetting the unit after each trip by pressing the [RESET] key, and verify timingaccuracy. Pre-trip values may be viewed in

ACTUAL VALUES A1: STATUS \ LAST TRIP DATA

APPLIED VOLTAGE EXPECTED RESULT88 NO TRIP99 PHASE REVERSAL TRIP

OBSERVED RESULT88 NO TRIP99 PHASE REVERSAL TRIP

Va = 120 V∠0°Vb = 120 V∠120°Vc = 120 V∠240°

88

Va = 120 V∠0°Vb = 120 V∠240°Vc = 120 V∠120°

99

INJECTED CURRENT TIME TO TRIP (ms)

5 A UNIT 1 A UNIT EXPECTED MEASURED

30 A 6 A < 40 ms

40 A 8 A < 40 ms

50 A 10 A < 40 ms

Courtesy of NationalSwitchgear.com
Page 169: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-1

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS 9.1.1 SETPOINTS TABLE

Table 9–1: SETPOINTS TABLE (Sheet 1 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

SETPOINT ACCESS

Front Panel Access

Comm Access

Encrypted Comm Password

DISPLAY PREFERENCES

Default Message Cycle Time 5 s 100 s

Default Message Timeout 10 s 900 s

Contrast Adjustment 0 255

Flash Message Duration 1 s 10 s

Temperature Display Units °C °F

COMMUNICATIONS Slave Address 1 254

Computer RS232 Baud Rate 1200 19200

Computer RS232 Parity None odd, even

Channel 1 RS485 Baud Rate 1200 19200

Channel 1 RS485 Parity None odd, even

Channel 2 RS485 Baud Rate 1200 19200

Channel 2 RS485 Parity None odd, even

Channel 3 Application Modbus RRTD

Channel 3 Connection RS485 fiber

Channel 3 RS485 Baud Rate 1200 19200

Channel 3 RS485 Parity None odd, even

Profibus Address 1 126

IP Address Octet 1 0 255

IP Address Octet 2 0 255

IP Address Octet 3 0 255

IP Address Octet 4 0 255

Subnet Mask Octet 1 0 255

Subnet Mask Octet 2 0 255

Subnet Mask Octet 3 0 255

Subnet Mask Octet 4 0 255

Gateway Address Octet 1 0 255

Gateway Address Octet 2 0 255

Gateway Address Octet 3 0 255

Gateway Address Octet 4 0 255

WAVEFORM CAPTURE

Trigger Position 0% 100%

MESSAGE SCRATCHPAD

Text Message 1 --- 40 char.

Text Message 2 --- 40 char.

Text Message 3 --- 40 char.

Text Message 4 --- 40 char.

Text Message 5 --- 40 char.

Courtesy of NationalSwitchgear.com
Page 170: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-2 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

DEFAULT MESSAGES

Default to Current Metering Yes No

Default to Motor Load Yes No

Default to Delta Voltage Metering Yes No

Default to Power Factor Yes No

Default to Positive Watthours Yes No

Default to Real Power Yes No

Default to Reactive Power Yes No

Default to Hottest Stator RTD Yes No

Default to Text Message 1 Yes No

Default to Text Message 2 Yes No

Default to Text Message 3 Yes No

Default to Text Message 4 Yes No

Default to Text Message 5 Yes No

CT / VT SETUP Phase CT Primary 1 5000

Motor Full Load Amps 1 5000

Ground CT Type 1 5 or 50:0.025

Ground CT Primary 1 5000

Voltage Transformer Connection Type None Wye,Delta

Voltage Transformer Ratio 1 240

Motor Rated Voltage 100 20000

Nominal Frequency 50,60 Variable

System Phase Sequence ABC ACB

TRIP COUNTER Trip Counter Alarm Off L,UL

Assign Alarm Relays None Aux2

Alarm Pickup Level 1 50000

Trip Counter Alarm Events Off On

STARTER FAILURE Starter Failure Alarm Off L,UL

Starter Type Breaker Contactor

Assign Alarm Relays None Aux2

Starter Failure Delay 10 1000

Starter Failure Alarm Events Off On

CURRENT DEMAND

Current Demand Period 5 90

Current Demand Alarm Off L,UL

Assign Alarm Relays None Aux2

Current Demand Alarm Level 10 65535

Current Demand Alarm Events Off On

kW DEMAND kW Demand Period 5 90

kW Demand Alarm Off L,UL

Assign Alarm Relays None Aux2

kW Demand Alarm Level 1 50000

kW Demand Alarm Events Off On

kvar DEMAND kvar Demand Period 5 90

kvar Demand Alarm Off L,UL

Assign Alarm Relays None Aux2

kvar Demand Alarm Level 1 50000

kvar Demand Alarm Events Off On

Table 9–1: SETPOINTS TABLE (Sheet 2 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 171: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-3

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

kVA DEMAND kVA Demand Period 5 90

kVA Demand Alarm Off L,UL

Assign Alarm Relays None Aux2

kVA Demand Alarm Level 1 50000

kVA Demand Alarm Events Off On

OUTPUT RELAY SETUP

Trip Relay Reset Mode All Local, Remote

Trip Relay Operation FS NFS

Aux1 Relay Reset Mode All Local, Remote

Aux1 Relay Operation FS NFS

Aux2 Relay Reset Mode All Local, Remote

Aux2 Relay Operation FS NFS

Alarm Relay Reset Mode All Local, Remote

Alarm Relay Operation FS NFS

SERIAL COMM CONTROL

Serial Communication Control Off On

Assign Start Control Relays None Aux2

REDUCED VOLTAGE

Reduced Voltage Starting Off On

Assign Control Relays --- ---

Transition On --- ---

Reduced Voltage Start Level 25% FLA 300% FLA

Reduced Voltage Start Timer 1 s 500 s

Assign Trip Relays --- ---

AUTORESTART Autorestart Enabled No Yes

Total Restarts 0 s 20000

Restart Delay Delay 0 s 20000 s

Progressive Delay Delay 0 s 20000 s

Hold Delay Delay 0 s 20000 s

Bus Valid Enabled Yes No

Bus Valid Level 15% 100%

THERMAL MODEL Overload Pickup Level 1.01 1.25

Thermal Capacity Alarm Off L,UL

Assign Thermal Capacity Alarm Relays None Aux2

Thermal Capacity Alarm Level 1 100

Thermal Capacity Alarm Events No Yes

Assign Thermal Capacity Trip Relay None Aux2

Enable Unbalance Biasing of TC No Yes

Unbalance k Factor Learned 29

Hot/Cold Safe Stall Ratio 0.01 1

Enable Learned Cool Time No Yes

Running Cool Time Constant 1 500

Stopped Cool Time Constant 1 500

Enable RTD Biasing No Yes

RTD Bias Minimum 0 mid

RTD Bias Center Point min max

RTD Bias Maximum mid 200

Table 9–1: SETPOINTS TABLE (Sheet 3 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 172: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-4 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

O/L CURVE SETUP Select Curve Style Standard Custom

Standard Overload Curve Number 1 15

Time to Trip at 1.01 x FLA 0 65500

Time to Trip at 1.05 x FLA 0 65500

Time to Trip at 1.10 x FLA 0 65500

Time to Trip at 1.20 x FLA 0 65500

Time to Trip at 1.30 x FLA 0 65500

Time to Trip at 1.40 x FLA 0 65500

Time to Trip at 1.50 x FLA 0 65500

Time to Trip at 1.75 x FLA 0 65500

Time to Trip at 2.00 x FLA 0 65500

Time to Trip at 2.25 x FLA 0 65500

Time to Trip at 2.50 x FLA 0 65500

Time to Trip at 2.75 x FLA 0 65500

Time to Trip at 3.00 x FLA 0 65500

Time to Trip at 3.25 x FLA 0 65500

Time to Trip at 3.50 x FLA 0 65500

Time to Trip at 3.75 x FLA 0 65500

Time to Trip at 4.00 x FLA 0 65500

Time to Trip at 4.25 x FLA 0 65500

Time to Trip at 4.50 x FLA 0 65500

Time to Trip at 4.75 x FLA 0 65500

Time to Trip at 5.00 x FLA 0 65500

Time to Trip at 5.50 x FLA 0 65500

Time to Trip at 6.00 x FLA 0 65500

Time to Trip at 6.50 x FLA 0 65500

Time to Trip at 7.00 x FLA 0 65500

Time to Trip at 7.50 x FLA 0 65500

Time to Trip at 8.00 x FLA 0 65500

Time to Trip at 10.0 x FLA 0 65500

Time to Trip at 15.0 x FLA 0 65500

Time to Trip at 20.0 x FLA 0 65500

OVERLOAD ALARM

Overload Alarm Off L,UL

Overload Alarm Level 1.01 1.50

Assign Overload Alarm Relays None Aux2

Overload Alarm Delay 0.1 60.0

Overload Alarm Events Off On

SHORT CIRCUIT Short Circuit Trip Off L,UL

Assign Trip Relays None Aux2

Short Circuit Pickup 2.0 20.0

Short Circuit Trip Delay 0.00 255.00

Short Circuit Trip Backup Off L,UL

Assign Backup Relays None Aux2

Add Short Circuit Backup Trip Delay 0.00 255.00

Table 9–1: SETPOINTS TABLE (Sheet 4 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 173: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-5

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

MECHNICAL JAM Mechanical Jam Alarm Off L,UL

Assign Alarm Relays None Aux2

Mechanical Jam Alarm Level 1.01 6.00

Mechanical Jam Alarm Delay 0.5 125.0

Mechanical Jam Alarm Events Off On

Mechanical Jam Trip Off L,UL

Assign Trip Relays None Aux2

Mechanical Jam Trip Level 1.01 6.00

Mechanical Jam Trip Delay 0.5 125.0

UNDERCURRENT Block Undercurrent from Start 0 15000

Undercurrent Alarm Off L,UL

Assign Alarm Relays None Aux2

Undercurrent Alarm Level 0.1 0.99

Undercurrent Alarm Delay 1 255

Undercurrent Alarm Events Off On

Undercurrent Trip Off L,UL

Assign Trip Relays None Aux2

Undercurrent Trip Level 0.1 0.99

Undercurrent Trip Delay 1 255

CURRENT UNBALANCE

Block Unbalance From Start 0 5000

Current Unbalance Alarm Off L,UL

Assign Alarm Relays None Aux2

Unbalance Alarm Level 4 30

Unbalance Alarm Delay 1 255

Unbalance Alarm Events Off On

Current Unbalance Trip Off L,UL

Assign Trip Relays None Aux2

Unbalance Trip Level 4 30

Unbalance Trip Delay 1 255

GROUND FAULT Ground Fault Alarm Off L,UL

Assign Ground Fault Alarm Relays None Aux2

Ground Fault Alarm Level 0.10 1.00

Alarm Pickup for 50:0.025 CT 0.25 25.00

Ground Fault Alarm Delay 0.00 255.00

Ground Fault Alarm Events Off On

Ground Fault Trip Off L,UL

Assign Trip Relays None Aux2

Ground Fault Trip Level 0.10 1.00

Ground Fault Trip Level for 50:0.025 CT 0.25 25.00

Ground Fault Trip Delay 0.00 255.00

Ground Fault Trip Backup Off On

Ground Fault Trip Backup Relays None Aux1, Aux2

Ground Fault Trip Backup Delay 0.01 255.00

ACCELERATION TRIP

Acceleration Trip Off L,UL

Assign Trip Relays None Aux2

Acceleration Timer From Start 1 250

Table 9–1: SETPOINTS TABLE (Sheet 5 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 174: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-6 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

START INHIBITS Enable Single Shot Restart No Yes

Enable Start Inhibit No Yes

Maximum Starts/Hour Permissible Off 5

Time Between Starts Off 500

Restart Block Off 50000

Assign Block Relay None Aux2

BACKSPIN DETECTION

Enable Backspin Start Inhibit No Yes

Minimum Permissible Frequency 0 9.99

Predication Algorithm Enabled Disabled

Assigned BSD Relay None Aux 2

Number of Motor Poles 2 16

Local RTD #1 Local RTD #1 Application None S,B,A,O

Local RTD #1 RTD Type 10C,100P 100N,120N

Local RTD #1 Name 0 8 chars.

Local RTD #1 Alarm Off L,UL

Local RTD #1 Alarm Relays None Aux2

Local RTD #1 Alarm Level 1 200

Local RTD #1 High Alarm Off L,UL

Local RTD #1 High Alarm Relays None Aux2

Local RTD #1 High Alarm Level 1 200

Record RTD #1 Alarms as Events No Yes

Local RTD #1 Trip Off L,UL

Local RTD #1 Trip Relays None Aux2

Local RTD #1 Trip Level 1 200

Enable RTD #1 Trip Voting Off 1-12,Stator

Local RTD #2 Local RTD #2 Application None S,B,A,O

Local RTD #2 RTD Type 10C,100P 100N,120N

Local RTD #2 Name 0 8 chars.

Local RTD #2 Alarm Off L,UL

Local RTD #2 Alarm Relays None Aux2

Local RTD #2 Alarm Level 1 200

Local RTD #2 High Alarm Off L,UL

Local RTD #2 High Alarm Relays None Aux2

Local RTD #2 High Alarm Level 1 200

Record RTD #2 Alarms as Events No Yes

Local RTD #2 Trip Off L,UL

Local RTD #2 Trip Relays None Aux2

Local RTD #2 Trip Level 1 200

Enable RTD #2 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 6 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 175: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-7

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

Local RTD #3 Local RTD #3 Application None S,B,A,O

Local RTD #3 RTD Type 10C,100P 100N,120N

Local RTD #3 Name 0 8 chars.

Local RTD #3 Alarm Off L,UL

Local RTD #3 Alarm Relays None Aux2

Local RTD #3 Alarm Level 1 200

Local RTD #3 High Alarm Off L,UL

Local RTD #3 High Alarm Relays None Aux2

Local RTD #3 High Alarm Level 1 200

Record RTD #3 Alarms as Events No Yes

Local RTD #3 Trip Off L,UL

Local RTD #3 Trip Relays None Aux2

Local RTD #3 Trip Level 1 200

Enable RTD #3 Trip Voting Off 1-12,Stator

Local RTD #4 Local RTD #4 Application None S,B,A,O

Local RTD #4 RTD Type 10C,100P 100N,120N

Local RTD #4 Name 0 8 chars.

Local RTD #4 Alarm Off L,UL

Local RTD #4 Alarm Relays None Aux2

Local RTD #4 Alarm Level 1 200

Local RTD #4 High Alarm Off L,UL

Local RTD #4 High Alarm Relays None Aux2

Local RTD #4 High Alarm Level 1 200

Record RTD #4 Alarms as Events No Yes

Local RTD #4 Trip Off L,UL

Local RTD #4 Trip Relays None Aux2

Local RTD #4 Trip Level 1 200

Enable RTD #4 Trip Voting Off 1-12,Stator

Local RTD #5 Local RTD #5 Application None S,B,A,O

Local RTD #5 RTD Type 10C,100P 100N,120N

Local RTD #5 Name 0 8 chars.

Local RTD #5 Alarm Off L,UL

Local RTD #5 Alarm Relays None Aux2

Local RTD #5 Alarm Level 1 200

Local RTD #5 High Alarm Off L,UL

Local RTD #5 High Alarm Relays None Aux2

Local RTD #5 High Alarm Level 1 200

Record RTD #5 Alarms as Events No Yes

Local RTD #5 Trip Off L,UL

Local RTD #5 Trip Relays None Aux2

Local RTD #5 Trip Level 1 200

Enable RTD #5 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 7 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 176: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-8 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

Local RTD #6 Local RTD #6 Application None S,B,A,O

Local RTD #6 RTD Type 10C,100P 100N,120N

Local RTD #6 Name 0 8 chars.

Local RTD #6 Alarm Off L,UL

Local RTD #6 Alarm Relays None Aux2

Local RTD #6 Alarm Level 1 200

Local RTD #6 High Alarm Off L,UL

Local RTD #6 High Alarm Relays None Aux2

Local RTD #6 High Alarm Level 1 200

Record RTD #6 Alarms as Events No Yes

Local RTD #6 Trip Off L,UL

Local RTD #6 Trip Relays None Aux2

Local RTD #6 Trip Level 1 200

Enable RTD #6 Trip Voting Off 1-12,Stator

Local RTD #7 Local RTD #7 Application None S,B,A,O

Local RTD #7 RTD Type 10C,100P 100N,120N

Local RTD #7 Name 0 8 chars.

Local RTD #7 Alarm Off L,UL

Local RTD #7 Alarm Relays None Aux2

Local RTD #7 Alarm Level 1 200

Local RTD #7 High Alarm Off L,UL

Local RTD #7 High Alarm Relays None Aux2

Local RTD #7 High Alarm Level 1 200

Record RTD #7 Alarms as Events No Yes

Local RTD #7 Trip Off L,UL

Local RTD #7 Trip Relays None Aux2

Local RTD #7 Trip Level 1 200

Enable RTD #7 Trip Voting Off 1-12,Stator

Local RTD #8 Local RTD #8 Application None S,B,A,O

Local RTD #8 RTD Type 10C,100P 100N,120N

Local RTD #8 Name 0 8 chars.

Local RTD #8 Alarm Off L,UL

Local RTD #8 Alarm Relays None Aux2

Local RTD #8 Alarm Level 1 200

Local RTD #8 High Alarm Off L,UL

Local RTD #8 High Alarm Relays None Aux2

Local RTD #8 High Alarm Level 1 200

Record RTD #8 Alarms as Events No Yes

Local RTD #8 Trip Off L,UL

Local RTD #8 Trip Relays None Aux2

Local RTD #8 Trip Level 1 200

Enable RTD #8 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 8 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 177: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-9

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

Local RTD #9 Local RTD #9 Application None S,B,A,O

Local RTD #9 RTD Type 10C,100P 100N,120N

Local RTD #9 Name 0 8 chars.

Local RTD #9 Alarm Off L,UL

Local RTD #9 Alarm Relays None Aux2

Local RTD #9 Alarm Level 1 200

Local RTD #9 High Alarm Off L,UL

Local RTD #9 High Alarm Relays None Aux2

Local RTD #9 High Alarm Level 1 200

Record RTD #9 Alarms as Events No Yes

Local RTD #9 Trip Off L,UL

Local RTD #9 Trip Relays None Aux2

Local RTD #9 Trip Level 1 200

Enable RTD #9 Trip Voting Off 1-12,Stator

Local RTD #10 Local RTD #10 Application None S,B,A,O

Local RTD #10 RTD Type 10C,100P 100N,120N

Local RTD #10 Name 0 8 chars.

Local RTD #10 Alarm Off L,UL

Local RTD #10 Alarm Relays None Aux2

Local RTD #10 Alarm Level 1 200

Local RTD #10 High Alarm Off L,UL

Local RTD #10 High Alarm Relays None Aux2

Local RTD #10 High Alarm Level 1 200

Record RTD #10 Alarms as Events No Yes

Local RTD #10 Trip Off L,UL

Local RTD #10 Trip Relays None Aux2

Local RTD #10 Trip Level 1 200

Enable RTD #10 Trip Voting Off 1-12,Stator

Local RTD #11 Local RTD #11 Application None S,B,A,O

Local RTD #11 RTD Type 10C,100P 100N,120N

Local RTD #11 Name 0 8 chars.

Local RTD #11 Alarm Off L,UL

Local RTD #11 Alarm Relays None Aux2

Local RTD #11 Alarm Level 1 200

Local RTD #11 High Alarm Off L,UL

Local RTD #11 High Alarm Relays None Aux2

Local RTD #11 High Alarm Level 1 200

Record RTD #11 Alarms as Events No Yes

Local RTD #11 Trip Off L,UL

Local RTD #11 Trip Relays None Aux2

Local RTD #11 Trip Level 1 200

Enable RTD #11 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 9 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 178: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-10 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

Local RTD#12 Local RTD #12 Application None S,B,A,O

Local RTD #12 RTD Type 10C,100P 100N,120N

Local RTD #12 Name 0 8 chars.

Local RTD #12 Alarm Off L,UL

Local RTD #12 Alarm Relays None Aux2

Local RTD #12 Alarm Level 1 200

Local RTD #12 High Alarm Off L,UL

Local RTD #12 High Alarm Relays None Aux2

Local RTD #12 High Alarm Level 1 200

Record RTD #12 Alarms as Events No Yes

Local RTD #12 Trip Off L,UL

Local RTD #12 Trip Relays None Aux2

Local RTD #12 Trip Level 1 200

Enable RTD #12 Trip Voting Off 1-12,Stator

LOSS OF REMOTE RTD COMMs

Loss Remote RTD Comm Alarm Off L,UL

Loss Remote RTD Comm Alarm Relays None Aux2

Loss Remote RTD Comm Alarm Events Off On

RRTD Module 1RTD #1

RRTD Module 1 - RTD #1 Application None S,B,A,O

RRTD Module 1 - RTD #1 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #1 Name 0 8 chars.

RRTD Module 1 - RTD #1 Alarm Off L,UL

RRTD Module 1 - RTD #1 Alarm Relays None Aux2

RRTD Module 1 - RTD #1 Alarm Level 1 200

RRTD Module 1 - RTD #1 High Alarm Off L,UL

RRTD Module 1 - RTD #1 High Alarm Relays None Aux2

RRTD Module 1 - RTD #1 High Alarm Level 1 200

RRTD Module 1 - Record RTD #1 Alarms as Events No Yes

RRTD Module 1 - RTD #1 Trip Off L,UL

RRTD Module 1 - RTD #1 Trip Relays None Aux2

RRTD Module 1 - RTD #1 Trip Level 1 200

RRTD Module 1 - Enable RTD #1 Trip Voting Off 1-12,Stator

RRTD Module 1 RTD #2

RRTD Module 1 - RTD #2 Application None S,B,A,O

RRTD Module 1 - RTD #2 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #2 Name 0 8 chars.

RRTD Module 1 - RTD #2 Alarm Off L,UL

RRTD Module 1 - RTD #2 Alarm Relays None Aux2

RRTD Module 1 - RTD #2 Alarm Level 1 200

RRTD Module 1 - RTD #2 High Alarm Off L,UL

RRTD Module 1 - RTD #2 High Alarm Relays None Aux2

RRTD Module 1 - RTD #2 High Alarm Level 1 200

RRTD Module 1 - Record RTD #2 Alarms as Events No Yes

RRTD Module 1 - RTD #2 Trip Off L,UL

RRTD Module 1 - RTD #2 Trip Relays None Aux2

RRTD Module 1 - RTD #2 Trip Level 1 200

RRTD Module 1 - Enable RTD #2 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 10 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 179: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-11

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD Module 1 RTD #3

RRTD Module 1 - RTD #3 Application None S,B,A,O

RRTD Module 1 - RTD #3 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #3 Name 0 8 chars.

RRTD Module 1 - RTD #3 Alarm Off L,UL

RRTD Module 1 - RTD #3 Alarm Relays None Aux2

RRTD Module 1 - RTD #3 Alarm Level 1 200

RRTD Module 1 - RTD #3 High Alarm Off L,UL

RRTD Module 1 - RTD #3 High Alarm Relays None Aux2

RRTD Module 1 - RTD #3 High Alarm Level 1 200

RRTD Module 1 - Record RTD #3 Alarms as Events No Yes

RRTD Module 1 - RTD #3 Trip Off L,UL

RRTD Module 1 - RTD #3 Trip Relays None Aux2

RRTD Module 1 - RTD #3 Trip Level 1 200

RRTD Module 1 - Enable RTD #3 Trip Voting Off 1-12,Stator

RRTD Module 1 RTD #4

RRTD Module 1 - RTD #4 Application None S,B,A,O

RRTD Module 1 - RTD #4 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #4 Name 0 8 chars.

RRTD Module 1 - RTD #4 Alarm Off L,UL

RRTD Module 1 - RTD #4 Alarm Relays None Aux2

RRTD Module 1 - RTD #4 Alarm Level 1 200

RRTD Module 1 - RTD #4 High Alarm Off L,UL

RRTD Module 1 - RTD #4 High Alarm Relays None Aux2

RRTD Module 1 - RTD #4 High Alarm Level 1 200

RRTD Module 1 - Record RTD #4 Alarms as Events No Yes

RRTD Module 1 - RTD #4 Trip Off L,UL

RRTD Module 1 - RTD #4 Trip Relays None Aux2

RRTD Module 1 - RTD #4 Trip Level 1 200

RRTD Module 1 - Enable RTD #4 Trip Voting Off 1-12,Stator

RRTD Module 1 RTD #5

RRTD Module 1 - RTD #5 Application None S,B,A,O

RRTD Module 1 - RTD #5 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #5 Name 0 8 chars.

RRTD Module 1 - RTD #5 Alarm Off L,UL

RRTD Module 1 - RTD #5 Alarm Relays None Aux2

RRTD Module 1 - RTD #5 Alarm Level 1 200

RRTD Module 1 - RTD #5 High Alarm Off L,UL

RRTD Module 1 - RTD #5 High Alarm Relays None Aux2

RRTD Module 1 - RTD #5 High Alarm Level 1 200

RRTD Module 1 - Record RTD #5 Alarms as Events No Yes

RRTD Module 1 - RTD #5 Trip Off L,UL

RRTD Module 1 - RTD #5 Trip Relays None Aux2

RRTD Module 1 - RTD #5 Trip Level 1 200

RRTD Module 1 - Enable RTD #5 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 11 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 180: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-12 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD Module 1 RTD #6

RRTD Module 1 - RTD #6 Application None S,B,A,O

RRTD Module 1 - RTD #6 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #6 Name 0 8 chars.

RRTD Module 1 - RTD #6 Alarm Off L,UL

RRTD Module 1 - RTD #6 Alarm Relays None Aux2

RRTD Module 1 - RTD #6 Alarm Level 1 200

RRTD Module 1 - RTD #6 High Alarm Off L,UL

RRTD Module 1 - RTD #6 High Alarm Relays None Aux2

RRTD Module 1 - RTD #6 High Alarm Level 1 200

RRTD Module 1 - Record RTD #6 Alarms as Events No Yes

RRTD Module 1 - RTD #6 Trip Off L,UL

RRTD Module 1 - RTD #6 Trip Relays None Aux2

RRTD Module 1 - RTD #6 Trip Level 1 200

RRTD Module 1 - Enable RTD #6 Trip Voting Off 1-12,Stator

RRTD Module 1 RTD #7

RRTD Module 1 - RTD #7 Application None S,B,A,O

RRTD Module 1 - RTD #7 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #7 Name 0 8 chars.

RRTD Module 1 - RTD #7 Alarm Off L,UL

RRTD Module 1 - RTD #7 Alarm Relays None Aux2

RRTD Module 1 - RTD #7 Alarm Level 1 200

RRTD Module 1 - RTD #7 High Alarm Off L,UL

RRTD Module 1 - RTD #7 High Alarm Relays None Aux2

RRTD Module 1 - RTD #7 High Alarm Level 1 200

RRTD Module 1 - Record RTD #7 Alarms as Events No Yes

RRTD Module 1 - RTD #7 Trip Off L,UL

RRTD Module 1 - RTD #7 Trip Relays None Aux2

RRTD Module 1 - RTD #7 Trip Level 1 200

RRTD Module 1 - Enable RTD #7 Trip Voting Off 1-12,Stator

RRTD Module 1 RTD #8

RRTD Module 1 - RTD #8 Application None S,B,A,O

RRTD Module 1 - RTD #8 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #8 Name 0 8 chars.

RRTD Module 1 - RTD #8 Alarm Off L,UL

RRTD Module 1 - RTD #8 Alarm Relays None Aux2

RRTD Module 1 - RTD #8 Alarm Level 1 200

RRTD Module 1 - RTD #8 High Alarm Off L,UL

RRTD Module 1 - RTD #8 High Alarm Relays None Aux2

RRTD Module 1 - RTD #8 High Alarm Level 1 200

RRTD Module 1 - Record RTD #8 Alarms as Events No Yes

RRTD Module 1 - RTD #8 Trip Off L,UL

RRTD Module 1 - RTD #8 Trip Relays None Aux2

RRTD Module 1 - RTD #8 Trip Level 1 200

RRTD Module 1 - Enable RTD #8 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 12 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 181: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-13

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD Module 1 RTD #9

RRTD Module 1 - RTD #9 Application None S,B,A,O

RRTD Module 1 - RTD #9 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #9 Name 0 8 chars.

RRTD Module 1 - RTD #9 Alarm Off L,UL

RRTD Module 1 - RTD #9 Alarm Relays None Aux2

RRTD Module 1 - RTD #9 Alarm Level 1 200

RRTD Module 1 - RTD #9 High Alarm Off L,UL

RRTD Module 1 - RTD #9 High Alarm Relays None Aux2

RRTD Module 1 - RTD #9 High Alarm Level 1 200

RRTD Module 1 - Record RTD #9 Alarms as Events No Yes

RRTD Module 1 - RTD #9 Trip Off L,UL

RRTD Module 1 - RTD #9 Trip Relays None Aux2

RRTD Module 1 - RTD #9 Trip Level 1 200

RRTD Module 1 - Enable RTD #9 Trip Voting Off 1-12,Stator

RRTD Module 1 RTD #10

RRTD Module 1 - RTD #10 Application None S,B,A,O

RRTD Module 1 - RTD #10 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #10 Name 0 8 chars.

RRTD Module 1 - RTD #10 Alarm Off L,UL

RRTD Module 1 - RTD #10 Alarm Relays None Aux2

RRTD Module 1 - RTD #10 Alarm Level 1 200

RRTD Module 1 - RTD #10 High Alarm Off L,UL

RRTD Module 1 - RTD #10 High Alarm Relays None Aux2

RRTD Module 1 - RTD #10 High Alarm Level 1 200

RRTD Module 1 - Record RTD #10 Alarms as Events No Yes

RRTD Module 1 - RTD #10 Trip Off L,UL

RRTD Module 1 - RTD #10 Trip Relays None Aux2

RRTD Module 1 - RTD #10 Trip Level 1 200

RRTD Module 1 - Enable RTD #10 Trip Voting Off 1-12,Stator

RRTD Module 1 RTD #11

RRTD Module 1 - RTD #11 Application None S,B,A,O

RRTD Module 1 - RTD #11 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #11 Name 0 8 chars.

RRTD Module 1 - RTD #11 Alarm Off L,UL

RRTD Module 1 - RTD #11 Alarm Relays None Aux2

RRTD Module 1 - RTD #11 Alarm Level 1 200

RRTD Module 1 - RTD #11 High Alarm Off L,UL

RRTD Module 1 - RTD #11 High Alarm Relays None Aux2

RRTD Module 1 - RTD #11 High Alarm Level 1 200

RRTD Module 1 - Record RTD #11 Alarms as Events No Yes

RRTD Module 1 - RTD #11 Trip Off L,UL

RRTD Module 1 - RTD #11 Trip Relays None Aux2

RRTD Module 1 - RTD #11 Trip Level 1 200

RRTD Module 1 - Enable RTD #11 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 13 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 182: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-14 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD Module 1 RTD #12

RRTD Module 1 - RTD #12 Application None S,B,A,O

RRTD Module 1 - RTD #12 RTD Type 10C,100P 100N,120N

RRTD Module 1 - RTD #12 Name 0 8 chars.

RRTD Module 1 - RTD #12 Alarm Off L,UL

RRTD Module 1 - RTD #12 Alarm Relays None Aux2

RRTD Module 1 - RTD #12 Alarm Level 1 200

RRTD Module 1 - RTD #12 High Alarm Off L,UL

RRTD Module 1 - RTD #12 High Alarm Relays None Aux2

RRTD Module 1 - RTD #12 High Alarm Level 1 200

RRTD Module 1 - Record RTD #12 Alarms as Events No Yes

RRTD Module 1 - RTD #12 Trip Off L,UL

RRTD Module 1 - RTD #12 Trip Relays None Aux2

RRTD Module 1 - RTD #12 Trip Level 1 200

RRTD Module 1 - Enable RTD #12 Trip Voting Off 1-12,Stator

RRTD Module 1 OPEN RTD ALARM

RRTD Module 1 - Open RTD Alarm Off L,UL

RRTD Module 1 - Assign Alarm Relays None Aux2

RRTD Module 1 - Open RTD Alarm Events Off On

RRTD Module 1 SHORT/LOW TEMP RTD ALARM

RRTD Module 1 - Short / Low Temp RTD Alarm Off L,UL

RRTD Module 1 - Assign Alarm Relays None Aux2

RRTD Module 1 - Short / Low Temp Alarm Events Off On

RRTD Module 2RTD #1

RRTD Module 2 - RTD #1 Application None S,B,A,O

RRTD Module 2 - RTD #1 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #1 Name 0 8 chars.

RRTD Module 2 - RTD #1 Alarm Off L,UL

RRTD Module 2 - RTD #1 Alarm Relays None Aux2

RRTD Module 2 - RTD #1 Alarm Level 1 200

RRTD Module 2 - RTD #1 High Alarm Off L,UL

RRTD Module 2 - RTD #1 High Alarm Relays None Aux2

RRTD Module 2 - RTD #1 High Alarm Level 1 200

RRTD Module 2 - Record RTD #1 Alarms as Events No Yes

RRTD Module 2 - RTD #1 Trip Off L,UL

RRTD Module 2 - RTD #1 Trip Relays None Aux2

RRTD Module 2 - RTD #1 Trip Level 1 200

RRTD Module 2 - Enable RTD #1 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 14 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 183: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-15

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD Module 2 RTD #2

RRTD Module 2 - RTD #2 Application None S,B,A,O

RRTD Module 2 - RTD #2 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #2 Name 0 8 chars.

RRTD Module 2 - RTD #2 Alarm Off L,UL

RRTD Module 2 - RTD #2 Alarm Relays None Aux2

RRTD Module 2 - RTD #2 Alarm Level 1 200

RRTD Module 2 - RTD #2 High Alarm Off L,UL

RRTD Module 2 - RTD #2 High Alarm Relays None Aux2

RRTD Module 2 - RTD #2 High Alarm Level 1 200

RRTD Module 2 - Record RTD #2 Alarms as Events No Yes

RRTD Module 2 - RTD #2 Trip Off L,UL

RRTD Module 2 - RTD #2 Trip Relays None Aux2

RRTD Module 2 - RTD #2 Trip Level 1 200

RRTD Module 2 - Enable RTD #2 Trip Voting Off 1-12,Stator

RRTD Module 2 RTD #3

RRTD Module 2 - RTD #3 Application None S,B,A,O

RRTD Module 2 - RTD #3 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #3 Name 0 8 chars.

RRTD Module 2 - RTD #3 Alarm Off L,UL

RRTD Module 2 - RTD #3 Alarm Relays None Aux2

RRTD Module 2 - RTD #3 Alarm Level 1 200

RRTD Module 2 - RTD #3 High Alarm Off L,UL

RRTD Module 2 - RTD #3 High Alarm Relays None Aux2

RRTD Module 2 - RTD #3 High Alarm Level 1 200

RRTD Module 2 - Record RTD #3 Alarms as Events No Yes

RRTD Module 2 - RTD #3 Trip Off L,UL

RRTD Module 2 - RTD #3 Trip Relays None Aux2

RRTD Module 2 - RTD #3 Trip Level 1 200

RRTD Module 2 - Enable RTD #3 Trip Voting Off 1-12,Stator

RRTD Module 2 RTD #4

RRTD Module 2 - RTD #4 Application None S,B,A,O

RRTD Module 2 - RTD #4 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #4 Name 0 8 chars.

RRTD Module 2 - RTD #4 Alarm Off L,UL

RRTD Module 2 - RTD #4 Alarm Relays None Aux2

RRTD Module 2 - RTD #4 Alarm Level 1 200

RRTD Module 2 - RTD #4 High Alarm Off L,UL

RRTD Module 2 - RTD #4 High Alarm Relays None Aux2

RRTD Module 2 - RTD #4 High Alarm Level 1 200

RRTD Module 2 - Record RTD #4 Alarms as Events No Yes

RRTD Module 2 - RTD #4 Trip Off L,UL

RRTD Module 2 - RTD #4 Trip Relays None Aux2

RRTD Module 2 - RTD #4 Trip Level 1 200

RRTD Module 2 - Enable RTD #4 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 15 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 184: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-16 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD Module 2 RTD #5

RRTD Module 2 - RTD #5 Application None S,B,A,O

RRTD Module 2 - RTD #5 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #5 Name 0 8 chars.

RRTD Module 2 - RTD #5 Alarm Off L,UL

RRTD Module 2 - RTD #5 Alarm Relays None Aux2

RRTD Module 2 - RTD #5 Alarm Level 1 200

RRTD Module 2 - RTD #5 High Alarm Off L,UL

RRTD Module 2 - RTD #5 High Alarm Relays None Aux2

RRTD Module 2 - RTD #5 High Alarm Level 1 200

RRTD Module 2 - Record RTD #5 Alarms as Events No Yes

RRTD Module 2 - RTD #5 Trip Off L,UL

RRTD Module 2 - RTD #5 Trip Relays None Aux2

RRTD Module 2 - RTD #5 Trip Level 1 200

RRTD Module 2 - Enable RTD #5 Trip Voting Off 1-12,Stator

RRTD Module 2 RTD #6

RRTD Module 2 - RTD #6 Application None S,B,A,O

RRTD Module 2 - RTD #6 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #6 Name 0 8 chars.

RRTD Module 2 - RTD #6 Alarm Off L,UL

RRTD Module 2 - RTD #6 Alarm Relays None Aux2

RRTD Module 2 - RTD #6 Alarm Level 1 200

RRTD Module 2 - RTD #6 High Alarm Off L,UL

RRTD Module 2 - RTD #6 High Alarm Relays None Aux2

RRTD Module 2 - RTD #6 High Alarm Level 1 200

RRTD Module 2 - Record RTD #6 Alarms as Events No Yes

RRTD Module 2 - RTD #6 Trip Off L,UL

RRTD Module 2 - RTD #6 Trip Relays None Aux2

RRTD Module 2 - RTD #6 Trip Level 1 200

RRTD Module 2 - Enable RTD #6 Trip Voting Off 1-12,Stator

RRTD Module 2 RTD #7

RRTD Module 2 - RTD #7 Application None S,B,A,O

RRTD Module 2 - RTD #7 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #7 Name 0 8 chars.

RRTD Module 2 - RTD #7 Alarm Off L,UL

RRTD Module 2 - RTD #7 Alarm Relays None Aux2

RRTD Module 2 - RTD #7 Alarm Level 1 200

RRTD Module 2 - RTD #7 High Alarm Off L,UL

RRTD Module 2 - RTD #7 High Alarm Relays None Aux2

RRTD Module 2 - RTD #7 High Alarm Level 1 200

RRTD Module 2 - Record RTD #7 Alarms as Events No Yes

RRTD Module 2 - RTD #7 Trip Off L,UL

RRTD Module 2 - RTD #7 Trip Relays None Aux2

RRTD Module 2 - RTD #7 Trip Level 1 200

RRTD Module 2 - Enable RTD #7 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 16 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 185: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-17

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD Module 2 RTD #8

RRTD Module 2 - RTD #8 Application None S,B,A,O

RRTD Module 2 - RTD #8 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #8 Name 0 8 chars.

RRTD Module 2 - RTD #8 Alarm Off L,UL

RRTD Module 2 - RTD #8 Alarm Relays None Aux2

RRTD Module 2 - RTD #8 Alarm Level 1 200

RRTD Module 2 - RTD #8 High Alarm Off L,UL

RRTD Module 2 - RTD #8 High Alarm Relays None Aux2

RRTD Module 2 - RTD #8 High Alarm Level 1 200

RRTD Module 2 - Record RTD #8 Alarms as Events No Yes

RRTD Module 2 - RTD #8 Trip Off L,UL

RRTD Module 2 - RTD #8 Trip Relays None Aux2

RRTD Module 2 - RTD #8 Trip Level 1 200

RRTD Module 2 - Enable RTD #8 Trip Voting Off 1-12,Stator

RRTD Module 2 RTD #9

RRTD Module 2 - RTD #9 Application None S,B,A,O

RRTD Module 2 - RTD #9 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #9 Name 0 8 chars.

RRTD Module 2 - RTD #9 Alarm Off L,UL

RRTD Module 2 - RTD #9 Alarm Relays None Aux2

RRTD Module 2 - RTD #9 Alarm Level 1 200

RRTD Module 2 - RTD #9 High Alarm Off L,UL

RRTD Module 2 - RTD #9 High Alarm Relays None Aux2

RRTD Module 2 - RTD #9 High Alarm Level 1 200

RRTD Module 2 - Record RTD #9 Alarms as Events No Yes

RRTD Module 2 - RTD #9 Trip Off L,UL

RRTD Module 2 - RTD #9 Trip Relays None Aux2

RRTD Module 2 - RTD #9 Trip Level 1 200

RRTD Module 2 - Enable RTD #9 Trip Voting Off 1-12,Stator

RRTD Module 2 RTD #10

RRTD Module 2 - RTD #10 Application None S,B,A,O

RRTD Module 2 - RTD #10 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #10 Name 0 8 chars.

RRTD Module 2 - RTD #10 Alarm Off L,UL

RRTD Module 2 - RTD #10 Alarm Relays None Aux2

RRTD Module 2 - RTD #10 Alarm Level 1 200

RRTD Module 2 - RTD #10 High Alarm Off L,UL

RRTD Module 2 - RTD #10 High Alarm Relays None Aux2

RRTD Module 2 - RTD #10 High Alarm Level 1 200

RRTD Module 2 - Record RTD #10 Alarms as Events No Yes

RRTD Module 2 - RTD #10 Trip Off L,UL

RRTD Module 2 - RTD #10 Trip Relays None Aux2

RRTD Module 2 - RTD #10 Trip Level 1 200

RRTD Module 2 - Enable RTD #10 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 17 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 186: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-18 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD Module 2 RTD #11

RRTD Module 2 - RTD #11 Application None S,B,A,O

RRTD Module 2 - RTD #11 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #11 Name 0 8 chars.

RRTD Module 2 - RTD #11 Alarm Off L,UL

RRTD Module 2 - RTD #11 Alarm Relays None Aux2

RRTD Module 2 - RTD #11 Alarm Level 1 200

RRTD Module 2 - RTD #11 High Alarm Off L,UL

RRTD Module 2 - RTD #11 High Alarm Relays None Aux2

RRTD Module 2 - RTD #11 High Alarm Level 1 200

RRTD Module 2 - Record RTD #11 Alarms as Events No Yes

RRTD Module 2 - RTD #11 Trip Off L,UL

RRTD Module 2 - RTD #11 Trip Relays None Aux2

RRTD Module 2 - RTD #11 Trip Level 1 200

RRTD Module 2 - Enable RTD #11 Trip Voting Off 1-12,Stator

RRTD Module 2 RTD #12

RRTD Module 2 - RTD #12 Application None S,B,A,O

RRTD Module 2 - RTD #12 RTD Type 10C,100P 100N,120N

RRTD Module 2 - RTD #12 Name 0 8 chars.

RRTD Module 2 - RTD #12 Alarm Off L,UL

RRTD Module 2 - RTD #12 Alarm Relays None Aux2

RRTD Module 2 - RTD #12 Alarm Level 1 200

RRTD Module 2 - RTD #12 High Alarm Off L,UL

RRTD Module 2 - RTD #12 High Alarm Relays None Aux2

RRTD Module 2 - RTD #12 High Alarm Level 1 200

RRTD Module 2 - Record RTD #12 Alarms as Events No Yes

RRTD Module 2 - RTD #12 Trip Off L,UL

RRTD Module 2 - RTD #12 Trip Relays None Aux2

RRTD Module 2 - RTD #12 Trip Level 1 200

RRTD Module 2 - Enable RTD #12 Trip Voting Off 1-12,Stator

RRTD Module 2 OPEN RTD ALARM

RRTD Module 2 - Open RTD Alarm Off L,UL

RRTD Module 2 - Assign Alarm Relays None Aux2

RRTD Module 2 - Open RTD Alarm Events Off On

RRTD Module 2 SHORT/LOW TEMP RTD ALARM

RRTD Module 2 - Short / Low Temp RTD Alarm Off L,UL

RRTD Module 2 - Assign Alarm Relays None Aux2

RRTD Module 2 - Short / Low Temp Alarm Events Off On

Table 9–1: SETPOINTS TABLE (Sheet 18 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 187: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-19

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD Module 3RTD #1

RRTD Module 3 - RTD #1 Application None S,B,A,O

RRTD Module 3 - RTD #1 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #1 Name 0 8 chars.

RRTD Module 3 - RTD #1 Alarm Off L,UL

RRTD Module 3 - RTD #1 Alarm Relays None Aux2

RRTD Module 3 - RTD #1 Alarm Level 1 200

RRTD Module 3 - RTD #1 High Alarm Off L,UL

RRTD Module 3 - RTD #1 High Alarm Relays None Aux2

RRTD Module 3 - RTD #1 High Alarm Level 1 200

RRTD Module 3 - Record RTD #1 Alarms as Events No Yes

RRTD Module 3 - RTD #1 Trip Off L,UL

RRTD Module 3 - RTD #1 Trip Relays None Aux2

RRTD Module 3 - RTD #1 Trip Level 1 200

RRTD Module 3 - Enable RTD #1 Trip Voting Off 1-12,Stator

RRTD Module 3 RTD #2

RRTD Module 3 - RTD #2 Application None S,B,A,O

RRTD Module 3 - RTD #2 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #2 Name 0 8 chars.

RRTD Module 3 - RTD #2 Alarm Off L,UL

RRTD Module 3 - RTD #2 Alarm Relays None Aux2

RRTD Module 3 - RTD #2 Alarm Level 1 200

RRTD Module 3 - RTD #2 High Alarm Off L,UL

RRTD Module 3 - RTD #2 High Alarm Relays None Aux2

RRTD Module 3 - RTD #2 High Alarm Level 1 200

RRTD Module 3 - Record RTD #2 Alarms as Events No Yes

RRTD Module 3 - RTD #2 Trip Off L,UL

RRTD Module 3 - RTD #2 Trip Relays None Aux2

RRTD Module 3 - RTD #2 Trip Level 1 200

RRTD Module 3 - Enable RTD #2 Trip Voting Off 1-12,Stator

RRTD Module 3 RTD #3

RRTD Module 3 - RTD #3 Application None S,B,A,O

RRTD Module 3 - RTD #3 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #3 Name 0 8 chars.

RRTD Module 3 - RTD #3 Alarm Off L,UL

RRTD Module 3 - RTD #3 Alarm Relays None Aux2

RRTD Module 3 - RTD #3 Alarm Level 1 200

RRTD Module 3 - RTD #3 High Alarm Off L,UL

RRTD Module 3 - RTD #3 High Alarm Relays None Aux2

RRTD Module 3 - RTD #3 High Alarm Level 1 200

RRTD Module 3 - Record RTD #3 Alarms as Events No Yes

RRTD Module 3 - RTD #3 Trip Off L,UL

RRTD Module 3 - RTD #3 Trip Relays None Aux2

RRTD Module 3 - RTD #3 Trip Level 1 200

RRTD Module 3 - Enable RTD #3 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 19 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 188: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-20 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD Module 3 RTD #4

RRTD Module 3 - RTD #4 Application None S,B,A,O

RRTD Module 3 - RTD #4 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #4 Name 0 8 chars.

RRTD Module 3 - RTD #4 Alarm Off L,UL

RRTD Module 3 - RTD #4 Alarm Relays None Aux2

RRTD Module 3 - RTD #4 Alarm Level 1 200

RRTD Module 3 - RTD #4 High Alarm Off L,UL

RRTD Module 3 - RTD #4 High Alarm Relays None Aux2

RRTD Module 3 - RTD #4 High Alarm Level 1 200

RRTD Module 3 - Record RTD #4 Alarms as Events No Yes

RRTD Module 3 - RTD #4 Trip Off L,UL

RRTD Module 3 - RTD #4 Trip Relays None Aux2

RRTD Module 3 - RTD #4 Trip Level 1 200

RRTD Module 3 - Enable RTD #4 Trip Voting Off 1-12,Stator

RRTD Module 3 RTD #5

RRTD Module 3 - RTD #5 Application None S,B,A,O

RRTD Module 3 - RTD #5 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #5 Name 0 8 chars.

RRTD Module 3 - RTD #5 Alarm Off L,UL

RRTD Module 3 - RTD #5 Alarm Relays None Aux2

RRTD Module 3 - RTD #5 Alarm Level 1 200

RRTD Module 3 - RTD #5 High Alarm Off L,UL

RRTD Module 3 - RTD #5 High Alarm Relays None Aux2

RRTD Module 3 - RTD #5 High Alarm Level 1 200

RRTD Module 3 - Record RTD #5 Alarms as Events No Yes

RRTD Module 3 - RTD #5 Trip Off L,UL

RRTD Module 3 - RTD #5 Trip Relays None Aux2

RRTD Module 3 - RTD #5 Trip Level 1 200

RRTD Module 3 - Enable RTD #5 Trip Voting Off 1-12,Stator

RRTD Module 3 RTD #6

RRTD Module 3 - RTD #6 Application None S,B,A,O

RRTD Module 3 - RTD #6 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #6 Name 0 8 chars.

RRTD Module 3 - RTD #6 Alarm Off L,UL

RRTD Module 3 - RTD #6 Alarm Relays None Aux2

RRTD Module 3 - RTD #6 Alarm Level 1 200

RRTD Module 3 - RTD #6 High Alarm Off L,UL

RRTD Module 3 - RTD #6 High Alarm Relays None Aux2

RRTD Module 3 - RTD #6 High Alarm Level 1 200

RRTD Module 3 - Record RTD #6 Alarms as Events No Yes

RRTD Module 3 - RTD #6 Trip Off L,UL

RRTD Module 3 - RTD #6 Trip Relays None Aux2

RRTD Module 3 - RTD #6 Trip Level 1 200

RRTD Module 3 - Enable RTD #6 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 20 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 189: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-21

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD Module 3 RTD #7

RRTD Module 3 - RTD #7 Application None S,B,A,O

RRTD Module 3 - RTD #7 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #7 Name 0 8 chars.

RRTD Module 3 - RTD #7 Alarm Off L,UL

RRTD Module 3 - RTD #7 Alarm Relays None Aux2

RRTD Module 3 - RTD #7 Alarm Level 1 200

RRTD Module 3 - RTD #7 High Alarm Off L,UL

RRTD Module 3 - RTD #7 High Alarm Relays None Aux2

RRTD Module 3 - RTD #7 High Alarm Level 1 200

RRTD Module 3 - Record RTD #7 Alarms as Events No Yes

RRTD Module 3 - RTD #7 Trip Off L,UL

RRTD Module 3 - RTD #7 Trip Relays None Aux2

RRTD Module 3 - RTD #7 Trip Level 1 200

RRTD Module 3 - Enable RTD #7 Trip Voting Off 1-12,Stator

RRTD Module 3 RTD #8

RRTD Module 3 - RTD #8 Application None S,B,A,O

RRTD Module 3 - RTD #8 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #8 Name 0 8 chars.

RRTD Module 3 - RTD #8 Alarm Off L,UL

RRTD Module 3 - RTD #8 Alarm Relays None Aux2

RRTD Module 3 - RTD #8 Alarm Level 1 200

RRTD Module 3 - RTD #8 High Alarm Off L,UL

RRTD Module 3 - RTD #8 High Alarm Relays None Aux2

RRTD Module 3 - RTD #8 High Alarm Level 1 200

RRTD Module 3 - Record RTD #8 Alarms as Events No Yes

RRTD Module 3 - RTD #8 Trip Off L,UL

RRTD Module 3 - RTD #8 Trip Relays None Aux2

RRTD Module 3 - RTD #8 Trip Level 1 200

RRTD Module 3 - Enable RTD #8 Trip Voting Off 1-12,Stator

RRTD Module 3 RTD #9

RRTD Module 3 - RTD #9 Application None S,B,A,O

RRTD Module 3 - RTD #9 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #9 Name 0 8 chars.

RRTD Module 3 - RTD #9 Alarm Off L,UL

RRTD Module 3 - RTD #9 Alarm Relays None Aux2

RRTD Module 3 - RTD #9 Alarm Level 1 200

RRTD Module 3 - RTD #9 High Alarm Off L,UL

RRTD Module 3 - RTD #9 High Alarm Relays None Aux2

RRTD Module 3 - RTD #9 High Alarm Level 1 200

RRTD Module 3 - Record RTD #9 Alarms as Events No Yes

RRTD Module 3 - RTD #9 Trip Off L,UL

RRTD Module 3 - RTD #9 Trip Relays None Aux2

RRTD Module 3 - RTD #9 Trip Level 1 200

RRTD Module 3 - Enable RTD #9 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 21 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 190: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-22 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD Module 3 RTD #10

RRTD Module 3 - RTD #10 Application None S,B,A,O

RRTD Module 3 - RTD #10 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #10 Name 0 8 chars.

RRTD Module 3 - RTD #10 Alarm Off L,UL

RRTD Module 3 - RTD #10 Alarm Relays None Aux2

RRTD Module 3 - RTD #10 Alarm Level 1 200

RRTD Module 3 - RTD #10 High Alarm Off L,UL

RRTD Module 3 - RTD #10 High Alarm Relays None Aux2

RRTD Module 3 - RTD #10 High Alarm Level 1 200

RRTD Module 3 - Record RTD #10 Alarms as Events No Yes

RRTD Module 3 - RTD #10 Trip Off L,UL

RRTD Module 3 - RTD #10 Trip Relays None Aux2

RRTD Module 3 - RTD #10 Trip Level 1 200

RRTD Module 3 - Enable RTD #10 Trip Voting Off 1-12,Stator

RRTD Module 3 RTD #11

RRTD Module 3 - RTD #11 Application None S,B,A,O

RRTD Module 3 - RTD #11 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #11 Name 0 8 chars.

RRTD Module 3 - RTD #11 Alarm Off L,UL

RRTD Module 3 - RTD #11 Alarm Relays None Aux2

RRTD Module 3 - RTD #11 Alarm Level 1 200

RRTD Module 3 - RTD #11 High Alarm Off L,UL

RRTD Module 3 - RTD #11 High Alarm Relays None Aux2

RRTD Module 3 - RTD #11 High Alarm Level 1 200

RRTD Module 3 - Record RTD #11 Alarms as Events No Yes

RRTD Module 3 - RTD #11 Trip Off L,UL

RRTD Module 3 - RTD #11 Trip Relays None Aux2

RRTD Module 3 - RTD #11 Trip Level 1 200

RRTD Module 3 - Enable RTD #11 Trip Voting Off 1-12,Stator

RRTD Module 3 RTD #12

RRTD Module 3 - RTD #12 Application None S,B,A,O

RRTD Module 3 - RTD #12 RTD Type 10C,100P 100N,120N

RRTD Module 3 - RTD #12 Name 0 8 chars.

RRTD Module 3 - RTD #12 Alarm Off L,UL

RRTD Module 3 - RTD #12 Alarm Relays None Aux2

RRTD Module 3 - RTD #12 Alarm Level 1 200

RRTD Module 3 - RTD #12 High Alarm Off L,UL

RRTD Module 3 - RTD #12 High Alarm Relays None Aux2

RRTD Module 3 - RTD #12 High Alarm Level 1 200

RRTD Module 3 - Record RTD #12 Alarms as Events No Yes

RRTD Module 3 - RTD #12 Trip Off L,UL

RRTD Module 3 - RTD #12 Trip Relays None Aux2

RRTD Module 3 - RTD #12 Trip Level 1 200

RRTD Module 3 - Enable RTD #12 Trip Voting Off 1-12,Stator

RRTD Module 3 OPEN RTD ALARM

RRTD Module 3 - Open RTD Alarm Off L,UL

RRTD Module 3 - Assign Alarm Relays None Aux2

RRTD Module 3 - Open RTD Alarm Events Off On

Table 9–1: SETPOINTS TABLE (Sheet 22 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 191: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-23

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD Module 3 SHORT/LOW TEMP RTD ALARM

RRTD Module 3 - Short / Low Temp RTD Alarm Off L,UL

RRTD Module 3 - Assign Alarm Relays None Aux2

RRTD Module 3 - Short / Low Temp Alarm Events Off On

RRTD Module 4RTD #1

RRTD Module 4 - RTD #1 Application None S,B,A,O

RRTD Module 4 - RTD #1 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #1 Name 0 8 chars.

RRTD Module 4 - RTD #1 Alarm Off L,UL

RRTD Module 4 - RTD #1 Alarm Relays None Aux2

RRTD Module 4 - RTD #1 Alarm Level 1 200

RRTD Module 4 - RTD #1 High Alarm Off L,UL

RRTD Module 4 - RTD #1 High Alarm Relays None Aux2

RRTD Module 4 - RTD #1 High Alarm Level 1 200

RRTD Module 4 - Record RTD #1 Alarms as Events No Yes

RRTD Module 4 - RTD #1 Trip Off L,UL

RRTD Module 4 - RTD #1 Trip Relays None Aux2

RRTD Module 4 - RTD #1 Trip Level 1 200

RRTD Module 4 - Enable RTD #1 Trip Voting Off 1-12,Stator

RRTD Module 4 RTD #2

RRTD Module 4 - RTD #2 Application None S,B,A,O

RRTD Module 4 - RTD #2 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #2 Name 0 8 chars.

RRTD Module 4 - RTD #2 Alarm Off L,UL

RRTD Module 4 - RTD #2 Alarm Relays None Aux2

RRTD Module 4 - RTD #2 Alarm Level 1 200

RRTD Module 4 - RTD #2 High Alarm Off L,UL

RRTD Module 4 - RTD #2 High Alarm Relays None Aux2

RRTD Module 4 - RTD #2 High Alarm Level 1 200

RRTD Module 4 - Record RTD #2 Alarms as Events No Yes

RRTD Module 4 - RTD #2 Trip Off L,UL

RRTD Module 4 - RTD #2 Trip Relays None Aux2

RRTD Module 4 - RTD #2 Trip Level 1 200

RRTD Module 4 - Enable RTD #2 Trip Voting Off 1-12,Stator

RRTD Module 4 RTD #3

RRTD Module 4 - RTD #3 Application None S,B,A,O

RRTD Module 4 - RTD #3 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #3 Name 0 8 chars.

RRTD Module 4 - RTD #3 Alarm Off L,UL

RRTD Module 4 - RTD #3 Alarm Relays None Aux2

RRTD Module 4 - RTD #3 Alarm Level 1 200

RRTD Module 4 - RTD #3 High Alarm Off L,UL

RRTD Module 4 - RTD #3 High Alarm Relays None Aux2

RRTD Module 4 - RTD #3 High Alarm Level 1 200

RRTD Module 4 - Record RTD #3 Alarms as Events No Yes

RRTD Module 4 - RTD #3 Trip Off L,UL

RRTD Module 4 - RTD #3 Trip Relays None Aux2

RRTD Module 4 - RTD #3 Trip Level 1 200

RRTD Module 4 - Enable RTD #3 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 23 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 192: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-24 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD Module 4 RTD #4

RRTD Module 4 - RTD #4 Application None S,B,A,O

RRTD Module 4 - RTD #4 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #4 Name 0 8 chars.

RRTD Module 4 - RTD #4 Alarm Off L,UL

RRTD Module 4 - RTD #4 Alarm Relays None Aux2

RRTD Module 4 - RTD #4 Alarm Level 1 200

RRTD Module 4 - RTD #4 High Alarm Off L,UL

RRTD Module 4 - RTD #4 High Alarm Relays None Aux2

RRTD Module 4 - RTD #4 High Alarm Level 1 200

RRTD Module 4 - Record RTD #4 Alarms as Events No Yes

RRTD Module 4 - RTD #4 Trip Off L,UL

RRTD Module 4 - RTD #4 Trip Relays None Aux2

RRTD Module 4 - RTD #4 Trip Level 1 200

RRTD Module 4 - Enable RTD #4 Trip Voting Off 1-12,Stator

RRTD Module 4 RTD #5

RRTD Module 4 - RTD #5 Application None S,B,A,O

RRTD Module 4 - RTD #5 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #5 Name 0 8 chars.

RRTD Module 4 - RTD #5 Alarm Off L,UL

RRTD Module 4 - RTD #5 Alarm Relays None Aux2

RRTD Module 4 - RTD #5 Alarm Level 1 200

RRTD Module 4 - RTD #5 High Alarm Off L,UL

RRTD Module 4 - RTD #5 High Alarm Relays None Aux2

RRTD Module 4 - RTD #5 High Alarm Level 1 200

RRTD Module 4 - Record RTD #5 Alarms as Events No Yes

RRTD Module 4 - RTD #5 Trip Off L,UL

RRTD Module 4 - RTD #5 Trip Relays None Aux2

RRTD Module 4 - RTD #5 Trip Level 1 200

RRTD Module 4 - Enable RTD #5 Trip Voting Off 1-12,Stator

RRTD Module 4 RTD #6

RRTD Module 4 - RTD #6 Application None S,B,A,O

RRTD Module 4 - RTD #6 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #6 Name 0 8 chars.

RRTD Module 4 - RTD #6 Alarm Off L,UL

RRTD Module 4 - RTD #6 Alarm Relays None Aux2

RRTD Module 4 - RTD #6 Alarm Level 1 200

RRTD Module 4 - RTD #6 High Alarm Off L,UL

RRTD Module 4 - RTD #6 High Alarm Relays None Aux2

RRTD Module 4 - RTD #6 High Alarm Level 1 200

RRTD Module 4 - Record RTD #6 Alarms as Events No Yes

RRTD Module 4 - RTD #6 Trip Off L,UL

RRTD Module 4 - RTD #6 Trip Relays None Aux2

RRTD Module 4 - RTD #6 Trip Level 1 200

RRTD Module 4 - Enable RTD #6 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 24 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 193: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-25

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD Module 4 RTD #7

RRTD Module 4 - RTD #7 Application None S,B,A,O

RRTD Module 4 - RTD #7 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #7 Name 0 8 chars.

RRTD Module 4 - RTD #7 Alarm Off L,UL

RRTD Module 4 - RTD #7 Alarm Relays None Aux2

RRTD Module 4 - RTD #7 Alarm Level 1 200

RRTD Module 4 - RTD #7 High Alarm Off L,UL

RRTD Module 4 - RTD #7 High Alarm Relays None Aux2

RRTD Module 4 - RTD #7 High Alarm Level 1 200

RRTD Module 4 - Record RTD #7 Alarms as Events No Yes

RRTD Module 4 - RTD #7 Trip Off L,UL

RRTD Module 4 - RTD #7 Trip Relays None Aux2

RRTD Module 4 - RTD #7 Trip Level 1 200

RRTD Module 4 - Enable RTD #7 Trip Voting Off 1-12,Stator

RRTD Module 4 RTD #8

RRTD Module 4 - RTD #8 Application None S,B,A,O

RRTD Module 4 - RTD #8 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #8 Name 0 8 chars.

RRTD Module 4 - RTD #8 Alarm Off L,UL

RRTD Module 4 - RTD #8 Alarm Relays None Aux2

RRTD Module 4 - RTD #8 Alarm Level 1 200

RRTD Module 4 - RTD #8 High Alarm Off L,UL

RRTD Module 4 - RTD #8 High Alarm Relays None Aux2

RRTD Module 4 - RTD #8 High Alarm Level 1 200

RRTD Module 4 - Record RTD #8 Alarms as Events No Yes

RRTD Module 4 - RTD #8 Trip Off L,UL

RRTD Module 4 - RTD #8 Trip Relays None Aux2

RRTD Module 4 - RTD #8 Trip Level 1 200

RRTD Module 4 - Enable RTD #8 Trip Voting Off 1-12,Stator

RRTD Module 4 RTD #9

RRTD Module 4 - RTD #9 Application None S,B,A,O

RRTD Module 4 - RTD #9 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #9 Name 0 8 chars.

RRTD Module 4 - RTD #9 Alarm Off L,UL

RRTD Module 4 - RTD #9 Alarm Relays None Aux2

RRTD Module 4 - RTD #9 Alarm Level 1 200

RRTD Module 4 - RTD #9 High Alarm Off L,UL

RRTD Module 4 - RTD #9 High Alarm Relays None Aux2

RRTD Module 4 - RTD #9 High Alarm Level 1 200

RRTD Module 4 - Record RTD #9 Alarms as Events No Yes

RRTD Module 4 - RTD #9 Trip Off L,UL

RRTD Module 4 - RTD #9 Trip Relays None Aux2

RRTD Module 4 - RTD #9 Trip Level 1 200

RRTD Module 4 - Enable RTD #9 Trip Voting Off 1-12,Stator

Table 9–1: SETPOINTS TABLE (Sheet 25 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 194: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-26 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD Module 4 RTD #10

RRTD Module 4 - RTD #10 Application None S,B,A,O

RRTD Module 4 - RTD #10 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #10 Name 0 8 chars.

RRTD Module 4 - RTD #10 Alarm Off L,UL

RRTD Module 4 - RTD #10 Alarm Relays None Aux2

RRTD Module 4 - RTD #10 Alarm Level 1 200

RRTD Module 4 - RTD #10 High Alarm Off L,UL

RRTD Module 4 - RTD #10 High Alarm Relays None Aux2

RRTD Module 4 - RTD #10 High Alarm Level 1 200

RRTD Module 4 - Record RTD #10 Alarms as Events No Yes

RRTD Module 4 - RTD #10 Trip Off L,UL

RRTD Module 4 - RTD #10 Trip Relays None Aux2

RRTD Module 4 - RTD #10 Trip Level 1 200

RRTD Module 4 - Enable RTD #10 Trip Voting Off 1-12,Stator

RRTD Module 4 RTD #11

RRTD Module 4 - RTD #11 Application None S,B,A,O

RRTD Module 4 - RTD #11 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #11 Name 0 8 chars.

RRTD Module 4 - RTD #11 Alarm Off L,UL

RRTD Module 4 - RTD #11 Alarm Relays None Aux2

RRTD Module 4 - RTD #11 Alarm Level 1 200

RRTD Module 4 - RTD #11 High Alarm Off L,UL

RRTD Module 4 - RTD #11 High Alarm Relays None Aux2

RRTD Module 4 - RTD #11 High Alarm Level 1 200

RRTD Module 4 - Record RTD #11 Alarms as Events No Yes

RRTD Module 4 - RTD #11 Trip Off L,UL

RRTD Module 4 - RTD #11 Trip Relays None Aux2

RRTD Module 4 - RTD #11 Trip Level 1 200

RRTD Module 4 - Enable RTD #11 Trip Voting Off 1-12,Stator

RRTD Module 4 RTD #12

RRTD Module 4 - RTD #12 Application None S,B,A,O

RRTD Module 4 - RTD #12 RTD Type 10C,100P 100N,120N

RRTD Module 4 - RTD #12 Name 0 8 chars.

RRTD Module 4 - RTD #12 Alarm Off L,UL

RRTD Module 4 - RTD #12 Alarm Relays None Aux2

RRTD Module 4 - RTD #12 Alarm Level 1 200

RRTD Module 4 - RTD #12 High Alarm Off L,UL

RRTD Module 4 - RTD #12 High Alarm Relays None Aux2

RRTD Module 4 - RTD #12 High Alarm Level 1 200

RRTD Module 4 - Record RTD #12 Alarms as Events No Yes

RRTD Module 4 - RTD #12 Trip Off L,UL

RRTD Module 4 - RTD #12 Trip Relays None Aux2

RRTD Module 4 - RTD #12 Trip Level 1 200

RRTD Module 4 - Enable RTD #12 Trip Voting Off 1-12,Stator

RRTD Module 4 OPEN RTD ALARM

RRTD Module 4 - Open RTD Alarm Off L,UL

RRTD Module 4 - Assign Alarm Relays None Aux2

RRTD Module 4 - Open RTD Alarm Events Off On

Table 9–1: SETPOINTS TABLE (Sheet 26 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 195: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-27

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD Module 4 SHORT/LOW TEMP RTD ALARM

RRTD Module 4 - Short / Low Temp RTD Alarm Off L,UL

RRTD Module 4 - Assign Alarm Relays None Aux2

RRTD Module 4 - Short / Low Temp Alarm Events Off On

UNDERVOLTAGE Undervoltage Active If Motor Stopped No Yes

Undervoltage Alarm Off L,UL

Assign Alarm Relays None Aux2

Starting Undervoltage Alarm Pickup 0.50 0.99

Running Undervoltage Alarm Pickup 0.50 0.99

Undervoltage Alarm Delay 0.0 255.0

Undervoltage Alarm Events Off On

Undervoltage Trip Off L,UL

Undervoltage Trip Relays None Aux2

Starting Undervoltage Trip Pickup 0.50 0.99

Running Undervoltage Trip Pickup 0.50 0.99

Undervoltage Trip Delay 0.0 255.0

OVERVOLTAGE Overvoltage Alarm Off L,UL

Overvoltage Alarm Relays None Aux2

Overvoltage Alarm Pickup 1.01 1.25

Overvoltage Alarm Delay 0.0 255.0

Overvoltage Alarm Events Off On

Overvoltage Trip Off L,UL

Overvoltage Trip Relays None Aux2

Overvoltage Trip Pickup 1.01 1.25

Overvoltage Trip Delay 0.0 255.0

PHASE REVERSAL Phase Reversal Trip Off L,UL

Assign Trip Relays None Aux2

UNDER FREQUENCY

Block Underfrequency on Start 0 5000

Underfrequency Alarm Off L,UL

Assign Alarm Relays None Aux2

Underfrequency Alarm Level 20.00 70.00

Underfrequency Alarm Delay 0.0 255.0

Underfrequency Alarm Events Off On

Underfrequency Trip Off L,UL

Assign Trip Relays None Aux2

Underfrequency Trip Level 20.00 70.00

Underfrequency Trip Delay 0.0 255.0

OVER FREQUENCY Block Overfrequency on Start 0 5000

Overfrequency Alarm Off L,UL

Assign Alarm Relays None Aux2

Overfrequency Alarm Level 20.00 70.00

Overfrequency Alarm Delay 0.1 255.0

Overfrequency Alarm Events Off On

Overfrequency Trip Off L,UL

Assign Trip Relays None Aux2

Overfrequency Trip Level 20.00 70.00

Overfrequency Trip Delay 0.1 255.0

Table 9–1: SETPOINTS TABLE (Sheet 27 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 196: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-28 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

LEAD POWER FACTOR

Block Lead Power Factor From Start 0 5000

Power Factor Lead Alarm Off L,UL

Power Factor Lead Alarm Relays None ,Aux2

Power Factor Lead Alarm Level 0.5 0.99

Power Factor Lead Alarm Delay 0.1 255.0

Power Factor Lead Alarm Events Off On

Power Factor Lead Trip Off L,UL

Assign Trip Relays None Aux2

Power Factor Lead Trip Level 0.5 0.99

Power Factor Trip Lead Delay 0.1 255.0

LAG POWER FACTOR

Block Lag Power Factor From Start 0 5000

Lag Power Factor Alarm Off L,UL

Assign Alarm Relays None Aux2

Lag Power Factor Alarm Level 0.5 0.99

Lag Power Factor Alarm Delay 0.1 255.0

Lag Power Factor Alarm Events Off On

Lag Power Factor Trip Off L,UL

Assign Trip Relays None Aux2

Lag Power Factor Trip Level 0.5 0.99

Lag Power Factor Trip Delay 0.1 255.0

POSITIVE REACTIVE POWER

Block Positive kvar Element From Start 0 5000

Positive kvar Alarm Off L,UL

Assign Alarm Relays None Aux2

Positive kvar Alarm Level 1 25000

Positive kvar Alarm Delay 0.1 255.0

Positive kvar Alarm Events Off On

Positive kvar Trip Off L,UL

Assign Trip Relays None Aux2

Positive kvar Trip Level 1 25000

Positive kvar Trip Delay 0.1 255.0

NEGATIVE REACTIVE

Block kvar Element from Start 0 5000

Negative kvar Alarm Off L,UL

Assign Alarm Relays None Aux2

Negative kvar Alarm Level 1 25000

Negative kvar Alarm Delay 0.1 255.0

Negative kvar Alarm Events Off On

Negative kvar Trip Off L,UL

Assign Trip Relays None Aux2

Negative kvar Trip Level 1 25000

Negative kvar Trip Delay 0.1 255.0

Table 9–1: SETPOINTS TABLE (Sheet 28 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 197: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-29

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

UNDERPOWER Block Underpower From Start 0 15000

Underpower Alarm Off L,UL

Assign Alarm Relays None Aux2

Underpower Alarm Level 1 25000

Underpower Alarm Delay 0.5 255.0

Underpower Alarm Events Off On

Underpower Trip Off L,UL

Underpower Trip Relays None Aux2

Underpower Trip Level 1 25000

Underpower Trip Delay 0.5 255.0

REVERSE POWER Block Reverse Power From Start 0 50000

Reverse Power Alarm Off L,UL

Assign Alarm Relays None Aux2

Reverse Power Alarm Level 1 25000

Reverse Power Alarm Delay 0.5 30.0

Reverse Power Alarm Events Off On

Reverse Power Trip Off L,UL

Assign Trip Relays None Aux2

Reverse Power Trip Level 1 25000

Reverse Power Trip Delay 0.5 30.0

SPARE SWITCH Spare Switch Assignable Function Off See manual

Starter Aux Contact Type 52a 52b

General Spare Switch Name 0 12 chars.

General Spare Switch Type NO NC

General Spare Switch Block Input From Start 0 5000

General Spare Switch Alarm Off L,UL

General Spare Switch Alarm Relays None Aux2

General Spare Switch Alarm Delay 0.1 5000.0

General Spare Switch Alarm Events Off On

General Spare Switch Trip Off L,UL

General Spare Switch Trip Relays None Aux2

General Spare Switch Trip Delay 0.1 5000.0

EMERGENCY SWITCH

Emergency Switch Assignable Function Off See manual

General Emergency Switch Name 0 12 chars.

General Emergency Switch Type NO NC

General Emergency Switch Block Input From Start 0 5000

General Emergency Switch Alarm Off L,UL

General Emergency Switch Alarm Relays None Aux2

General Emergency Switch Alarm Delay 0.1 5000.0

General Emergency Switch Alarm Events Off On

General Emergency Switch Trip Off L,UL

General Emergency Switch Trip Relays None Aux2

General Emergency Switch Trip Delay 0.1 5000.0

Table 9–1: SETPOINTS TABLE (Sheet 29 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 198: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-30 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

DIFFERENTIAL SWITCH

Differential Switch Assignable Function Off See manual

Assign Differential Switch Trip Relays None Aux2

General Differential Switch Name 0 12 chars.

General Differential Switch Type NO NC

General Differential Switch Block Input From Start 0 5000

General Differential Switch Alarm Off L,UL

General Differential Switch Alarm Relays None Aux2

General Differential Switch Alarm Delay 0.1 5000.0

General Differential Switch Alarm Events Off On

General Differential Switch Trip Off L,UL

General Differential Switch Trip Relays None Aux2

General Differential Switch Trip Delay 0.1 5000.0

SPEED SWITCH Speed Switch Assignable Function Off See manual

Speed Switch Delay 0.5 100.0

Assign Speed Switch Trip Relays None Aux2

General Speed Switch Name 0 12 chars.

General Speed Switch Type NO NC

General Speed Switch Block Input from Start 0 5000

General Speed Switch Alarm Off L,UL

General Speed Switch Alarm Relays None Aux2

General Speed Switch Alarm Delay 0.1 5000.0

General Speed Switch Alarm Events Off On

General Speed Switch Trip Off L,UL

General Speed Switch Trip Relays None Aux2

General Speed Switch Trip Delay 0.1 5000.0

DIGITAL COUNTER

Assigned to:

Counter Name 0 8 chars.

Counter Units 0 6 chars.

Counter Type Increment Decrement

Digital Counter Alarm Off L,UL

Assign Alarm Relays None Aux2

Counter Alarm Level 0 65535

Record Alarms as Events No Yes

RRTD MODULE 1 DIGITAL INPUT 1

RRTD Module 1 - Digital Input 1 Assignable Function Off See manual

RRTD Module 1 - Digital Input 1 Name 0 12 chars.

RRTD Module 1 - Digital Input 1 Type NO NC

RRTD Module 1 - Digital Input 1 Alarm Off L,UL

RRTD Module 1 - Digital Input 1 Alarm Relays None Aux2

RRTD Module 1 - Digital Input 1 Alarm Delay 0.1 5000.0

RRTD Module 1 - Digital Input 1 Alarm Events Off On

RRTD Module 1 - Digital Input 1 Trip Off L,UL

RRTD Module 1 - Digital Input 1 Trip Relays None Aux2

RRTD Module 1 - Digital Input 1 Trip Delay 0.1 5000.0

Table 9–1: SETPOINTS TABLE (Sheet 30 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 199: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-31

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD MODULE 1 DIGITAL INPUT2

RRTD Module 1 - Digital Input 2 Assignable Function Off See manual

RRTD Module 1 - Digital Input 2 Name 0 12 chars.

RRTD Module 1 - Digital Input 2 Type NO NC

RRTD Module 1 - Digital Input 2 Alarm Off L,UL

RRTD Module 1 - Digital Input 2 Alarm Relays None Aux2

RRTD Module 1 - Digital Input 2 Alarm Delay 0.1 5000.0

RRTD Module 1 - Digital Input 2 Alarm Events Off On

RRTD Module 1 - Digital Input 2 Trip Off L,UL

RRTD Module 1 - Digital Input 2 Trip Relays None Aux2

RRTD Module 1 - Digital Input 2 Trip Delay 0.1 5000.0

RRTD MODULE 1 DIGITAL INPUT3

RRTD Module 1 - Digital Input 3 Assignable Function Off See manual

RRTD Module 1 - Digital Input 3 Name 0 12 chars.

RRTD Module 1 - Digital Input 3 Type NO NC

RRTD Module 1 - Digital Input 3 Alarm Off L,UL

RRTD Module 1 - Digital Input 3 Alarm Relays None Aux2

RRTD Module 1 - Digital Input 3 Alarm Delay 0.1 5000.0

RRTD Module 1 - Digital Input 3 Alarm Events Off On

RRTD Module 1 - Digital Input 3 Trip Off L,UL

RRTD Module 1 - Digital Input 3 Trip Relays None Aux2

RRTD Module 1 - Digital Input 3 Trip Delay 0.1 5000.0

RRTD MODULE 1 DIGITAL INPUT4

RRTD Module 1 - Digital Input 4 Assignable Function Off See manual

RRTD Module 1 - Digital Input 4 Name 0 12 chars.

RRTD Module 1 - Digital Input 4 Type NO NC

RRTD Module 1 - Digital Input 4 Alarm Off L,UL

RRTD Module 1 - Digital Input 4 Alarm Relays None Aux2

RRTD Module 1 - Digital Input 4 Alarm Delay 0.1 5000.0

RRTD Module 1 - Digital Input 4 Alarm Events Off On

RRTD Module 1 - Digital Input 4 Trip Off L,UL

RRTD Module 1 - Digital Input 4 Trip Relays None Aux2

RRTD Module 1 - Digital Input 4 Trip Delay 0.1 5000.0

RRTD MODULE 1 DIGITAL INPUT5

RRTD Module 1 - Digital Input 5 Assignable Function Off See manual

RRTD Module 1 - Digital Input 5 Name 0 12 chars.

RRTD Module 1 - Digital Input 5 Type NO NC

RRTD Module 1 - Digital Input 5 Alarm Off L,UL

RRTD Module 1 - Digital Input 5 Alarm Relays None Aux2

RRTD Module 1 - Digital Input 5 Alarm Delay 0.1 5000.0

RRTD Module 1 - Digital Input 5 Alarm Events Off On

RRTD Module 1 - Digital Input 5 Trip Off L,UL

RRTD Module 1 - Digital Input 5 Trip Relays None Aux2

RRTD Module 1 - Digital Input 5 Trip Delay 0.1 5000.0

Table 9–1: SETPOINTS TABLE (Sheet 31 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 200: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-32 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD MODULE 1 DIGITAL INPUT6

RRTD Module 1 - Digital Input 6 Assignable Function Off See manual

RRTD Module 1 - Digital Input 6 Name 0 12 chars.

RRTD Module 1 - Digital Input 6 Type NO NC

RRTD Module 1 - Digital Input 6 Alarm Off L,UL

RRTD Module 1 - Digital Input 6 Alarm Relays None Aux2

RRTD Module 1 - Digital Input 6 Alarm Delay 0.1 5000.0

RRTD Module 1 - Digital Input 6 Alarm Events Off On

RRTD Module 1 - Digital Input 6 Trip Off L,UL

RRTD Module 1 - Digital Input 6 Trip Relays None Aux2

RRTD Module 1 - Digital Input 6 Trip Delay 0.1 5000.0

RRTD MODULE 1 DIGITAL COUNTER

Assigned to:

Counter Name 0 8 chars.

Counter Units 0 6 chars.

Counter Type Increment Decrement

Digital Counter Alarm Off L,UL

Assign Alarm Relays None Aux2

Counter Alarm Level 0 65535

Record Alarms as Events No Yes

RRTD MODULE 2 DIGITAL INPUT 1

RRTD Module 2 - Digital Input 1 Assignable Function Off See manual

RRTD Module 2 - Digital Input 1 Name 0 12 chars.

RRTD Module 2 - Digital Input 1 Type NO NC

RRTD Module 2 - Digital Input 1 Alarm Off L,UL

RRTD Module 2 - Digital Input 1 Alarm Relays None Aux2

RRTD Module 2 - Digital Input 1 Alarm Delay 0.1 5000.0

RRTD Module 2 - Digital Input 1 Alarm Events Off On

RRTD Module 2 - Digital Input 1 Trip Off L,UL

RRTD Module 2 - Digital Input 1 Trip Relays None Aux2

RRTD Module 2 - Digital Input 1 Trip Delay 0.1 5000.0

RRTD MODULE 2 DIGITAL INPUT2

RRTD Module 2 - Digital Input 2 Assignable Function Off See manual

RRTD Module 2 - Digital Input 2 Name 0 12 chars.

RRTD Module 2 - Digital Input 2 Type NO NC

RRTD Module 2 - Digital Input 2 Alarm Off L,UL

RRTD Module 2 - Digital Input 2 Alarm Relays None Aux2

RRTD Module 2 - Digital Input 2 Alarm Delay 0.1 5000.0

RRTD Module 2 - Digital Input 2 Alarm Events Off On

RRTD Module 2 - Digital Input 2 Trip Off L,UL

RRTD Module 2 - Digital Input 2 Trip Relays None Aux2

RRTD Module 2 - Digital Input 2 Trip Delay 0.1 5000.0

RRTD MODULE 2 DIGITAL INPUT3

RRTD Module 2 - Digital Input 3 Assignable Function Off See manual

RRTD Module 2 - Digital Input 3 Name 0 12 chars.

RRTD Module 2 - Digital Input 3 Type NO NC

RRTD Module 2 - Digital Input 3 Alarm Off L,UL

RRTD Module 2 - Digital Input 3 Alarm Relays None Aux2

RRTD Module 2 - Digital Input 3 Alarm Delay 0.1 5000.0

RRTD Module 2 - Digital Input 3 Alarm Events Off On

RRTD Module 2 - Digital Input 3 Trip Off L,UL

RRTD Module 2 - Digital Input 3 Trip Relays None Aux2

RRTD Module 2 - Digital Input 3 Trip Delay 0.1 5000.0

Table 9–1: SETPOINTS TABLE (Sheet 32 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 201: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-33

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD MODULE 2 DIGITAL INPUT4

RRTD Module 2 - Digital Input 4 Assignable Function Off See manual

RRTD Module 2 - Digital Input 4 Name 0 12 chars.

RRTD Module 2 - Digital Input 4 Type NO NC

RRTD Module 2 - Digital Input 4 Alarm Off L,UL

RRTD Module 2 - Digital Input 4 Alarm Relays None Aux2

RRTD Module 2 - Digital Input 4 Alarm Delay 0.1 5000.0

RRTD Module 2 - Digital Input 4 Alarm Events Off On

RRTD Module 2 - Digital Input 4 Trip Off L,UL

RRTD Module 2 - Digital Input 4 Trip Relays None Aux2

RRTD Module 2 - Digital Input 4 Trip Delay 0.1 5000.0

RRTD MODULE 2 DIGITAL INPUT5

RRTD Module 2 - Digital Input 5 Assignable Function Off See manual

RRTD Module 2 - Digital Input 5 Name 0 12 chars.

RRTD Module 2 - Digital Input 5 Type NO NC

RRTD Module 2 - Digital Input 5 Alarm Off L,UL

RRTD Module 2 - Digital Input 5 Alarm Relays None Aux2

RRTD Module 2 - Digital Input 5 Alarm Delay 0.1 5000.0

RRTD Module 2 - Digital Input 5 Alarm Events Off On

RRTD Module 2 - Digital Input 5 Trip Off L,UL

RRTD Module 2 - Digital Input 5 Trip Relays None Aux2

RRTD Module 2 - Digital Input 5 Trip Delay 0.1 5000.0

RRTD MODULE 2 DIGITAL INPUT6

RRTD Module 2 - Digital Input 6 Assignable Function Off See manual

RRTD Module 2 - Digital Input 6 Name 0 12 chars.

RRTD Module 2 - Digital Input 6 Type NO NC

RRTD Module 2 - Digital Input 6 Alarm Off L,UL

RRTD Module 2 - Digital Input 6 Alarm Relays None Aux2

RRTD Module 2 - Digital Input 6 Alarm Delay 0.1 5000.0

RRTD Module 2 - Digital Input 6 Alarm Events Off On

RRTD Module 2 - Digital Input 6 Trip Off L,UL

RRTD Module 2 - Digital Input 6 Trip Relays None Aux2

RRTD Module 2 - Digital Input 6 Trip Delay 0.1 5000.0

RRTD MODULE 2 DIGITAL COUNTER

Assigned to:

Counter Name 0 8 chars.

Counter Units 0 6 chars.

Counter Type Increment Decrement

Digital Counter Alarm Off L,UL

Assign Alarm Relays None Aux2

Counter Alarm Level 0 65535

Record Alarms as Events No Yes

RRTD MODULE 3 DIGITAL INPUT 1

RRTD Module 3 - Digital Input 1 Assignable Function Off See manual

RRTD Module 3 - Digital Input 1 Name 0 12 chars.

RRTD Module 3 - Digital Input 1 Type NO NC

RRTD Module 3 - Digital Input 1 Alarm Off L,UL

RRTD Module 3 - Digital Input 1 Alarm Relays None Aux2

RRTD Module 3 - Digital Input 1 Alarm Delay 0.1 5000.0

RRTD Module 3 - Digital Input 1 Alarm Events Off On

RRTD Module 3 - Digital Input 1 Trip Off L,UL

RRTD Module 3 - Digital Input 1 Trip Relays None Aux2

RRTD Module 3 - Digital Input 1 Trip Delay 0.1 5000.0

Table 9–1: SETPOINTS TABLE (Sheet 33 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 202: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-34 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD MODULE 3 DIGITAL INPUT2

RRTD Module 3 - Digital Input 2 Assignable Function Off See manual

RRTD Module 3 - Digital Input 2 Name 0 12 chars.

RRTD Module 3 - Digital Input 2 Type NO NC

RRTD Module 3 - Digital Input 2 Alarm Off L,UL

RRTD Module 3 - Digital Input 2 Alarm Relays None Aux2

RRTD Module 3 - Digital Input 2 Alarm Delay 0.1 5000.0

RRTD Module 3 - Digital Input 2 Alarm Events Off On

RRTD Module 3 - Digital Input 2 Trip Off L,UL

RRTD Module 3 - Digital Input 2 Trip Relays None Aux2

RRTD Module 3 - Digital Input 2 Trip Delay 0.1 5000.0

RRTD MODULE 3 DIGITAL INPUT3

RRTD Module 3 - Digital Input 3 Assignable Function Off See manual

RRTD Module 3 - Digital Input 3 Name 0 12 chars.

RRTD Module 3 - Digital Input 3 Type NO NC

RRTD Module 3 - Digital Input 3 Alarm Off L,UL

RRTD Module 3 - Digital Input 3 Alarm Relays None Aux2

RRTD Module 3 - Digital Input 3 Alarm Delay 0.1 5000.0

RRTD Module 3 - Digital Input 3 Alarm Events Off On

RRTD Module 3 - Digital Input 3 Trip Off L,UL

RRTD Module 3 - Digital Input 3 Trip Relays None Aux2

RRTD Module 3 - Digital Input 3 Trip Delay 0.1 5000.0

RRTD MODULE 3 DIGITAL INPUT4

RRTD Module 3 - Digital Input 4 Assignable Function Off See manual

RRTD Module 3 - Digital Input 4 Name 0 12 chars.

RRTD Module 3 - Digital Input 4 Type NO NC

RRTD Module 3 - Digital Input 4 Alarm Off L,UL

RRTD Module 3 - Digital Input 4 Alarm Relays None Aux2

RRTD Module 3 - Digital Input 4 Alarm Delay 0.1 5000.0

RRTD Module 3 - Digital Input 4 Alarm Events Off On

RRTD Module 3 - Digital Input 4 Trip Off L,UL

RRTD Module 3 - Digital Input 4 Trip Relays None Aux2

RRTD Module 3 - Digital Input 4 Trip Delay 0.1 5000.0

RRTD MODULE 3 DIGITAL INPUT5

RRTD Module 3 - Digital Input 5 Assignable Function Off See manual

RRTD Module 3 - Digital Input 5 Name 0 12 chars.

RRTD Module 3 - Digital Input 5 Type NO NC

RRTD Module 3 - Digital Input 5 Alarm Off L,UL

RRTD Module 3 - Digital Input 5 Alarm Relays None Aux2

RRTD Module 3 - Digital Input 5 Alarm Delay 0.1 5000.0

RRTD Module 3 - Digital Input 5 Alarm Events Off On

RRTD Module 3 - Digital Input 5 Trip Off L,UL

RRTD Module 3 - Digital Input 5 Trip Relays None Aux2

RRTD Module 3 - Digital Input 5 Trip Delay 0.1 5000.0

Table 9–1: SETPOINTS TABLE (Sheet 34 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 203: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-35

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

RRTD MODULE 3 DIGITAL INPUT6

RRTD Module 3 - Digital Input 6 Assignable Function Off See manual

RRTD Module 3 - Digital Input 6 Name 0 12 chars.

RRTD Module 3 - Digital Input 6 Type NO NC

RRTD Module 3 - Digital Input 6 Alarm Off L,UL

RRTD Module 3 - Digital Input 6 Alarm Relays None Aux2

RRTD Module 3 - Digital Input 6 Alarm Delay 0.1 5000.0

RRTD Module 3 - Digital Input 6 Alarm Events Off On

RRTD Module 3 - Digital Input 6 Trip Off L,UL

RRTD Module 3 - Digital Input 6 Trip Relays None Aux2

RRTD Module 3 - Digital Input 6 Trip Delay 0.1 5000.0

RRTD MODULE 3 DIGITAL COUNTER

Assigned to:

Counter Name 0 8 chars.

Counter Units 0 6 chars.

Counter Type Increment Decrement

Digital Counter Alarm Off L,UL

Assign Alarm Relays None Aux2

Counter Alarm Level 0 65535

Record Alarms as Events No Yes

RRTD MODULE 4 DIGITAL INPUT 1

RRTD Module 4 - Digital Input 1 Assignable Function Off See manual

RRTD Module 4 - Digital Input 1 Name 0 12 chars.

RRTD Module 4 - Digital Input 1 Type NO NC

RRTD Module 4 - Digital Input 1 Alarm Off L,UL

RRTD Module 4 - Digital Input 1 Alarm Relays None Aux2

RRTD Module 4 - Digital Input 1 Alarm Delay 0.1 5000.0

RRTD Module 4 - Digital Input 1 Alarm Events Off On

RRTD Module 4 - Digital Input 1 Trip Off L,UL

RRTD Module 4 - Digital Input 1 Trip Relays None Aux2

RRTD Module 4 - Digital Input 1 Trip Delay 0.1 5000.0

RRTD MODULE 4 DIGITAL INPUT2

RRTD Module 4 - Digital Input 2 Assignable Function Off See manual

RRTD Module 4 - Digital Input 2 Name 0 12 chars.

RRTD Module 4 - Digital Input 2 Type NO NC

RRTD Module 4 - Digital Input 2 Alarm Off L,UL

RRTD Module 4 - Digital Input 2 Alarm Relays None Aux2

RRTD Module 4 - Digital Input 2 Alarm Delay 0.1 5000.0

RRTD Module 4 - Digital Input 2 Alarm Events Off On

RRTD Module 4 - Digital Input 2 Trip Off L,UL

RRTD Module 4 - Digital Input 2 Trip Relays None Aux2

RRTD Module 4 - Digital Input 2 Trip Delay 0.1 5000.0

RRTD MODULE 4 DIGITAL INPUT3

RRTD Module 4 - Digital Input 3 Assignable Function Off See manual

RRTD Module 4 - Digital Input 3 Name 0 12 chars.

RRTD Module 4 - Digital Input 3 Type NO NC

RRTD Module 4 - Digital Input 3 Alarm Off L,UL

RRTD Module 4 - Digital Input 3 Alarm Relays None Aux2

RRTD Module 4 - Digital Input 3 Alarm Delay 0.1 5000.0

RRTD Module 4 - Digital Input 3 Alarm Events Off On

RRTD Module 4 - Digital Input 3 Trip Off L,UL

RRTD Module 4 - Digital Input 3 Trip Relays None Aux2

RRTD Module 4 - Digital Input 3 Trip Delay 0.1 5000.0

Table 9–1: SETPOINTS TABLE (Sheet 35 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 204: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-36 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD MODULE 4 DIGITAL INPUT4

RRTD Module 4 - Digital Input 4 Assignable Function Off See manual

RRTD Module 4 - Digital Input 4 Name 0 12 chars.

RRTD Module 4 - Digital Input 4 Type NO NC

RRTD Module 4 - Digital Input 4 Alarm Off L,UL

RRTD Module 4 - Digital Input 4 Alarm Relays None Aux2

RRTD Module 4 - Digital Input 4 Alarm Delay 0.1 5000.0

RRTD Module 4 - Digital Input 4 Alarm Events Off On

RRTD Module 4 - Digital Input 4 Trip Off L,UL

RRTD Module 4 - Digital Input 4 Trip Relays None Aux2

RRTD Module 4 - Digital Input 4 Trip Delay 0.1 5000.0

RRTD MODULE 4 DIGITAL INPUT5

RRTD Module 4 - Digital Input 5 Assignable Function Off See manual

RRTD Module 4 - Digital Input 5 Name 0 12 chars.

RRTD Module 4 - Digital Input 5 Type NO NC

RRTD Module 4 - Digital Input 5 Alarm Off L,UL

RRTD Module 4 - Digital Input 5 Alarm Relays None Aux2

RRTD Module 4 - Digital Input 5 Alarm Delay 0.1 5000.0

RRTD Module 4 - Digital Input 5 Alarm Events Off On

RRTD Module 4 - Digital Input 5 Trip Off L,UL

RRTD Module 4 - Digital Input 5 Trip Relays None Aux2

RRTD Module 4 - Digital Input 5 Trip Delay 0.1 5000.0

RRTD MODULE 4 DIGITAL INPUT 6

RRTD Module 4 - Digital Input 6 Assignable Function Off See manual

RRTD Module 4 - Digital Input 6 Name 0 12 chars.

RRTD Module 4 - Digital Input 6 Type NO NC

RRTD Module 4 - Digital Input 6 Alarm Off L,UL

RRTD Module 4 - Digital Input 6 Alarm Relays None Aux2

RRTD Module 4 - Digital Input 6 Alarm Delay 0.1 5000.0

RRTD Module 4 - Digital Input 6 Alarm Events Off On

RRTD Module 4 - Digital Input 6 Trip Off L,UL

RRTD Module 4 - Digital Input 6 Trip Relays None Aux2

RRTD Module 4 - Digital Input 6 Trip Delay 0.1 5000.0

RRTD MODULE 4 DIGITAL COUNTER

Assigned to:

RRTD Module 4 - Counter Name 0 8 chars.

RRTD Module 4 - Counter Units 0 6 chars.

RRTD Module 4 - Counter Type Increment Decrement

RRTD Module 4 - Digital Counter Alarm Off L,UL

RRTD Module 4 - Assign Alarm Relays None Aux2

RRTD Module 4 - Counter Alarm Level 0 65535

RRTD Module 4 - Record Alarms as Events No Yes

ANALOG OUTPUT 1

Enable Analog Output 1 Disabled Enabled

Analog Output 1 Range 0-1 0-20,4-20

Analog Output 1 Parameter - See Manual

Analog Output 1 Minimum - See Manual

Analog Output 1 Maximum - See Manual

ANALOG OUTPUT 2

Enable Analog Output 2 Disabled Enabled

Analog Output 2 Range 0-1 0-20,4-20

Analog Output 2 Parameter - See Manual

Analog Output 2 Minimum - See Manual

Analog Output 2 Maximum - See Manual

Table 9–1: SETPOINTS TABLE (Sheet 36 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 205: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 9-37

9 COMMISSIONING 9.1 COMMISSIONING SETPOINTS

9

ANALOG OUTPUT 3

Enable Analog Output 3 Disabled Enabled

Analog Output 3 Range 0-1 0-20,4-20

Analog Output 3 Parameter - See Manual

Analog Output 3 Minimum - See Manual

Analog Output 3 Maximum - See Manual

ANALOG OUTPUT 4

Enable Analog Output 4 Disabled Enabled

Analog Output 4 Range 0-1 0-20,4-20

Analog Output 4 Parameter - See Manual

Analog Output 4 Minimum - See Manual

Analog Output 4 Maximum - See Manual

RRTD MODULE 1 ANALOG OUTPUT 1

RRTD Module 1 - Enable Analog Output 1 Disabled Enabled

RRTD Module 1 - Analog Output 1 Range 0-1 0-20,4-20

RRTD Module 1 - Analog Output 1 Parameter - See Manual

RRTD Module 1 - Analog Output 1 Minimum - See Manual

RRTD Module 1 - Analog Output 1 Maximum - See Manual

RRTD MODULE 1 ANALOG OUTPUT 2

RRTD Module 1 - Enable Analog Output 2 Disabled Enabled

RRTD Module 1 - Analog Output 2 Range 0-1 0-20,4-20

RRTD Module 1 - Analog Output 2 Parameter - See Manual

RRTD Module 1 - Analog Output 2 Minimum - See Manual

RRTD Module 1 - Analog Output 2 Maximum - See Manual

RRTD MODULE 1 ANALOG OUTPUT 3

RRTD Module 1 - Enable Analog Output 3 Disabled Enabled

RRTD Module 1 - Analog Output 3 Range 0-1 0-20,4-20

RRTD Module 1 - Analog Output 3 Parameter - See Manual

RRTD Module 1 - Analog Output 3 Minimum - See Manual

RRTD Module 1 - Analog Output 3 Maximum - See Manual

RRTD MODULE 1 ANALOG OUTPUT 4

RRTD Module 1 - Enable Analog Output 4 Disabled Enabled

RRTD Module 1 - Analog Output 4 Range 0-1 0-20,4-20

RRTD Module 1 - Analog Output 4 Parameter - See Manual

RRTD Module 1 - Analog Output 4 Minimum - See Manual

RRTD Module 1 - Analog Output 4 Maximum - See Manual

RRTD MODULE 2 ANALOG OUTPUT 1

RRTD Module 2 - Enable Analog Output 1 Disabled Enabled

RRTD Module 2 - Analog Output 1 Range 0-1 0-20,4-20

RRTD Module 2 - Analog Output 1 Parameter - See Manual

RRTD Module 2 - Analog Output 1 Minimum - See Manual

RRTD Module 2 - Analog Output 1 Maximum - See Manual

RRTD MODULE 2 ANALOG OUTPUT 2

RRTD Module 2 - Enable Analog Output 2 Disabled Enabled

RRTD Module 2 - Analog Output 2 Range 0-1 0-20,4-20

RRTD Module 2 - Analog Output 2 Parameter - See Manual

RRTD Module 2 - Analog Output 2 Minimum - See Manual

RRTD Module 2 - Analog Output 2 Maximum - See Manual

RRTD MODULE 2 ANALOG OUTPUT 3

RRTD Module 2 - Enable Analog Output 3 Disabled Enabled

RRTD Module 2 - Analog Output 3 Range 0-1 0-20,4-20

RRTD Module 2 - Analog Output 3 Parameter - See Manual

RRTD Module 2 - Analog Output 3 Minimum - See Manual

RRTD Module 2 - Analog Output 3 Maximum - See Manual

Table 9–1: SETPOINTS TABLE (Sheet 37 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 206: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

9-38 369 Motor Management Relay GE Power Management

9.1 COMMISSIONING SETPOINTS 9 COMMISSIONING

9

RRTD MODULE 2 ANALOG OUTPUT 4

RRTD Module 2 - Enable Analog Output 4 Disabled Enabled

RRTD Module 2 - Analog Output 4 Range 0-1 0-20,4-20

RRTD Module 2 - Analog Output 4 Parameter - See Manual

RRTD Module 2 - Analog Output 4 Minimum - See Manual

RRTD Module 2 - Analog Output 4 Maximum - See Manual

RRTD MODULE 3 ANALOG OUTPUT 1

RRTD Module 3 - Enable Analog Output 1 Disabled Enabled

RRTD Module 3 - Analog Output 1 Range 0-1 0-20,4-20

RRTD Module 3 - Analog Output 1 Parameter - See Manual

RRTD Module 3 - Analog Output 1 Minimum - See Manual

RRTD Module 3 - Analog Output 1 Maximum - See Manual

RRTD MODULE 3 ANALOG OUTPUT 2

RRTD Module 3 - Enable Analog Output 2 Disabled Enabled

RRTD Module 3 - Analog Output 2 Range 0-1 0-20,4-20

RRTD Module 3 - Analog Output 2 Parameter - See Manual

RRTD Module 3 - Analog Output 2 Minimum - See Manual

RRTD Module 3 - Analog Output 2 Maximum - See Manual

RRTD MODULE 3 ANALOG OUTPUT 3

RRTD Module 3 - Enable Analog Output 3 Disabled Enabled

RRTD Module 3 - Analog Output 3 Range 0-1 0-20,4-20

RRTD Module 3 - Analog Output 3 Parameter - See Manual

RRTD Module 3 - Analog Output 3 Minimum - See Manual

RRTD Module 3 - Analog Output 3 Maximum - See Manual

RRTD MODULE 3 ANALOG OUTPUT 4

RRTD Module 3 - Enable Analog Output 4 Disabled Enabled

RRTD Module 3 - Analog Output 4 Range 0-1 0-20,4-20

RRTD Module 3 - Analog Output 4 Parameter - See Manual

RRTD Module 3 - Analog Output 4 Minimum - See Manual

RRTD Module 3 - Analog Output 4 Maximum - See Manual

RRTD MODULE 4 ANALOG OUTPUT 1

RRTD Module 4 - Enable Analog Output 1 Disabled Enabled

RRTD Module 4 - Analog Output 1 Range 0-1 0-20,4-20

RRTD Module 4 - Analog Output 1 Parameter - See Manual

RRTD Module 4 - Analog Output 1 Minimum - See Manual

RRTD Module 4 - Analog Output 1 Maximum - See Manual

RRTD MODULE 4 ANALOG OUTPUT 2

RRTD Module 4 - Enable Analog Output 2 Disabled Enabled

RRTD Module 4 - Analog Output 2 Range 0-1 0-20,4-20

RRTD Module 4 - Analog Output 2 Parameter - See Manual

RRTD Module 4 - Analog Output 2 Minimum - See Manual

RRTD Module 4 - Analog Output 2 Maximum - See Manual

RRTD MODULE 4 ANALOG OUTPUT 3

RRTD Module 4 - Enable Analog Output 3 Disabled Enabled

RRTD Module 4 - Analog Output 3 Range 0-1 0-20,4-20

RRTD Module 4 - Analog Output 3 Parameter - See Manual

RRTD Module 4 - Analog Output 3 Minimum - See Manual

RRTD Module 4 - Analog Output 3 Maximum - See Manual

RRTD MODULE 4 ANALOG OUTPUT 4

RRTD Module 4 - Enable Analog Output 4 Disabled Enabled

RRTD Module 4 - Analog Output 4 Range 0-1 0-20,4-20

RRTD Module 4 - Analog Output 4 Parameter - See Manual

RRTD Module 4 - Analog Output 4 Minimum - See Manual

RRTD Module 4 - Analog Output 4 Maximum - See Manual

Table 9–1: SETPOINTS TABLE (Sheet 38 of 38)

GROUP DESCRIPTION MIN. MAX. SETTING

Courtesy of NationalSwitchgear.com
Page 207: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-1

10 COMMUNICATIONS 10.1 OVERVIEW

10

10 COMMUNICATIONS 10.1 OVERVIEW 10.1.1 ELECTRICAL INTERFACE

The hardware or electrical interface is one of the following:

• one of three 2-wire RS485 ports from the rear terminal connector,

• the RS232 from the front panel connector

• a fibre optic connection.

In a 2-wire RS485 link, data flow is bidirectional. Data flow is half duplex for both the RS485 and the RS232 ports. That is,data is never transmitted and received at the same time. RS485 lines should be connected in a daisy chain configuration(avoid star connections) with a terminating network installed at each end of the link, i.e. at the master end and at the slavefarthest from the master. The terminating network should consist of a 120 Ω resistor in series with a 1 nF ceramic capacitorwhen used with Belden 9841 RS485 wire. The value of the terminating resistors should be equal to the characteristicimpedance of the line. This is approximately 120 Ω for standard #22 AWG twisted pair wire. Shielded wire should always beused to minimize noise. Polarity is important in RS485 communications. Each '+' terminal of every 369 must be connectedtogether for the system to operate. See Section 3.3.14: RS485 COMMUNICATIONS on page 3–13 for details on correctserial port wiring.

When using a fibre optic link the Tx from the 369 should be connected to the Rx of the Master device and the Rx from the369 should be connected to the Tx of the Master device.

10.1.2 PROFIBUS COMMUNICATIONS

The 369 Motor Management Relay supports Profibus-DP protocol as slave that can be read and written to, from a Profibus-DP master which can read DMD file in the form of 369_xxxx.gs* files.

The relay supports the following configurations and indications:

• Fieldbus type: PROFIBUS-DP EN 50170 (DIN 19245) Part 3.

• Extended functions supported: Diagnostics Data via mailbox telegram.

• Auto baud rate detection 9.6Kbit - 12Mbit.

• Address range: 1-126, setting via 369PC Program or front keypad.

• Input data: 220 bytes - cyclical.

• Diagnostic data: 26 bytes - non-cyclical.

See Section 10.2: PROFIBUS PROTOCOL on page 10–2 for complete details.

10.1.3 MODBUS COMMUNICATIONS

The 369 implements a subset of the AEG Modicon Modbus RTU serial communication standard. Many popular program-mable controllers support this protocol directly with a suitable interface card allowing direct connection of relays. Althoughthe Modbus protocol is hardware independent, the 369 interfaces include three 2-wire RS485 ports and one RS232 port.Modbus is a single master, multiple slave protocol suitable for a multi-drop configuration as provided by RS485 hardware.In this configuration up to 32 slaves can be daisy-chained together on a single communication channel.

The 369 is always a slave. It cannot be programmed as a master. Computers or PLCs are commonly programmed as mas-ters. The Modbus protocol exists in two versions: Remote Terminal Unit (RTU, binary) and ASCII. Only the RTU version issupported by the 369. Monitoring, programming and control functions are possible using read and write register com-mands.

See Section 10.3: MODBUS RTU PROTOCOL on page 10–8 for complete details.

Courtesy of NationalSwitchgear.com
Page 208: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-2 369 Motor Management Relay GE Power Management

10.2 PROFIBUS PROTOCOL 10 COMMUNICATIONS

10

10.2 PROFIBUS PROTOCOL 10.2.1 369MMR-DP PARAMETERIZATOIN

The 369 Motor Management Relay supports mandatory parametrization. The relay keeps its user parameter data / set-points in a non-volatile memory and does not need device related parametrization during startup of the DP master. The369PC software is the best tool for user parametrization of the 369 device.

10.2.2 369MMR-DP CONFIGURATION

The Profibus-DP basic configuration has one DP master and one DP slave. In a typical bus segment up to 32 stations canbe connected (a repeater has to be used if more then 32 stations operate on a bus). The end nodes on a Profibus-DP net-work must be terminated to avoid reflections on the bus line. If the 369 Motor Management Relay is used as the first or lastmodule in a network the on-board termination switch has be in the ON position (default is OFF), or an external terminationconnector has to be used.

The bus address for the relay as Profibus-DP node can be set using the S1: 369 COMMUNICATIONS \ PROFIBUS ADDRESSsetpoint or via the 369PC software, which extends address range from 1 to 126. Address 126 is used only for commission-ing purposes and should not be used to exchange user data.

The media for the fieldbus is a twisted pair copper cable along with 9-pin SUB-D connector, which connects the bus to the369 socket on the back of the relay. The 369 Motor Management Relay has autobaud support. The baud rates and otherslave specific information needed for configuration are contained in 369_xxxx.gs* which is used by a network configura-tion program.

The 369 Motor Management Relay as a DP slave transfers fast process data to the DP master according to master-slaveprinciple.

The 369 Motor Management Relay is a modular device, supporting up to 8 input modules.

During the configuration session, all modules have to be selected in order to get the entire area of 110 words of input data.There are no output data for processing. The following diagram shows the possible DP Master Class2 configuration menu:

Figure 10–1: SLAVE CONFIGURATION

Courtesy of NationalSwitchgear.com
Page 209: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-3

10 COMMUNICATIONS 10.2 PROFIBUS PROTOCOL

10

Table 10–1: PROFIBUS INPUT DATA (Sheet 1 of 3)

OFFSET CYCLIC DATA (ACTUAL VALUES)

LENGTH (BYTES)

MINIMUM MAXIMUM STEP VALUE

UNITS FORMAT CODE

DEFAULT

VALUE HEX VALUE HEX

0 MotorStatus 2 0 0000 4 0004 1 – F133 0

2 TC_Used 2 0 0000 100 0064 1 % F1 0

4 Time_to_Trip 2 –1 FFFF 65500 FFDC 1 s F20 –1

6 OverloadLT 2 0 0000 50000 C350 1 s F1 0

8 StartInhibit LT 2 0 0000 60 003C 1 min F1 0

10 StartsHour LT[5] 2 0 0000 60 003C 1 min F1 0

12 TimeBetween StartsLT 2 0 0000 500 01F4 1 min F1 0

14 RestartBlock LT 2 0 0000 50000 C350 1 s F1 0

16 AccessSwitch Status 2 0 0000 1 0001 1 – F131 0

18 SpeedSwitch Status 2 0 0000 1 0001 1 – F131 0

20 SpareSwitch Status 2 0 0000 1 0001 1 – F131 0

22 DiffSwitch Status 2 0 0000 1 0001 1 – F131 0

24 EmergencySwitch status 2 0 0000 1 0001 1 – F131 0

26 ResetSwitch Status 2 0 0000 1 0001 1 – F131 0

28 TripRelayStatus 2 0 0000 1 0001 1 N/A F150 2

30 AlarmRelayStatus 2 0 0000 1 0001 1 N/A F150 2

32 Aux1RelayStatus 2 0 0000 1 0001 1 N/A F150 2

34 Aux2RelayStatus 2 0 0000 1 0001 1 N/A F150 2

36 Ia 2 0 0000 65535 FFFF 1 A F1 0

38 Ib 2 0 0000 65535 FFFF 1 A F1 0

40 Ic 2 0 0000 65535 FFFF 1 A F1 0

42 AveragePhaseCurrent 2 0 0000 65535 FFFF 1 A F1 0

44 MotorLoad 2 0 0000 2000 07D0 1 xFLA F3 0

46 CurrentUnbalance 2 0 0000 100 0064 1 % F1 0

48 Leq 2 0 0000 65535 FFFF 1 A F1 0

50 GroundCurrent 2 0 0000 50000 C350 1 A F23 0

52 Vab 2 0 0000 20000 4E20 1 V F1 0

54 Vbc 2 0 0000 20000 4E20 1 V F1 0

56 Vca 2 0 0000 20000 4E20 1 V F1 0

58 Van 2 0 0000 20000 4E20 1 V F1 0

60 Vbn 2 0 0000 20000 4E20 1 V F1 0

62 Vcn 2 0 0000 20000 4E20 1 V F1 0

64 AvgLineVoltage 2 0 0000 20000 4E20 1 V F1 0

66 AvgPhaseVoltage 2 0 0000 20000 4E20 1 V F1 0

68 Frequency 2 0 0000 12000 2EE0 1 Hz F3 0

70 BackSpinFrequency 2 1 0001 12000 2EE0 1 Hz F3 0

72 PowerFactor 2 –99 FF9D 100 0064 1 – F21 0

74 RealPower–kW 2 –32000 8300 32000 7D00 1 kW F4 0

76 RealPower–HP 2 0 0000 65000 FDE8 1 hp F1 0

78 ReactivePower 2 –32000 8300 32000 7D00 1 kvar F4 0

80 ApparentPower 2 0 0000 50000 C350 1 kVA F1 0

82 MWh 2 0 0000 65535 FFFF 1 MWh F1 0

84 PositiveKvarh 2 0 0000 65535 FFFF 1 kvarh F1 0

86 NegativeKvarh 2 0 0000 65535 FFFF 1 kvarh F1 0

88 HottestStatorRtd 2 0 0000 12 000C 1 F2 0

90 HottestStatorRtdTemp 2 –40 FFD8 200 00C8 1 °C F4 –42

Courtesy of NationalSwitchgear.com
Page 210: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-4 369 Motor Management Relay GE Power Management

10.2 PROFIBUS PROTOCOL 10 COMMUNICATIONS

10

92 LocalRtd1 2 –40 FFD8 200 00C8 1 °C F4 –42

94 LocalRtd2 2 –40 FFD8 200 00C8 1 °C F4 –42

96 LocalRtd3 2 –40 FFD8 200 00C8 1 °C F4 –42

98 LocalRtd4 2 –40 FFD8 200 00C8 1 °C F4 –42

100 LocalRtd5 2 –40 FFD8 200 00C8 1 °C F4 –42

102 LocalRtd6 2 –40 FFD8 200 00C8 1 °C F4 –42

104 LocalRtd7 2 –40 FFD8 200 00C8 1 °C F4 –42

106 LocalRtd8 2 –40 FFD8 200 00C8 1 °C F4 –42

108 LocalRtd9 2 –40 FFD8 200 00C8 1 °C F4 –42

110 LocalRtd10 2 –40 FFD8 200 00C8 1 °C F4 –42

112 LocalRtd11 2 –40 FFD8 200 00C8 1 °C F4 –42

114 LocalRtd12 2 –40 FFD8 200 00C8 1 °C F4 –42

116 CurrentDemand 2 0 0000 50000 C350 1 A F1 0

118 RealPowerDemand 2 0 0000 50000 C350 1 kW F1 0

120 ReactivePowerDemand 2 –32000 8300 32000 7D00 1 kvar F4 0

122 ApparentPowerDemand 2 0 0000 50000 C350 1 kVA F1 0

124 PeakCurrent 2 0 0000 65535 FFFF 1 A F1 0

126 PeakRealPower 2 0 0000 50000 C350 1 kW F1 0

128 PeakReactivePower 2 –32000 8300 32000 7D00 1 kvar F4 0

130 PeakApparentPower 2 0 0000 50000 C350 1 kVA F1 0

132 Va angle 2 0 0000 359 0167 1 o F1 0

134 Vb angle 2 0 0000 359 0167 1 o F1 0

136 Vc angle 2 0 0000 359 0167 1 o F1 0

138 Ia angle 2 0 0000 359 0167 1 o F1 0

140 Ib angle 2 0 0000 359 0167 1 o F1 0

142 Ic angle 2 0 0000 359 0167 1 o F1 0

144 Learned AccelerationTime 2 1 0001 2500 09C4 1 s F2 0

146 Learned StartingCurrent 2 0 0000 65535 FFFF 1 A F1 0

148 Learned StartingCapacity 2 0 0000 100 0064 1 % F1 0

150 Learned RunningCoolTime Constant

2 0 0000 500 01F4 1 min F1 0

152 LearnedStoppedCoolTime Constant

2 0 0000 500 01F4 1 min F1 0

154 Last StartingCapacity 2 0 0000 100 0064 1 % F1 0

156 Learned UnbalanceKfactor 2 0 0000 29 001D 1 – F1 0

158 BSDState 2 0 0000 6 0006 1 – F27 0

160 RawPredictionTimer 2 0 0000 50000 C350 1 s F2 0

162 NumberOfStarts 2 0 0000 50000 C350 1 – F1 0

164 NumberOfRestarts 2 0 0000 50000 C350 1 – F1 0

166 DigitalCounter 2 0 0000 65535 FFFF 1 – F1 0

168 MotorRunningHours 2 0 0000 65535 FFFF 1 hr F1 0

170 RelayOperatingHours 2 0 0000 65535 FFFF 1 hr F1 0

172 Last trip Cause 2 0 0000 169 00A9 1 – F134 0

174 Last trip Date 4 N/A N/A N/A N/A N/A N/A F18 N/A

178 Last trip Time 4 N/A N/A N/A N/A N/A N/A F19 N/A

182 last pre–trip Ia 2 0 0000 65535 FFFF 1 A F1 0

184 last pre–trip Ib 2 0 0000 65535 FFFF 1 A F1 0

Table 10–1: PROFIBUS INPUT DATA (Sheet 2 of 3)

OFFSET CYCLIC DATA (ACTUAL VALUES)

LENGTH (BYTES)

MINIMUM MAXIMUM STEP VALUE

UNITS FORMAT CODE

DEFAULT

VALUE HEX VALUE HEX

Courtesy of NationalSwitchgear.com
Page 211: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-5

10 COMMUNICATIONS 10.2 PROFIBUS PROTOCOL

10

10.2.3 369MMR-DP DIAGNOSTICS

The 369 Motor Management Relay supports both slave mandatory (6 bytes system-wide standardized) and slave specificdiagnostic data. If the diagnostics are considered hi-priority, the PLC/host program will be informed of the fault (alarm ortrip) and can call a special error routine. When the 369 is in Simulation mode, the DP master will get a static diagnosticmessage, which means the 369MMR-DP produced non-process (simulated values), and the DP master should stop dataexchange with the 369MMR-DP. The extended diagnosis for the relay is composed of 26 bytes (bytes 7 to 32) and containsdiagnostic information according to the following table.

186 last pre–trip Ic 2 0 0000 65535 FFFF 1 A F1 0

188 last pre–trip MotorLoad 2 0 0000 2000 07D0 1 FLA F3 0

190 last pre–trip Unbalance 2 0 0000 100 0064 1 % F1 0

192 last pre–trip Ig 2 0 0000 50000 C350 1 A F23 0

194 last trip HottestStatorRtd 2 0 0000 12 000C 1 – F1 0

196 Last trip HottestStatorTemp 2 –40 FFD8 200 00C8 1 oC F4 0

198 Last pre–trip Vab 2 0 0000 20000 4E20 1 V F1 0

200 Last pre–trip Vbc 2 0 0000 20000 4E20 1 V F1 0

202 Last pre–trip Vca 2 0 0000 20000 4E20 1 V F1 0

204 Last pre–trip Van 2 0 0000 20000 4E20 1 V F1 0

206 Last pre–trip Vbn 2 0 0000 20000 4E20 1 V F1 0

208 Last pre–trip Vcn 2 0 0000 20000 4E20 1 V F1 0

210 Last pre–trip Frequency 2 0 0000 12000 2EE0 1 Hz F3 0

212 Last pre–trip KiloWatts 2 –32000 8300 32000 7D00 1 kW F4 0

214 Last pre–trip KiloVAR 2 –32000 8300 32000 7D00 1 kvar F4 0

216 Last pre–trip KiloVA 2 0 0000 50000 C350 1 kVA F1 0

218 Last pre–trip PowerFactor 2 –99 FF9D 100 0064 1 – F21 0

Table 10–2: PROFIBUS DIAGNOSTICS (Sheet 1 of 5)

BIT BYTE FUNCTION

0 8 SinglePhasingTrip

1 8 SpareSwitchTrip

2 8 EmergencySwitchTrip

3 8 DifferentialSwitchTrip

4 8 SpeedSwitchTrip

5 8 ResetSwitchTrip

6 8 AccessSwitchTrip

7 8 OverloadTrip

8 9 ShortCircuitTrip

9 9 ShortCircuitBackupTrip

10 9 MechanicalJamTrip

11 9 UndercurrentTrip

12 9 CurrentUnbalanceTrip

13 9 GroundFaultTrip

14 9 GroundFaultBackupTrip

15 9 PhaseDifferentialTrip

16 10 AccelerationTimerTrip

17 10 Rtd1Trip

Table 10–1: PROFIBUS INPUT DATA (Sheet 3 of 3)

OFFSET CYCLIC DATA (ACTUAL VALUES)

LENGTH (BYTES)

MINIMUM MAXIMUM STEP VALUE

UNITS FORMAT CODE

DEFAULT

VALUE HEX VALUE HEX

Courtesy of NationalSwitchgear.com
Page 212: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-6 369 Motor Management Relay GE Power Management

10.2 PROFIBUS PROTOCOL 10 COMMUNICATIONS

10

18 10 Rtd2Trip

19 10 Rtd3Trip

20 10 Rtd4Trip

21 10 Rtd5Trip

22 10 Rtd6Trip

23 10 Rtd7Trip

24 11 Rtd8Trip

25 11 Rtd9Trip

26 11 Rtd10Trip

27 11 Rtd11Trip

28 11 Rtd12Trip

29 11 UnderVoltageTrip

30 11 OverVoltageTrip

31 11 VoltagePhaseReversalTrip

32 12 UnderfrequencyTrip

33 12 OverfrequencyTrip

34 12 LeadPowerFactorTrip

35 12 LagPowerFactorTrip

36 12 PositivekvarTrip

37 12 NegativekvarTrip

38 12 UnderpowerTrip

39 12 ReversePowerTrip

40 13 IncompleteSequenceTrip

41 13 SpareSwitchAlarm

42 13 EmergencySwitchAlarm

43 13 DifferentialSwitchAlarm

44 13 SpeedSwitchAlarm

45 13 ResetSwitchAlarm

46 13 AccessSwitchAlarm

47 13 ThermalCapacityAlarm

48 14 OverloadAlarm

49 14 MechanicalJamAlarm

50 14 UndercurrentAlarm

51 14 CurrentUnbalanceAlarm

52 14 GroundFaultAlarm

53 14 UndervoltageAlarm

54 14 OvervoltageAlarm

55 14 OverfrequencyAlarm

56 15 UnderfrequencyAlarm

57 15 LeadPowerFactorAlarm

58 15 LagPowerFactorAlarm

59 15 PositivekvarAlarm

60 15 NegativekvarAlarm

61 15 UnderpowerAlarm

62 15 ReversePowerAlarm

63 15 Rtd1Alarm

64 16 Rtd2Alarm

Table 10–2: PROFIBUS DIAGNOSTICS (Sheet 2 of 5)

BIT BYTE FUNCTION

65 16 Rtd3Alarm

66 16 Rtd4Alarm

67 16 Rtd5Alarm

68 16 Rtd6Alarm

69 16 Rtd7Alarm

70 16 Rtd8Alarm

71 16 Rtd9Alarm

72 17 Rtd10Alarm

73 17 Rtd11Alarm

74 17 Rtd12Alarm

75 17 Rtd1HighAlarm

76 17 Rtd2HighAlarm

77 17 Rtd3HighAlarm

78 17 Rtd4HighAlarm

79 17 Rtd5HighAlarm

80 18 Rtd6HighAlarm

81 18 Rtd7HighAlarm

82 18 Rtd8HighAlarm

83 18 Rtd9HighAlarm

84 18 Rtd10HighAlarm

85 18 Rtd11HighAlarm

86 18 Rtd12HighAlarm

87 18 OpenRTDSensorAlarm

88 19 ShortRTDAlarm

89 19 TripCountersAlarm

90 19 StarterFailureAlarm

91 19 CurrentDemandAlarm

92 19 KWDemandAlarm

93 19 KVARDemandAlarm

94 19 KVADemandAlarm

95 19 DigitalCounterAlarm

96 20 OverloadLockoutBlock

97 20 StartInhibitBlock

98 20 StartsHourBlock

99 20 TimeBetweenStartsBlock

100 20 RestartBlock

101 20 NotProgrammedBlock

102 20 BackSpinBlock

103 20 LossofRemoteRTDCommunication"

104 21 RemoteRTD1Rtd1Trip

105 21 RemoteRTD1Rtd2Trip

106 21 RemoteRTD1Rtd3Trip

107 21 RemoteRTD1Rtd4Trip

108 21 RemoteRTD1Rtd5Trip

109 21 RemoteRTD1Rtd6Trip

110 21 RemoteRTD1Rtd7Trip

111 21 RemoteRTD1Rtd8Trip

Table 10–2: PROFIBUS DIAGNOSTICS (Sheet 3 of 5)

BIT BYTE FUNCTION

Courtesy of NationalSwitchgear.com
Page 213: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-7

10 COMMUNICATIONS 10.2 PROFIBUS PROTOCOL

10The 369 Motor Management Relay will support DPV1 specifications soon.

112 22 RemoteRTD1Rtd9Trip

113 22 RemoteRTD1Rtd10Trip

114 22 RemoteRTD1Rtd11Trip

115 22 RemoteRTD1Rtd12Trip

116 22 RemoteRTD2Rtd1Trip

117 22 RemoteRTD2Rtd2Trip

118 22 RemoteRTD2Rtd3Trip

119 22 RemoteRTD2Rtd4Trip

120 23 RemoteRTD2Rtd5Trip

121 23 RemoteRTD2Rtd6Trip

122 23 RemoteRTD2Rtd7Trip

123 23 RemoteRTD2Rtd8Trip

124 23 RemoteRTD2Rtd9Trip

125 23 RemoteRTD2Rtd10Trip

126 23 RemoteRTD2Rtd11Trip

127 23 RemoteRTD2Rtd12Trip

128 24 RemoteRTD3Rtd1Trip

129 24 RemoteRTD3Rtd2Trip

130 24 RemoteRTD3Rtd3Trip

131 24 RemoteRTD3Rtd4Trip

132 24 RemoteRTD3Rtd5Trip

133 24 RemoteRTD3Rtd6Trip

134 24 RemoteRTD3Rtd7Trip

135 24 RemoteRTD3Rtd8Trip

136 25 RemoteRTD3Rtd9Trip

137 25 RemoteRTD3Rtd10Trip

138 25 RemoteRTD3Rtd11Trip

139 25 RemoteRTD3Rtd12Trip

140 25 RemoteRTD4Rtd1Trip

141 25 RemoteRTD4Rtd2Trip

142 25 RemoteRTD4Rtd3Trip

143 25 RemoteRTD4Rtd4Trip

144 26 RemoteRTD4Rtd5Trip

145 26 RemoteRTD4Rtd6Trip

146 26 RemoteRTD4Rtd7Trip

147 26 RemoteRTD4Rtd8Trip

148 26 RemoteRTD4Rtd9Trip

149 26 RemoteRTD4Rtd10Trip

150 26 RemoteRTD4Rtd11Trip

151 26 RemoteRTD4Rtd12Trip

152 27 RemoteRTD1Rtd1Alarm

153 27 RemoteRTD1Rtd2Alarm

154 27 RemoteRTD1Rtd3Alarm

155 27 RemoteRTD1Rtd4Alarm

156 27 RemoteRTD1Rtd5Alarm

Table 10–2: PROFIBUS DIAGNOSTICS (Sheet 4 of 5)

BIT BYTE FUNCTION

157 27 RemoteRTD1Rtd6Alarm

158 27 RemoteRTD1Rtd7Alarm

159 27 RemoteRTD1Rtd8Alarm

160 28 RemoteRTD1Rtd9Alarm

161 28 RemoteRTD1Rtd10Alarm

162 28 RemoteRTD1Rtd11Alarm

163 28 RemoteRTD1Rtd12Alarm

164 28 RemoteRTD2Rtd1Alarm

165 28 RemoteRTD2Rtd2Alarm

166 28 RemoteRTD2Rtd3Alarm

167 28 RemoteRTD2Rtd4Alarm

168 29 RemoteRTD2Rtd5Alarm

169 29 RemoteRTD2Rtd6Alarm

170 29 RemoteRTD2Rtd7Alarm

171 29 RemoteRTD2Rtd8Alarm

172 29 RemoteRTD2Rtd9Alarm

173 29 RemoteRTD2Rtd10Alarm

174 29 RemoteRTD2Rtd11Alarm

175 29 RemoteRTD2Rtd12Alarm

176 30 RemoteRTD3Rtd1Alarm

177 30 RemoteRTD3Rtd2Alarm

178 30 RemoteRTD3Rtd3Alarm

179 30 RemoteRTD3Rtd4Alarm

180 30 RemoteRTD3Rtd5Alarm

181 30 RemoteRTD3Rtd6Alarm

182 30 RemoteRTD3Rtd7Alarm

183 30 RemoteRTD3Rtd8Alarm

184 31 RemoteRTD3Rtd9Alarm

185 31 RemoteRTD3Rtd10Alarm

186 31 RemoteRTD3Rtd11Alarm

187 31 RemoteRTD3Rtd12Alarm

188 31 RemoteRTD4Rtd1Alarm

189 31 RemoteRTD4Rtd2Alarm

190 31 RemoteRTD4Rtd3Alarm

191 31 RemoteRTD4Rtd4Alarm

192 32 RemoteRTD4Rtd5Alarm

193 32 RemoteRTD4Rtd6Alarm

194 32 RemoteRTD4Rtd7Alarm

195 32 RemoteRTD4Rtd8Alarm

196 32 RemoteRTD4Rtd9Alarm

197 32 RemoteRTD4Rtd10Alarm

198 32 RemoteRTD4Rtd11Alarm

199 32 RemoteRTD4Rtd12Alarm

Table 10–2: PROFIBUS DIAGNOSTICS (Sheet 5 of 5)

BIT BYTE FUNCTION

Courtesy of NationalSwitchgear.com
Page 214: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-8 369 Motor Management Relay GE Power Management

10.3 MODBUS RTU PROTOCOL 10 COMMUNICATIONS

10

10.3 MODBUS RTU PROTOCOL 10.3.1 DATA FRAME FORMAT AND DATA RATE

One data frame of an asynchronous transmission to or from an 369 is default to 1 start bit, 8 data bits, and 1 stop bit. Thisproduces a 10 bit data frame. This is important for transmission through modems at high bit rates (11 bit data frames arenot supported by Hayes modems at bit rates of greater than 300 bps). The parity bit is optional as odd or even. If it is pro-grammed as odd or even, the data frame consists of 1 start bit, 8 data bits, 1 parity bit, and 1 stop bit.

Modbus protocol can be implemented at any standard communication speed. The 369 RS485, fiber optic and RS232 portssupport operation at 1200, 2400, 4800, 9600, and 19200 baud.

10.3.2 DATA PACKET FORMAT

A complete request/response sequence consists of the following bytes (transmitted as separate data frames):

Master Request Transmission:

SLAVE ADDRESS - 1 byteFUNCTION CODE - 1 byteDATA - variable number of bytes depending on FUNCTION CODECRC - 2 bytes

Slave Response Transmission:

SLAVE ADDRESS - 1 byteFUNCTION CODE - 1 byteDATA - variable number of bytes depending on FUNCTION CODECRC - 2 bytes

SLAVE ADDRESS: This is the first byte of every transmission. It represents the user-assigned address of the slave devicethat is to receive the message sent by the master. Each slave device must be assigned a unique address and only theaddressed slave will respond to a transmission that starts with its address. In a master request transmission the SLAVEADDRESS represents the address of the slave to which the request is being sent. In a slave response transmission theSLAVE ADDRESS represents the address of the slave that is sending the response. Note: A master transmission with aSLAVE ADDRESS of 0 indicates a broadcast command. Broadcast commands can be used for specific functions.

FUNCTION CODE: This is the second byte of every transmission. The modbus protocol defines function codes of 1 to 127.The 369 implements some of these functions. In a master request transmission the FUNCTION CODE tells the slave whataction to perform. In a slave response transmission if the FUNCTION CODE sent from the slave is the same as the FUNC-TION CODE sent from the master indicating the slave performed the function as requested. If the high order bit of theFUNCTION CODE sent from the slave is a 1 (i.e. if the FUNCTION CODE is > 127) then the slave did not perform the func-tion as requested and is sending an error or exception response.

DATA: This will be a variable number of bytes depending on the FUNCTION CODE. This may be actual values, setpoints,or addresses sent by the master to the slave or by the slave to the master. Data is sent MSByte first followed by theLSByte.

CRC: This is a two byte error checking code. CRC is sent LSByte first followed by the MSByte.

10.3.3 ERROR CHECKING

The RTU version of Modbus includes a two byte CRC-16 (16 bit cyclic redundancy check) with every transmission. TheCRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuousbinary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial(11000000000000101B). The 16 bit remainder of the division is appended to the end of the transmission, LSByte first. Theresulting message including CRC, when divided by the same polynomial at the receiver will give a zero remainder if notransmission errors have occurred.

If an 369 Modbus slave device receives a transmission in which an error is indicated by the CRC-16 calculation, the slavedevice will not respond to the transmission. A CRC-16 error indicates than one or more bytes of the transmission werereceived incorrectly and thus the entire transmission should be ignored in order to avoid the 369 performing any incorrectoperation.

The CRC-16 calculation is an industry standard method used for error detection. An algorithm is included here to assistprogrammers in situations where no standard CRC-16 calculation routines are available.

Courtesy of NationalSwitchgear.com
Page 215: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-9

10 COMMUNICATIONS 10.3 MODBUS RTU PROTOCOL

10

10.3.4 CRC-16 ALGORITHM

Once the following algorithm is complete, the working register "A" will contain the CRC value to be transmitted. Note thatthis algorithm requires the characteristic polynomial to be reverse bit ordered. The MSbit of the characteristic polynomial isdropped since it does not affect the value of the remainder. The following symbols are used in the algorithm:

--> data transferA 16 bit working registerAL low order byte of AAH high order byte of ACRC 16 bit CRC-16 valuei, j loop counters(+) logical exclusive or operatorDi i-th data byte (i = 0 to N-1)G 16 bit characteristic polynomial = 1010000000000001 with MSbit dropped and bit order

reversedshr(x) shift right (the LSbit of the low order byte of x shifts into a carry flag, a '0' is shifted into the

MSbit of the high order byte of x, all other bits shift right one location

The algorithm is as follows:

1. FFFF hex --> A

2. 0 --> i

3. 0 --> j

4. Di (+) AL --> AL

5. j+1 --> j

6. shr(A)

7. is there a carry? No: go to 8.Yes: G (+) A --> A

8. is j = 8? No: go to 5.Yes: go to 9.

9. i+1 --> i

10. is i = N? No: go to 3.Yes: go to 11.

11. A --> CRC

10.3.5 TIMING

Data packet synchronization is maintained by timing constraints. The receiving device must measure the time between thereception of characters. If three and one half character times elapse without a new character or completion of the packet,then the communication link must be reset (i.e. all slaves start listening for a new transmission from the master). Thus at9600 baud a delay of greater than 3.5 × 1 / 9600 × 10 = 3.65 ms will cause the communication link to be reset.

10.3.6 SUPPORTED MODBUS FUNCTIONS

The following Modbus functions are supported by the 369:

• 03 - Read Setpoints and Actual Values• 04 - Read Setpoints and Actual Values• 05 - Execute Operation• 06 - Store Single Setpoint• 07 - Read Device Status• 08 - Loopback Test• 16 - Store Multiple Setpoints

For detailed Modbus function code descriptions, refer to the Modicon Modbus Protocol Reference guide.

Courtesy of NationalSwitchgear.com
Page 216: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-10 369 Motor Management Relay GE Power Management

10.3 MODBUS RTU PROTOCOL 10 COMMUNICATIONS

10

10.3.7 ERROR RESPONSES

When an 369 detects an error other than a CRC error, a response will be sent to the master. The MSbit of the FUNCTIONCODE byte will be set to 1 (i.e. the function code sent from the slave will be equal to the function code sent from the masterplus 128). The following byte will be an exception code indicating the type of error that occurred.

Transmissions received from the master with CRC errors will be ignored by the 369.

The slave response to an error (other than CRC error) will be:

SLAVE ADDRESS - 1 byteFUNCTION CODE - 1 byte (with MSbit set to 1)EXCEPTION CODE - 1 byteCRC - 2 bytes

The 369 implements the following exception response codes.

01 - ILLEGAL FUNCTION

The function code transmitted is not one of the functions supported by the 369.

02 - ILLEGAL DATA ADDRESS

The address referenced in the data field transmitted by the master is not an allowable address for the 369.

03 - ILLEGAL DATA VALUE

The value referenced in the data field transmitted by the master is not within range for the selected data address.

Courtesy of NationalSwitchgear.com
Page 217: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-11

10 COMMUNICATIONS 10.4 MEMORY MAP

10

10.4 MEMORY MAP 10.4.1 MEMORY MAP INFORMATION

The data stored in the 369 is grouped as setpoints and actual values. Setpoints can be read and written by a master com-puter. Actual Values are read-only. All setpoints and actual values are stored as two-byte values. That is, each registeraddress is the address of a two-byte value. Addresses are listed in hexadecimal. Data values (setpoint ranges, increments,factory values) are in decimal.

Many Modbus communications drivers add 40001d to the actual address of the register addresses. Forexample: if address 0h was to be read, 40001d would be the address required by the Modbus communi-cations driver; if address 320h (800d) was to be read, 40801d would be the address required by the Mod-bus communications driver.

10.4.2 USER DEFINABLE MEMORY MAP AREA

The 369 has a powerful feature, called the User Definable Memory Map, which allows a computer to read up to 124 non-consecutive data registers (setpoints or actual values) by using one Modbus packet. It is often necessary for a master com-puter to continuously poll various values in each of the connected slave relays. If these values are scattered throughout thememory map, reading them would require numerous transmissions and would burden the communication link. The UserDefinable Memory Map can be programmed to join any memory map address to one in the block of consecutive User Maplocations, so that they can be accessed by reading these consecutive locations.

The User Definable area has two sections:

1. A Register Index area (memory map addresses 0180h-01FCh) that contains 125 Actual Values or Setpoints registeraddresses.

2. A Register area (memory map addresses 0100h-017Ch) that contains the data at the addresses in the Register Index.

Register data that is separated in the rest of the memory map may be remapped to adjacent register addresses in the UserDefinable Registers area. This is accomplished by writing to register addresses in the User Definable Register Index area.This allows for improved through-put of data and can eliminate the need for multiple read command sequences.

For example, if the values of Average Phase Current (register address 0306h) and Hottest Stator RTD Temperature (regis-ter address 0320h) are required to be read from an 369, their addresses may be remapped as follows:

1. Write 0306h to address 0180h (User Definable Register Index 0000) using function code 06 or 16.

2. Write 0320h to address 0181h (User Definable Register Index 0001) using function code 06 or 16.

A read (function code 03 or 04) of registers 0100h (User Definable Register 0000) will return the Phase A Current and reg-ister 0101h (User Definable Register 0001) will return Hottest Stator RTD Temperature.

10.4.3 EVENT RECORDER

The 369 event recorder data starts at address 3000h. Address 3003h is a pointer to the event of interest (1 representing theoldest event and 40 representing the latest event. To retrieve event 1, write ‘1’ to the Event Record Selector (3003h) andread the data from 3004h to 3022h. To retrieve event 2, write ‘2’ to the Event Record Selector (3003h) and read the datafrom 3004h to 3022h. All 40 events may be retrieved in this manner. The time and date stamp of each event may be usedto ensure that all events have been retrieved in order without new events corrupting the sequence of events (event 1should be more recent than event 2, event 2 should be more recent than event 3, etc.).

10.4.4 WAVEFORM CAPTURE

The 369 stores 16 cycles of A/D samples each time a trip occurs in a trace buffer. The Trace Memory Trigger is set up in S1Preferences and determines how many pre-trip and post-trip cycles are stored. The trace buffer is time and date stampedand may be correlated to a trip in the event record. 7 waveforms are captured this way when a trip occurs. These are the 3phase currents, ground current and 3 voltage waveforms. The last three captured records are retained by the 369. Thisinformation is stored in volatile memory and will be lost if power is cycled to the relay.

To access the captured waveforms, select the captured record by writing to the Trace Memory Buffer Selector (address30F5h), then select waveform of interest by writing its trace memory channel (see following table) to the Trace MemoryChannel Selector (address 30F6h). Then read the trace memory data from address 3100h to 31FFh. The values read arein actual amperes or volts.

NOTE

Courtesy of NationalSwitchgear.com
Page 218: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-12 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

10.4.5 MODBUS MEMORY MAP

TRACE MEMORYCHANNEL

WAVEFORM

0 Phase A current

1 Phase B current

2 Phase C current

3 Ground current

4 Phase A voltage

5 Phase B voltage

6 Phase C voltage

Table 10–3: MEMORY MAP (Sheet 1 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

PRODUCT ID (ADDRESSES 0000 TO 007F)PRODUCT ID

0000 GE Power Management Product Code - - - - F1 53

0001 Product Hardware Revision 1 26 1 N/A F15 A

0002 Firmware Revision N/A N/A N/A N/A F16 N/A

0003 Modification Number 0 999 1 N/A F1 0

0004 Boot Revision 0 999 1 - F1 0

0005 Boot Mod Number - - - - - -

0006 Reserved - - - - - -

0007 Reserved - - - - - -

0008 Order Code 0 63 1 N/A 0

↓ ↓ - - - - - -

000F Modify Options 0 N/A - N/A N/A -

0010 Modify Options Passcode Characters 1 & 2 32 127 1 - F1 " "

↓ ↓ - - - - - -

0017 Modify Options Passcode Characters 15 & 16 32 127 1 - F1 " "

--- --- - - - - - -

0020 Serial Number character 1 and 2 N/A N/A N/A ASCII F22 N/A

0021 Serial Number character 3 and 4 N/A N/A N/A ASCII F22 N/A

0022 Serial Number character 5 and 6 N/A N/A N/A ASCII F22 N/A

0023 Serial Number character 7 and 8 N/A N/A N/A ASCII F22 N/A

0024 Serial Number character 9 and 10 N/A N/A N/A ASCII F22 N/A

0025 Serial Number character 11 and 12 N/A N/A N/A ASCII F22 N/A

... Reserved - - - - - -

0030 Calibration Date 1995 2094 1 - F18 Jan.1,1999

... Reserved - - - - - -

0040 Manufacturing Date 1995 2094 1 - F18 Jan.1,1999

... Reserved - - - - - -

SETPOINT ACCESS0050 Keypad Access Level 0 1 1 N/A F162 0

0051 Comm Access Level 0 1 1 N/A F162 0

0052 Access Password Character 1 and 2 32 127 1 - F1 " "

0053 Access Password Character 3 and 4 32 127 1 - F1 " "

0054 Access Password Character 5 and 6 32 127 1 - F1 " "

0055 Access Password Character 7 and 8 32 127 1 - F1

0056 Encrypted Access Password 1 and 2 32 127 1 - F1 “AI”

0057 Encrypted Access Password 3 and 4 32 127 1 - F1 “KF”

0058 Encrypted Access Password 5 and 6 32 127 1 - F1 “BA”

0059 Encrypted Access Password 7 and 8 32 127 1 - F1 IK”

... Reserved - - - - - -

COMMANDS (ADDRESSES 0000 TO 00FF)0080 Command Function Code 0 12 1 - F31 0

0081 Reserved

Courtesy of NationalSwitchgear.com
Page 219: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-13

10 COMMUNICATIONS 10.4 MEMORY MAP

10

0082 RRTD 1 Command Function Code 0 4 1 - F31 0

0083 RRTD 2 Command Function Code 0 4 1 - F31 0

0084 RRTD 3 Command Function Code 0 4 1 - F31 0

0085 RRTD 4 Command Function Code 0 4 1 - F31 0

... Reserved

USER MAP (ADDRESSES 0100 TO 017F)0100 User Map Value # 1 --- --- --- --- --- ---

↓ ↓017C User Map Value # 125 --- --- --- --- --- ---

... Reserved

0180 User Map Address # 1 0 3FFF 1 hex F1 0

↓ ↓01FC User Map Address # 125 0 3FFF 1 hex F1 0

... Reserved

ACTUAL VALUES (ADDRESSES 0200 TO 0FFF)MOTOR STATUS

0200 Motor Status 0 4 1 - F133 0

0201 Motor Thermal Capacity Used 0 100 1 % F1 0

0202 Estimated Time to Trip on Overload -1 65500 1 s F20 -1

AUTORESTART0203 Restart Attempts 0 20000 1 - F1 -

0204 Restart Total Delay 0 65535 1 sec. F1 -

0205 Restart In Progress 0 1 1 Y/N F1 -

... Reserved

LAST TRIP DATA0220 Cause of Last Trip 0 276 1 - F134 0

0221 Time of Last Trip (2 words) N/A N/A N/A N/A F19 -

0223 Date of Last Trip (2 words) N/A N/A N/A N/A F18 -

0225 Reserved

0226 Phase A Pre-Trip Current 0 65535 1 A F1 0

0228 Phase B Pre-Trip Current 0 65535 1 A F1 0

022A Phase C Pre-Trip Current 0 65535 1 A F1 0

022C Motor Load Pre - Trip 0 2000 1 FLA F3 0

022D Current Unbalance Pre - Trip 0 100 1 % F1 0

022E Ground Current Pre - Trip 0 50000 1 A F23 0

... Reserved - - - - - -

0234 Hottest Stator RTD During Trip 0 12 1 - F1 0

0235 Pre-Trip Temperature of Hottest Stator RTD -40 200 1 oC F4 0

0236 Pre-Trip Voltage Vab 0 20000 1 V F1 0

0237 Pre-Trip Voltage Vbc 0 20000 1 V F1 0

0238 Pre-Trip Voltage Vca 0 20000 1 V F1 0

0239 Pre-Trip Voltage Van 0 20000 1 V F1 0

023A Pre-Trip Voltage Vbn 0 20000 1 V F1 0

023B Pre-Trip Voltage Vcn 0 20000 1 V F1 0

023C Pre-Trip System Frequency 0 12000 1 Hz F3 0

023D Pre-Trip Real Power -32000 32000 1 kW F4 0

023E Pre-Trip Reactive Power -32000 32000 1 kvar F4 0

023F Pre-Trip Apparent Power 0 50000 1 kVA F1 0

0240 Pre-Trip Power Factor -99 100 1 - F21 0

... Reserved - - - - - -

ALARM STATUS0260 General Spare Switch Alarm Status 0 4 1 - F123 0

0261 General Emergency Restart Switch Alarm Status 0 4 1 - F123 0

0262 General Differential Switch Alarm Status 0 4 1 - F123 0

0263 General Speed Switch Alarm Status 0 4 1 - F123 0

0264 General Reset Switch Alarm Status 0 4 1 - F123 0

... Reserved

0267 Thermal Capacity Alarm 0 4 1 - F123 0

0268 Overload Alarm Status 0 4 1 - F123 0

Table 10–3: MEMORY MAP (Sheet 2 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 220: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-14 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

0269 Mechanical Jam Alarm Status 0 4 1 - F123 0

026A Undercurrent Alarm Status 0 4 1 - F123 0

026B Current Unbalance Alarm Status 0 4 1 - F123 0

026C Ground Fault Alarm Status 0 4 1 - F123 0

... Reserved

026F Undervoltage Alarm Status 0 4 1 - F123 0

0270 Overvoltage Alarm Status 0 4 1 - F123 0

0271 Under Frequency Alarm Status 0 4 1 - F123 0

0272 Over Frequency Alarm Status 0 4 1 - F123 0

... Reserved

0275 Lead Power Factor Alarm Status 0 4 1 - F123 0

0276 Lag Power Factor Alarm Status 0 4 1 - F123 0

0277 Positive kvar Alarm Status 0 4 1 - F123 0

0278 Negative kvar Alarm Status 0 4 1 - F123 0

0279 Underpower Alarm Status 0 4 1 - F123 0

027A Reverse Power Alarm Status 0 4 1 - F123 0

... Reserved

027D Local RTD #1 Alarm Status 0 4 1 - F123 0

027E Local RTD #2 Alarm Status 0 4 1 - F123 0

027F Local RTD #3 Alarm Status 0 4 1 - F123 0

0280 Local RTD #4 Alarm Status 0 4 1 - F123 0

0281 Local RTD #5 Alarm Status 0 4 1 - F123 0

0282 Local RTD #6 Alarm Status 0 4 1 - F123 0

0283 Local RTD #7 Alarm Status 0 4 1 - F123 0

0284 Local RTD #8 Alarm Status 0 4 1 - F123 0

0285 Local RTD #9 Alarm Status 0 4 1 - F123 0

0286 Local RTD #10 Alarm Status 0 4 1 - F123 0

0287 Local RTD #11 Alarm Status 0 4 1 - F123 0

0288 Local RTD #12 Alarm Status 0 4 1 - F123 0

0289 Local RTD #1 High Alarm Status 0 4 1 - F123 0

028A Local RTD #2 High Alarm Status 0 4 1 - F123 0

028B Local RTD #3 High Alarm Status 0 4 1 - F123 0

028C Local RTD #4 High Alarm Status 0 4 1 - F123 0

028D Local RTD #5 High Alarm Status 0 4 1 - F123 0

028E Local RTD #6 High Alarm Status 0 4 1 - F123 0

028F Local RTD #7 High Alarm Status 0 4 1 - F123 0

0290 Local RTD #8 High Alarm Status 0 4 1 - F123 0

0291 Local RTD #9 High Alarm Status 0 4 1 - F123 0

0292 Local RTD #10 High Alarm Status 0 4 1 - F123 0

0293 Local RTD #11 High Alarm Status 0 4 1 - F123 0

0294 Local RTD #12 High Alarm Status 0 4 1 - F123 0

0295 Broken / Open RTD Alarm Status 0 4 1 - F123

0296 Short / Low Temp Alarm Status 0 1 1 - F123

0297 Reserved

0298 Trip Counter Alarm Status 0 4 1 - F123 0

0299 Starter Failure Alarm 0 4 1 - F123 0

029A Current Demand Alarm Status 0 4 1 - F123 0

029B kW Demand Alarm Status 0 4 1 - F123 0

029C kvar Demand Alarm Status 0 4 1 - F123 0

029D kVA Demand Alarm Status 0 4 1 - F123 0

029E Self Test Alarm

START INHIBIT STATUS02C0 Overload Lockout Timer 0 500 1 min F1 0

02C1 Start Timer 1 0 60 1 min F1 0

02C2 Start Timer 2 0 60 1 min F1 0

02C3 Start Timer 3 0 60 1 min F1 0

02C4 Start Timer 4 0 60 1 min F1 0

02C5 Start Timer 5 0 60 1 min F1 0

02C6 Time Between Starts Timer 0 500 1 min F1 0

Table 10–3: MEMORY MAP (Sheet 3 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 221: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-15

10 COMMUNICATIONS 10.4 MEMORY MAP

10

02C7 Restart Block Timer 0 50000 1 s F1 0

02C8 Reserved

02C9 Start Inhibit Timer 0 60 1 min F1 0

... Reserved

DIGITAL INPUT STATUS02D0 Access 0 1 1 - F131 0

02D1 Speed 0 1 1 - F131 0

02D2 Spare 0 1 1 - F131 0

02D3 Differential Relay 0 1 1 - F131 0

02D4 Emergency Restart 0 1 1 - F131 0

02D5 Reset 0 1 1 - F131 0

... Reserved

OUTPUT RELAY STATUS02E0 Trip 0 2 1 N/A F150 2

02E1 Alarm 0 2 1 N/A F150 2

02E2 Aux.1 0 2 1 N/A F150 2

02E3 Aux.2 0 2 1 N/A F150 2

... Reserved

REAL TIME CLOCK02F0 Date (Read Only) N/A N/A N/A N/A F18 N/A

02F4 Time (Read Only) N/A N/A N/A N/A F19 N/A

... Reserved

CURRENT METERING0300 Phase A Current 0 65535 1 A F1 0

0302 Phase B Current 0 65535 1 A F1 0

0304 Phase C Current 0 65535 1 A F1 0

0306 Average Phase Current 0 65535 1 A F1 0

0308 Motor Load 0 2000 1 x FLA F3 0

0309 Current Unbalance 0 100 1 % F1 0

030A Reserved - - - - - -

030B Ground Current 0 50000 1 A F23 0

... Reserved - - - - - -

TEMPERATURE031F Hottest Stator RTD Number 0 12 1 - F1 0

0320 Hottest Stator RTD Temperature -40 200 1 oC F4 40

0321 Local RTD #1 Temperature -40 200 1 oC F4 40

0322 Local RTD #2 Temperature -40 200 1 oC F4 40

0323 Local RTD #3 Temperature -40 200 1 oC F4 40

0324 Local RTD #4 Temperature -40 200 1 oC F4 40

0325 Local RTD #5 Temperature -40 200 1 oC F4 40

0326 Local RTD #6 Temperature -40 200 1 oC F4 40

0327 Local RTD #7 Temperature -40 200 1 oC F4 40

0328 Local RTD #8 Temperature -40 200 1 oC F4 40

0329 Local RTD #9 Temperature -40 200 1 oC F4 40

032A Local RTD #10 Temperature -40 200 1 oC F4 40

032B Local RTD #11 Temperature -40 200 1 oC F4 40

032C Local RTD #12 Temperature -40 200 1 oC F4 40

... Reserved

VOLTAGE METERING0360 Vab 0 20000 1 V F1 0

0361 Vbc 0 20000 1 V F1 0

0362 Vca 0 20000 1 V F1 0

0363 Average Line Voltage 0 20000 1 V F1 0

0364 Van 0 20000 1 V F1 0

0365 Vbn 0 20000 1 V F1 0

0366 Vcn 0 20000 1 V F1 0

0367 Average Phase Voltage 0 20000 1 V F1 0

0368 System Frequency 0 12000 1 Hz F3 0

Table 10–3: MEMORY MAP (Sheet 4 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 222: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-16 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

BACKSPIN METERING0369 Backspin Frequency 1 12000 1 Hz F3 0

036A Backspin Detection State 0 6 1 - F27 0

036B Backspin Prediction Timer 0 50000 1 s F2 0

... Reserved

POWER METERING0370 Power Factor -99 100 1 - F21 0

0371 Real Power -32000 32000 1 kW F4 0

0373 Real Power 0 65000 1 hp F1 0

0374 Reactive Power -32000 32000 1 kvar F4 0

0376 Apparent Power 0 50000 1 kVA F1 0

0377 Positive Watthours 0 65535 1 MWh F1 0

0379 Positive Varhours 0 65535 1 kvarh F1 0

037B Negative Varhours 0 65535 1 kvarh F1 0

... Reserved

DEMAND METERING0390 Current Demand 0 50000 1 A F1 0

0392 Real Power Demand 0 50000 1 kW F1 0

0394 Reactive Power Demand -32000 32000 1 kvar F4 0

0396 Apparent Power Demand 0 50000 1 kVA F1 0

0397 Peak Current Demand 0 65535 1 A F1 0

0399 Peak Real Power Demand 0 50000 1 kW F1 0

039B Peak Reactive Power Demand -32000 32000 1 kvar F4 0

039D Peak Apparent Power Demand 0 50000 1 kVA F1 0

... Reserved

MOTOR DATA (0 = OFF)03C0 Learned Acceleration Time 1 2500 1 s F2 0

03C1 Learned Starting Current 0 65535 1 A F1 0

03C2 Learned Starting Capacity 0 100 1 % F1 0

03C3 Learned Running Cool Time Constant 0 500 1 min F1 0

03C4 Learned Stopped Cool Time Constant 0 500 1 min F1 0

03C5 Last Starting Current 0 65535 1 A F1 0

03C6 Last Starting Capacity 0 100 1 % F1 0

03C7 Last Acceleration Time 1 2500 1 s F2 0

03C8 Average Motor Load Learned 0 2000 1 x FLA F3 0

03C9 Learned Unbalance k factor 0 29 1 - F1 0

... Reserved

RTD MAXIMUMS03E0 Local RTD # 1 Max. Temperature -40 200 1 oC F4 40

03E1 Local RTD # 2 Max. Temperature -40 200 1 oC F4 40

03E2 Local RTD # 3 Max. Temperature -40 200 1 oC F4 40

03E3 Local RTD # 4 Max. Temperature -40 200 1 oC F4 40

03E4 Local RTD # 5 Max. Temperature -40 200 1 oC F4 40

03E5 Local RTD # 6 Max. Temperature -40 200 1 oC F4 40

03E6 Local RTD # 7 Max. Temperature -40 200 1 oC F4 40

03E7 Local RTD # 8 Max. Temperature -40 200 1 oC F4 40

03E8 Local RTD # 9 Max. Temperature -40 200 1 oC F4 40

03E9 Local RTD # 10 Max. Temperature -40 200 1 oC F4 40

03EA Local RTD # 11 Max. Temperature -40 200 1 oC F4 40

03EB Local RTD # 12 Max. Temperature -40 200 1 oC F4 40

... Reserved

TRIP COUNTERS0430 Total Number of Trips 0 50000 1 - F1 0

... Reserved

0433 Switch Trips 0 50000 1 - F1 0

... Reserved

0436 Overload Trips 0 50000 1 - F1 0

0437 Short Circuit Trips 0 50000 1 - F1 0

0438 Mechanical Jam Trips 0 50000 1 - F1 0

Table 10–3: MEMORY MAP (Sheet 5 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 223: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-17

10 COMMUNICATIONS 10.4 MEMORY MAP

10

0439 Undercurrent Trips 0 50000 1 - F1 0

043A Current Unbalance Trips 0 50000 1 - F1 0

043B Single Phase Trips

043C Ground Fault Trips 0 50000 1 - F1 0

043D Acceleration Trips 0 50000 1 - F1 0

... Reserved

043F Under Voltage Trips 0 50000 1 - F1 0

0440 Over Voltage Trips 0 50000 1 - F1 0

0441 Phase Reversal Trips 0 50000 1 - F1 0

0442 Under Frequency Trips 0 50000 1 - F1 0

0443 Over Frequency Trips 0 50000 1 - F1 0

... Reserved

0446 Lead Power Factor Trips 0 50000 1 - F1 0

0447 Lag Power Factor Trips 0 50000 1 - F1 0

0448 Positive Reactive Power Trips 0 50000 1 - F1 0

0449 Negative Reactive Power Trips 0 50000 1 - F1 0

044A Underpower Trips 0 50000 1 - F1 0

044B Reverse Power Trips 0 50000 1 - F1 0

... Reserved

044E Stator RTD Trips 0 50000 1 - F1 0

044F Bearing RTD Trips 0 50000 1 - F1 0

0450 Other RTD Trips 0 50000 1 - F1 0

0451 Ambient RTD Trips 0 50000 1 - F1 0

... Reserved

0454 Incomplete Sequence Trips 0 50000 1 - F1 0

... Reserved

0457 Trip Counters Last Cleared N/A N/A N/A N/A F18 N/A

... Reserved

MOTOR STATISTICS0470 Number of Motor Starts 0 50000 1 - F1 0

0471 Number of Emergency Restarts 0 50000 1 - F1 0

0472 Reserved - - - - - -

0473 Digital Counter 0 65535 1 - F1 0

... Reserved

04A0 Motor Running Hours 0 65535 1 hr. F1 0

... Reserved

PHASORS0500 Va Angle 0 359 1 degrees F1 0

0501 Vb Angle 0 359 1 degrees F1 0

0502 Vc Angle 0 359 1 degrees F1 0

0503 Ia Angle 0 359 1 degrees F1 0

0504 Ib Angle 0 359 1 degrees F1 0

0505 Ic Angle 0 359 1 degrees F1 0

... Reserved

REMOTE RTD ACTUAL VALUES (ADDRESSES 0600 TO 1FFF)RRTD 1 TEMPERATURES

0600 RRTD 1 - Hottest Stator Number 0 12 1 - F1 0

0601 RRTD 1 - Hottest Stator Temperature -40 200 1 oC F4 40

0602 RRTD 1 - RTD #1 Temperature -40 200 1 oC F4 40

0603 RRTD 1 - RTD #2 Temperature -40 200 1 oC F4 40

0604 RRTD 1 - RTD #3 Temperature -40 200 1 oC F4 40

0605 RRTD 1 - RTD #4 Temperature -40 200 1 oC F4 40

0606 RRTD 1 - RTD #5 Temperature -40 200 1 oC F4 40

0607 RRTD 1 - RTD #6 Temperature -40 200 1 oC F4 40

0608 RRTD 1 - RTD #7 Temperature -40 200 1 oC F4 40

0609 RRTD 1 - RTD #8 Temperature -40 200 1 oC F4 40

060A RRTD 1 - RTD #9 Temperature -40 200 1 oC F4 40

060B RRTD 1 - RTD #10 Temperature -40 200 1 oC F4 40

060C RRTD 1 - RTD #11 Temperature -40 200 1 oC F4 40

Table 10–3: MEMORY MAP (Sheet 6 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 224: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-18 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

060D RRTD 1 - RTD #12 Temperature -40 200 1 oC F4 40

... Reserved

RRTD 2 TEMPERATURES0610 RRTD 2 - RTD - Hottest Stator Number 0 12 1 - F1 0

0611 RRTD 2 - RTD - Hottest Stator Temperature -40 200 1 oC F4 40

0612 RRTD 2 - RTD #1Temperature -40 200 1 oC F4 40

0613 RRTD 2 - RTD #2 Temperature -40 200 1 oC F4 40

0614 RRTD 2 - RTD #3 Temperature -40 200 1 oC F4 40

0615 RRTD 2 - RTD #4 Temperature -40 200 1 oC F4 40

0616 RRTD 2 - RTD #5 Temperature -40 200 1 oC F4 40

0617 RRTD 2 - RTD #6 Temperature -40 200 1 oC F4 40

0618 RRTD 2 - RTD #7 Temperature -40 200 1 oC F4 40

0619 RRTD 2 - RTD #8 Temperature -40 200 1 oC F4 40

061A RRTD 2 - RTD #9 Temperature -40 200 1 oC F4 40

061B RRTD 2 - RTD #10 Temperature -40 200 1 oC F4 40

061C RRTD 2 - RTD #11 Temperature -40 200 1 oC F4 40

061D RRTD 2 - RTD #12 Temperature -40 200 1 oC F4 40

... Reserved

RRTD 3 TEMPERATURES0620 RRTD 3 - RTD - Hottest Stator Number 0 12 1 - F1 0

0621 RRTD 3 - RTD - Hottest Stator Temperature -40 200 1 oC F4 40

0622 RRTD 3 - RTD #1 Temperature -40 200 1 oC F4 40

0623 RRTD 3 - RTD #2 Temperature -40 200 1 oC F4 40

0624 RRTD 3 - RTD #3 Temperature -40 200 1 oC F4 40

0625 RRTD 3 - RTD #4 Temperature -40 200 1 oC F4 40

0626 RRTD 3 - RTD #5 Temperature -40 200 1 oC F4 40

0627 RRTD 3 - RTD #6 Temperature -40 200 1 oC F4 40

0628 RRTD 3 - RTD #7 Temperature -40 200 1 oC F4 40

0629 RRTD 3 - RTD #8 Temperature -40 200 1 oC F4 40

062A RRTD 3 - RTD #9 Temperature -40 200 1 oC F4 40

062B RRTD 3 - RTD #10 Temperature -40 200 1 oC F4 40

062C RRTD 3 - RTD #11 Temperature -40 200 1 oC F4 40

062D RRTD 3 - RTD #12 Temperature -40 200 1 oC F4 40

... Reserved

RRTD 4 TEMPERATURES0630 RRTD 4 - RTD- Hottest Stator Number 0 12 1 - F1 0

0631 RRTD 4 - RTD- Hottest Stator Temperature -40 200 1 oC F4 40

0632 RRTD 4 - RTD#1 Temperature -40 200 1 oC F4 40

0633 RRTD 4 - RTD#2 Temperature -40 200 1 oC F4 40

0634 RRTD 4 - RTD#3 Temperature -40 200 1 oC F4 40

0635 RRTD 4 - RTD#4 Temperature -40 200 1 oC F4 40

0636 RRTD 4 - RTD#5 Temperature -40 200 1 oC F4 40

0637 RRTD 4 - RTD#6 Temperature -40 200 1 oC F4 40

0638 RRTD 4 - RTD#7 Temperature -40 200 1 oC F4 40

0639 RRTD 4 - RTD#8 Temperature -40 200 1 oC F4 40

063A RRTD 4 - RTD#9 Temperature -40 200 1 oC F4 40

063B RRTD 4 - RTD#10 Temperature -40 200 1 oC F4 40

063C RRTD 4 - RTD#11 Temperature -40 200 1 oC F4 40

063D RRTD 4 - RTD#12 Temperature -40 200 1 oC F4 40

LOSS OF RRTD COMMUNICATIONS063E Lost RRTD Communications alarm 0 4 1 - F123 0

... Reserved

RRTD 1 ALARM STATUS0650 RRTD 1 - RTD #1 Alarm Status 0 4 1 - F123 0

0651 RRTD 1 - RTD #2 Alarm Status 0 4 1 - F123 0

0652 RRTD 1 - RTD #3 Alarm Status 0 4 1 - F123 0

0653 RRTD 1 - RTD #4 Alarm Status 0 4 1 - F123 0

0654 RRTD 1 - RTD #5 Alarm Status 0 4 1 - F123 0

0655 RRTD 1 - RTD #6 Alarm Status 0 4 1 - F123 0

Table 10–3: MEMORY MAP (Sheet 7 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 225: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-19

10 COMMUNICATIONS 10.4 MEMORY MAP

10

0656 RRTD 1 - RTD #7 Alarm Status 0 4 1 - F123 0

0657 RRTD 1 - RTD #8 Alarm Status 0 4 1 - F123 0

0658 RRTD 1 - RTD #9 Alarm Status 0 4 1 - F123 0

0659 RRTD 1 - RTD #10 Alarm Status 0 4 1 - F123 0

065A RRTD 1 - RTD #11 Alarm Status 0 4 1 - F123 0

065B RRTD 1 - RTD #12 Alarm Status 0 4 1 - F123 0

065C RRTD 1 - RTD #1 High Alarm Status 0 4 1 - F123 0

065D RRTD 1 - RTD #2 High Alarm Status 0 4 1 - F123 0

065E RRTD 1 - RTD #3 High Alarm Status 0 4 1 - F123 0

065F RRTD 1 - RTD #4 High Alarm Status 0 4 1 - F123 0

0660 RRTD 1 - RTD #5 High Alarm Status 0 4 1 - F123 0

0661 RRTD 1 - RTD #6 High Alarm Status 0 4 1 - F123 0

0662 RRTD 1 - RTD #7 High Alarm Status 0 4 1 - F123 0

0663 RRTD 1 - RTD #8 High Alarm Status 0 4 1 - F123 0

0664 RRTD 1 - RTD #9 High Alarm Status 0 4 1 - F123 0

0665 RRTD 1 - RTD #10 High Alarm Status 0 4 1 - F123 0

0666 RRTD 1 - RTD #11 High Alarm Status 0 4 1 - F123 0

0667 RRTD 1 - RTD #12 High Alarm Status 0 4 1 - F123 0

0668 RRTD 1 - Broken / Open RTD Alarm Status 0 4 1 - F123 0

0669 RRTD 1 - Short / Low Temp Alarm Status 0 1 1 - F123 0

066A RRTD 1 - Digital Input 6 Alarm Status 0 4 1 - F123 0

066B RRTD 1 - Digital Input 2 Alarm Status 0 4 1 - F123 0

066C RRTD 1 - Digital Input 5 Alarm Status 0 4 1 - F123 0

066D RRTD 1 - Digital Input 4 Alarm Status 0 4 1 - F123 0

066E RRTD 1 - Digital Input 1 Alarm Status 0 4 1 - F123 0

066F RRTD 1 - Digital Input 3 Alarm Status 0 4 1 - F123 0

RRTD 2 ALARM STATUS0670 RRTD 2 - RTD #1 Alarm Status 0 4 1 - F123 0

0671 RRTD 2 - RTD #2 Alarm Status 0 4 1 - F123 0

0672 RRTD 2 - RTD #3 Alarm Status 0 4 1 - F123 0

0673 RRTD 2 - RTD #4 Alarm Status 0 4 1 - F123 0

0674 RRTD 2 - RTD #5 Alarm Status 0 4 1 - F123 0

0675 RRTD 2 - RTD #6 Alarm Status 0 4 1 - F123 0

0676 RRTD 2 - RTD #7 Alarm Status 0 4 1 - F123 0

0677 RRTD 2 - RTD #8 Alarm Status 0 4 1 - F123 0

0678 RRTD 2 - RTD #9 Alarm Status 0 4 1 - F123 0

0679 RRTD 2 - RTD #10 Alarm Status 0 4 1 - F123 0

067A RRTD 2 - RTD #11 Alarm Status 0 4 1 - F123 0

067B RRTD 2 - RTD #12 Alarm Status 0 4 1 - F123 0

067C RRTD 2 - RTD #1 High Alarm Status 0 4 1 - F123 0

067D RRTD 2 - RTD #2 High Alarm Status 0 4 1 - F123 0

067E RRTD 2 - RTD #3 High Alarm Status 0 4 1 - F123 0

067F RRTD 2 - RTD #4 High Alarm Status 0 4 1 - F123 0

0680 RRTD 2 - RTD #5 High Alarm Status 0 4 1 - F123 0

0681 RRTD 2 - RTD #6 High Alarm Status 0 4 1 - F123 0

0682 RRTD 2 - RTD #7 High Alarm Status 0 4 1 - F123 0

0683 RRTD 2 - RTD #8 High Alarm Status 0 4 1 - F123 0

0684 RRTD 2 - RTD #9 High Alarm Status 0 4 1 - F123 0

0685 RRTD 2 - RTD #10 High Alarm Status 0 4 1 - F123 0

0686 RRTD 2 - RTD #11 High Alarm Status 0 4 1 - F123 0

0687 RRTD 2 - RTD #12 High Alarm Status 0 4 1 - F123 0

0688 RRTD 2 - Broken / Open RTD Alarm Status 0 4 1 - F123 0

0689 RRTD 2 - Short / Low Temp Alarm Status 0 1 1 - F123 0

068A RRTD 2 - Digital Input 6 Alarm Status 0 4 1 - F123 0

068B RRTD 2 - Digital Input 2 Alarm Status 0 4 1 - F123 0

068C RRTD 2 - Digital Input 5 Alarm Status 0 4 1 - F123 0

068D RRTD 2 - Digital Input 4 Alarm Status 0 4 1 - F123 0

068E RRTD 2 - Digital Input 1 Alarm Status 0 4 1 - F123 0

068F RRTD 2 - Digital Input 3 Alarm Status 0 4 1 - F123 0

Table 10–3: MEMORY MAP (Sheet 8 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 226: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-20 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

RRTD 3 ALARM STATUS0690 RRTD 3 - RTD #1 Alarm Status 0 4 1 - F123 0

0691 RRTD 3 - RTD #2 Alarm Status 0 4 1 - F123 0

0692 RRTD 3 - RTD #3 Alarm Status 0 4 1 - F123 0

0693 RRTD 3 - RTD #4 Alarm Status 0 4 1 - F123 0

0694 RRTD 3 - RTD #5 Alarm Status 0 4 1 - F123 0

0695 RRTD 3 - RTD #6 Alarm Status 0 4 1 - F123 0

0696 RRTD 3 - RTD #7 Alarm Status 0 4 1 - F123 0

0697 RRTD 3 - RTD #8 Alarm Status 0 4 1 - F123 0

0698 RRTD 3 - RTD #9 Alarm Status 0 4 1 - F123 0

0699 RRTD 3 - RTD #10 Alarm Status 0 4 1 - F123 0

069A RRTD 3 - RTD #11 Alarm Status 0 4 1 - F123 0

069B RRTD 3 - RTD #12 Alarm Status 0 4 1 - F123 0

069C RRTD 3 - RTD #1 High Alarm Status 0 4 1 - F123 0

069D RRTD 3 - RTD #2 High Alarm Status 0 4 1 - F123 0

069E RRTD 3 - RTD #3 High Alarm Status 0 4 1 - F123 0

069F RRTD 3 - RTD #4 High Alarm Status 0 4 1 - F123 0

06A0 RRTD 3 - RTD #5 High Alarm Status 0 4 1 - F123 0

06A1 RRTD 3 - RTD #6 High Alarm Status 0 4 1 - F123 0

06A2 RRTD 3 - RTD #7 High Alarm Status 0 4 1 - F123 0

06A3 RRTD 3 - RTD #8 High Alarm Status 0 4 1 - F123 0

06A4 RRTD 3 - RTD #9 High Alarm Status 0 4 1 - F123 0

06A5 RRTD 3 - RTD #10 High Alarm Status 0 4 1 - F123 0

06A6 RRTD 3 - RTD #11 High Alarm Status 0 4 1 - F123 0

06A7 RRTD 3 - RTD #12 High Alarm Status 0 4 1 - F123 0

06A8 RRTD 3 - Broken / Open RTD Alarm Status 0 4 1 - F123 0

06A9 RRTD 3 - Short / Low Temp Alarm Status 0 1 1 - F123 0

06AA RRTD 3 - Digital Input 6 Alarm Status 0 4 1 - F123 0

06AB RRTD 3 - Digital Input 2 Alarm Status 0 4 1 - F123 0

06AC RRTD 3 - Digital Input 5 Alarm Status 0 4 1 - F123 0

06AD RRTD 3 - Digital Input 4 Alarm Status 0 4 1 - F123 0

06AE RRTD 3 - Digital Input 1 Alarm Status 0 4 1 - F123 0

06AF RRTD 3 - Digital Input 3 Alarm Status 0 4 1 - F123 0

RRTD 4 ALARM STATUS06B0 RRTD 4 - RTD #1 Alarm Status 0 4 1 - F123 0

06B1 RRTD 4 - RTD #2 Alarm Status 0 4 1 - F123 0

06B2 RRTD 4 - RTD #3 Alarm Status 0 4 1 - F123 0

06B3 RRTD 4 - RTD #4 Alarm Status 0 4 1 - F123 0

06B4 RRTD 4 - RTD #5 Alarm Status 0 4 1 - F123 0

06B5 RRTD 4 - RTD #6 Alarm Status 0 4 1 - F123 0

06B6 RRTD 4 - RTD #7 Alarm Status 0 4 1 - F123 0

06B7 RRTD 4 - RTD #8 Alarm Status 0 4 1 - F123 0

06B8 RRTD 4 - RTD #9 Alarm Status 0 4 1 - F123 0

06B9 RRTD 4 - RTD #10 Alarm Status 0 4 1 - F123 0

06BA RRTD 4 - RTD #11 Alarm Status 0 4 1 - F123 0

06BB RRTD 4 - RTD #12 Alarm Status 0 4 1 - F123 0

06BC RRTD 4 - RTD #1 High Alarm Status 0 4 1 - F123 0

06BD RRTD 4 - RTD #2 High Alarm Status 0 4 1 - F123 0

06BE RRTD 4 - RTD #3 High Alarm Status 0 4 1 - F123 0

06BF RRTD 4 - RTD #4 High Alarm Status 0 4 1 - F123 0

06C0 RRTD 4 - RTD #5 High Alarm Status 0 4 1 - F123 0

06C1 RRTD 4 - RTD #6 High Alarm Status 0 4 1 - F123 0

06C2 RRTD 4 - RTD #7 High Alarm Status 0 4 1 - F123 0

06C3 RRTD 4 - RTD #8 High Alarm Status 0 4 1 - F123 0

06C4 RRTD 4 - RTD #9 High Alarm Status 0 4 1 - F123 0

06C5 RRTD 4 - RTD #10 High Alarm Status 0 4 1 - F123 0

06C6 RRTD 4 - RTD #11 High Alarm Status 0 4 1 - F123 0

06C7 RRTD 4 - RTD #12 High Alarm Status 0 4 1 - F123 0

06C8 RRTD 4 - Broken / Open RTD Alarm Status 0 4 1 - F123 0

Table 10–3: MEMORY MAP (Sheet 9 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 227: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-21

10 COMMUNICATIONS 10.4 MEMORY MAP

10

06C9 RRTD 4 - Short / Low Temp Alarm Status 0 1 1 - F123 0

06CA RRTD 4 - Digital Input 6 Alarm Status 0 4 1 - F123 0

06CB RRTD 4 - Digital Input 2 Alarm Status 0 4 1 - F123 0

06CC RRTD 4 - Digital Input 5 Alarm Status 0 4 1 - F123 0

06CD RRTD 4 - Digital Input 4 Alarm Status 0 4 1 - F123 0

06CE RRTD 4 - Digital Input 1 Alarm Status 0 4 1 - F123 0

06CF RRTD 4 - Digital Input 3 Alarm Status 0 4 1 - F123 0

RRTD 1 MAXIMUM TEMPERATURES0700 RRTD 1 - RTD # 1 Max. Temperature -40 200 1 oC F4 40

0701 RRTD 1 - RTD # 2 Max. Temperature -40 200 1 oC F4 40

0702 RRTD 1 - RTD # 3 Max. Temperature -40 200 1 oC F4 40

0703 RRTD 1 - RTD # 4 Max. Temperature -40 200 1 oC F4 40

0704 RRTD 1 - RTD # 5 Max. Temperature -40 200 1 oC F4 40

0705 RRTD 1 - RTD # 6 Max. Temperature -40 200 1 oC F4 40

0706 RRTD 1 - RTD # 7 Max. Temperature -40 200 1 oC F4 40

0707 RRTD 1 - RTD # 8 Max. Temperature -40 200 1 oC F4 40

0708 RRTD 1 - RTD # 9 Max. Temperature -40 200 1 oC F4 40

0709 RRTD 1 - RTD # 10 Max. Temperature -40 200 1 oC F4 40

070A RRTD 1 - RTD # 11 Max. Temperature -40 200 1 oC F4 40

070B RRTD 1 - RTD # 12 Max. Temperature -40 200 1 oC F4 40

... Reserved

RRTD 2 MAXIMUM TEMPERATURES0710 RRTD 2 - RTD # 1 Max. Temperature -40 200 1 oC F4 40

0711 RRTD 2 - RTD # 2 Max. Temperature -40 200 1 oC F4 40

0712 RRTD 2 - RTD # 3 Max. Temperature -40 200 1 oC F4 40

0713 RRTD 2 - RTD # 4 Max. Temperature -40 200 1 oC F4 40

0714 RRTD 2 - RTD # 5 Max. Temperature -40 200 1 oC F4 40

0715 RRTD 2 - RTD # 6 Max. Temperature -40 200 1 oC F4 40

0716 RRTD 2 - RTD # 7 Max. Temperature -40 200 1 oC F4 40

0717 RRTD 2 - RTD # 8 Max. Temperature -40 200 1 oC F4 40

0718 RRTD 2 - RTD # 9 Max. Temperature -40 200 1 oC F4 40

0719 RRTD 2 - RTD # 10 Max. Temperature -40 200 1 oC F4 40

071A RRTD 2 - RTD # 11 Max. Temperature -40 200 1 oC F4 40

071B RRTD 2 - RTD # 12 Max. Temperature -40 200 1 oC F4 40

... Reserved

RRTD 3 MAXIMUM TEMPERATURES0720 RRTD 3 - RTD # 1 Max. Temperature -40 200 1 oC F4 40

0721 RRTD 3 - RTD # 2 Max. Temperature -40 200 1 oC F4 40

0722 RRTD 3 - RTD # 3 Max. Temperature -40 200 1 oC F4 40

0723 RRTD 3 - RTD # 4 Max. Temperature -40 200 1 oC F4 40

0724 RRTD 3 - RTD # 5 Max. Temperature -40 200 1 oC F4 40

0725 RRTD 3 - RTD # 6 Max. Temperature -40 200 1 oC F4 40

0726 RRTD 3 - RTD # 7 Max. Temperature -40 200 1 oC F4 40

0727 RRTD 3 - RTD # 8 Max. Temperature -40 200 1 oC F4 40

0728 RRTD 3 - RTD # 9 Max. Temperature -40 200 1 oC F4 40

0729 RRTD 3 - RTD # 10 Max. Temperature -40 200 1 oC F4 40

072A RRTD 3 - RTD # 11 Max. Temperature -40 200 1 oC F4 40

072B RRTD 3 - RTD # 12 Max. Temperature -40 200 1 oC F4 40

... Reserved

RRTD 4 MAXIMUM TEMPERATURES0730 RRTD 4 - RTD # 1 Max. Temperature -40 200 1 oC F4 40

0731 RRTD 4 - RTD # 2 Max. Temperature -40 200 1 oC F4 40

0732 RRTD 4 - RTD # 3 Max. Temperature -40 200 1 oC F4 40

0733 RRTD 4 - RTD # 4 Max. Temperature -40 200 1 oC F4 40

0734 RRTD 4 - RTD # 5 Max. Temperature -40 200 1 oC F4 40

0735 RRTD 4 - RTD # 6 Max. Temperature -40 200 1 oC F4 40

0736 RRTD 4 - RTD # 7 Max. Temperature -40 200 1 oC F4 40

0737 RRTD 4 - RTD # 8 Max. Temperature -40 200 1 oC F4 40

0738 RRTD 4 - RTD # 9 Max. Temperature -40 200 1 oC F4 40

Table 10–3: MEMORY MAP (Sheet 10 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 228: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-22 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

0739 RRTD 4 - RTD # 10 Max. Temperature -40 200 1 oC F4 40

073A RRTD 4 - RTD # 11 Max. Temperature -40 200 1 oC F4 40

073B RRTD 4 - RTD # 12 Max. Temperature -40 200 1 oC F4 40

... Reserved

RRTD 1 TRIP COUNTER0800 RRTD 1 - Stator RTD Trips 0 50000 1 - F1 0

0801 RRTD 1 - Bearing RTD Trips 0 50000 1 - F1 0

0802 RRTD 1 - Other RTD Trips 0 50000 1 - F1 0

0803 RRTD 1 - Ambient RTD Trips 0 50000 1 - F1 0

0804 RRTD 1 - Digital Input Trips 0 50000 1 - F1 0

... Reserved

RRTD 2 TRIP COUNTER0810 RRTD 2 - Stator RTD Trips 0 50000 1 - F1 0

0811 RRTD 2 - Bearing RTD Trips 0 50000 1 - F1 0

0812 RRTD 2 - Other RTD Trips 0 50000 1 - F1 0

0813 RRTD 2 - Ambient RTD Trips 0 50000 1 - F1 0

0814 RRTD 2 - Digital Input Trips 0 50000 1 - F1 0

... Reserved

RRTD 3 TRIP COUNTER0820 RRTD 3 - Stator RTD Trips 0 50000 1 - F1 0

0821 RRTD 3 - Bearing RTD Trips 0 50000 1 - F1 0

0822 RRTD 3 - Other RTD Trips 0 50000 1 - F1 0

0823 RRTD 3 - Ambient RTD Trips 0 50000 1 - F1 0

0824 RRTD 3 - Digital Input Trips 0 50000 1 - F1 0

... Reserved

RRTD 4 TRIP COUNTER0830 RRTD 4 - Stator RTD Trips 0 50000 1 - F1 0

0831 RRTD 4 - Bearing RTD Trips 0 50000 1 - F1 0

0832 RRTD 4 - Other RTD Trips 0 50000 1 - F1 0

0833 RRTD 4 - Ambient RTD Trips 0 50000 1 - F1 0

0834 RRTD 4 - Digital Input Trips 0 50000 1 - F1 0

... Reserved

RRTD 1 DIGITAL INPUT STATUS0840 Digital Input 3 0 1 1 - F131 0

0841 Digital Input 4 0 1 1 - F131 0

0842 Digital Input 6 0 1 1 - F131 0

0843 Digital Input 5 0 1 1 - F131 0

0844 Digital Input 2 0 1 1 - F131 0

0845 Digital Input 1 0 1 1 - F131 0

... Reserved

RRTD 2 DIGITAL INPUT STATUS0850 Digital Input 3 0 1 1 - F131 0

0851 Digital Input 4 0 1 1 - F131 0

0852 Digital Input 6 0 1 1 - F131 0

0853 Digital Input 5 0 1 1 - F131 0

0854 Digital Input 2 0 1 1 - F131 0

0855 Digital Input 1 0 1 1 - F131 0

... Reserved

RRTD 3 DIGITAL INPUT STATUS0860 Digital Input 3 0 1 1 - F131 0

0861 Digital Input 4 0 1 1 - F131 0

0862 Digital Input 6 0 1 1 - F131 0

0863 Digital Input 5 0 1 1 - F131 0

0864 Digital Input 2 0 1 1 - F131 0

0865 Digital Input 1 0 1 1 - F131 0

... Reserved

RRTD 4 DIGITAL INPUT STATUS0870 Digital Input 3 0 1 1 - F131 0

0871 Digital Input 4 0 1 1 - F131 0

Table 10–3: MEMORY MAP (Sheet 11 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 229: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-23

10 COMMUNICATIONS 10.4 MEMORY MAP

10

0872 Digital Input 6 0 1 1 - F131 0

0873 Digital Input 5 0 1 1 - F131 0

0874 Digital Input 2 0 1 1 - F131 0

0875 Digital Input 1 0 1 1 - F131 0

... Reserved

RRTD 1 OUTPUT RELAY STATUS0880 RRTD 1 - Trip 0 2 1 N/A F150 2

0881 RRTD 1 - Alarm 0 2 1 N/A F150 2

0882 RRTD 1 - Aux. 1 0 2 1 N/A F150 2

0883 RRTD 1 - Aux. 2 0 2 1 N/A F150 2

... Reserved

RRTD 2 OUTPUT RELAY STATUS0890 RRTD 2 - Trip 0 2 1 N/A F150 2

0891 RRTD 2 - Alarm 0 2 1 N/A F150 2

0892 RRTD 2 - Aux. 1 0 2 1 N/A F150 2

0893 RRTD 2 - Aux. 2 0 2 1 N/A F150 2

... Reserved

RRTD 3 OUTPUT RELAY STATUS08A0 RRTD 3 - Trip 0 2 1 N/A F150 2

08A1 RRTD 3 - Alarm 0 2 1 N/A F150 2

08A2 RRTD 3 - Aux. 1 0 2 1 N/A F150 2

08A3 RRTD 3 - Aux. 2 0 2 1 N/A F150 2

... Reserved

RRTD 4 OUTPUT RELAY STATUS08B0 RRTD 4 - Trip 0 2 1 N/A F150 2

08B1 RRTD 4 - Alarm 0 2 1 N/A F150 2

08B2 RRTD 4 - Aux. 1 0 2 1 N/A F150 2

08B3 RRTD 4 - Aux. 2 0 2 1 N/A F150 2

... Reserved

COMMUNICATIONS MODULE STATUS08C0 Communications Module Status 0 65535 1 N/A F164 -

SETPOINTS (ADDRESSES 1000 TO 1FFF)DISPLAY PREFERENCES

1000 Default Message Cycle Time 5 100 1 s F1 20

1001 Default Message Timeout 10 900 1 s F1 300

1002 Contrast Adjustment 1 254 1 - F1 145

1003 Flash Message 1 10 1 s F1 2

1004 Temperature Display Units 0 1 1 - F100 0

... Reserved

WAVEFORM CAPTURE1008 Trigger Position 0 100 1 % F1 20

... Reserved

369 COMMUNICATIONS1010 Slave Address 1 254 1 - F1 254

1011 Computer RS232 Baud Rate 0 4 1 - F101 4

1012 Computer RS232 Parity 0 2 1 - F102 0

1013 CHANNEL 1 Parity 0 2 1 - F101 4

1014 CHANNEL 1 Baud Rate 0 4 1 - F102 0

1015 CHANNEL 2 Parity 0 2 1 - F101 4

1016 CHANNEL 2 Baud Rate 0 4 1 - F102 0

1017 CHANNEL 3 Parity 0 2 1 - F101 4

1018 CHANNEL 3 Baud Rate 0 4 1 - F102 0

1019 CHANNEL 3 Connection 0 1 1 - F151 0

101A CHANNEL 3 Application 0 1 1 - F149 0

101B PROFIBUS Slave Address 1 126 1 - F1 125

101C IP Address Octet 1 0 255 1 - F1 127

101D IP Address Octet 2 0 255 1 - F1 0

101E IP Address Octet 3 0 255 1 - F1 0

101F IP Address Octet 4 0 255 1 - F1 1

Table 10–3: MEMORY MAP (Sheet 12 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 230: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-24 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

1020 Subnet Mask Octet 1 0 255 1 - F1 255

1021 Subnet Mask Octet 1 0 255 1 - F1 255

1022 Subnet Mask Octet 1 0 255 1 - F1 255

1023 Subnet Mask Octet 1 0 255 1 - F1 0

1024 Gateway Address Octet 1 0 255 1 - F1 127

1025 Gateway Address Octet 2 0 255 1 - F1 0

1026 Gateway Address Octet 3 0 255 1 - F1 0

1027 Gateway Address Octet 4 0 255 1 - F1 1

... Reserved

REAL TIME CLOCK1030 Date (2 words) valid date N/A - F18 -

1034 Time (2 words) valid time N/A - F19 -

... Reserved

DEFAULT MESSAGES1041 Default to Current Metering 0 1 1 - F103 0

1042 Default to Motor Load 0 1 1 - F103 0

1043 Default to Delta Voltage Metering 0 1 1 - F103 0

1044 Default to Power Factor 0 1 1 - F103 0

1045 Default to Positive Watthours 0 1 1 - F103 0

1046 Default to Real Power 0 1 1 - F103 0

1047 Default to Reactive Power 0 1 1 - F103 0

1048 Default to Hottest Stator RTD 0 1 1 - F103 0

1049 Default to Text Message 1 0 1 1 - F103 0

104A Default to Text Message 2 0 1 1 - F103 0

104B Default to Text Message 3 0 1 1 - F103 0

104C Default to Text Message 4 0 1 1 - F103 0

104D Default to Text Message 5 0 1 1 - F103 0

... Reserved - - - - - -

MESSAGE SCRATCHPAD1060 1st & 2nd Character of 1st Scratchpad Message 32 127 1 - F1 ’T’

↓ ↓1073 39th & 40th Character of 1st Scratchpad Message 32 127 1 - F1 " "

1074 1st & 2nd Character of 2nd Scratchpad Message 32 127 1 - F1 ’T’

↓ ↓1087 39th & 40th Character of 2nd Scratchpad Message 32 127 1 - F1 " "

1088 1st & 2nd Character of 3rd Scratchpad Message 32 127 1 - F1 ’T’

↓ ↓109B 39th & 40th Character of 3rd Scratchpad Message 32 127 1 - F1 " "

109C 1st & 2nd Character of 4th Scratchpad Message 32 127 1 - F1 ’T’

↓ ↓10AF 39th & 40th Character of 4th Scratchpad Message 32 127 1 - F1 " "

10B0 1st & 2nd Character of 5th Scratchpad Message 32 127 1 - F1 ’T’

↓ ↓10C3 39th & 40th Character of 5th Scratchpad Message 32 127 1 - F1 " "

... Reserved

CLEAR PRESET DATA1130 Clear Last Trip Data 0 1 1 - F103 0

1131 Clear Peak Demand Data 0 1 1 - F103 0

1132 Clear RTD Maximums 0 1 1 - F103 0

1133 Preset MWh 0 65535 1 MWh F7 0

1134 Clear Trip Counters 0 1 1 - F103 0

1135 Preset Digital Counter 0 65535 1 - F1 0

1136 Clear Event Records 0 1 1 - F103 0

1137 Preset Positive kvarh 0 65535 1 kvarh F7 0

1138 Preset Negative kvarh 0 65535 1 kvarh F7 0

... Reserved

1140 Clear Motor Data 0 1 1 - F103 0

1141 Reserved - - - - - -

1142 Clear All Data 0 1 1 - F103 0

Table 10–3: MEMORY MAP (Sheet 13 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 231: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-25

10 COMMUNICATIONS 10.4 MEMORY MAP

10

1143 RRTD 1 - Preset Digital Counter 0 65535 1 - F1 0

1145 RRTD 2 - Preset Digital Counter 0 65535 1 - F1 0

1147 RRTD 3 - Preset Digital Counter 0 65535 1 - F1 0

1149 RRTD 4 - Preset Digital Counter 0 65535 1 - F1 0

... Reserved

CT/VT SETUP1180 Phase CT Primary 1 5000 1 A F1 500

1181 Motor Full Load Amps 1 5000 1 A F1 10

1182 Ground CT Type 0 3 1 - F104 2

1183 Ground CT Primary 1 5000 1 A F1 100

... Reserved

11A0 Voltage Transformer Connection Type 0 2 1 - F106 0

11A1 Voltage Transformer Ratio 100 24000 1 - F3 35

11A2 Motor Rated Voltage 100 20000 1 V F1 4160

... Reserved

11C0 Nominal Frequency 0 2 1 - F107 0

11C1 System Phase Sequence 0 1 1 - F124 0

... Reserved

SERIAL COMM CONTROL11C8 Serial Communication Control 0 1 1 - F103 0

11C9 Assign Start Control Relays 0 7 1 - F113 2

... Reserved

REDUCED VOLTAGE11D0 Reduced Voltage Starting 0 1 1 - F103 0

11D1 Start Control Relays 0 2 1 - F113 4

11D2 Transition On 0 2 1 - F108 0

11D3 Incomplete Sequence Trip Relays 0 6 1 - F111 0

11D4 Reduced Voltage Start Level 25 300 1 % FLA F1 100

11D5 Reduced Voltage Start Timer 1 500 1 s F1 200

AUTORESTART11D6 Autorestart 0 1 1 - F103 0

11D7 Total Restarts 0 20000 1 starts F1 1

11D8 Restart Delay 0 20000 1 sec. F1 0

11D9 Progressive Delay 0 20000 1 sec. F1 0

11DA Hold Delay 0 20000 1 sec. F1 0

11DB Bus Valid 0 1 1 - F103 0

11DC Bus Valid Level 15 100 1 %VT F1 100

... Reserved

DIGITAL COUNTER12E6 First Character of Counter Name 32 127 1 - F1 “G”

12F2 First Character of Counter Unit Name 32 127 1 - F1 ‘U’

12F8 Counter Type 0 1 1 - F114 0

12F9 Digital Counter Alarm 0 2 1 - F115 0

12FA Assign Alarm Relays 0 6 1 - F113 0

12FB Counter Alarm Level 0 65535 1 - F1 100

12FD Reserved - - - - - -

12FE Record Alarms as Events 0 1 1 - F103 0

EMERGENCY1330 1st & 2nd Character of Emergency Switch Name 32 127 1 - F22 ’G’

1340 General Emergency Switch Type 0 1 1 - F116 0

1341 General Emergency Switch Block Input From Start 0 5000 1 s F1 0

1342 General Emergency Switch Alarm 0 2 1 - F115 0

1343 General Emergency Switch Alarm Relays 0 6 1 - F113 0

1344 General Emergency Switch Alarm Delay 1 50000 1 100ms F2 50

1345 General Emergency Switch Alarm Events 0 1 1 - F103 0

1346 General Emergency Switch Trip 0 2 1 - F115 0

1347 General Emergency Switch Trip Relays 0 6 1 - F111 0

1348 General Emergency Switch Trip Delay 1 50000 1 100ms F2 50

1349 Emergency Switch Assignable Function 0 7 1 - F110 0

Table 10–3: MEMORY MAP (Sheet 14 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 232: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-26 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

... Reserved

DIFFERENTIAL1370 1st & 2nd Character of Differential Switch Name 32 127 1 - F22 ’G’

1380 General Differential Switch Type 0 1 1 - F116 0

1381 General Differential Switch Block Input From Start 0 5000 1 s F1 0

1382 General Differential Switch Alarm 0 2 1 - F115 0

1383 General Differential Switch Alarm Relays 0 7 1 - F113 1

1384 General Differential Switch Alarm Delay 1 50000 1 100ms F2 50

1385 General Differential Switch Alarm Events 0 1 1 - F103 0

1386 General Differential Switch Trip 0 2 1 - F115 0

1387 General Differential Switch Trip Relays 0 7 1 - F111 1

1388 General Differential Switch Trip Delay 1 50000 1 100ms F2 50

1389 Differential Switch Assignable Function 0 7 1 - F157 0

138A Assign Differential Switch Trip Relays 0 7 1 - F111 1

... Reserved

SPEED13A0 1st & 2nd Character of Speed Switch Name 32 127 1 - F22 ’G’

13B0 General Speed Switch Type 0 1 1 - F116 0

13B1 General Speed Switch Block Input from Start 0 5000 1 s F1 0

13B2 General Speed Switch Alarm 0 2 1 - F115 0

13B3 General Speed Switch Alarm Relays 0 7 1 - F113 1

13B4 General Speed Switch Alarm Delay 1 50000 1 100ms F2 50

13B5 General Speed Switch Alarm Events 0 1 1 - F103 0

13B6 General Speed Switch Trip 0 2 1 - F115 0

13B7 General Speed Switch Trip Relays 0 7 1 - F111 1

13B8 General Speed Switch Trip Delay 1 50000 1 100ms F2 50

13B9 Speed Switch Assignable Function 0 7 1 - F158 0

13BA Speed Switch Delay 5 1000 5 100ms F2 20

13BB Assign Speed Switch Trip Relays 0 7 1 - F111 1

... Reserved

RESET13D0 1st & 2nd Character of Reset Switch Name 32 127 1 - F22 ’G’

13E0 General Reset Switch Type 0 1 1 - F116 0

13E1 General Reset Switch Block Input From Start 0 5000 1 s F1 0

13E2 General Reset Switch Alarm 0 2 1 - F115 0

13E3 General Reset Switch Alarm Relays 0 7 1 - F113 1

13E4 General Reset Switch Alarm Delay 1 50000 1 100ms F2 50

13E5 General Reset Switch Alarm Events 0 1 1 - F103 0

13E6 General Reset Switch Trip 0 2 1 - F115 0

13E7 General Reset Switch Trip Relays 0 7 1 - F111 1

13E8 General Reset Switch Trip Delay 1 50000 1 100ms F2 50

13E9 Reset Switch Assignable Function 0 7 1 - F160 0

... Reserved

SPARE1400 1st & 2nd Character of Spare Switch Name 32 127 1 - F22 ’G’

1410 General Spare Switch Type 0 1 1 - F116 0

1411 General Spare Switch Block Input From Start 0 5000 1 s F1 0

1412 General Spare Switch Alarm 0 2 1 - F115 0

1413 General Spare Switch Alarm Relays 0 7 1 - F113 1

1414 General Spare Switch Alarm Delay 1 50000 1 100ms F2 50

1415 General Spare Switch Alarm Events 0 1 1 - F103 0

1416 General Spare Switch Trip 0 1 1 - F115 0

1417 General Spare Switch Trip Relays 0 7 1 - F111 1

1418 General Spare Switch Trip Delay 1 50000 1 100 ms F2 50

1419 Spare Switch Assignable Function 0 7 1 - F159 0

141A Starter Aux Contact Type 0 1 1 - F109 0

... Reserved

OUTPUT RELAY SETUP1500 Trip Relay Reset Mode 0 2 1 - F117 0

Table 10–3: MEMORY MAP (Sheet 15 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 233: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-27

10 COMMUNICATIONS 10.4 MEMORY MAP

10

1501 Alarm Relay Reset Mode 0 2 1 - F117 0

1502 Aux 1 Relay Reset Mode 0 2 1 - F117 0

1503 Aux 2 Relay Reset Mode 0 2 1 - F117 0

1504 Trip Relay Operation 0 1 1 - F161 0

1505 Alarm Relay Operation 0 1 1 - F161 1

1506 Aux1 Relay Operation 0 1 1 - F161 1

1507 Aux2 Relay Operation 0 1 1 - F161 0

... Reserved

THERMAL MODEL (0=OFF)1581 Overload Pickup Level 101 125 1 0.01xFLA F3 101

1582 Assign Thermal Capacity Trip Relay 0 7 1 - F111 1

1583 Unbalance k Factor (0=Learned) 0 29 1 - F1 0

1584 Running Cool Time Constant 1 500 1 min F1 15

1585 Stopped Cool Time Constant 1 500 1 min F1 30

1586 Hot/Cold Safe Stall Ratio 1 100 1 - F3 100

1587 RTD Biasing 0 1 1 - F103 0

1588 RTD Bias Minimum 0 198 1 oC F1 40

1589 RTD Bias Mid Point 0 199 1 oC F1 120

158A RTD Bias Maximum 0 200 1 oC F1 155

158B Thermal Capacity Alarm 0 2 1 - F115 0

158C Assign Thermal Capacity Alarm Relays 0 7 1 - F113 1

158D Thermal Capacity Alarm Level 1 100 1 % used F1 75

158E Thermal Capacity Alarm Events 0 1 1 - F103 0

158F Enable Learned Cool Time 0 1 1 - F103 0

1590 Enable Unbalance Biasing 0 1 1 - F103 0

... Reserved

15AE Select Curve Style 0 1 1 - F128 0

O/L CURVE SETUP15AF Standard Overload Curve Number 1 15 1 - F1 4

15B0 Time to Trip at 1.01 x FLA 0 65500 1 s F1 17415

15B2 Time to Trip at 1.05 x FLA 0 65500 1 s F1 3415

15B4 Time to Trip at 1.10 x FLA 0 65500 1 s F1 1667

15B6 Time to Trip at 1.20 x FLA 0 65500 1 s F1 795

15B8 Time to Trip at 1.30 x FLA 0 65500 1 s F1 507

15BA Time to Trip at 1.40 x FLA 0 65500 1 s F1 365

15BC Time to Trip at 1.50 x FLA 0 65500 1 s F1 280

15BE Time to Trip at 1.75 x FLA 0 65500 1 s F1 170

15C0 Time to Trip at 2.00 x FLA 0 65500 1 s F1 117

15C2 Time to Trip at 2.25 x FLA 0 65500 1 s F1 86

15C4 Time to Trip at 2.50 x FLA 0 65500 1 s F1 67

15C6 Time to Trip at 2.75 x FLA 0 65500 1 s F1 53

15C8 Time to Trip at 3.00 x FLA 0 65500 1 s F1 44

15CA Time to Trip at 3.25 x FLA 0 65500 1 s F1 37

15CC Time to Trip at 3.50 x FLA 0 65500 1 s F1 31

15CE Time to Trip at 3.75 x FLA 0 65500 1 s F1 27

15D0 Time to Trip at 4.00 x FLA 0 65500 1 s F1 23

15D2 Time to Trip at 4.25 x FLA 0 65500 1 s F1 21

15D4 Time to Trip at 4.50 x FLA 0 65500 1 s F1 18

15D6 Time to Trip at 4.75 x FLA 0 65500 1 s F1 16

15D8 Time to Trip at 5.00 x FLA 0 65500 1 s F1 15

15DA Time to Trip at 5.50 x FLA 0 65500 1 s F1 12

15DC Time to Trip at 6.00 x FLA 0 65500 1 s F1 10

15DE Time to Trip at 6.50 x FLA 0 65500 1 s F1 9

15E0 Time to Trip at 7.00 x FLA 0 65500 1 s F1 7

15E2 Time to Trip at 7.50 x FLA 0 65500 1 s F1 6

15E4 Time to Trip at 8.00 x FLA 0 65500 1 s F1 6

15E6 Time to Trip at 10.0 x FLA 0 65500 1 s F1 6

15E8 Time to Trip at 15.0 x FLA 0 65500 1 s F1 6

15EA Time to Trip at 20.0 x FLA 0 65500 1 s F1 6

Table 10–3: MEMORY MAP (Sheet 16 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 234: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-28 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

... Reserved

SHORT CIRCUIT TRIP (0 = INSTANTANEOUS TIME DELAY)1640 Short Circuit Trip 0 1 1 - F103 0

1641 Reserved

1642 Assign Trip Relays 0 7 1 - F111 1

1643 Short Circuit Pickup 20 200 1 x CT F2 100

1644 Short Circuit Trip Delay 0 255.00 0.01 s F3 0

1645 Short Circuit Trip Backup 0 2 1 - F115 0

1646 Assign Backup Relays 0 3 1 - F119 1

1647 Short Circuit Trip Backup Delay 0 25500 0.01 s F3 0

... Reserved

OVERLOAD ALARM1650 Overload Alarm 0 2 1 - F115 0

1651 Overload Alarm Level 101 150 1 0.01xFLA F3 101

1652 Assign Overload Alarm Relays 0 7 1 - F113 1

1653 Overload Alarm Delay 1 600 1 s F2 1

1654 Overload Alarm Events 0 1 1 - F103 0

... Reserved

MECHANICAL JAM1660 Mechanical Jam Alarm 0 2 1 - F115 0

1661 Assign Alarm Relays 0 7 1 - F113 1

1662 Mechanical Jam Alarm Pickup 101 600 1 0.01xFLA F3 150

1663 Mechanical Jam Alarm Delay 5 1250 5 s F2 10

1664 Mechanical Jam Alarm Events 0 1 1 - F103 0

1665 Mechanical Jam Trip 0 2 1 - F115 0

1666 Assign Trip Relays 0 7 1 - F111 1

1667 Mechanical Jam Trip Pickup 101 600 1 0.01xFLA F3 150

1668 Mechanical Jam Trip Delay 5 1250 5 s F2 10

... Reserved - - - - - -

UNDERCURRENT1670 Block Undercurrent from Start 0 15000 1 s F1 0

1671 Undercurrent Alarm 0 2 1 - F115 0

1672 Assign Alarm Relays 0 7 1 - F113 1

1673 Undercurrent Alarm Pickup 10 99 1 0.01xFLA F3 70

1674 Undercurrent Alarm Delay 1 255 1 s F1 1

1675 Undercurrent Alarm Events 0 1 1 - F103 0

1676 Undercurrent Trip 0 2 1 - F115 0

1677 Assign Trip Relays 0 7 1 - F111 1

1678 Undercurrent Trip Pickup 10 99 1 0.01xFLA F3 70

1679 Undercurrent Trip Delay 1 255 1 s F1 1

... Reserved

CURRENT UNBALANCE1680 Block Unbalance From Start 0 5000 1 s F1 0

1681 Current Unbalance Alarm 0 2 1 - F115 0

1682 Assign Alarm Relays 0 7 1 - F113 1

1683 Unbalance Alarm Pickup 4 30 1 % F1 15

1684 Unbalance Alarm Delay 1 255 1 s F1 1

1685 Unbalance Alarm Events 0 1 1 - F103 0

1686 Current Unbalance Trip 0 2 1 - F115 0

1687 Assign Trip Relays 0 7 1 - F111 1

1688 Unbalance Trip Pickup 4 30 1 % F1 20

1689 Unbalance Trip Delay 1 255 1 s F1 1

... Reserved

GROUND FAULT16A1 Ground Fault Alarm 0 2 1 - F115 0

16A2 Assign Alarm Relays 0 7 1 - F113 1

16A3 Ground Fault Alarm Pickup 10 100 1 0.1xCT F3 10

16A4 Alarm Pickup for Multilin CT 50 / 0.025 25 2500 1 Amps F3 25

16A5 Ground Fault Alarm Delay 0 255.00 0.01 s F3 0

Table 10–3: MEMORY MAP (Sheet 17 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 235: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-29

10 COMMUNICATIONS 10.4 MEMORY MAP

10

16A6 Ground Fault Alarm Events 0 1 1 - F103 0

16A7 Ground Fault Trip 0 2 1 - F 115 0

16A8 Assign Trip Relays 0 7 1 - F 111 1

16A9 Ground Fault Trip Pickup 10 100 1 0.1xCT F3 20

16AA Trip Pickup for Multilin CT 50 / 0.025 25 2500 1 0.1xCT F3 25

16AB Ground Fault Trip Delay 0 255.00 0.01 s F3 0

16AC Ground Fault Trip Backup 0 1 1 - F103 0

16AD Ground Fault Trip Backup Relays 0 3 1 - F119 33

16AE Ground Fault Trip Backup Delay 0.10 255.00 0.01 s F3 0.20

... Reserved

ACCELERATION TRIP16D0 Acceleration Trip 0 1 1 - F115 0

16D1 Assign Trip Relays 0 7 1 - F111 1

16D2 Acceleration Timer From Start 10 2500 1 1s F1 100

... Reserved - - - - - -

16E0 Enable Single Shot Restart 0 1 1 - F103 0

16E1 Enable Start Inhibit 0 1 1 - F103 0

16E2 Maximum Starts/Hour Permissible 0 5 1 - F1 0

16E3 Time Between Starts 0 500 1 min F1 10

16E4 Restart Block 0 50000 1 s F1 0

16E5 Assign Start Inhibit Relay 0 7 1 - F111 1

... Reserved

BACKSPIN DETECTION1780 Enable Back-Spin Start Inhibit 0 1 1 - F103 0

1781 Minimum Permissible Frequency 0 999 1 Hz F3 200

... Reserved

1784 Enable Prediction Algorithm 0 1 1 - F103 1

1785 Assign Backspin Inhibit Relays 0 7 1 - F111 1

1786 Number of Motor Poles 2 16 2 - F1 2

... Reserved

LOCAL RTD #11790 Local RTD #1 Application 0 4 1 - F121 0

1791 Local RTD #1 High Alarm 0 2 1 - F115 0

1792 Local RTD #1 High Alarm Relays 0 7 1 - F113 2

1793 Local RTD #1 High Alarm Level 1 200 1 oC F1 130

1794 Local RTD #1 Alarm 0 2 1 - F115 0

1795 Local RTD #1 Alarm Relays 0 7 1 - F113 1

1796 Local RTD #1 Alarm Level 1 200 1 oC F1 130

1797 Record RTD #1 Alarms as Events 0 1 1 - F103 0

1798 Local RTD #1 Trip 0 2 1 - F115 0

1799 Enable RTD #1 Trip Voting 0 13 1 - F122 1

179A Local RTD #1 Trip Relays 0 7 1 - F111 1

179B Local RTD #1 Trip Level 1 200 1 oC F1 130

179C Local RTD #1 RTD Type 0 3 1 - F120 0

17A0 First Character of Local RTD #1 Name 32 127 1 - F1 ’R’

↓ ↓ - - - - - -

17A3 8th Character of Local RTD #1 Name 32 127 1 - F1 " "

... Reserved

LOCAL RTD #217B0 Local RTD #2 Application 0 4 1 - F121 0

17B1 Local RTD #2 High Alarm 0 2 1 - F115 0

17B2 Local RTD #2 High Alarm Relays 0 7 1 - F113 2

17B3 Local RTD #2 High Alarm Level 1 200 1 oC F1 130

17B4 Local RTD #2 Alarm 0 2 1 - F115 0

17B5 Local RTD #2 Alarm Relays 0 7 1 - F113 1

17B6 Local RTD #2 Alarm Level 1 200 1 oC F1 130

17B7 Record RTD #2 Alarms as Events 0 1 1 - F103 0

17B8 Local RTD #2 Trip 0 2 1 - F 115 0

17B9 Enable RTD #2 Trip Voting 0 13 1 - F122 1

Table 10–3: MEMORY MAP (Sheet 18 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 236: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-30 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

17BA Local RTD #2 Trip Relays 0 7 1 - F111 1

17BB Local RTD #2 Trip Level 1 200 1 oC F1 130

17BC Local RTD #2 RTD Type 0 3 1 - F120 0

17C0 First Character of Local RTD #2 Name 32 127 1 - F1 ’R’

↓ ↓17C3 8th Character of Local RTD #2 Name 32 127 1 - F1 " "

... Reserved

LOCAL RTD #317D0 Local RTD #3 Application 0 4 1 - F121 0

17D1 Local RTD #3 High Alarm 0 2 1 - F115 0

17D2 Local RTD #3 High Alarm Relays 0 7 1 - F113 2

17D3 Local RTD #3 High Alarm Level 1 200 1 oC F1 130

17D4 Local RTD #3 Alarm 0 2 1 - F115 0

17D5 Local RTD #3 Alarm Relays 0 7 1 - F113 1

17D6 Local RTD #3 Alarm Level 1 200 1 oC F1 130

17D7 Record RTD #3 Alarms as Events 0 1 1 - F103 0

17D8 Local RTD #3 Trip 0 2 1 - F115 0

17D9 Enable RTD #3 Trip Voting 0 13 1 - F122 1

17DA Local RTD #3 Trip Relays 0 7 1 - F111 1

17DB Local RTD #3 Trip Level 1 200 1 oC F1 130

17DC Local RTD #3 RTD Type 0 3 1 - F120 0

17E0 First Character of Local RTD #3 Name 32 127 1 - F1 ’R’

↓ ↓17E3 8th Character of Local RTD #3 Name 32 127 1 - F1 " "

... Reserved

LOCAL RTD #417F0 Local RTD #4 Application 0 4 1 - F121 0

17F1 Local RTD #4 High Alarm 0 2 1 - F115 0

17F2 Local RTD #4 High Alarm Relays 0 7 1 - F113 2

17F3 Local RTD #4 High Alarm Level 1 200 1 oC F1 130

17F4 Local RTD #4 Alarm 0 2 1 - F115 0

17F5 Local RTD #4 Alarm Relays 0 7 1 - F113 1

17F6 Local RTD #4 Alarm Level 1 200 1 oC F1 130

17F7 Enable RTD #4 Alarms as Events 0 1 1 - F103 0

17F8 Local RTD #4 Trip 0 2 1 - F115 0

17F9 Enable RTD #4 Trip Voting 0 13 1 - F122 1

17FA Local RTD #4 Trip Relays 0 7 1 - F111 1

17FB Local RTD #4 Trip Level 1 200 1 oC F1 130

17FC Local RTD #4 RTD Type 0 3 1 - F120 0

1800 First Character of Local RTD #4 Name 32 127 1 - F1 ’R’

↓ ↓1803 8th Character of Local RTD #4 Name 32 127 1 - F1 " "

... Reserved

LOCAL RTD #51810 Local RTD #5 Application 0 4 1 - F121 0

1811 Local RTD #5 High Alarm 0 2 1 - F115 0

1812 Local RTD #5 High Alarm Relays 0 7 1 - F113 1

1813 Local RTD #5 High Alarm Level 1 250 1 oC / oF F1 130

1814 Local RTD #5 Alarm 0 2 1 - F115 0

1815 Local RTD #5 Alarm Relays 0 7 1 - F113 1

1816 Local RTD #5 Alarm Level 1 200 1 oC F1 130

1817 Record RTD #5 Alarms as Events 0 1 1 - F103 0

1818 Local RTD #5 Trip 0 2 1 - F115 0

1819 Enable RTD #5 Trip Voting 0 13 1 - F122 1

181A Local RTD #5 Trip Relays 0 7 1 - F111 1

181B Local RTD #5 Trip Level 1 200 1 oC F1 130

181C Local RTD #5 RTD Type 0 3 1 - F120 0

1820 First Character of Local RTD #5 Name 32 127 1 - F1 ’R’

↓ ↓

Table 10–3: MEMORY MAP (Sheet 19 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 237: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-31

10 COMMUNICATIONS 10.4 MEMORY MAP

10

1823 8th Character of Local RTD #5 Name 32 127 1 - F1 " "

... Reserved

LOCAL RTD #61830 Local RTD #6 Application 0 4 1 - F121 0

1831 Local RTD #6 High Alarm 0 2 1 - F115 0

1832 Local RTD #6 High Alarm Relays 0 7 1 - F113 2

1833 Local RTD #6 High Alarm Level 1 200 1 oC F1 130

1834 Local RTD #6 Alarm 0 2 1 - F115 0

1835 Local RTD #6 Alarm Relays 0 7 1 - F113 1

1836 Local RTD #6 Alarm Level 1 200 1 oC F1 130

1837 Record RTD #6 Alarms as Events 0 1 1 - F103 0

1838 Local RTD #6 Trip 0 2 1 - F115 0

1839 Enable RTD #6 Trip Voting 0 13 1 - F122 1

183A Local RTD #6 Trip Relays 0 7 1 - F111 1

183B Local RTD #6 Trip Level 1 200 1 oC F1 130

183C Local RTD #6 RTD Type 0 3 1 - F120 0

1840 First Character of Local RTD #6 Name 32 127 1 - F1 ’R’

↓ ↓1843 8th Character of Local RTD #6 Name 32 127 1 - F1 " "

... Reserved

LOCAL RTD #71850 Local RTD #7 Application 0 4 1 - F121 0

1851 Local RTD #7 High Alarm 0 2 1 - F115 0

1852 Local RTD #7 High Alarm Relays 0 7 1 - F113 2

1853 Local RTD #7 High Alarm Level 1 200 1 oC F1 130

1854 Local RTD #7 Alarm 0 2 1 - F115 0

1855 Local RTD #7 Alarm Relays 0 7 1 - F113 1

1856 Local RTD #7 Alarm Level 1 200 1 oC F1 130

1857 Record RTD #7 Alarms as Events 0 1 1 - F103 0

1858 Local RTD #7 Trip 0 2 1 - F115 0

1859 Enable RTD #7 Trip Voting 0 13 1 - F122 1

185A Local RTD #7 Trip Relays 0 7 1 - F111 1

185B Local RTD #7 Trip Level 1 200 1 oC F1 130

185C Local RTD #7 RTD Type 0 3 1 - F120 0

1860 First Character of Local RTD #7 Name 32 127 1 - F1 ’R’

↓ ↓1863 8th Character of Local RTD #7 Name 32 127 1 - F1 " "

1864 Reserved

LOCAL RTD #81870 Local RTD #8 Application 0 4 1 - F121 0

1871 Local RTD #8 High Alarm 0 2 1 - F115 0

1872 Local RTD #8 High Alarm Relays 0 7 1 - F113 2

1873 Local RTD #8 High Alarm Level 1 200 1 oC F1 130

1874 Local RTD #8 Alarm 0 2 1 - F115 0

1875 Local RTD #8 Alarm Relays 0 7 1 - F113 1

1876 Local RTD #8 Alarm Level 1 200 1 oC F1 130

1877 Record RTD #8 Alarms as Events 0 1 1 - F103 0

1878 Local RTD #8 Trip 0 2 1 - F115 0

1879 Enable RTD #8 Trip Voting 0 13 1 - F122 1

187A Local RTD #8 Trip Relays 0 7 1 - F111 1

187B Local RTD #8 Trip Level 1 200 1 oC F1 130

187C Local RTD #8 RTD Type 0 3 1 - F120 0

1880 First Character of Local RTD #8 Name 32 127 1 - F1 ’R’

↓ ↓1883 8th Character of Local RTD #8 Name 32 127 1 - F1 " "

1884 Reserved

LOCAL RTD #91890 Local RTD #9 Application 0 4 1 - F121 0

1891 Local RTD #9 High Alarm 0 2 1 - F115 0

Table 10–3: MEMORY MAP (Sheet 20 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 238: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-32 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

1892 Local RTD #9 High Alarm Relays 0 7 1 - F113 2

1893 Local RTD #9 High Alarm Level 1 200 1 oC F1 130

1894 Local RTD #9 Alarm 0 2 1 - F115 0

1895 Local RTD #9 Alarm Relays 0 7 1 - F113 1

1896 Local RTD #9 Alarm Level 1 200 1 oC F1 130

1897 Record RTD #9 Alarms as Events 0 1 1 - F103 0

1898 Local RTD #9 Trip 0 2 1 - F115 0

1899 Enable RTD #9 Trip Voting 0 13 1 - F122 1

189A Local RTD #9 Trip Relays 0 7 1 - F111 1

189B Local RTD #9 Trip Level 1 200 1 oC F1 130

189C Local RTD #9 RTD Type 0 3 1 - F120 0

18A0 First Character of Local RTD #9 Name 32 127 1 - F1 ’R’

↓ ↓18A3 8th Character of Local RTD #9 Name 32 127 1 - F1 " "

18A4 Reserved

LOCAL RTD #1018B0 Local RTD #10 Application 0 4 1 - F121 0

18B1 Local RTD #10 High Alarm 0 2 1 - F115 0

18B2 Local RTD #10 High Alarm Relays 0 7 1 - F113 2

18B3 Local RTD #10 High Alarm Level 1 200 1 oC F1 130

18B4 Local RTD #10 Alarm 0 2 1 - F115 0

18B5 Local RTD #10 Alarm Relays 0 7 1 - F113 1

18B6 Local RTD #10 Alarm Level 1 200 1 oC F1 130

18B7 Record RTD #10 Alarms as Events 0 1 1 - F103 0

18B8 Local RTD #10 Trip 0 2 1 - F115 0

18B9 Enable RTD #10 Trip Voting 0 13 1 - F122 1

18BA Local RTD #10 Trip Relays 0 7 1 - F111 1

18BB Local RTD #10 Trip Level 1 200 1 oC F1 130

18BC Local RTD #10 RTD Type 0 3 1 - F120 0

18C0 First Character of Local RTD #10 Name 32 127 1 - F1 ’R’

↓ ↓18C3 8th Character of RTD #10 Name 32 127 1 - F1 " "

... Reserved

LOCAL RTD #1118D0 Local RTD #11 Application 0 4 1 - F121 0

18D1 Local RTD #11 High Alarm 0 2 1 - F115 0

18D2 Local RTD #11 High Alarm Relays 0 7 1 - F113 2

18D3 Local RTD #11 High Alarm Level 1 200 1 oC F1 130

18D4 Local RTD #11 Alarm 0 2 1 - F115 0

18D5 Local RTD #11 Alarm Relays 0 7 1 - F113 1

18D6 Local RTD #11 Alarm Level 1 200 1 oC F1 130

18D7 Record RTD #11 Alarm Events 0 1 1 - F103 0

18D8 Local RTD #11 Trip 0 2 1 - F115 0

18D9 Enable RTD #11 Trip Voting 0 13 1 - F122 1

18DA Local RTD #11 Trip Relays 0 7 1 - F111 1

18DB Local RTD #11 Trip Level 1 200 1 oC F1 130

18DC Local RTD #11 RTD Type 0 3 1 - F120 0

18E0 First Character of Local RTD #11 Name 32 127 1 - F1 ’R’

↓ ↓18E3 8th Character of Local RTD #11 Name 32 127 1 - F1 " "

... Reserved

LOCAL RTD #1218F0 Local RTD #12 Application 0 4 1 - F121 0

18F1 Local RTD #12 High Alarm 0 2 1 - F115 0

18F2 Local RTD #12 High Alarm Relays 0 7 1 - F113 2

18F3 Local RTD #12 High Alarm Level 1 200 1 oC F1 130

18F4 Local RTD #12 Alarm 0 2 1 - F115 0

18F5 Local RTD #12 Alarm Relays 0 7 1 - F113 1

18F6 Local RTD #12 Alarm Level 1 200 1 oC F1 130

Table 10–3: MEMORY MAP (Sheet 21 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 239: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-33

10 COMMUNICATIONS 10.4 MEMORY MAP

10

18F7 Record RTD #12 Alarms as Events 0 1 1 - F103 0

18F8 Local RTD #12 Trip 0 2 1 - F115 0

18F9 Enable RTD #12 Trip Voting 0 13 1 - F122 1

18FA Local RTD #12 Trip Relays 0 7 1 - F111 1

18FB Local RTD #12 Trip Level 1 200 1 oC F1 130

18FC Local RTD #12 RTD Type 0 3 1 - F120 0

1900 First Character of Local RTD #12 Name 32 127 1 - F1 ’R’

↓ ↓1903 8th Character of Local RTD #12 Name 32 127 1 - F1 " "

... Reserved

OPEN RTD ALARM1B20 Open RTD Alarm 0 2 1 - F115 0

1B21 Assign Alarm Relays 0 7 1 - F113 1

1B22 Open RTD Alarm Events 0 1 1 - F103 0

SHORT/LOW TEMPERATURE RTD ALARM1B23 Short / Low Temp RTD Alarm 0 2 1 - F115 0

1B24 Assign Alarm Relays 0 7 1 - F113 1

1B25 Short / Low Temp Alarm Events 0 1 1 - F103 0

... Reserved - - - - - -

LOSS OF REMOTE RTD COMMUNICATIONS1B30 Loss RRTD Comm Alarm 0 2 1 - F115 0

1B31 Loss RRTD Comm Alarm Relays 0 7 1 - F113 1

1B32 Loss RRTD Comm Alarm Events 0 1 1 - F103 0

... Reserved

UNDERVOLTAGE1B60 Undervoltage Active If Motor Stopped 0 1 1 - F103 0

1B61 Undervoltage Alarm 0 2 1 - F115 0

1B62 Assign Alarm Relays 0 7 1 - F113 1

1B63 Undervoltage Alarm Pickup 50 99 1 x Rated F3 85

1B64 Starting Undervoltage Alarm Pickup 50 99 1 x Rated F3 85

1B65 Undervoltage Alarm Delay 0 2550 1 0.1s F2 30

1B66 Undervoltage Alarm Events 0 1 1 - F103 0

1B67 Undervoltage Trip 0 2 1 - F115 0

1B68 Undervoltage Trip Relays 0 7 1 - F111 1

1B69 Undervoltage Trip Pickup 50 99 1 x Rated F3 80

1B6A Starting Undervoltage Trip Pickup 50 99 1 x Rated F3 80

1B6B Undervoltage Trip Delay 0 2550 1 0.1s F2 30

... Reserved

OVERVOLTAGE1B80 Overvoltage Alarm 0 2 1 - F115 0

1B81 Overvoltage Alarm Relays 0 7 1 - F113 1

1B82 Overvoltage Alarm Pickup 101 125 1 x Rated F3 105

1B83 Overvoltage Alarm Delay 0 2550 1 s F2 10

1B84 Overvoltage Alarm Events 0 1 1 - F103 0

1B85 Overvoltage Trip 0 1 1 - F103 0

1B86 Overvoltage Trip Relays 0 7 1 - F111 1

1B87 Overvoltage Trip Pickup 101 125 1 x Rated F3 110

1B88 Overvoltage Trip Delay 0 2550 1 s F2 10

... Reserved

PHASE REVERSAL1BA0 Phase Reversal Trip 0 2 1 - F115 0

1BA1 Assign Trip Relays 0 7 1 - F111 1

... Reserved - - - - - -

OVERFREQUENCY1BB0 Block Overfrequency on Start 0 5000 1 s F1 1

1BB1 Overfrequency Alarm 0 2 1 - F115 0

1BB2 Assign Alarm Relays 0 7 1 - F113 1

1BB3 Overfrequency Alarm Level 2000 7000 1 Hz F3 6050

1BB4 Overfrequency Alarm Delay 0 2550 1 s F2 10

Table 10–3: MEMORY MAP (Sheet 22 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 240: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-34 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

1BB5 Overfrequency Alarm Events 0 1 1 - F103 0

1BB6 Overfrequency Trip 0 1 1 - F103 0

1BB7 Assign Trip Relays 0 7 1 - F111 1

1BB8 Overfrequency Trip Level 2000 7000 1 Hz F3 6050

1BB9 Overfrequency Trip Delay 0 2550 1 s F2 10

... Reserved - - - - - -

UNDERFREQUENCY1BC0 Block Underfrequency on Start 0 5000 1 s F1 1

1BC1 Underfrequency Alarm 0 2 1 - F115 0

1BC2 Assign Alarm Relays 0 7 1 - F113 1

1BC3 Underfrequency Alarm Level 2000 7000 1 Hz F3 5950

1BC4 Underfrequency Alarm Delay 0 2550 1 s F2 10

1BC5 Underfrequency Alarm Events 0 1 1 - F103 0

1BC6 Underfrequency Trip 0 2 1 - F115 0

1BC7 Assign Trip Relays 0 7 1 - F111 1

1BC8 Underfrequency Trip Level 2000 7000 1 Hz F3 5950

1BC9 Underfrequency Trip Delay 0 2550 1 s F2 10

... Reserved

LEAD POWER FACTOR1BD0 Block Lead Power Factor From Start 0 5000 1 s F1 1

1BD1 Lead Power Factor Alarm 0 2 1 - F115 0

1BD2 Assign Lead Power Factor Alarm Relays 0 7 1 - F113 1

1BD3 Lead Power Factor Alarm Level 5 99 1 - F3 30

1BD4 Lead Power Factor Alarm Delay 1 2550 1 s F2 10

1BD5 Lead Power Factor Alarm Events 0 1 1 - F103 0

1BD6 Lead Power Factor Trip 0 2 1 - F115 0

1BD7 Lead Power Factor Trip Relays 0 7 1 - F111 1

1BD8 Lead Power Factor Trip Level 5 99 1 - F3 30

1BD9 Lead Power Factor Trip Delay 1 2550 1 s F2 10

... Reserved

LAG POWER FACTOR1BE0 Block Lag Power Factor From Start 0 5000 1 s F1 1

1BE1 Lag Power Factor Alarm 0 2 1 - F115 0

1BE2 Assign Lag Power Factor Alarm Relays 0 7 1 - F113 1

1BE3 Lag Power Factor Alarm Level 5 99 1 - F3 85

1BE4 Lag Power Factor Alarm Delay 1 2550 1 s F2 10

1BE5 Lag Power Factor Alarm Events 0 1 1 - F103 0

1BE6 Lag Power Factor Trip 0 2 1 - F115 0

1BE7 Assign Lag Power Factor Trip Relays 0 7 1 - F111 1

1BE8 Lag Power Factor Trip Level 5 99 1 - F3 80

1BE9 Lag Power Factor Trip Delay 1 2550 1 s F2 10

... Reserved

POSITIVE REACTIVE POWER1BF0 Block Positive kvar Element From Start 0 5000 1 s F1 1

1BF1 Positive kvar Alarm 0 2 1 - F115 0

1BF2 Assign Alarm Relays 0 7 1 - F113 1

1BF3 Positive kvar Alarm Level 1 25000 1 kvar F1 10

1BF4 Positive kvar Alarm Delay 1 2550 1 s F2 10

1BF5 Positive kvar Alarm Events 0 1 1 - F103 0

1BF6 Positive kvar Trip 0 1 1 - F103 0

1BF7 Assign Trip Relays 0 7 1 - F111 1

1BF8 Positive kvar Trip Level 1 25000 1 kvar F1 25

1BF9 Positive kvar Trip Delay 1 2550 1 s F2 10

... Reserved

NEGATIVE REACTIVE POWER1C00 Block Negative kvar Element from Start 0 5000 1 s F1 1

1C01 Negative kvar Alarm 0 2 1 - F115 0

1C02 Assign Alarm Relays 0 7 1 - F113 1

1C03 Negative kvar Alarm Level 1 25000 1 kvar F1 10

Table 10–3: MEMORY MAP (Sheet 23 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 241: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-35

10 COMMUNICATIONS 10.4 MEMORY MAP

10

1C04 Negative kvar Alarm Delay 1 2550 1 s F2 10

1C05 Negative kvar Alarm Events 0 1 1 - F103 0

1C06 Negative kvar Trip 0 1 1 - F103 0

1C07 Assign Trip Relays 0 7 1 - F111 1

1C08 Negative kvar Trip Level 1 25000 1 kvar F1 25

1C09 Negative kvar Trip Delay 1 2550 1 s F2 10

... Reserved

UNDERPOWER1C10 Block Underpower From Start 0 15000 1 s F1 0

1C11 Underpower Alarm 0 2 1 - F115 0

1C12 Assign Alarm Relays 0 7 1 - F113 1

1C13 Underpower Alarm Level 1 25000 1 kW F1 2

1C14 Underpower Alarm Delay 5 2550 1 s F2 1

1C15 Underpower Alarm Events 0 1 1 - F103 0

1C16 Underpower Trip 0 2 1 - F115 0

1C17 Underpower Trip Relays 0 7 1 - F111 1

1C18 Underpower Trip Level 1 25000 1 kW F1 1

1C19 Underpower Trip Delay 5 2550 1 s F1 1

... Reserved

REVERSE POWER1C20 Block Reverse Power From Start 0 50000 1 s F1 0

1C21 Reverse Power Alarm 0 2 1 - F115 0

1C22 Assign Alarm Relays 0 7 1 - F113 1

1C23 Reverse Power Alarm Level 1 25000 1 kW F1 2

1C24 Reverse Power Alarm Delay 5 300 1 s F2 1

1C25 Reverse Power Alarm Events 0 1 1 - F103 0

1C26 Reverse Power Trip 0 2 1 - F115 0

1C27 Assign Trip Relays 0 7 1 - F111 1

1C28 Reverse Power Trip Level 1 25000 1 kW F1 1

1C29 Reverse Power Trip Delay 5 300 1 s F2 1

... Reserved

TRIP COUNTER1C80 Trip Counter Alarm 0 2 1 - F115 0

1C81 Assign Alarm Relays 0 7 1 - F113 1

1C82 Alarm Pickup Level 0 50000 1 - F1 25

1C83 Trip Counter Alarm Events 0 1 1 - F103 0

... Reserved

STARTER FAILURE1C90 Starter Failure Alarm 0 2 1 - F115 0

1C91 Starter Type 0 1 1 - F125 0

1C92 Assign Alarm Relays 0 7 1 - F113 1

1C93 Starter Failure Delay 10 1000 10 ms F1 100

1C94 Starter Failure Alarm Events 0 1 1 - F103 0

... Reserved

CURRENT DEMAND1CD0 Current Demand Period 5 90 1 min F1 15

1CD1 Current Demand Alarm 0 2 1 - F115 0

1CD2 Assign Alarm Relays 0 7 1 - F113 1

1CD3 Current Demand Alarm Level 10 65535 1 A F1 100

1CD5 Current Demand Alarm Events 0 1 1 - F103 0

... Reserved

KW DEMAND1CE0 kW Demand Period 5 90 1 min F1 15

1CE1 kW Demand Alarm 0 2 1 - F115 0

1CE2 Assign Alarm Relays 0 7 1 - F113 1

1CE3 kW Demand Alarm Level 1 50000 1 kW F1 100

1CE4 kW Demand Alarm Events 0 1 1 - F103 0

... Reserved

Table 10–3: MEMORY MAP (Sheet 24 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 242: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-36 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

KVAR DEMAND1CF0 kvar Demand Period 5 90 1 min F1 15

1CF1 kvar Demand Alarm 0 2 1 - F115 0

1CF2 Assign Alarm Relays 0 7 1 - F113 1

1CF3 kvar Demand Alarm Level -32000 32000 1 kvar F1 100

1CF4 kvar Demand Alarm Events 0 1 1 - F103 0

... Reserved

KVA DEMAND1D00 kVA Demand Period 5 90 1 min F1 15

1D01 kVA Demand Alarm 0 2 1 - F115 0

1D02 Assign Alarm Relays 0 7 1 - F113 1

1D03 kVA Demand Alarm Level 1 50000 1 kVA F1 100

1D04 kVA Demand Alarm Events 0 1 1 - F103 0

... Reserved

SELF-TEST RELAY1D06 Assign Service Relay 0 7 0 - F111 3

... Reserved

ANALOG OUTPUTS1D40 Enable Analog Output 1 0 1 1 - F103 0

1D41 Assign Analog Output 1 Output Range 0 2 1 - F26 0

1D42 Assign Analog Output 1 Parameter 0 111 1 - F127 0

1D43 Analog Output 1 Minimum TBD TBD 1 - F1 0

1D44 Analog Output 1 Maximum TBD TBD 1 - F1 0

1D45 Enable Analog Output 2 0 1 1 - F103 0

1D46 Assign Analog Output 2 Output Range 0 2 1 - F26 0

1D47 Assign Analog Output 2 Parameter 0 111 1 - F127 0

1D48 Analog Output 2 Minimum TBD TBD 1 - F1 0

1D49 Analog Output 2 Maximum TBD TBD 1 - F1 0

1D4A Enable Analog Output 3 0 1 1 - F103 0

1D4B Assign Analog Output 3 Output Range 0 2 1 - F26 0

1D4C Assign Analog Output 3 Parameter 0 111 1 - F127 0

1D4D Analog Output 3 Minimum TBD TBD 1 - F1 0

1D4E Analog Output 3 Maximum TBD TBD 1 - F1 0

1D4F Enable Analog Output 4 0 1 1 - F103 0

1D50 Assign Analog Output 4 Output Range 0 2 1 - F26 0

1D51 Assign Analog Output 4 Parameter 0 111 1 - F127 0

1D52 Analog Output 4 Minimum TBD TBD 1 - F1 0

1D53 Analog Output 4 Maximum TBD TBD 1 - F1 0

... Reserved

SIMULATION MODE1F00 Simulation Mode 0 3 1 - F138 0

1F01 Pre-Fault to Fault Time Delay 0 300 1 s F1 10

... Reserved

PRE-FAULT VALUES1F10 Pre-Fault Current Phase A 0 2000 1 x FLA F3 0

1F11 Pre-Fault Current Phase B 0 2000 1 x FLA F3 0

1F12 Pre-Fault Current Phase C 0 2000 1 x FLA F3 0

1F13 Pre-Fault Ground Current (1A/5A) 0 110 1 x CT F3 0

1F14 Pre-Fault Ground Current (50:0.025) 0 1000 1 A F3 0

1F15 Pre - Fault Voltage Phase A 0 110 1 x VT F3 0

1F16 Pre - Fault Voltage Phase B 0 110 1 x VT F3 0

1F17 Pre - Fault Voltage Phase C 0 110 1 x VT F3 0

1F18 Pre-Fault Current Lags Voltage 0 359 1 degrees F1 0

1F19 Pre - Fault System Frequency 250 700 1 Hz F2 600

1F1A Stator RTD Pre-Fault Temperature -40 200 1 oC F4 40

1F1B Bearing RTD Pre-Fault Temperature -40 200 1 oC F4 40

1F1C Other RTD Pre-Fault Temperature -40 200 1 oC F4 40

1F1D Ambient RTD Pre-Fault Temperature -40 200 1 oC F4 40

... Reserved - - - - - -

Table 10–3: MEMORY MAP (Sheet 25 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 243: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-37

10 COMMUNICATIONS 10.4 MEMORY MAP

10

FAULT SETUP1F30 Fault Current Phase A 0 2000 1 x FLA F3 0

1F31 Fault Current Phase B 0 2000 1 x FLA F3 0

1F32 Fault Current Phase C 0 2000 1 x FLA F3 0

1F33 Fault Ground Current (1A/5A) 0 110 1 x CT F3 0

1F34 Fault Ground Current (50:0.025) 0 1000 1 A F3 0

1F35 Fault Voltage Phase A 0 110 1 x VT F3 0

1F36 Fault Voltage Phase B 0 110 1 x VT F3 0

1F37 Fault Voltage Phase C 0 110 1 x VT F3 0

1F38 Fault Current Lag Voltage 0 359 1 degrees F1 0

1F39 Fault System Frequency 250 700 1 Hz F2 600

1F3A Stator RTD Fault Temperature -40 200 1 oC F4 40

1F3B Bearing RTD Fault Temperature -40 200 1 oC F4 40

1F3C Other RTD Fault Temperature -40 200 1 oC F4 40

1F3D Ambient RTD Fault Temperature -40 200 1 oC F4 40

... Reserved

TEST OUTPUT RELAYS1F80 Force Trip Relay 0 2 1 - F150 0

1F81 Force Trip Relay Duration 1 300 1 s F1 0

1F82 Force AUX1 Relay 0 2 1 - F150 0

1F83 Force AUX1 Relay Duration 1 300 1 s F1 0

1F84 Force AUX2 Relay 0 2 1 - F150 0

1F85 Force AUX2 Relay Duration 1 300 1 s F1 0

1F86 Force Alarm Relay 0 2 1 - F150 0

1F87 Force Alarm Relay Range 1 300 1 s F1 0

... Reserved

TEST ANALOG OUTPUTS1F90 Force Analog Outputs 0 1 1 - F126 0

1F91 Analog Output 1 Forced Value 0 100 1 % range F1 0

1F92 Analog Output 2 Forced Value 0 100 1 % range F1 0

1F93 Analog Output 3 Forced Value 0 100 1 % range F1 0

1F94 Analog Output 4 Forced Value 0 100 1 % range F1 0

... Reserved

REMOTE RTD SLAVE ADDRESSES1FF0 RRTD1 - Slave Address 0 254 1 - F1 0

1FF1 RRTD2 - Slave Address 0 254 1 - F1 0

1FF2 RRTD3 - Slave Address 0 254 1 - F1 0

1FF3 RRTD4 - Slave Address 0 254 1 - F1 0

... Reserved

RRTD 1 – RTD #12000 RRTD 1 - RTD #1 Application 0 4 1 - F121 0

2001 RRTD 1 - RTD #1 High Alarm 0 2 1 - F115 0

2002 RRTD 1 - RTD #1 High Alarm Relays 0 7 1 - F113 2

2003 RRTD 1 - RTD #1 High Alarm Level 1 200 1 oC F1 130

2004 RRTD 1 - RTD #1 Alarm 0 2 1 - F115 0

2005 RRTD 1 - RTD #1 Alarm Relays 0 7 1 - F113 1

2006 RRTD 1 - RTD #1 Alarm Level 1 200 1 oC F1 130

2007 Record RRTD 1 - RTD #1 Alarms as Events 0 1 1 - F103 0

2008 RRTD 1 - RTD #1 Trip 0 2 1 - F115 0

2009 Enable RRTD 1 - RTD #1 Trip Voting 0 13 1 - F122 1

200A RRTD 1 - RTD #1 Trip Relays 0 7 1 - F111 1

200B RRTD 1 - RTD #1 Trip Level 1 200 1 oC F1 130

200C RRTD 1 - RTD #1 RTD Type 0 3 1 - F120 0

... Reserved

2010 First Character of RRTD 1 - RTD #1 Name 32 127 1 - F1 ’R’

↓ ↓2013 8th Character of RRTD 1 - RTD #1 Name 32 127 1 - F1 " "

2014 Reserved

Table 10–3: MEMORY MAP (Sheet 26 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 244: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-38 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

RRTD 1 – RTD #22020 RRTD 1 - RTD #2 Application 0 4 1 - F121 0

2021 RRTD 1 - RTD #2 High Alarm 0 2 1 - F115 0

2022 RRTD 1 - RTD #2 High Alarm Relays 0 7 1 - F113 2

2023 RRTD 1 - RTD #2 High Alarm Level 1 200 1 oC F1 130

2024 RRTD 1 - RTD #2 Alarm 0 2 1 - F115 0

2025 RRTD 1 - RTD #2 Alarm Relays 0 7 1 - F113 1

2026 RRTD 1 - RTD #2 Alarm Level 1 200 1 oC F1 130

2027 Record RRTD 1 - RTD #2 Alarms as Events 0 1 1 - F103 0

2028 RRTD 1 - RTD #2 Trip 0 2 1 - F115 0

2029 Enable A Remote RTD #2 Trip Voting 0 13 1 - F122 1

202A RRTD 1 - RTD #2 Trip Relays 0 7 1 - F111 1

202B RRTD 1 - RTD #2 Trip Level 1 200 1 oC F1 130

202C RRTD 1 - RTD #2 RTD Type 0 3 1 - F120 0

... Reserved

2030 First Character of RRTD 1 - RTD #2 Name 32 127 1 - F1 ’R’

↓ ↓2033 8th Character of RRTD 1 - RTD #2 Name 32 127 1 - F1 " "

2034 Reserved

RRTD 1 – RTD #32040 RRTD 1 - RTD #3 Application 0 4 1 - F121 0

2041 RRTD 1 - RTD #3 High Alarm 0 2 1 - F115 0

2042 RRTD 1 - RTD #3 High Alarm Relays 0 7 1 - F113 2

2043 RRTD 1 - RTD #3 High Alarm Level 1 200 1 oC F1 130

2044 RRTD 1 - RTD #3 Alarm 0 2 1 - F115 0

2045 RRTD 1 - RTD #3 Alarm Relays 0 7 1 - F113 1

2046 RRTD 1 - RTD #3 Alarm Level 1 200 1 oC F1 130

2047 Record RRTD 1 - RTD #3 Alarms as Events 0 1 1 - F103 0

2048 RRTD 1 - RTD #3 Trip 0 2 1 - F115 0

2049 Enable RRTD 1 - RTD #3 Trip Voting 0 13 1 - F122 1

204A RRTD 1 - RTD #3 Trip Relays 0 7 1 - F111 1

204B RRTD 1 - RTD #3 Trip Level 1 200 1 oC F1 130

204C RRTD 1 - RTD #3 RTD Type 0 3 1 - F120 0

2050 First Character of RRTD 1 - RTD # Name 32 127 1 - F1 ’R’

↓ ↓2053 8th Character of RRTD 1 - RTD #3 Name 32 127 1 - F1 " "

... Reserved

RRTD 1 – RTD #42060 RRTD 1 - RTD #4 Application 0 4 1 - F121 0

2061 RRTD 1 - RTD #4 High Alarm 0 2 1 - F115 0

2062 RRTD 1 - RTD #4 High Alarm Relays 0 7 1 - F113 2

2063 RRTD 1 - RTD #4 High Alarm Level 1 200 1 oC F1 130

2064 RRTD 1 - RTD #4 Alarm 0 2 1 - F115 0

2065 RRTD 1 - RTD #4 Alarm Relays 0 7 1 - F113 1

2066 RRTD 1 - RTD #4 Alarm Level 1 200 1 oC F1 130

2067 Record RRTD 1 - RTD #4 Alarms as Events 0 1 1 - F103 0

2068 RRTD 1 - RTD #4 Trip 0 2 1 - F115 0

2069 Enable RRTD 1 - RTD #4 Trip Voting 0 13 1 - F122 1

206A RRTD 1 - RTD #4 Trip Relays 0 7 1 - F111 1

206B RRTD 1 - RTD #4 Trip Level 1 200 1 oC F1 130

206C RRTD 1 - RTD #4 RTD Type 0 3 1 - F120 0

2070 First Character of RRTD 1 - RTD #4 Name 32 127 1 - F1 ’R’

↓ ↓2073 8th Character of RRTD 1 - RTD #4 Name 32 127 1 - F1 " "

2074 Reserved

RRTD 1 – RTD #52080 RRTD 1 - RTD #5 Application 0 4 1 - F121 0

2081 RRTD 1 - RTD #5 High Alarm 0 2 1 - F115 0

2082 RRTD 1 - RTD #5 High Alarm Relays 0 7 1 - F113 2

Table 10–3: MEMORY MAP (Sheet 27 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 245: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-39

10 COMMUNICATIONS 10.4 MEMORY MAP

10

2083 RRTD 1 - RTD #5 High Alarm Level 1 200 1 oC F1 130

2084 RRTD 1 - RTD #5 Alarm 0 2 1 - F115 0

2085 RRTD 1 - RTD #5 Alarm Relays 0 7 1 - F113 1

2086 RRTD 1 - RTD #5 Alarm Level 1 200 1 oC F1 130

2087 Record RRTD 1 - RTD #5 Alarms as Events 0 1 1 - F103 0

2088 RRTD 1 - RTD #5 Trip 0 2 1 - F115 0

2089 Enable RRTD 1 - RTD #5 Trip Voting 0 13 1 - F122 1

208A RRTD 1 - RTD #5 Trip Relays 0 7 1 - F111 1

208B RRTD 1 - RTD #5 Trip Level 1 200 1 oC F1 130

208C RRTD 1 - RTD #5 RTD Type 0 3 1 - F120 0

2090 First Character of RRTD 1 - RTD #5 Name 32 127 1 - F1 ’R’

↓ ↓2093 8th Character of RRTD 1 - RTD #5 Name 32 127 1 - F1 " "

... Reserved

RRTD 1 – RTD #620A0 RRTD 1 - RTD #6 Application 0 4 1 - F121 0

20A1 RRTD 1 - RTD #6 High Alarm 0 2 1 - F115 0

20A2 RRTD 1 - RTD #6 High Alarm Relays 0 7 1 - F113 1

20A3 RRTD 1 - RTD #6 High Alarm Level 1 200 1 oC F1 130

20A4 RRTD 1 - RTD #6 Alarm 0 2 1 - F115 0

20A5 RRTD 1 - RTD #6 Alarm Relays 0 7 1 - F113 1

20A6 RRTD 1 - RTD #6 Alarm Level 1 200 1 oC F1 130

20A7 Record RRTD 1 - RTD #6 Alarms as Events 0 1 1 - F103 0

20A8 RRTD 1 - RTD #6 Trip 0 2 1 - F115 0

20A9 Enable RRTD 1 - RTD #6 Trip Voting 0 13 1 - F122 1

20AA RRTD 1 - RTD #6 Trip Relays 0 7 1 - F111 1

20AB RRTD 1 - RTD #6 Trip Level 1 200 1 oC F1 130

20AC RRTD 1 - RTD #6 RTD Type 0 3 1 - F120 0

20B0 First Character of RRTD 1 - RTD #6 Name 32 127 1 - F1 ’R’

↓ ↓20B3 8th Character of RRTD 1 - RTD #6 Name 32 127 1 - F1 " "

... Reserved

RRTD 1 – RTD #720C0 RRTD 1 - RTD #7 Application 0 4 1 - F121 0

20C1 RRTD 1 - RTD #7 High Alarm 0 2 1 - F115 0

20C2 RRTD 1 - RTD #7 High Alarm Relays 0 7 1 - F113 2

20C3 RRTD 1 - RTD #7 High Alarm Level 1 200 1 oC F1 130

20C4 RRTD 1 - RTD #7 Alarm 0 2 1 - F115 0

20C5 RRTD 1 - RTD #7 Alarm Relays 0 7 1 - F113 1

20C6 RRTD 1 - RTD #7 Alarm Level 1 200 1 oC F1 130

20C7 Record RRTD 1 - RTD #7 Alarms as Events 0 1 1 - F103 0

20C8 RRTD 1 - RTD #7 Trip 0 2 1 - F115 0

20C9 Enable RRTD 1 - RTD #7 Trip Voting 0 13 1 - F122 1

20CA RRTD 1 - RTD #7 Trip Relays 0 7 1 - F111 1

20CB RRTD 1 - RTD #7 Trip Level 1 200 1 oC F1 130

20CC RRTD 1 - RTD #7 RTD Type 0 3 1 - F120 0

20D0 First Character of RRTD 1 - RTD #7 Name 32 127 1 - F1 ’R’

↓ ↓20D3 8th Character of RRTD 1 - RTD #7 Name 32 127 1 - F1 " "

... Reserved

RRTD 1 – RTD #820E0 RRTD 1 - RTD #8 Application 0 4 1 - F121 0

20E1 RRTD 1 - RTD #8 High Alarm 0 2 1 - F115 0

20E2 RRTD 1 - RTD #8 High Alarm Relays 0 7 1 - F113 2

20E3 RRTD 1 - RTD #8 High Alarm Level 1 200 1 oC F1 130

20E4 RRTD 1 - RTD #8 Alarm 0 2 1 - F115 0

20E5 RRTD 1 - RTD #8 Alarm Relays 0 7 1 - F113 1

20E6 RRTD 1 - RTD #8 Alarm Level 1 200 1 oC F1 130

20E7 Record RRTD 1 - RTD #8 Alarms as Events 0 1 1 - F103 0

Table 10–3: MEMORY MAP (Sheet 28 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 246: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-40 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

20E8 RRTD 1 - RTD #8 Trip 0 2 1 - F115 0

20E9 Enable RRTD 1 - RTD #8 Trip Voting 0 13 1 - F122 1

20EA RRTD 1 - RTD #8 Trip Relays 0 7 1 - F111 1

20EB RRTD 1 - RTD #8 Trip Level 1 200 1 oC F1 130

20EC RRTD 1 - RTD #8 RTD Type 0 3 1 - F120 0

20F0 First Character of RRTD 1 - RTD #8 Name 32 127 1 - F1 ’R’

↓ ↓20F3 8th Character of RRTD 1 - RTD #8 Name 32 127 1 - F1 " "

... Reserved

RRTD 1 – RTD #92100 RRTD 1 - RTD #9 Application 0 4 1 - F121 0

2101 RRTD 1 - RTD #9 High Alarm 0 2 1 - F115 0

2102 RRTD 1 - RTD #9 High Alarm Relays 0 7 1 - F113 2

2103 RRTD 1 - RTD #9 High Alarm Level 1 200 1 oC F1 130

2104 RRTD 1 - RTD #9 Alarm 0 2 1 - F115 0

2105 RRTD 1 - RTD #9 Alarm Relays 0 7 1 - F113 1

2106 RRTD 1 - RTD #9 Alarm Level 1 200 1 oC F1 130

2107 Record RRTD 1 - RTD #9 Alarms as Events 0 1 1 - F103 0

2108 RRTD 1 - RTD #9 Trip 0 2 1 - F115 0

2109 Enable RRTD 1 - RTD #9 Trip Voting 0 13 1 - F122 1

210A RRTD 1 - RTD #9 Trip Relays 0 7 1 - F111 1

210B RRTD 1 - RTD #9 Trip Level 1 200 1 oC F1 130

210C RRTD 1 - RTD #9 RTD Type 0 3 1 - F120 0

2110 First Character of RRTD 1 - RTD #9 Name 32 127 1 - F1 ’R’

↓ ↓2113 8th Character of RRTD 1 - RTD #9 Name 32 127 1 - F1 " "

... Reserved

RRTD 1 – RTD #102120 RRTD 1 - RTD #10 Application 0 4 1 - F121 0

2121 RRTD 1 - RTD #10 High Alarm 0 2 1 - F115 0

2122 RRTD 1 - RTD #10 High Alarm Relays 0 7 1 - F113 2

2123 RRTD 1 - RTD #10 High Alarm Level 1 200 1 oC F1 130

2124 RRTD 1 - RTD #10 Alarm 0 2 1 - F115 0

2125 RRTD 1 - RTD #10 Alarm Relays 0 7 1 - F113 1

2126 RRTD 1 - RTD #10 Alarm Level 1 200 1 oC F1 130

2127 Record RRTD 1 - RTD #10 Alarms as Events 0 1 1 - F103 0

2128 RRTD 1 - RTD #10 Trip 0 2 1 - F115 0

2129 Enable RRTD 1 - RTD#10 Trip Voting 0 13 1 - F122 1

212A RRTD 1 - RTD #10 Trip Relays 0 7 1 - F111 1

212B RRTD 1 - RTD #10 Trip Level 1 200 1 oC F1 130

212C RRTD 1 - RTD #10 RTD Type 0 3 1 - F120 0

2130 First Character of RRTD 1 - RTD #10 Name 32 127 1 - F1 ’R’

↓ ↓2133 8th Character of RRTD 1 - RTD #10 Name 32 127 1 - F1 " "

... Reserved

RRTD 1 – RTD #112140 RRTD 1 - RTD #11 Application 0 4 1 - F121 0

2141 RRTD 1 - RTD #11 High Alarm 0 2 1 - F115 0

2142 RRTD 1 - RTD #11 High Alarm Relays 0 7 1 - F113 2

2143 RRTD 1 - RTD #11 High Alarm Level 1 200 1 oC F1 130

2144 RRTD 1 - RTD #11 Alarm 0 2 1 - F115 0

2145 RRTD 1 - RTD #11 Alarm Relays 0 7 1 - F113 1

2146 RRTD 1 - RTD #11 Alarm Level 1 200 1 oC F1 130

2147 Record RRTD 1 - RTD #11 Alarms as Events 0 1 1 - F103 0

2148 RRTD 1 - RTD #11 Trip 0 2 1 - F115 0

2149 Enable RRTD 1 - RTD #11 Trip Voting 0 13 1 - F122 1

214A RRTD 1 - RTD #11 Trip Relays 0 7 1 - F111 1

214B RRTD 1 - RTD #11 Trip Level 1 200 1 oC F1 130

214C RRTD 1 - RTD #11 RTD Type 0 3 1 - F120 0

Table 10–3: MEMORY MAP (Sheet 29 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 247: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-41

10 COMMUNICATIONS 10.4 MEMORY MAP

10

2150 First Character of RRTD 1 - RTD #11 Name 32 127 1 - F1 ’R’

↓ ↓2153 8th Character of RRTD 1 - RTD #11 Name 32 127 1 - F1 " "

... Reserved

RRTD 1 – RTD #122160 RRTD 1 - RTD #12 Application 0 4 1 - F121 0

2161 RRTD 1 - RTD #12 High Alarm 0 2 1 - F115 0

2162 RRTD 1 - RTD #12 High Alarm Relays 0 7 1 - F113 2

2163 RRTD 1 - RTD #12 High Alarm Level 1 200 1 oC F1 130

2164 RRTD 1 - RTD #12 Alarm 0 2 1 - F115 0

2165 RRTD 1 - RTD #12 Alarm Relays 0 7 1 - F113 1

2166 RRTD 1 - RTD #12 Alarm Level 1 200 1 oC F1 130

2167 Record RRTD 1 - RTD #12 Alarms as Events 0 1 1 - F103 0

2168 RRTD 1 - RTD #12 Trip 0 2 1 - F115 0

2169 Enable RRTD 1 - RTD #12 Trip Voting 0 13 1 - F122 1

216A RRTD 1 - RTD #12 Trip Relays 0 7 1 - F111 1

216B RRTD 1 - RTD #12 Trip Level 1 200 1 oC F1 130

216C RRTD 1 - RTD #12 RTD Type 0 3 1 - F120 0

2170 First Character of RRTD 1 - RTD #12 Name 32 127 1 - F1 ’R’

↓ ↓2173 8th Character of RRTD 1 - RTD #12 Name 32 127 1 - F1 " "

... Reserved

RRTD 1 – OPEN RTD ALARM2180 RRTD A - Open RTD Alarm 0 2 1 - F115 0

2181 RRTD A - Assign Alarm Relays 0 7 1 - F113 1

2182 RRTD A - Open RTD Alarm Events 0 1 1 - F103 0

RRTD 1 – SHORT/LOW TEMPERATURE RTD ALARM2183 RRTD A - Short / Low Temp RTD Alarm 0 2 1 - F115 0

2184 RRTD A - Assign Alarm Relays 0 7 1 - F113 1

2185 RRTD A - Short / Low Temp Alarm Events 0 1 1 - F103 0

... Reserved - - - - - -

RRTD 2 – RTD #12200 RRTD 2 - RTD #1 Application 0 4 1 - F121 0

2201 RRTD 2 - RTD #1 High Alarm 0 2 1 - F115 0

2202 RRTD 2 - RTD #1 High Alarm Relays 0 7 1 - F113 2

2203 RRTD 2 - RTD #1 High Alarm Level 1 200 1 oC F1 130

2204 RRTD 2 - RTD #1 Alarm 0 2 1 - F115 0

2205 RRTD 2 - RTD #1 Alarm Relays 0 7 1 - F113 1

2206 RRTD 2 - RTD #1 Alarm Level 1 200 1 oC F1 130

2207 Record RRTD 2 - RTD #1 Alarms as Events 0 1 1 - F103 0

2208 RRTD 2 - RTD #1 Trip 0 2 1 - F115 0

2209 Enable RRTD 2 - RTD #1 Trip Voting 0 13 1 - F122 1

220A RRTD 2 - RTD #1 Trip Relays 0 7 1 - F111 1

220B RRTD 2 - RTD #1 Trip Level 1 200 1 oC F1 130

220C RRTD 2 - RTD #1 RTD Type 0 3 1 - F120 0

2210 First Character of RRTD 2 - RTD #1 Name 32 127 1 - F1 ’R’

↓ ↓2213 8th Character of RRTD 2 - RTD #1 Name 32 127 1 - F1 " "

... Reserved

RRTD 2 – RTD #22220 RRTD 2 - RTD #2 Application 0 4 1 - F121 0

2221 RRTD 2 - RTD #2 High Alarm 0 2 1 - F115 0

2222 RRTD 2 - RTD #2 High Alarm Relays 0 7 1 - F113 2

2223 RRTD 2 - RTD #2 High Alarm Level 1 200 1 oC F1 130

2224 RRTD 2 - RTD #2 Alarm 0 2 1 - F115 0

2225 RRTD 2 - RTD #2 Alarm Relays 0 7 1 - F113 1

2226 RRTD 2 - RTD #2 Alarm Level 1 200 1 oC F1 130

2227 Record RRTD 2 - RTD #2 Alarms as Events 0 1 1 - F103 0

2228 RRTD 2 - RTD #2 Trip 0 2 1 - F115 0

Table 10–3: MEMORY MAP (Sheet 30 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 248: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-42 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

2229 Enable A Remote RTD #2 Trip Voting 0 13 1 - F122 1

222A RRTD 2 - RTD #2 Trip Relays 0 7 1 - F111 1

222B RRTD 2 - RTD #2 Trip Level 1 200 1 oC F1 130

222C RRTD 2 - RTD #2 RTD Type 0 3 1 - F120 0

2230 First Character of RRTD 2 - RTD #2 Name 32 127 1 - F1 ’R’

↓ ↓2233 8th Character of RRTD 2 - RTD #2 Name 32 127 1 - F1 " "

... Reserved

RRTD 2 – RTD #32240 RRTD 2 - RTD #3 Application 0 4 1 - F121 0

2241 RRTD 2 - RTD #3 High Alarm 0 2 1 - F115 0

2242 RRTD 2 - RTD #3 High Alarm Relays 0 7 1 - F113 2

2243 RRTD 2 - RTD #3 High Alarm Level 1 200 1 oC F1 130

2244 RRTD 2 - RTD #3 Alarm 0 2 1 - F115 0

2245 RRTD 2 - RTD #3 Alarm Relays 0 7 1 - F113 1

2246 RRTD 2 - RTD #3 Alarm Level 1 200 1 oC F1 130

2247 Record RRTD 2 - RTD #3 Alarms as Events 0 1 1 - F103 0

2248 RRTD 2 - RTD #3 Trip 0 2 1 - F115 0

2249 Enable RRTD 2 - RTD #3 Trip Voting 0 13 1 - F122 1

224A RRTD 2 - RTD #3 Trip Relays 0 7 1 - F111 1

224B RRTD 2 - RTD #3 Trip Level 1 200 1 oC F1 130

224C RRTD 2 - RTD #3 RTD Type 0 3 1 - F120 0

2250 First Character of RRTD 2 - RTD # Name 32 127 1 - F1 ’R’

↓ ↓2253 8th Character of RRTD 2 - RTD #3 Name 32 127 1 - F1 " "

... Reserved

RRTD 2 – RTD #42260 RRTD 2 - RTD #4 Application 0 4 1 - F121 0

2261 RRTD 2 - RTD #4 High Alarm 0 2 1 - F115 0

2262 RRTD 2 - RTD #4 High Alarm Relays 0 7 1 - F113 2

2263 RRTD 2 - RTD #4 High Alarm Level 1 200 1 oC F1 130

2264 RRTD 2 - RTD #4 Alarm 0 2 1 - F115 0

2265 RRTD 2 - RTD #4 Alarm Relays 0 7 1 - F113 1

2266 RRTD 2 - RTD #4 Alarm Level 1 200 1 oC F1 130

2267 Record RRTD 2 - RTD #4 Alarms as Events 0 1 1 - F103 0

2268 RRTD 2 - RTD #4 Trip 0 2 1 - F115 0

2069 Enable RRTD 2 - RTD #4 Trip Voting 0 13 1 - F122 1

226A RRTD 2 - RTD #4 Trip Relays 0 7 1 - F111 1

226B RRTD 2 - RTD #4 Trip Level 1 200 1 oC F1 130

226C RRTD 2 - RTD #4 RTD Type 0 3 1 - F120 0

2270 First Character of RRTD 2 - RTD #4 Name 32 127 1 - F1 ’R’

↓ ↓2273 8th Character of RRTD 2 - RTD #4 Name 32 127 1 - F1 " "

... Reserved

RRTD 2 – RTD #52280 RRTD 2 - RTD #5 Application 0 4 1 - F121 0

2281 RRTD 2 - RTD #5 High Alarm 0 2 1 - F115 0

2282 RRTD 2 - RTD #5 High Alarm Relays 0 7 1 - F113 2

2283 RRTD 2 - RTD #5 High Alarm Level 1 200 1 oC F1 130

2284 RRTD 2 - RTD #5 Alarm 0 2 1 - F115 0

2285 RRTD 2 - RTD #5 Alarm Relays 0 7 1 - F113 1

2286 RRTD 2 - RTD #5 Alarm Level 1 200 1 oC F1 130

2287 Record RRTD 2 - RTD #5 Alarms as Events 0 1 1 - F103 0

2288 RRTD 2 - RTD #5 Trip 0 2 1 - F115 0

2289 Enable RRTD 2 - RTD #5 Trip Voting 0 13 1 - F122 1

228A RRTD 2 - RTD #5 Trip Relays 0 7 1 - F111 1

228B RRTD 2 - RTD #5 Trip Level 1 200 1 oC F1 130

228C RRTD 2 - RTD #5 RTD Type 0 3 1 - F120 0

2290 First Character of RRTD 2 - RTD #5 Name 32 127 1 - F1 ’R’

Table 10–3: MEMORY MAP (Sheet 31 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 249: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-43

10 COMMUNICATIONS 10.4 MEMORY MAP

10

↓ ↓2293 8th Character of RRTD 2 - RTD #5 Name 32 127 1 - F1 " "

... Reserved

RRTD 2 – RTD #622A0 RRTD 2 - RTD #6 Application 0 4 1 - F121 0

22A1 RRTD 2 - RTD #6 High Alarm 0 2 1 - F115 0

22A2 RRTD 2 - RTD #6 High Alarm Relays 0 7 1 - F113 1

22A3 RRTD 2 - RTD #6 High Alarm Level 1 200 1 oC F1 130

22A4 RRTD 2 - RTD #6 Alarm 0 2 1 - F115 0

22A5 RRTD 2 - RTD #6 Alarm Relays 0 7 1 - F113 1

22A6 RRTD 2 - RTD #6 Alarm Level 1 200 1 oC F1 130

22A7 Record RRTD 2 - RTD #6 Alarms as Events 0 1 1 - F103 0

22A8 RRTD 2 - RTD #6 Trip 0 2 1 - F115 0

22A9 Enable RRTD 2 - RTD #6 Trip Voting 0 13 1 - F122 1

22AA RRTD 2 - RTD #6 Trip Relays 0 7 1 - F111 1

22AB RRTD 2 - RTD #6 Trip Level 1 200 1 oC F1 130

22AC RRTD 2 - RTD #6 RTD Type 0 3 1 - F120 0

22B0 First Character of RRTD 2 - RTD #6 Name 32 127 1 - F1 ’R’

↓ ↓22B3 8th Character of RRTD 2 - RTD #6 Name 32 127 1 - F1 " "

... Reserved

RRTD 2 – RTD #722C0 RRTD 2 - RTD #7 Application 0 4 1 - F121 0

22C1 RRTD 2 - RTD #7 High Alarm 0 2 1 - F115 0

22C2 RRTD 2 - RTD #7 High Alarm Relays 0 7 1 - F113 2

22C3 RRTD 2 - RTD #7 High Alarm Level 1 200 1 oC F1 130

22C4 RRTD 2 - RTD #7 Alarm 0 2 1 - F115 0

22C5 RRTD 2 - RTD #7 Alarm Relays 0 7 1 - F113 1

22C6 RRTD 2 - RTD #7 Alarm Level 1 200 1 oC F1 130

22C7 Record RRTD 2 - RTD #7 Alarms as Events 0 1 1 - F103 0

22C8 RRTD 2 - RTD #7 Trip 0 2 1 - F115 0

22C9 Enable RRTD 2 - RTD #7 Trip Voting 0 13 1 - F122 1

22CA RRTD 2 - RTD #7 Trip Relays 0 7 1 - F111 1

22CB RRTD 2 - RTD #7 Trip Level 1 200 1 oC F1 130

22CC RRTD 2 - RTD #7 RTD Type 0 3 1 - F120 0

22D0 First Character of RRTD 2 - RTD #7 Name 32 127 1 - F1 ’R’

↓ ↓22D3 8th Character of RRTD 2 - RTD #7 Name 32 127 1 - F1 ’ ’

... Reserved

RRTD 2 – RTD #822E0 RRTD 2 - RTD #8 Application 0 4 1 - F121 0

22E1 RRTD 2 - RTD #8 High Alarm 0 2 1 - F115 0

22E2 RRTD 2 - RTD #8 High Alarm Relays 0 7 1 - F113 2

22E3 RRTD 2 - RTD #8 High Alarm Level 1 200 1 oC F1 130

22E4 RRTD 2 - RTD #8 Alarm 0 2 1 - F115 0

22E5 RRTD 2 - RTD #8 Alarm Relays 0 7 1 - F113 1

22E6 RRTD 2 - RTD #8 Alarm Level 1 200 1 oC F1 130

22E7 Record RRTD 2 - RTD #8 Alarms as Events 0 1 1 - F103 0

22E8 RRTD 2 - RTD #8 Trip 0 2 1 - F115 0

22E9 Enable RRTD 2 - RTD #8 Trip Voting 0 13 1 - F122 1

22EA RRTD 2 - RTD #8 Trip Relays 0 7 1 - F111 1

22EB RRTD 2 - RTD #8 Trip Level 1 200 1 oC F1 130

22EC RRTD 2 - RTD #8 RTD Type 0 3 1 - F120 0

22F0 First Character of RRTD 2 - RTD #8 Name 32 127 1 - F1 ’R’

↓ ↓22F3 8th Character of RRTD 2 - RTD #8 Name 32 127 1 - F1 ’ ’

... Reserved

RRTD 2 – RTD #92300 RRTD 2 - RTD #9 Application 0 4 1 - F121 0

Table 10–3: MEMORY MAP (Sheet 32 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 250: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-44 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

2301 RRTD 2 - RTD #9 High Alarm 0 2 1 - F115 0

2302 RRTD 2 - RTD #9 High Alarm Relays 0 7 1 - F113 2

2303 RRTD 2 - RTD #9 High Alarm Level 1 200 1 oC F1 130

2304 RRTD 2 - RTD #9 Alarm 0 2 1 - F115 0

2305 RRTD 2 - RTD #9 Alarm Relays 0 7 1 - F113 1

2306 RRTD 2 - RTD #9 Alarm Level 1 200 1 oC F1 130

2307 Record RRTD 2 - RTD #9 Alarms as Events 0 1 1 - F103 0

2308 RRTD 2 - RTD #9 Trip 0 2 1 - F115 0

2309 Enable RRTD 2 - RTD #9 Trip Voting 0 13 1 - F122 1

230A RRTD 2 - RTD #9 Trip Relays 0 7 1 - F111 1

230B RRTD 2 - RTD #9 Trip Level 1 200 1 oC F1 130

230C RRTD 2 - RTD #9 RTD Type 0 3 1 - F120 0

2310 First Character of RRTD 2 - RTD #9 Name 32 127 1 - F1 ’R’

↓ ↓2313 8th Character of RRTD 2 - RTD #9 Name 32 127 1 - F1 " "

... Reserved

RRTD 2 – RTD #102320 RRTD 2 - RTD #10 Application 0 4 1 - F121 0

2321 RRTD 2 - RTD #10 High Alarm 0 2 1 - F115 0

2322 RRTD 2 - RTD #10 High Alarm Relays 0 7 1 - F113 2

2323 RRTD 2 - RTD #10 High Alarm Level 1 200 1 oC F1 130

2324 RRTD 2 - RTD #10 Alarm 0 2 1 - F115 0

2325 RRTD 2 - RTD #10 Alarm Relays 0 7 1 - F113 1

2326 RRTD 2 - RTD #10 Alarm Level 1 200 1 oC F1 130

2327 Record RRTD 2 - RTD #10 Alarms as Events 0 1 1 - F103 0

2328 RRTD 2 - RTD #10 Trip 0 2 1 - F115 0

2329 Enable RRTD 2 - RTD#10 Trip Voting 0 13 1 - F122 1

232A RRTD 2 - RTD #10 Trip Relays 0 7 1 - F111 1

232B RRTD 2 - RTD #10 Trip Level 1 200 1 oC F1 130

232C RRTD 2 - RTD #10 RTD Type 0 3 1 - F120 0

2330 First Character of RRTD 2 - RTD #10 Name 32 127 1 - F1 ’R’

↓ ↓2333 8th Character of RRTD 2 - RTD #10 Name 32 127 1 - F1 " "

... Reserved

RRTD 2 – RTD #112340 RRTD 2 - RTD #11 Application 0 4 1 - F121 0

2341 RRTD 2 - RTD #11 High Alarm 0 2 1 - F115 0

2342 RRTD 2 - RTD #11 High Alarm Relays 0 7 1 - F113 2

2343 RRTD 2 - RTD #11 High Alarm Level 1 200 1 oC F1 130

2344 RRTD 2 - RTD #11 Alarm 0 2 1 - F115 0

2345 RRTD 2 - RTD #11 Alarm Relays 0 7 1 - F113 1

2346 RRTD 2 - RTD #11 Alarm Level 1 200 1 oC F1 130

2347 Record RRTD 2 - RTD #11 Alarms as Events 0 1 1 - F103 0

2348 RRTD 2 - RTD #11 Trip 0 2 1 - F115 0

2349 Enable RRTD 2 - RTD #11 Trip Voting 0 13 1 - F122 1

234A RRTD 2 - RTD #11 Trip Relays 0 7 1 - F111 1

234B RRTD 2 - RTD #11 Trip Level 1 200 1 oC F1 130

234C RRTD 2 - RTD #11 RTD Type 0 3 1 - F120 0

2350 First Character of RRTD 2 - RTD #11 Name 32 127 1 - F1 ’R’

↓ ↓2353 8th Character of RRTD 2 - RTD #11 Name 32 127 1 - F1 ’’

... Reserved

RRTD 2 – RTD #122360 RRTD 2 - RTD #12 Application 0 4 1 - F121 0

2361 RRTD 2 - RTD #12 High Alarm 0 2 1 - F115 0

2362 RRTD 2 - RTD #12 High Alarm Relays 0 7 1 - F113 2

2363 RRTD 2 - RTD #12 High Alarm Level 1 200 1 oC F1 130

2364 RRTD 2 - RTD #12 Alarm 0 2 1 - F115 0

2365 RRTD 2 - RTD #12 Alarm Relays 0 7 1 - F113 1

Table 10–3: MEMORY MAP (Sheet 33 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 251: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-45

10 COMMUNICATIONS 10.4 MEMORY MAP

10

2366 RRTD 2 - RTD #12 Alarm Level 1 200 1 oC F1 130

2367 Record RRTD 2 - RTD #12 Alarms as Events 0 1 1 - F103 0

2368 RRTD 2 - RTD #12 Trip 0 2 1 - F115 0

2369 Enable RRTD 2 - RTD #12 Trip Voting 0 13 1 - F122 1

236A RRTD 2 - RTD #12 Trip Relays 0 7 1 - F111 1

236B RRTD 2 - RTD #12 Trip Level 1 200 1 oC F1 130

236C RRTD 2 - RTD #12 RTD Type 0 3 1 - F120 0

2370 First Character of RRTD 2 - RTD #12 Name 32 127 1 - F1 ’R’

↓ ↓2373 8th Character of RRTD 2 - RTD #12 Name 32 127 1 - F1 " "

... Reserved

RRTD 2 – OPEN RTD ALARM2380 RRTD B - Open RTD Alarm 0 2 1 - F115 0

2381 RRTD B - Assign Alarm Relays 0 7 1 - F113 1

2382 RRTD B - Open RTD Alarm Events 0 1 1 - F103 0

RRTD 2 – SHORT/LOW TEMPERATURE RTD ALARM2383 RRTD B - Short / Low Temp RTD Alarm 0 2 1 - F115 0

2384 RRTD B - Assign Alarm Relays 0 7 1 - F113 1

2385 RRTD B - Short / Low Temp Alarm Events 0 1 1 - F103 0

... Reserved - - - - - -

RRTD 3 – RTD #12400 RRTD 3 - RTD #1 Application 0 4 1 - F121 0

2401 RRTD 3 - RTD #1 High Alarm 0 2 1 - F115 0

2402 RRTD 3 - RTD #1 High Alarm Relays 0 7 1 - F113 2

2403 RRTD 3 - RTD #1 High Alarm Level 1 200 1 oC F1 130

2404 RRTD 3 - RTD #1 Alarm 0 2 1 - F115 0

2405 RRTD 3 - RTD #1 Alarm Relays 0 7 1 - F113 1

2406 RRTD 3 - RTD #1 Alarm Level 1 200 1 oC F1 130

2407 Record RRTD 3 - RTD #1 Alarms as Events 0 1 1 - F103 0

2408 RRTD 3 - RTD #1 Trip 0 2 1 - F115 0

2409 Enable RRTD 3 - RTD #1 Trip Voting 0 13 1 - F122 1

240A RRTD 3 - RTD #1 Trip Relays 0 7 1 - F111 1

240B RRTD 3 - RTD #1 Trip Level 1 200 1 oC F1 130

240C RRTD 3 - RTD #1 RTD Type 0 3 1 - F120 0

2410 First Character of RRTD 3 - RTD #1 Name 32 127 1 - F1 ’R’

↓ ↓2413 8th Character of RRTD 3 - RTD #1 Name 32 127 1 - F1 " "

2414 Reserved

RRTD 3 – RTD #22420 RRTD 3 - RTD #2 Application 0 4 1 - F121 0

2421 RRTD 3 - RTD #2 High Alarm 0 2 1 - F115 0

2422 RRTD 3 - RTD #2 High Alarm Relays 0 7 1 - F113 2

2423 RRTD 3 - RTD #2 High Alarm Level 1 200 1 oC F1 130

2424 RRTD 3 - RTD #2 Alarm 0 2 1 - F115 0

2425 RRTD 3 - RTD #2 Alarm Relays 0 7 1 - F113 1

2426 RRTD 3 - RTD #2 Alarm Level 1 200 1 oC F1 130

2427 Record RRTD 3 - RTD #2 Alarms as Events 0 1 1 - F103 0

2428 RRTD 3 - RTD #2 Trip 0 2 1 - F115 0

2429 Enable RRTD 3 - RTD #2 Trip Voting 0 13 1 - F122 1

242A RRTD 3 - RTD #2 Trip Relays 0 7 1 - F111 1

242B RRTD 3 - RTD #2 Trip Level 1 200 1 oC F1 130

242C RRTD 3 - RTD #2 RTD Type 0 3 1 - F120 0

2430 First Character of RRTD 3 - RTD #2 Name 32 127 1 - F1 ’R’

↓ ↓2433 8th Character of RRTD 3 - RTD #2 Name 32 127 1 - F1 " "

... Reserved

RRTD 3 – RTD #32440 RRTD 3 - RTD #3 Application 0 4 1 - F121 0

2441 RRTD 3 - RTD #3 High Alarm 0 2 1 - F115 0

Table 10–3: MEMORY MAP (Sheet 34 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 252: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-46 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

2442 RRTD 3 - RTD #3 High Alarm Relays 0 7 1 - F113 2

2443 RRTD 3 - RTD #3 High Alarm Level 1 200 1 oC F1 130

2444 RRTD 3 - RTD #3 Alarm 0 2 1 - F115 0

2445 RRTD 3 - RTD #3 Alarm Relays 0 7 1 - F113 1

2446 RRTD 3 - RTD #3 Alarm Level 1 200 1 oC F1 130

2447 Record RRTD 3 - RTD #3 Alarms as Events 0 1 1 - F103 0

2448 RRTD 3 - RTD #3 Trip 0 2 1 - F115 0

2449 Enable RRTD 3 - RTD #3 Trip Voting 0 13 1 - F122 1

244A RRTD 3 - RTD #3 Trip Relays 0 7 1 - F111 1

244B RRTD 3 - RTD #3 Trip Level 1 200 1 oC F1 130

244C RRTD 3 - RTD #3 RTD Type 0 3 1 - F120 0

2450 First Character of RRTD 3 - RTD # Name 32 127 1 - F1 ’R’

↓ ↓2453 8th Character of RRTD 3 - RTD #3 Name 32 127 1 - F1 " "

... Reserved

RRTD 3 – RTD #42460 RRTD 3 - RTD #4 Application 0 4 1 - F121 0

2461 RRTD 3 - RTD #4 High Alarm 0 2 1 - F115 0

2462 RRTD 3 - RTD #4 High Alarm Relays 0 7 1 - F113 2

2463 RRTD 3 - RTD #4 High Alarm Level 1 200 1 oC F1 130

2464 RRTD 3 - RTD #4 Alarm 0 2 1 - F115 0

2465 RRTD 3 - RTD #4 Alarm Relays 0 7 1 - F113 1

2466 RRTD 3 - RTD #4 Alarm Level 1 200 1 oC F1 130

2467 Record RRTD 3 - RTD #4 Alarms as Events 0 1 1 - F103 0

2468 RRTD 3 - RTD #4 Trip 0 2 1 - F115 0

2469 Enable RRTD 3 - RTD #4 Trip Voting 0 13 1 - F122 1

246A RRTD 3 - RTD #4 Trip Relays 0 7 1 - F111 1

246B RRTD 3 - RTD #4 Trip Level 1 200 1 oC F1 130

246C RRTD 3 - RTD #4 RTD Type 0 3 1 - F120 0

2470 First Character of RRTD 3 - RTD #4 Name 32 127 1 - F1 ’R’

↓ ↓2473 8th Character of RRTD 3 - RTD #4 Name 32 127 1 - F1 " "

... Reserved

RRTD 3 – RTD #52480 RRTD 3 - RTD #5 Application 0 4 1 - F121 0

2481 RRTD 3 - RTD #5 High Alarm 0 2 1 - F115 0

2482 RRTD 3 - RTD #5 High Alarm Relays 0 7 1 - F113 2

2483 RRTD 3 - RTD #5 High Alarm Level 1 200 1 oC F1 130

2484 RRTD 3 - RTD #5 Alarm 0 2 1 - F115 0

2485 RRTD 3 - RTD #5 Alarm Relays 0 7 1 - F113 1

2486 RRTD 3 - RTD #5 Alarm Level 1 200 1 oC F1 130

2487 Record RRTD 3 - RTD #5 Alarms as Events 0 1 1 - F103 0

2488 RRTD 3 - RTD #5 Trip 0 2 1 - F115 0

2489 Enable RRTD 3 - RTD #5 Trip Voting 0 13 1 - F122 1

248A RRTD 3 - RTD #5 Trip Relays 0 7 1 - F111 1

248B RRTD 3 - RTD #5 Trip Level 1 200 1 oC F1 130

248C RRTD 3 - RTD #5 RTD Type 0 3 1 - F120 0

2490 First Character of RRTD 3 - RTD #5 Name 32 127 1 - F1 ’R’

↓ ↓2493 8th Character of RRTD 3 - RTD #5 Name 32 127 1 - F1 " "

... Reserved

RRTD 3 – RTD #624A0 RRTD 3 - RTD #6 Application 0 4 1 - F121 0

24A1 RRTD 3 - RTD #6 High Alarm 0 2 1 - F115 0

24A2 RRTD 3 - RTD #6 High Alarm Relays 0 7 1 - F113 1

24A3 RRTD 3 - RTD #6 High Alarm Level 1 200 1 oC F1 130

24A4 RRTD 3 - RTD #6 Alarm 0 2 1 - F115 0

24A5 RRTD 3 - RTD #6 Alarm Relays 0 7 1 - F113 1

24A6 RRTD 3 - RTD #6 Alarm Level 1 200 1 oC F1 130

Table 10–3: MEMORY MAP (Sheet 35 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 253: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-47

10 COMMUNICATIONS 10.4 MEMORY MAP

10

24A7 Record RRTD 3 - RTD #6 Alarms as Events 0 1 1 - F103 0

24A8 RRTD 3 - RTD #6 Trip 0 2 1 - F115 0

24A9 Enable RRTD 3 - RTD #6 Trip Voting 0 13 1 - F122 1

24AA RRTD 3 - RTD #6 Trip Relays 0 7 1 - F111 1

24AB RRTD 3 - RTD #6 Trip Level 1 200 1 oC F1 130

24AC RRTD 3 - RTD #6 RTD Type 0 3 1 - F120 0

24B0 First Character of RRTD 3 - RTD #6 Name 32 127 1 - F1 ’R’

↓ ↓24B3 8th Character of RRTD 3 - RTD #6 Name 32 127 1 - F1 " "

... Reserved

RRTD 3 – RTD #724C0 RRTD 3 - RTD #7 Application 0 4 1 - F121 0

24C1 RRTD 3 - RTD #7 High Alarm 0 2 1 - F115 0

24C2 RRTD 3 - RTD #7 High Alarm Relays 0 7 1 - F113 2

24C3 RRTD 3 - RTD #7 High Alarm Level 1 200 1 oC F1 130

24C4 RRTD 3 - RTD #7 Alarm 0 2 1 - F115 0

24C5 RRTD 3 - RTD #7 Alarm Relays 0 7 1 - F113 1

24C6 RRTD 3 - RTD #7 Alarm Level 1 200 1 oC F1 130

24C7 Record RRTD 3 - RTD #7 Alarms as Events 0 1 1 - F103 0

24C8 RRTD 3 - RTD #7 Trip 0 2 1 - F115 0

24C9 Enable RRTD 3 - RTD #7 Trip Voting 0 13 1 - F122 1

24CA RRTD 3 - RTD #7 Trip Relays 0 7 1 - F111 1

24CB RRTD 3 - RTD #7 Trip Level 1 200 1 oC F1 130

24CC RRTD 3 - RTD #7 RTD Type 0 3 1 - F120 0

24D0 First Character of RRTD 3 - RTD #7 Name 32 127 1 - F1 ’R’

↓ ↓24D3 8th Character of RRTD 3 - RTD #7 Name 32 127 1 - F1 " "

... Reserved

RRTD 3 – RTD #824E0 RRTD 3 - RTD #8 Application 0 4 1 - F121 0

24E1 RRTD 3 - RTD #8 High Alarm 0 2 1 - F115 0

24E2 RRTD 3 - RTD #8 High Alarm Relays 0 7 1 - F113 2

24E3 RRTD 3 - RTD #8 High Alarm Level 1 200 1 oC F1 130

24E4 RRTD 3 - RTD #8 Alarm 0 2 1 - F115 0

24E5 RRTD 3 - RTD #8 Alarm Relays 0 7 1 - F113 1

24E6 RRTD 3 - RTD #8 Alarm Level 1 200 1 oC F1 130

24E7 Record RRTD 3 - RTD #8 Alarms as Events 0 1 1 - F103 0

24E8 RRTD 3 - RTD #8 Trip 0 2 1 - F115 0

24E9 Enable RRTD 3 - RTD #8 Trip Voting 0 13 1 - F122 1

24EA RRTD 3 - RTD #8 Trip Relays 0 7 1 - F111 1

24EB RRTD 3 - RTD #8 Trip Level 1 200 1 oC F1 130

24EC RRTD 3 - RTD #8 RTD Type 0 3 1 - F120 0

24F0 First Character of RRTD 3 - RTD #8 Name 32 127 1 - F1 ’R’

↓ ↓24F3 8th Character of RRTD 3 - RTD #8 Name 32 127 1 - F1 " "

... Reserved

RRTD 3 – RTD #92500 RRTD 3 - RTD #9 Application 0 4 1 - F121 0

2501 RRTD 3 - RTD #9 High Alarm 0 2 1 - F115 0

2502 RRTD 3 - RTD #9 High Alarm Relays 0 7 1 - F113 2

2503 RRTD 3 - RTD #9 High Alarm Level 1 200 1 oC F1 130

2504 RRTD 3 - RTD #9 Alarm 0 2 1 - F115 0

2505 RRTD 3 - RTD #9 Alarm Relays 0 7 1 - F113 1

2506 RRTD 3 - RTD #9 Alarm Level 1 200 1 oC F1 130

2507 Record RRTD 3 - RTD #9 Alarms as Events 0 1 1 - F103 0

2508 RRTD 3 - RTD #9 Trip 0 2 1 - F115 0

2509 Enable RRTD 3 - RTD #9 Trip Voting 0 13 1 - F122 1

250A RRTD 3 - RTD #9 Trip Relays 0 7 1 - F111 1

250B RRTD 3 - RTD #9 Trip Level 1 200 1 oC F1 130

Table 10–3: MEMORY MAP (Sheet 36 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 254: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-48 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

250C RRTD 3 - RTD #9 RTD Type 0 3 1 - F120 0

2510 First Character of RRTD 3 - RTD #9 Name 32 127 1 - F1 ’R’

↓ ↓2513 8th Character of RRTD 3 - RTD #9 Name 32 127 1 - F1 " "

... Reserved

RRTD 3 – RTD #102520 RRTD 3 - RTD #10 Application 0 4 1 - F121 0

2521 RRTD 3 - RTD #10 High Alarm 0 2 1 - F115 0

2522 RRTD 3 - RTD #10 High Alarm Relays 0 7 1 - F113 2

2523 RRTD 3 - RTD #10 High Alarm Level 1 200 1 oC F1 130

2524 RRTD 3 - RTD #10 Alarm 0 2 1 - F115 0

2525 RRTD 3 - RTD #10 Alarm Relays 0 7 1 - F113 1

2526 RRTD 3 - RTD #10 Alarm Level 1 200 1 oC F1 130

2527 Record RRTD 3 - RTD #10 Alarms as Events 0 1 1 - F103 0

2528 RRTD 3 - RTD #10 Trip 0 2 1 - F115 0

2529 Enable RRTD 3 - RTD#10 Trip Voting 0 13 1 - F122 1

252A RRTD 3 - RTD #10 Trip Relays 0 7 1 - F111 1

252B RRTD 3 - RTD #10 Trip Level 1 200 1 oC F1 130

252C RRTD 3 - RTD #10 RTD Type 0 3 1 - F120 0

2530 First Character of RRTD 3 - RTD #10 Name 32 127 1 - F1 ’R’

↓ ↓2533 8th Character of RRTD 3 - RTD #10 Name 32 127 1 - F1 " "

... Reserved

RRTD 3 – RTD #112540 RRTD 3 - RTD #11 Application 0 4 1 - F121 0

2541 RRTD 3 - RTD #11 High Alarm 0 2 1 - F115 0

2542 RRTD 3 - RTD #11 High Alarm Relays 0 7 1 - F113 2

2543 RRTD 3 - RTD #11 High Alarm Level 1 200 1 oC F1 130

2544 RRTD 3 - RTD #11 Alarm 0 2 1 - F115 0

2545 RRTD 3 - RTD #11 Alarm Relays 0 7 1 - F113 1

2546 RRTD 3 - RTD #11 Alarm Level 1 200 1 oC F1 130

2547 Record RRTD 3 - RTD #11 Alarms as Events 0 1 1 - F103 0

2548 RRTD 3 - RTD #11 Trip 0 2 1 - F115 0

2549 Enable RRTD 3 - RTD #11 Trip Voting 0 13 1 - F122 1

254A RRTD 3 - RTD #11 Trip Relays 0 7 1 - F111 1

254B RRTD 3 - RTD #11 Trip Level 1 200 1 oC F1 130

254C RRTD 3 - RTD #11 RTD Type 0 3 1 - F120 0

2550 First Character of RRTD 3 - RTD #11 Name 32 127 1 - F1 ’R’

↓ ↓2553 8th Character of RRTD 3 - RTD #11 Name 32 127 1 - F1 " "

... Reserved

RRTD 3 – RTD #122560 RRTD 3 - RTD #12 Application 0 4 1 - F121 0

2561 RRTD 3 - RTD #12 High Alarm 0 2 1 - F115 0

2562 RRTD 3 - RTD #12 High Alarm Relays 0 7 1 - F113 2

2563 RRTD 3 - RTD #12 High Alarm Level 1 200 1 oC F1 130

2564 RRTD 3 - RTD #12 Alarm 0 2 1 - F115 0

2565 RRTD 3 - RTD #12 Alarm Relays 0 7 1 - F113 1

2566 RRTD 3 - RTD #12 Alarm Level 1 200 1 oC F1 130

2567 Record RRTD 3 - RTD #12 Alarms as Events 0 1 1 - F103 0

2568 RRTD 3 - RTD #12 Trip 0 2 1 - F115 0

2569 Enable RRTD 3 - RTD #12 Trip Voting 0 13 1 - F122 1

256A RRTD 3 - RTD #12 Trip Relays 0 7 1 - F111 1

256B RRTD 3 - RTD #12 Trip Level 1 200 1 oC F1 130

256C RRTD 3 - RTD #12 RTD Type 0 3 1 - F120 0

2570 First Character of RRTD 3 - RTD #12 Name 32 127 1 - F1 ’R’

↓ ↓2573 8th Character of RRTD 3 - RTD #12 Name 32 127 1 - F1 " "

... Reserved

Table 10–3: MEMORY MAP (Sheet 37 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 255: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-49

10 COMMUNICATIONS 10.4 MEMORY MAP

10

RRTD 3 – OPEN RTD ALARM2580 RRTD 3 - Open RTD Alarm 0 2 1 - F115 0

2581 RRTD 3 - Assign Alarm Relays 0 7 1 - F113 1

2582 RRTD 3 - Open RTD Alarm Events 0 1 1 - F103 0

RRTD 3 – SHORT/LOW TEMPERATURE RTD ALARM2583 RRTD 3 - Short / Low Temp RTD Alarm 0 2 1 - F115 0

2584 RRTD 3 - Assign Alarm Relays 0 7 1 - F113 1

2585 RRTD 3 - Short / Low Temp Alarm Events 0 1 1 - F103 0

... Reserved - - - - - -

RRTD 4 – RTD #12600 RRTD 4 - RTD #1 Application 0 4 1 - F121 0

2601 RRTD 4 - RTD #1 High Alarm 0 2 1 - F115 0

2602 RRTD 4 - RTD #1 High Alarm Relays 0 7 1 - F113 2

2603 RRTD 4 - RTD #1 High Alarm Level 1 200 1 oC F1 130

2604 RRTD 4 - RTD #1 Alarm 0 2 1 - F115 0

2605 RRTD 4 - RTD #1 Alarm Relays 0 7 1 - F113 1

2606 RRTD 4 - RTD #1 Alarm Level 1 200 1 oC F1 130

2607 Record RRTD 4 - RTD #1 Alarms as Events 0 1 1 - F103 0

2608 RRTD 4 - RTD #1 Trip 0 2 1 - F115 0

2609 Enable RRTD 4 - RTD #1 Trip Voting 0 13 1 - F122 1

260A RRTD 4 - RTD #1 Trip Relays 0 7 1 - F111 1

260B RRTD 4 - RTD #1 Trip Level 1 200 1 oC F1 130

260C RRTD 4 - RTD #1 RTD Type 0 3 1 - F120 0

2610 First Character of RRTD 4 - RTD #1 Name 32 127 1 - F1 ’R’

↓ ↓2613 8th Character of RRTD 4 - RTD #1 Name 32 127 1 - F1 " "

.... Reserved

RRTD 4 – RTD #22620 RRTD 4 - RTD #2 Application 0 4 1 - F121 0

2621 RRTD 4 - RTD #2 High Alarm 0 2 1 - F115 0

2622 RRTD 4 - RTD #2 High Alarm Relays 0 7 1 - F113 2

2623 RRTD 4 - RTD #2 High Alarm Level 1 200 1 oC F1 130

2624 RRTD 4 - RTD #2 Alarm 0 2 1 - F115 0

2625 RRTD 4 - RTD #2 Alarm Relays 0 7 1 - F113 1

2626 RRTD 4 - RTD #2 Alarm Level 1 200 1 oC F1 130

2627 Record RRTD 4 - RTD #2 Alarms as Events 0 1 1 - F103 0

2628 RRTD 4 - RTD #2 Trip 0 2 1 - F115 0

2629 Enable A Remote RTD #2 Trip Voting 0 13 1 - F122 1

262A RRTD 4 - RTD #2 Trip Relays 0 7 1 - F111 1

262B RRTD 4 - RTD #2 Trip Level 1 200 1 oC F1 130

262C RRTD 4 - RTD #2 RTD Type 0 3 1 - F120 0

2630 First Character of RRTD 4 - RTD #2 Name 32 127 1 - F1 ’R’

↓ ↓2633 8th Character of RRTD 4 - RTD #2 Name 32 127 1 - F1 " "

... Reserved

RRTD 4 – RTD #32640 RRTD 4 - RTD #3 Application 0 4 1 - F121 0

2641 RRTD 4 - RTD #3 High Alarm 0 2 1 - F115 0

2642 RRTD 4 - RTD #3 High Alarm Relays 0 7 1 - F113 2

2643 RRTD 4 - RTD #3 High Alarm Level 1 200 1 oC F1 130

2644 RRTD 4 - RTD #3 Alarm 0 2 1 - F115 0

2645 RRTD 4 - RTD #3 Alarm Relays 0 7 1 - F113 1

2646 RRTD 4 - RTD #3 Alarm Level 1 200 1 oC F1 130

2647 Record RRTD 4 - RTD #3 Alarms as Events 0 1 1 - F103 0

2648 RRTD 4 - RTD #3 Trip 0 2 1 - F115 0

2649 Enable RRTD 4 - RTD #3 Trip Voting 0 13 1 - F122 1

264A RRTD 4 - RTD #3 Trip Relays 0 7 1 - F111 1

264B RRTD 4 - RTD #3 Trip Level 1 200 1 oC F1 130

264C RRTD 4 - RTD #3 RTD Type 0 3 1 - F120 0

Table 10–3: MEMORY MAP (Sheet 38 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 256: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-50 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

2650 First Character of RRTD 4 - RTD # Name 32 127 1 - F1 ’R’

↓ ↓2653 8th Character of RRTD 4 - RTD #3 Name 32 127 1 - F1 " "

... Reserved

RRTD 4 – RTD #42660 RRTD 4 - RTD #4 Application 0 4 1 - F121 0

2661 RRTD 4 - RTD #4 High Alarm 0 2 1 - F115 0

2662 RRTD 4 - RTD #4 High Alarm Relays 0 7 1 - F113 2

2663 RRTD 4 - RTD #4 High Alarm Level 1 200 1 oC F1 130

2664 RRTD 4 - RTD #4 Alarm 0 2 1 - F115 0

2665 RRTD 4 - RTD #4 Alarm Relays 0 7 1 - F113 1

2666 RRTD 4 - RTD #4 Alarm Level 1 200 1 oC F1 130

2667 Record RRTD 4 - RTD #4 Alarms as Events 0 1 1 - F103 0

2668 RRTD 4 - RTD #4 Trip 0 2 1 - F115 0

2669 Enable RRTD 4 - RTD #4 Trip Voting 0 13 1 - F122 1

266A RRTD 4 - RTD #4 Trip Relays 0 7 1 - F111 1

266B RRTD 4 - RTD #4 Trip Level 1 200 1 oC F1 130

266C RRTD 4 - RTD #4 RTD Type 0 3 1 - F120 0

2670 First Character of RRTD 4 - RTD #4 Name 32 127 1 - F1 ’R’

↓ ↓2673 8th Character of RRTD 4 - RTD #4 Name 32 127 1 - F1 " "

... Reserved

RRTD 4 – RTD #52680 RRTD 4 - RTD #5 Application 0 4 1 - F121 0

2681 RRTD 4 - RTD #5 High Alarm 0 2 1 - F115 0

2682 RRTD 4 - RTD #5 High Alarm Relays 0 7 1 - F113 2

2683 RRTD 4 - RTD #5 High Alarm Level 1 200 1 oC F1 130

2684 RRTD 4 - RTD #5 Alarm 0 2 1 - F115 0

2685 RRTD 4 - RTD #5 Alarm Relays 0 7 1 - F113 1

2686 RRTD 4 - RTD #5 Alarm Level 1 200 1 oC F1 130

2687 Record RRTD 4 - RTD #5 Alarms as Events 0 1 1 - F103 0

2688 RRTD 4 - RTD #5 Trip 0 2 1 - F115 0

2689 Enable RRTD 4 - RTD #5 Trip Voting 0 13 1 - F122 1

268A RRTD 4 - RTD #5 Trip Relays 0 7 1 - F111 1

268B RRTD 4 - RTD #5 Trip Level 1 200 1 oC F1 130

268C RRTD 4 - RTD #5 RTD Type 0 3 1 - F120 0

2690 First Character of RRTD 4 - RTD #5 Name 32 127 1 - F1 ’R’

↓ ↓2693 8th Character of RRTD 4 - RTD #5 Name 32 127 1 - F1 " "

... Reserved

RRTD 4 – RTD #626A0 RRTD 4 - RTD #6 Application 0 4 1 - F121 0

26A1 RRTD 4 - RTD #6 High Alarm 0 2 1 - F115 0

26A2 RRTD 4 - RTD #6 High Alarm Relays 0 7 1 - F113 1

26A3 RRTD 4 - RTD #6 High Alarm Level 1 200 1 oC F1 130

26A4 RRTD 4 - RTD #6 Alarm 0 2 1 - F115 0

26A5 RRTD 4 - RTD #6 Alarm Relays 0 7 1 - F113 1

26A6 RRTD 4 - RTD #6 Alarm Level 1 200 1 oC F1 130

26A7 Record RRTD 4 - RTD #6 Alarms as Events 0 1 1 - F103 0

26A8 RRTD 4 - RTD #6 Trip 0 2 1 - F115 0

26A9 Enable RRTD 4 - RTD #6 Trip Voting 0 13 1 - F122 1

26AA RRTD 4 - RTD #6 Trip Relays 0 7 1 - F111 1

26AB RRTD 4 - RTD #6 Trip Level 1 200 1 oC F1 130

26AC RRTD 4 - RTD #6 RTD Type 0 3 1 - F120 0

26B0 First Character of RRTD 4 - RTD #6 Name 32 127 1 - F1 ’R’

↓ ↓26B3 8th Character of RRTD 4 - RTD #6 Name 32 127 1 - F1 " "

... Reserved

Table 10–3: MEMORY MAP (Sheet 39 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 257: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-51

10 COMMUNICATIONS 10.4 MEMORY MAP

10

RRTD 4 – RTD #726C0 RRTD 4 - RTD #7 Application 0 4 1 - F121 0

26C1 RRTD 4 - RTD #7 High Alarm 0 2 1 - F115 0

26C2 RRTD 4 - RTD #7 High Alarm Relays 0 7 1 - F113 2

26C3 RRTD 4 - RTD #7 High Alarm Level 1 200 1 oC F1 130

26C4 RRTD 4 - RTD #7 Alarm 0 2 1 - F115 0

26C5 RRTD 4 - RTD #7 Alarm Relays 0 7 1 - F113 1

26C6 RRTD 4 - RTD #7 Alarm Level 1 200 1 oC F1 130

26C7 Record RRTD 4 - RTD #7 Alarms as Events 0 1 1 - F103 0

26C8 RRTD 4 - RTD #7 Trip 0 2 1 - F115 0

26C9 Enable RRTD 4 - RTD #7 Trip Voting 0 13 1 - F122 1

26CA RRTD 4 - RTD #7 Trip Relays 0 7 1 - F111 1

26CB RRTD 4 - RTD #7 Trip Level 1 200 1 oC F1 130

26CC RRTD 4 - RTD #7 RTD Type 0 3 1 - F120 0

26D0 First Character of RRTD 4 - RTD #7 Name 32 127 1 - F1 ’R’

↓ ↓26D3 8th Character of RRTD 4 - RTD #7 Name 32 127 1 - F1 " "

... Reserved

RRTD 4 – RTD #826E0 RRTD 4 - RTD #8 Application 0 4 1 - F121 0

26E1 RRTD 4 - RTD #8 High Alarm 0 2 1 - F115 0

26E2 RRTD 4 - RTD #8 High Alarm Relays 0 7 1 - F113 2

26E3 RRTD 4 - RTD #8 High Alarm Level 1 200 1 oC F1 130

26E4 RRTD 4 - RTD #8 Alarm 0 2 1 - F115 0

26E5 RRTD 4 - RTD #8 Alarm Relays 0 7 1 - F113 1

26E6 RRTD 4 - RTD #8 Alarm Level 1 200 1 oC F1 130

26E7 Record RRTD 4 - RTD #8 Alarms as Events 0 1 1 - F103 0

26E8 RRTD 4 - RTD #8 Trip 0 2 1 - F115 0

26E9 Enable RRTD 4 - RTD #8 Trip Voting 0 13 1 - F122 1

26EA RRTD 4 - RTD #8 Trip Relays 0 7 1 - F111 1

26EB RRTD 4 - RTD #8 Trip Level 1 200 1 oC F1 130

26EC RRTD 4 - RTD #8 RTD Type 0 3 1 - F120 0

26F0 First Character of RRTD 4 - RTD #8 Name 32 127 1 - F1 ’R’

↓ ↓26F3 8th Character of RRTD 4 - RTD #8 Name 32 127 1 - F1 " "

... Reserved

RRTD 4 – RTD #92700 RRTD 4 - RTD #9 Application 0 4 1 - F121 0

2701 RRTD 4 - RTD #9 High Alarm 0 2 1 - F115 0

2702 RRTD 4 - RTD #9 High Alarm Relays 0 7 1 - F113 2

2703 RRTD 4 - RTD #9 High Alarm Level 1 200 1 oC F1 130

2704 RRTD 4 - RTD #9 Alarm 0 2 1 - F115 0

2705 RRTD 4 - RTD #9 Alarm Relays 0 7 1 - F113 1

2706 RRTD 4 - RTD #9 Alarm Level 1 200 1 oC F1 130

2707 Record RRTD 4 - RTD #9 Alarms as Events 0 1 1 - F103 0

2708 RRTD 4 - RTD #9 Trip 0 2 1 - F115 0

2709 Enable RRTD 4 - RTD #9 Trip Voting 0 13 1 - F122 1

270A RRTD 4 - RTD #9 Trip Relays 0 7 1 - F111 1

270B RRTD 4 - RTD #9 Trip Level 1 200 1 oC F1 130

270C RRTD 4 - RTD #9 RTD Type 0 3 1 - F120 0

2710 First Character of RRTD 4 - RTD #9 Name 32 127 1 - F1 ’R’

↓ ↓2713 8th Character of RRTD 4 - RTD #9 Name 32 127 1 - F1 " "

... Reserved

RRTD 4 – RTD #102720 RRTD 4 - RTD #10 Application 0 4 1 - F121 0

2721 RRTD 4 - RTD #10 High Alarm 0 2 1 - F115 0

2722 RRTD 4 - RTD #10 High Alarm Relays 0 7 1 - F113 2

2723 RRTD 4 - RTD #10 High Alarm Level 1 200 1 oC F1 130

Table 10–3: MEMORY MAP (Sheet 40 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 258: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-52 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

2724 RRTD 4 - RTD #10 Alarm 0 2 1 - F115 0

2725 RRTD 4 - RTD #10 Alarm Relays 0 7 1 - F113 1

2726 RRTD 4 - RTD #10 Alarm Level 1 200 1 oC F1 130

2727 Record RRTD 4 - RTD #10 Alarms as Events 0 1 1 - F103 0

2728 RRTD 4 - RTD #10 Trip 0 2 1 - F115 0

2729 Enable RRTD 4 - RTD#10 Trip Voting 0 13 1 - F122 1

272A RRTD 4 - RTD #10 Trip Relays 0 7 1 - F111 1

272B RRTD 4 - RTD #10 Trip Level 1 200 1 oC F1 130

272C RRTD 4 - RTD #10 RTD Type 0 3 1 - F120 0

2730 First Character of RRTD 4 - RTD #10 Name 32 127 1 - F1 ’R’

↓ ↓2733 8th Character of RRTD 4 - RTD #10 Name 32 127 1 - F1 " "

... Reserved

RRTD 4 – RTD #112740 RRTD 4 - RTD #11 Application 0 4 1 - F121 0

2741 RRTD 4 - RTD #11 High Alarm 0 2 1 - F115 0

2742 RRTD 4 - RTD #11 High Alarm Relays 0 7 1 - F113 2

2743 RRTD 4 - RTD #11 High Alarm Level 1 200 1 oC F1 130

2744 RRTD 4 - RTD #11 Alarm 0 2 1 - F115 0

2745 RRTD 4 - RTD #11 Alarm Relays 0 7 1 - F113 1

2746 RRTD 4 - RTD #11 Alarm Level 1 200 1 oC F1 130

2747 Record RRTD 4 - RTD #11 Alarms as Events 0 1 1 - F103 0

2748 RRTD 4 - RTD #11 Trip 0 2 1 - F115 0

2749 Enable RRTD 4 - RTD #11 Trip Voting 0 13 1 - F122 1

274A RRTD 4 - RTD #11 Trip Relays 0 7 1 - F111 1

274B RRTD 4 - RTD #11 Trip Level 1 200 1 oC F1 130

274C RRTD 4 - RTD #11 RTD Type 0 3 1 - F120 0

2750 First Character of RRTD 4 - RTD #11 Name 32 127 1 - F1 ’R’

↓ ↓2753 8th Character of RRTD 4 - RTD #11 Name 32 127 1 - F1 " "

... Reserved

RRTD 4 – RTD #122760 RRTD 4 - RTD #12 Application 0 4 1 - F121 0

2761 RRTD 4 - RTD #12 High Alarm 0 2 1 - F115 0

2762 RRTD 4 - RTD #12 High Alarm Relays 0 7 1 - F113 2

2763 RRTD 4 - RTD #12 High Alarm Level 1 200 1 oC F1 130

2764 RRTD 4 - RTD #12 Alarm 0 2 1 - F115 0

2765 RRTD 4 - RTD #12 Alarm Relays 0 7 1 - F113 1

2766 RRTD 4 - RTD #12 Alarm Level 1 200 1 oC F1 130

2767 Record RRTD 4 - RTD #12 Alarms as Events 0 1 1 - F103 0

2768 RRTD 4 - RTD #12 Trip 0 2 1 - F115 0

2769 Enable RRTD 4 - RTD #12 Trip Voting 0 13 1 - F122 1

276A RRTD 4 - RTD #12 Trip Relays 0 7 1 - F111 1

276B RRTD 4 - RTD #12 Trip Level 1 200 1 oC F1 130

276C RRTD 4 - RTD #12 RTD Type 0 3 1 - F120 0

2770 First Character of RRTD 4 - RTD #12 Name 32 127 1 - F1 ’R’

↓ ↓2773 8th Character of RRTD 4 - RTD #12 Name 32 127 1 - F1 " "

... Reserved

RRTD 4 – OPEN RTD ALARM2780 RRTD 4- Open RTD Alarm 0 2 1 - F115 0

2781 RRTD 4 - Assign Alarm Relays 0 7 1 - F113 1

2782 RRTD 4 - Open RTD Alarm Events 0 1 1 - F103 0

RRTD 4 – SHORT/LOW TEMPERATURE RTD ALARM2783 RRTD 4 - Short / Low Temp RTD Alarm 0 2 1 - F115 0

2784 RRTD 4 - Assign Alarm Relays 0 7 1 - F113 1

2785 RRTD 4 - Short / Low Temp Alarm Events 0 1 1 - F103 0

... Reserved - - - - - -

Table 10–3: MEMORY MAP (Sheet 41 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 259: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-53

10 COMMUNICATIONS 10.4 MEMORY MAP

10

RRTD 1 – OUTPUT RELAY SETUP27A0 Trip Relay Reset Mode 0 2 1 - F117 0

27A1 Alarm Relay Reset Mode 0 2 1 - F117 0

27A2 Aux 1 Relay Reset Mode 0 2 1 - F117 0

27A3 Aux 2 Relay Reset Mode 0 2 1 - F117 0

27A4 Trip Relay Operation 0 1 1 - F161 0

27A5 Alarm Relay Operation 0 1 1 - F161 1

27A6 Aux1 Relay Operation 0 1 1 - F161 1

27A7 Aux2 Relay Operation 0 1 1 - F161 0

... Reserved

RRTD 2 – OUTPUT RELAY SETUP27B0 Trip Relay Reset Mode 0 2 1 - F117 0

27B1 Alarm Relay Reset Mode 0 2 1 - F117 0

27B2 Aux 1 Relay Reset Mode 0 2 1 - F117 0

27B3 Aux 2 Relay Reset Mode 0 2 1 - F117 0

27B4 Trip Relay Operation 0 1 1 - F161 0

27B5 Alarm Relay Operation 0 1 1 - F161 1

27B6 Aux1 Relay Operation 0 1 1 - F161 1

27B7 Aux2 Relay Operation 0 1 1 - F161 0

... Reserved

RRTD 3 – OUTPUT RELAY SETUP27C0 Trip Relay Reset Mode 0 2 1 - F117 0

27C1 Alarm Relay Reset Mode 0 2 1 - F117 0

27C2 Aux 1 Relay Reset Mode 0 2 1 - F117 0

27C3 Aux 2 Relay Reset Mode 0 2 1 - F117 0

27C4 Trip Relay Operation 0 1 1 - F161 0

27C5 Alarm Relay Operation 0 1 1 - F161 1

27C6 Aux1 Relay Operation 0 1 1 - F161 1

27C7 Aux2 Relay Operation 0 1 1 - F161 0

... Reserved

RRTD 4 – OUTPUT RELAY SETUP27D0 Trip Relay Reset Mode 0 2 1 - F117 0

27D1 Alarm Relay Reset Mode 0 2 1 - F117 0

27D2 Aux 1 Relay Reset Mode 0 2 1 - F117 0

27D3 Aux 2 Relay Reset Mode 0 2 1 - F117 0

27D4 Trip Relay Operation 0 1 1 - F161 0

27D5 Alarm Relay Operation 0 1 1 - F161 1

27D6 Aux1 Relay Operation 0 1 1 - F161 1

27D7 Aux2 Relay Operation 0 1 1 - F161 0

... Reserved

RRTD 1 – ANALOG OUTPUTS27E0 Enable Analog Output 1 0 1 1 - F103 0

27E1 Assign Analog Output 1 Output Range 0 2 1 - F26 0

27E2 Assign Analog Output 1 Parameter 12 24 1 - F127 13

27E3 Analog Output 1 Minimum -40 200 1 - F4 -40

27E4 Analog Output 1 Maximum -40 200 1 - F4 200

27E5 Enable Analog Output 2 0 1 1 - F103 0

27E6 Assign Analog Output 2 Output Range 0 2 1 - F26 0

27E7 Assign Analog Output 2 Parameter 12 24 1 - F127 13

27E8 Analog Output 2 Minimum -40 200 1 - F4 -40

27E9 Analog Output 2 Maximum -40 200 1 - F4 200

27EA Enable Analog Output 3 0 1 1 - F103 0

27EB Assign Analog Output 3 Output Range 0 2 1 - F26 0

27EC Assign Analog Output 3 Parameter 12 24 1 - F127 13

27ED Analog Output 3 Minimum -40 200 1 - F4 -40

27EE Analog Output 3 Maximum -40 200 1 - F4 200

27EF Enable Analog Output 4 0 1 1 - F103 0

27F0 Assign Analog Output 4 Output Range 0 2 1 - F26 0

27F1 Assign Analog Output 4 Parameter 12 24 1 - F127 13

Table 10–3: MEMORY MAP (Sheet 42 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 260: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-54 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

27F2 Analog Output 4 Minimum -40 200 1 - F4 -40

27F3 Analog Output 4 Maximum -40 200 1 - F4 200

... Reserved

RRTD 2 – ANALOG OUTPUTS2800 Enable Analog Output 1 0 1 1 - F103 0

2801 Assign Analog Output 1 Output Range 0 2 1 - F26 0

2802 Assign Analog Output 1 Parameter 12 24 1 - F127 13

2803 Analog Output 1 Minimum -40 200 1 - F4 -40

2804 Analog Output 1 Maximum -40 200 1 - F4 200

2805 Enable Analog Output 2 0 1 1 - F103 0

2806 Assign Analog Output 2 Output Range 0 2 1 - F26 0

2807 Assign Analog Output 2 Parameter 12 24 1 - F127 13

2808 Analog Output 2 Minimum -40 200 1 - F4 -40

2809 Analog Output 2 Maximum -40 200 1 - F4 200

280A Enable Analog Output 3 0 1 1 - F103 0

280B Assign Analog Output 3 Output Range 0 2 1 - F26 0

280C Assign Analog Output 3 Parameter 12 24 1 - F127 13

280D Analog Output 3 Minimum -40 200 1 - F4 -40

280E Analog Output 3 Maximum -40 200 1 - F4 200

280F Enable Analog Output 4 0 1 1 - F103 0

2810 Assign Analog Output 4 Output Range 0 2 1 - F26 0

2811 Assign Analog Output 4 Parameter 12 24 1 - F127 13

2812 Analog Output 4 Minimum -40 200 1 - F4 -40

2813 Analog Output 4 Maximum -40 200 1 - F4 200

... Reserved

RRTD 3 – ANALOG OUTPUTS2820 Enable Analog Output 1 0 1 1 - F103 0

2821 Assign Analog Output 1 Output Range 0 2 1 - F26 0

2822 Assign Analog Output 1 Parameter 12 24 1 - F127 13

2823 Analog Output 1 Minimum -40 200 1 - F4 -40

2824 Analog Output 1 Maximum -40 200 1 - F4 200

2825 Enable Analog Output 2 0 1 1 - F103 0

2826 Assign Analog Output 2 Output Range 0 2 1 - F26 0

2827 Assign Analog Output 2 Parameter 12 24 1 - F127 13

2828 Analog Output 2 Minimum -40 200 1 - F4 -40

2829 Analog Output 2 Maximum -40 200 1 - F4 200

282A Enable Analog Output 3 0 1 1 - F103 0

282B Assign Analog Output 3 Output Range 0 2 1 - F26 0

282C Assign Analog Output 3 Parameter 12 24 1 - F127 13

282D Analog Output 3 Minimum -40 200 1 - F4 -40

282E Analog Output 3 Maximum -40 200 1 - F4 200

282F Enable Analog Output 4 0 1 1 - F103 0

2830 Assign Analog Output 4 Output Range 0 2 1 - F26 0

2831 Assign Analog Output 4 Parameter 12 24 1 - F127 13

2832 Analog Output 4 Minimum -40 200 1 - F4 -40

2833 Analog Output 4 Maximum -40 200 1 - F4 200

... Reserved

RRTD 4 – ANALOG OUTPUTS2840 Enable Analog Output 1 0 1 1 - F103 0

2841 Assign Analog Output 1 Output Range 0 2 1 - F26 0

2842 Assign Analog Output 1 Parameter 12 24 1 - F127 13

2843 Analog Output 1 Minimum -40 200 1 - F4 -40

2844 Analog Output 1 Maximum -40 200 1 - F4 200

2845 Enable Analog Output 2 0 1 1 - F103 0

2846 Assign Analog Output 2 Output Range 0 2 1 - F26 0

2847 Assign Analog Output 2 Parameter 12 24 1 - F127 13

2848 Analog Output 2 Minimum -40 200 1 - F4 -40

2849 Analog Output 2 Maximum -40 200 1 - F4 200

284A Enable Analog Output 3 0 1 1 - F103 0

Table 10–3: MEMORY MAP (Sheet 43 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 261: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-55

10 COMMUNICATIONS 10.4 MEMORY MAP

10

284B Assign Analog Output 3 Output Range 0 2 1 - F26 0

284C Assign Analog Output 3 Parameter 12 24 1 - F127 13

284D Analog Output 3 Minimum -40 200 1 - F4 -40

284E Analog Output 3 Maximum -40 200 1 - F4 200

284F Enable Analog Output 4 0 1 1 - F103 0

2850 Assign Analog Output 4 Output Range 0 2 1 - F26 0

2851 Assign Analog Output 4 Parameter 12 24 1 - F127 13

2852 Analog Output 4 Minimum -40 200 1 - F4 -40

2853 Analog Output 4 Maximum -40 200 1 - F4 200

2854 Reserved

RRTD 1 – DIGITAL INPUT 22860 1st & 2nd Character of Digital Input 2 Name 32 127 1 - F22 ’GE’

↓ ↓2865 11th & 12th Character of Digital Input 2 Name 32 127 1 - F22 ’GE’

2870 Digital Input 2 Type 0 1 1 - F116 0

2871 Reserved

2872 Digital Input 2 Alarm 0 2 1 - F115 0

2873 Digital Input 2 Alarm Relays 0 6 1 - F113 0

2874 Digital Input 2 Alarm Delay 1 50000 1 100ms F2 50

2875 Digital Input 2 Alarm Events 0 1 1 - F103 0

2876 Digital Input 2 Trip 0 2 1 - F115 0

2877 Digital Input 2 Trip Relays 0 6 1 - F111 0

2878 Digital Input 2 Trip Delay 1 50000 1 100ms F2 50

2879 Digital Input 2 Assignable Function 0 3 1 - F163 0

--- Reserved

RRTD 1 – DIGITAL INPUT 52880 1st & 2nd Character of Digital Input 5 Name 32 127 1 - F22 ’GE’

↓ ↓2885 11th & 12th Character of Digital Input 5 Name 32 127 1 - F22 ’GE’

2890 Digital Input 5 Type 0 1 1 - F116 0

2891 Reserved

2892 Digital Input 5 Alarm 0 2 1 - F115 0

2893 Digital Input 5 Alarm Relays 0 6 1 - F113 0

2894 Digital Input 5 Alarm Delay 1 50000 1 100ms F2 50

2895 Digital Input 5 Alarm Events 0 1 1 - F103 0

2896 Digital Input 5 Trip 0 2 1 - F115 0

2897 Digital Input 5 Trip Relays 0 6 1 - F111 0

2898 Digital Input 5 Trip Delay 1 50000 1 100ms F2 50

2899 Digital Input 5 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 1 – DIGITAL INPUT 428A0 1st & 2nd Character of Digital Input 4 Name 32 127 1 - F22 ’GE’

↓ ↓28A5 11th & 12th Character of Digital Input 4 Name 32 127 1 - F22 ’GE’

28B0 Digital Input 4 Type 0 1 1 - F116 0

28B1 Reserved

28B2 Digital Input 4 Alarm 0 2 1 - F115 0

28B3 Digital Input 4 Alarm Relays 0 6 1 - F113 0

28B4 Digital Input 4 Alarm Delay 1 50000 1 100ms F2 50

28B5 Digital Input 4 Alarm Events 0 1 1 - F103 0

28B6 Digital Input 4 Trip 0 2 1 - F115 0

28B7 Digital Input 4 Trip Relays 0 6 1 - F111 0

28B8 Digital Input 4 Trip Delay 1 50000 1 100ms F2 50

28B9 Digital Input 4 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 1 – DIGITAL INPUT 128C0 1st & 2nd Character of Digital Input 1 Name 32 127 1 - F22 ’GE’

↓ ↓28C5 11th & 12th Character of Digital Input 1 Name 32 127 1 - F22 ’GE’

Table 10–3: MEMORY MAP (Sheet 44 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 262: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-56 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

28D0 Digital Input 1 Type 0 1 1 - F116 0

28D1 Reserved

28D2 Digital Input 1 Alarm 0 2 1 - F115 0

28D3 Digital Input 1 Alarm Relays 0 6 1 - F113 0

28D4 Digital Input 1 Alarm Delay 1 50000 1 100ms F2 50

28D5 Digital Input 1 Alarm Events 0 1 1 - F103 0

28D6 Digital Input 1 Trip 0 2 1 - F115 0

28D7 Digital Input 1 Trip Relays 0 6 1 - F111 0

28D8 Digital Input 1 Trip Delay 1 50000 1 100ms F2 50

28D9 Digital Input 1 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 1 – DIGITAL INPUT 628E0 1st & 2nd Character of Digital Input 6 Name 32 127 1 - F22 ’GE’

↓ ↓28E5 11th & 12th Character of Digital Input 6 Name 32 127 1 - F22 ’GE’

28F0 Digital Input 6 Type 0 1 1 - F116 0

28F1 Reserved

28F2 Digital Input 6 Alarm 0 2 1 - F115 0

28F3 Digital Input 6 Alarm Relays 0 6 1 - F113 0

28F4 Digital Input 6 Alarm Delay 1 50000 1 100ms F2 50

28F5 Digital Input 6 Alarm Events 0 1 1 - F103 0

28F6 Digital Input 6 Trip 0 2 1 - F115 0

28F7 Digital Input 6 Trip Relays 0 6 1 - F111 0

28F8 Digital Input 6 Trip Delay 1 50000 1 100ms F2 50

28F9 Digital Input 6 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 1 – DIGITAL INPUT 32900 1st & 2nd Character of Digital Input 3 Name 32 127 1 - F22 ’GE’

↓ ↓2905 11th & 12th Character of Digital Input 3 Name 32 127 1 - F22 ’GE’

2910 Digital Input 3 Type 0 1 1 - F116 0

2911 Reserved

2912 Digital Input 3 Alarm 0 2 1 - F115 0

2913 Digital Input 3 Alarm Relays 0 6 1 - F113 0

2914 Digital Input 3 Alarm Delay 1 50000 1 100ms F2 50

2915 Digital Input 3 Alarm Events 0 1 1 - F103 0

2916 Digital Input 3 Trip 0 2 1 - F115 0

2917 Digital Input 3 Trip Relays 0 6 1 - F111 0

2918 Digital Input 3 Trip Delay 1 50000 1 100ms F2 50

2919 Digital Input 3 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 2 – DIGITAL INPUT 22920 1st & 2nd Character of Digital Input 2 Name 32 127 1 - F22 ’GE’

↓ ↓2925 11th & 12th Character of Digital Input 2 Name 32 127 1 - F22 ’GE’

2930 Digital Input 2 Type 0 1 1 - F116 0

2931 Reserved

2932 Digital Input 2 Alarm 0 2 1 - F115 0

2933 Digital Input 2 Alarm Relays 0 6 1 - F113 0

2934 Digital Input 2 Alarm Delay 1 50000 1 100ms F2 50

2935 Digital Input 2 Alarm Events 0 1 1 - F103 0

2936 Digital Input 2 Trip 0 2 1 - F115 0

2937 Digital Input 2 Trip Relays 0 6 1 - F111 0

2938 Digital Input 2 Trip Delay 1 50000 1 100ms F2 50

2939 Digital Input 2 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 2 – DIGITAL INPUT 52940 1st & 2nd Character of Digital Input 5 Name 32 127 1 - F22 ’GE’

↓ ↓

Table 10–3: MEMORY MAP (Sheet 45 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 263: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-57

10 COMMUNICATIONS 10.4 MEMORY MAP

10

2945 11th & 12th Character of Digital Input 5 Name 32 127 1 - F22 ’GE’

2950 Digital Input 5 Type 0 1 1 - F116 0

2951 Reserved

2952 Digital Input 5 Alarm 0 2 1 - F115 0

2953 Digital Input 5 Alarm Relays 0 6 1 - F113 0

2954 Digital Input 5 Alarm Delay 1 50000 1 100ms F2 50

2955 Digital Input 5 Alarm Events 0 1 1 - F103 0

2956 Digital Input 5 Trip 0 2 1 - F115 0

2957 Digital Input 5 Trip Relays 0 6 1 - F111 0

2958 Digital Input 5 Trip Delay 1 50000 1 100ms F2 50

2959 Digital Input 5 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 2 – DIGITAL INPUT 42960 1st & 2nd Character of Digital Input 4 Name 32 127 1 - F22 ’GE’

↓ ↓2965 11th & 12th Character of Digital Input 4 Name 32 127 1 - F22 ’GE’

2970 Digital Input 4 Type 0 1 1 - F116 0

2971 Reserved

2972 Digital Input 4 Alarm 0 2 1 - F115 0

2973 Digital Input 4 Alarm Relays 0 6 1 - F113 0

2974 Digital Input 4 Alarm Delay 1 50000 1 100ms F2 50

2975 Digital Input 4 Alarm Events 0 1 1 - F103 0

2976 Digital Input 4 Trip 0 2 1 - F115 0

2977 Digital Input 4 Trip Relays 0 6 1 - F111 0

2978 Digital Input 4 Trip Delay 1 50000 1 100ms F2 50

2979 Digital Input 4 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 2 – DIGITAL INPUT 12980 1st & 2nd Character of Digital Input 1 Name 32 127 1 - F22 ’GE’

↓ ↓2985 11th & 12th Character of Digital Input 1 Name 32 127 1 - F22 ’GE’

2990 Digital Input 1 Type 0 1 1 - F116 0

2991 Reserved

2992 Digital Input 1 Alarm 0 2 1 - F115 0

2993 Digital Input 1 Alarm Relays 0 6 1 - F113 0

2994 Digital Input 1 Alarm Delay 1 50000 1 100ms F2 50

2995 Digital Input 1 Alarm Events 0 1 1 - F103 0

2996 Digital Input 1 Trip 0 2 1 - F115 0

2997 Digital Input 1 Trip Relays 0 6 1 - F111 0

2998 Digital Input 1 Trip Delay 1 50000 1 100ms F2 50

2999 Digital Input 1 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 2 – DIGITAL INPUT 629A0 1st & 2nd Character of Digital Input 6 Name 32 127 1 - F22 ’GE’

↓ ↓29A5 11th & 12th Character of Digital Input 6 Name 32 127 1 - F22 ’GE’

29B0 Digital Input 6 Type 0 1 1 - F116 0

29B1 Reserved

29B2 Digital Input 6 Alarm 0 2 1 - F115 0

29B3 Digital Input 6 Alarm Relays 0 6 1 - F113 0

29B4 Digital Input 6 Alarm Delay 1 50000 1 100ms F2 50

29B5 Digital Input 6 Alarm Events 0 1 1 - F103 0

29B6 Digital Input 6 Trip 0 2 1 - F115 0

29B7 Digital Input 6 Trip Relays 0 6 1 - F111 0

29B8 Digital Input 6 Trip Delay 1 50000 1 100ms F2 50

29B9 Digital Input 6 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 2 – DIGITAL INPUT 329C0 1st & 2nd Character of Digital Input 3 Name 32 127 1 - F22 ’GE’

Table 10–3: MEMORY MAP (Sheet 46 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 264: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-58 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

↓ ↓29C5 11th & 12th Character of Digital Input 3 Name 32 127 1 - F22 ’GE’

29D0 Digital Input 3 Type 0 1 1 - F116 0

29D1 Reserved

29D2 Digital Input 3 Alarm 0 2 1 - F115 0

29D3 Digital Input 3 Alarm Relays 0 6 1 - F113 0

29D4 Digital Input 3 Alarm Delay 1 50000 1 100ms F2 50

29D5 Digital Input 3 Alarm Events 0 1 1 - F103 0

29D6 Digital Input 3 Trip 0 2 1 - F115 0

29D7 Digital Input 3 Trip Relays 0 6 1 - F111 0

29D8 Digital Input 3 Trip Delay 1 50000 1 100ms F2 50

29D9 Digital Input 3 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 3 – DIGITAL INPUT 229E0 1st & 2nd Character of Digital Input 2 Name 32 127 1 - F22 ’GE’

↓ ↓29E5 11th & 12th Character of Digital Input 2 Name 32 127 1 - F22 ’GE’

29F0 Digital Input 2 Type 0 1 1 - F116 0

29F1 Reserved

29F2 Digital Input 2 Alarm 0 2 1 - F115 0

29F3 Digital Input 2 Alarm Relays 0 6 1 - F113 0

29F4 Digital Input 2 Alarm Delay 1 50000 1 100ms F2 50

29F5 Digital Input 2 Alarm Events 0 1 1 - F103 0

29F6 Digital Input 2 Trip 0 2 1 - F115 0

29F7 Digital Input 2 Trip Relays 0 6 1 - F111 0

29F8 Digital Input 2 Trip Delay 1 50000 1 100ms F2 50

29F9 Digital Input 2 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 3 – DIGITAL INPUT 52A00 1st & 2nd Character of Digital Input 5 Name 32 127 1 - F22 ’GE’

↓ ↓2A05 11th & 12th Character of Digital Input 5 Name 32 127 1 - F22 ’GE’

2A10 Digital Input 5 Type 0 1 1 - F116 0

2A11 Reserved

2A12 Digital Input 5 Alarm 0 2 1 - F115 0

2A13 Digital Input 5 Alarm Relays 0 6 1 - F113 0

2A14 Digital Input 5 Alarm Delay 1 50000 1 100ms F2 50

2A15 Digital Input 5 Alarm Events 0 1 1 - F103 0

2A16 Digital Input 5 Trip 0 2 1 - F115 0

2A17 Digital Input 5 Trip Relays 0 6 1 - F111 0

2A18 Digital Input 5 Trip Delay 1 50000 1 100ms F2 50

2A19 Digital Input 5 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 3 – DIGITAL INPUT 42A20 1st & 2nd Character of Digital Input 4 Name 32 127 1 - F22 ’GE’

↓ ↓2A25 11th & 12th Character of Digital Input 4 Name 32 127 1 - F22 ’GE’

2A30 Digital Input 4 Type 0 1 1 - F116 0

2A31 Reserved

2A32 Digital Input 4 Alarm 0 2 1 - F115 0

2A33 Digital Input 4 Alarm Relays 0 6 1 - F113 0

2A34 Digital Input 4 Alarm Delay 1 50000 1 100ms F2 50

2A35 Digital Input 4 Alarm Events 0 1 1 - F103 0

2A36 Digital Input 4 Trip 0 2 1 - F115 0

2A37 Digital Input 4 Trip Relays 0 6 1 - F111 0

2A38 Digital Input 4 Trip Delay 1 50000 1 100ms F2 50

2A39 Digital Input 4 Assignable Function 0 3 1 - F163 0

... Reserved

Table 10–3: MEMORY MAP (Sheet 47 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 265: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-59

10 COMMUNICATIONS 10.4 MEMORY MAP

10

RRTD 3 – DIGITAL INPUT 12A40 1st & 2nd Character of Digital Input 1 Name 32 127 1 - F22 ’GE’

↓ ↓2A45 11th & 12th Character of Digital Input 1 Name 32 127 1 - F22 ’GE’

2A50 Digital Input 1 Type 0 1 1 - F116 0

2A51 Reserved

2A52 Digital Input 1 Alarm 0 2 1 - F115 0

2A53 Digital Input 1 Alarm Relays 0 6 1 - F113 0

2A54 Digital Input 1 Alarm Delay 1 50000 1 100ms F2 50

2A55 Digital Input 1 Alarm Events 0 1 1 - F103 0

2A56 Digital Input 1 Trip 0 2 1 - F115 0

2A57 Digital Input 1 Trip Relays 0 6 1 - F111 0

2A58 Digital Input 1 Trip Delay 1 50000 1 100ms F2 50

2A59 Digital Input 1 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 3 – DIGITAL INPUT 62A60 1st & 2nd Character of Digital Input 6 Name 32 127 1 - F22 ’GE’

↓ ↓2A65 11th & 12th Character of Digital Input 6 Name 32 127 1 - F22 ’GE’

2A70 Digital Input 6 Type 0 1 1 - F116 0

2A71 Reserved

2A72 Digital Input 6 Alarm 0 2 1 - F115 0

2A73 Digital Input 6 Alarm Relays 0 6 1 - F113 0

2A74 Digital Input 6 Alarm Delay 1 50000 1 100ms F2 50

2A75 Digital Input 6 Alarm Events 0 1 1 - F103 0

2A76 Digital Input 6 Trip 0 2 1 - F115 0

2A77 Digital Input 6 Trip Relays 0 6 1 - F111 0

2A78 Digital Input 6 Trip Delay 1 50000 1 100ms F2 50

2A79 Digital Input 6 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 3 – DIGITAL INPUT 32A80 1st & 2nd Character of Digital Input 3 Name 32 127 1 - F22 ’GE’

↓ ↓2A85 11th & 12th Character of Digital Input 3 Name 32 127 1 - F22 ’GE’

2A90 Digital Input 3 Type 0 1 1 - F116 0

2A91 Reserved

2A92 Digital Input 3 Alarm 0 2 1 - F115 0

2A93 Digital Input 3 Alarm Relays 0 6 1 - F113 0

2A94 Digital Input 3 Alarm Delay 1 50000 1 100ms F2 50

2A95 Digital Input 3 Alarm Events 0 1 1 - F103 0

2A96 Digital Input 3 Trip 0 2 1 - F115 0

2A97 Digital Input 3 Trip Relays 0 6 1 - F111 0

2A98 Digital Input 3 Trip Delay 1 50000 1 100ms F2 50

2A99 Digital Input 3 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 4 – DIGITAL INPUT 22AA0 1st & 2nd Character of Digital Input 2 Name 32 127 1 - F22 ’GE’

↓ ↓2AA5 11th & 12th Character of Digital Input 2 Name 32 127 1 - F22 ’GE’

2AB0 Digital Input 2 Type 0 1 1 - F116 0

2AB1 Reserved

2AB2 Digital Input 2 Alarm 0 2 1 - F115 0

2AB3 Digital Input 2 Alarm Relays 0 6 1 - F113 0

2AB4 Digital Input 2 Alarm Delay 1 50000 1 100ms F2 50

2AB5 Digital Input 2 Alarm Events 0 1 1 - F103 0

2AB6 Digital Input 2 Trip 0 2 1 - F115 0

2AB7 Digital Input 2 Trip Relays 0 6 1 - F111 0

2AB8 Digital Input 2 Trip Delay 1 50000 1 100ms F2 50

2AB9 Digital Input 2 Assignable Function 0 3 1 - F163 0

Table 10–3: MEMORY MAP (Sheet 48 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 266: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-60 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

... Reserved

RRTD 4 – DIGITAL INPUT 52AC0 1st & 2nd Character of Digital Input 5 Name 32 127 1 - F22 ’GE’

↓ ↓2AC5 11th & 12th Character of Digital Input 5 Name 32 127 1 - F22 ’GE’

2AD0 Digital Input 5 Type 0 1 1 - F116 0

2AD1 Reserved

2AD2 Digital Input 5 Alarm 0 2 1 - F115 0

2AD3 Digital Input 5 Alarm Relays 0 6 1 - F113 0

2AD4 Digital Input 5 Alarm Delay 1 50000 1 100ms F2 50

2AD5 Digital Input 5 Alarm Events 0 1 1 - F103 0

2AD6 Digital Input 5 Trip 0 2 1 - F115 0

2AD7 Digital Input 5 Trip Relays 0 6 1 - F111 0

2AD8 Digital Input 5 Trip Delay 1 50000 1 100ms F2 50

2AD9 Digital Input 5 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 4 – DIGITAL INPUT 42AE0 1st & 2nd Character of Digital Input 4 Name 32 127 1 - F22 ’GE’

↓ ↓2AE5 11th & 12th Character of Digital Input 4 Name 32 127 1 - F22 ’GE’

2AF0 Digital Input 4 Type 0 1 1 - F116 0

2AF1 Reserved

2AF2 Digital Input 4 Alarm 0 2 1 - F115 0

2AF3 Digital Input 4 Alarm Relays 0 6 1 - F113 0

2AF4 Digital Input 4 Alarm Delay 1 50000 1 100ms F2 50

2AF5 Digital Input 4 Alarm Events 0 1 1 - F103 0

2AF6 Digital Input 4 Trip 0 2 1 - F115 0

2AF7 Digital Input 4 Trip Relays 0 6 1 - F111 0

2AF8 Digital Input 4 Trip Delay 1 50000 1 100ms F2 50

2AF9 Digital Input 4 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 4 – DIGITAL INPUT 12B00 1st & 2nd Character of Digital Input 1 Name 32 127 1 - F22 ’GE’

↓ ↓2B05 11th & 12th Character of Digital Input 1 Name 32 127 1 - F22 ’GE’

2B10 Digital Input 1 Type 0 1 1 - F116 0

2B11 Reserved

2B12 Digital Input 1 Alarm 0 2 1 - F115 0

2B13 Digital Input 1 Alarm Relays 0 6 1 - F113 0

2B14 Digital Input 1 Alarm Delay 1 50000 1 100ms F2 50

2B15 Digital Input 1 Alarm Events 0 1 1 - F103 0

2B16 Digital Input 1 Trip 0 2 1 - F115 0

2B17 Digital Input 1 Trip Relays 0 6 1 - F111 0

2B18 Digital Input 1 Trip Delay 1 50000 1 100ms F2 50

2B19 Digital Input 1 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 4 – DIGITAL INPUT 62B20 1st & 2nd Character of Digital Input 6 Name 32 127 1 - F22 ’GE’

↓ ↓2B25 11th & 12th Character of Digital Input 6 Name 32 127 1 - F22 ’GE’

2B30 Digital Input 6 Type 0 1 1 - F116 0

2B31 Reserved

2B32 Digital Input 6 Alarm 0 2 1 - F115 0

2B33 Digital Input 6 Alarm Relays 0 6 1 - F113 0

2B34 Digital Input 6 Alarm Delay 1 50000 1 100ms F2 50

2B35 Digital Input 6 Alarm Events 0 1 1 - F103 0

2B36 Digital Input 6 Trip 0 2 1 - F115 0

2B37 Digital Input 6 Trip Relays 0 6 1 - F111 0

2B38 Digital Input 6 Trip Delay 1 50000 1 100ms F2 50

Table 10–3: MEMORY MAP (Sheet 49 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 267: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-61

10 COMMUNICATIONS 10.4 MEMORY MAP

10

2B39 Digital Input 6 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 4 – DIGITAL INPUT 32B40 1st & 2nd Character of Digital Input 3 Name 32 127 1 - F22 ’GE’

↓ ↓2B45 11th & 12th Character of Digital Input 3 Name 32 127 1 - F22 ’GE’

2B50 Digital Input 3 Type 0 1 1 - F116 0

2B51 Reserved

2B52 Digital Input 3 Alarm 0 2 1 - F115 0

2B53 Digital Input 3 Alarm Relays 0 6 1 - F113 0

2B54 Digital Input 3 Alarm Delay 1 50000 1 100ms F2 50

2B55 Digital Input 3 Alarm Events 0 1 1 - F103 0

2B56 Digital Input 3 Trip 0 2 1 - F115 0

2B57 Digital Input 3 Trip Relays 0 6 1 - F111 0

2B58 Digital Input 3 Trip Delay 1 50000 1 100ms F2 50

2B59 Digital Input 3 Assignable Function 0 3 1 - F163 0

... Reserved

RRTD 1 – TEST OUPUT RELAYS2B60 Force Trip Relay 0 2 1 - F150 0

2B61 Force Trip Relay Duration 0 300 1 s F1 0

2B62 Force AUX1 Relay 0 2 1 - F150 0

2B63 Force AUX1 Relay Duration 0 300 1 s F1 0

2B64 Force AUX2 Relay 0 2 1 - F150 0

2B65 Force AUX2 Relay Duration 0 300 1 s F1 0

2B66 Force Alarm Relay 0 2 1 - F150 0

2B67 Force Alarm Relay Range 01 300 1 s F1 0

... Reserved

RRTD 2 – TEST OUPUT RELAYS2B70 Force Trip Relay 0 2 1 - F150 0

2B71 Force Trip Relay Duration 0 300 1 s F1 0

2B72 Force AUX1 Relay 0 2 1 - F150 0

2B73 Force AUX1 Relay Duration 0 300 1 s F1 0

2B74 Force AUX2 Relay 0 2 1 - F150 0

2B75 Force AUX2 Relay Duration 0 300 1 s F1 0

2B76 Force Alarm Relay 0 2 1 - F150 0

2B77 Force Alarm Relay Range 0 300 1 s F1 0

... Reserved

RRTD 3 – TEST OUPUT RELAYS2B80 Force Trip Relay 0 2 1 - F150 0

2B81 Force Trip Relay Duration 0 300 1 s F1 0

2B82 Force AUX1 Relay 0 2 1 - F150 0

2B83 Force AUX1 Relay Duration 0 300 1 s F1 0

2B84 Force AUX2 Relay 0 2 1 - F150 0

2B85 Force AUX2 Relay Duration 0 300 1 s F1 0

2B86 Force Alarm Relay 0 2 1 - F150 0

2B87 Force Alarm Relay Range 0 300 1 s F1 0

... Reserved

RRTD 4 – TEST OUPUT RELAYS2B90 Force Trip Relay 0 2 1 - F150 0

2B91 Force Trip Relay Duration 0 300 1 s F1 0

2B92 Force AUX1 Relay 0 2 1 - F150 0

2B93 Force AUX1 Relay Duration 0 300 1 s F1 0

2B94 Force AUX2 Relay 0 2 1 - F150 0

2B95 Force AUX2 Relay Duration 0 300 1 s F1 0

2B96 Force Alarm Relay 0 2 1 - F150 0

2B97 Force Alarm Relay Range 0 300 1 s F1 0

... Reserved

RRTD 1 – TEST ANALOG OUTPUTS2BA0 Force Analog Outputs 0 1 1 - F126 0

Table 10–3: MEMORY MAP (Sheet 50 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 268: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-62 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

2BA1 Analog Output 1 Forced Value 0 100 1 % range F1 0

2BA2 Analog Output 2 Forced Value 0 100 1 % range F1 0

2BA3 Analog Output 3 Forced Value 0 100 1 % range F1 0

2BA4 Analog Output 4 Forced Value 0 100 1 % range F1 0

... Reserved

RRTD 2 – TEST ANALOG OUTPUTS2BB0 Force Analog Outputs 0 1 1 - F126 0

2BB1 Analog Output 1 Forced Value 0 100 1 % range F1 0

2BB2 Analog Output 2 Forced Value 0 100 1 % range F1 0

2BB3 Analog Output 3 Forced Value 0 100 1 % range F1 0

2BB4 Analog Output 4 Forced Value 0 100 1 % range F1 0

... Reserved

RRTD 3 – TEST ANALOG OUTPUTS2BC0 Force Analog Outputs 0 1 1 - F126 0

2BC1 Analog Output 1 Forced Value 0 100 1 % range F1 0

2BC2 Analog Output 2 Forced Value 0 100 1 % range F1 0

2BC3 Analog Output 3 Forced Value 0 100 1 % range F1 0

2BC4 Analog Output 4 Forced Value 0 100 1 % range F1 0

... Reserved

RRTD 4 – TEST ANALOG OUTPUTS2BD0 Force Analog Outputs 0 1 1 - F126 0

2BD1 Analog Output 1 Forced Value 0 100 1 % range F1 0

2BD2 Analog Output 2 Forced Value 0 100 1 % range F1 0

2BD3 Analog Output 3 Forced Value 0 100 1 % range F1 0

2BD4 Analog Output 4 Forced Value 0 100 1 % range F1 0

... Reserved

RRTD 1 – DIGITAL COUNTER2BE0 First Character of Counter Name 32 127 1 - F1 “G”

2BEC First Character of Counter Unit Name 32 127 1 - F1 ‘U’

2BF2 Counter Type 0 1 1 - F114 0

2BF3 Digital Counter Alarm 0 2 1 - F115 0

2BF4 Assign Alarm Relays 0 6 1 - F113 0

2BF5 Counter Alarm Level 0 65535 1 - F1 100

2BF7 Reserved - - - - - -

2BF8 Record Alarms as Events 0 1 1 - F103 0

... Reserved

RRTD 2 – DIGITAL COUNTER2C00 First Character of Counter Name 32 127 1 - F1 “G”

2C0C First Character of Counter Unit Name 32 127 1 - F1 ‘U’

2C12 Counter Type 0 1 1 - F114 0

2C13 Digital Counter Alarm 0 2 1 - F115 0

2C14 Assign Alarm Relays 0 6 1 - F113 0

2C15 Counter Alarm Level 0 65535 1 - F1 100

2C17 Reserved - - - - - -

2C18 Record Alarms as Events 0 1 1 - F103 0

... Reserved

RRTD 3 – DIGITAL COUNTER2C20 First Character of Counter Name 32 127 1 - F1 “G”

2C2C First Character of Counter Unit Name 32 127 1 - F1 ‘U’

2C32 Counter Type 0 1 1 - F114 0

2C33 Digital Counter Alarm 0 2 1 - F115 0

2C34 Assign Alarm Relays 0 6 1 - F113 0

2C35 Counter Alarm Level 0 65535 1 - F1 100

2C37 Reserved - - - - - -

2C38 Record Alarms as Events 0 1 1 - F103 0

... Reserved

RRTD 4 – DIGITAL COUNTER2C40 First Character of Counter Name 32 127 1 - F1 “G”

2C4C First Character of Counter Unit Name 32 127 1 - F1 ‘U’

Table 10–3: MEMORY MAP (Sheet 51 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 269: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-63

10 COMMUNICATIONS 10.4 MEMORY MAP

10

2C52 Counter Type 0 1 1 - F114 0

2C53 Digital Counter Alarm 0 2 1 - F115 0

2C54 Assign Alarm Relays 0 6 1 - F113 0

2C55 Counter Alarm Level 0 65535 1 - F1 100

2C57 Reserved - - - - - -

2C58 Record Alarms as Events 0 1 1 - F103 0

... Reserved

EVENT RECORDER / TRACE MEMORY (ADDRESSES 3000 TO 3FFF)EVENT RECORDER

3000 Event Recorder Last Reset (2 words) N/A N/A N/A N/A F18 N/A

3002 Total Number of Events Since Last Clear 0 65535 1 N/A F1 0

3003 Event Record Selector (1=oldest, 40=newest) 1 40 1 N/A F1 1

3004 Cause of Event 0 40 1 - F134 0

3005 Time of Event (2 words) N/A N/A N/A N/A F19 N/A

3007 Date of Event (2 words) N/A N/A N/A N/A F18 N/A

3009 Reserved

300A Reserved

300B Event Phase A Current 0 65535 1 A F1 0

300C Event Phase B Current 0 65535 1 A F1 0

300D Event Phase C Current 0 65535 1 A F1 0

300E Event Motor Load 0 2000 1 FLA F3 0

300F Event Current Unbalance 0 100 1 % F1 0

3010 Event Ground Current 0 50000 1 A F23 0

3011 Reserved - - - - - -

3012 Event Hottest Stator RTD 0 12 1 - F1 0

3013 Event Temperature of Hottest Stator RTD -40 200 1 o C F4 0

... Reserved

301A Event Voltage Vab 0 20000 1 V F1 0

301B Event Voltage Vbc 0 20000 1 V F1 0

301C Event Voltage Vca 0 20000 1 V F1 0

301D Event Voltage Van 0 20000 1 V F1 0

301E Event Voltage Vbn 0 20000 1 V F1 0

301F Event Voltage Vcn 0 20000 1 V F1 0

3020 Event System Frequency 0 12000 1 Hz F3 0

3021 Event Real Power -32000 32000 1 kW F4 0

3022 Event Reactive Power -32000 32000 1 kvar F4 0

3023 Event Apparent Power 0 50000 1 kVA F1 0

3024 Event Power Factor -99 100 1 - F21 0

... Reserved

WAVEFORM CAPTURE30F0 Trace Memory Clear Date N/A N/A N/A N/A F18 N/A

30F2 Trace Memory Clear Time N/A N/A N/A N/A F19 N/A

30F4 Trace Memory Triggers Since Last Clear 0 65535 1 - F1 0

30F5 Trace Memory Buffer Selector 0 3 1 - F1 0

30F6 Trace Memory Channel Selector 0 6 1 - F1 0

30F7 Trace Memory Trigger Date N/A N/A N/A N/A F18 N/A

30F9 Trace Memory Trigger Time N/A N/A N/A N/A F19 N/A

30FB Trace Memory Trigger Cause 0 2 1 - F85 N/A

30FC Trace Memory Trigger Index 0 100 1 % F1 NA

... Reserved

3100 First Trace Memory Sample -32767 32767 1 - F4 N/A

↓ ↓31FF Last Trace Memory Sample -32767 32767 1 - F4 N/A

3200 Reserved

... Reserved

3FFF Reserved

Table 10–3: MEMORY MAP (Sheet 52 of 52)

ADDR (hex)

DESCRIPTION MIN. MAX. STEP VALUE

UNITS FORMAT CODE

FACTORY DEFAULT

Courtesy of NationalSwitchgear.com
Page 270: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-64 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

10.4.6 FORMAT CODES

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 1 of 12)

CODE TYPE DEFINITION

F1 16 bits UNSIGNED VALUEExample: 1234 stored as 1234

F2 16 bits UNSIGNED VALUE, 1 DECIMAL PLACEExample: 123.4 stored as 1234

F3 16 bits UNSIGNED VALUE, 2 DECIMAL PLACESExample: 12.34 stored as 1234

F4 16 bits 2’s COMPLEMENT SIGNED VALUEExample: -1234 stored as -1234 (i.e. 64302)

F5 16 bits 2’s COMPLEMENT SIGNED VALUE, 1 DECIMAL PLACESExample: -123.4 stored as -1234 (i.e. 64302)

F6 16 bits 2’s COMPLEMENT SIGNED VALUE, 2 DECIMAL PLACESExample: -12.34 stored as -1234 (i.e. 64302)

F7 16 bits 2’s COMPLEMENT SIGNED VALUE, 3 DECIMAL PLACESExample: -1.234 stored as -1234 (i.e. 64302)

F8 16 bits 2’s COMPLEMENT SIGNED VALUE, 4 DECIMAL PLACESExample: -0.1234 stored as -1234 (i.e. 64302)

F15 16 bits HARDWARE REVISION

0000 0000 0000 0001 1 = A

0000 0000 0000 0010 2 = B

↓ ↓

0000 0000 0001 1010 26 = Z

F16 16 bits SOFTWARE REVISION

1111 1111 xxxx xxxx Major Revision Number, 0 to 9 in steps of 1

xxxx xxxx 1111 1111 Minor Revision Number (two BCD digits), 00 to 99 in steps of 1Example: Revision 2.30 stored as 0230 hex

F18 32 bits DATE (MM/DD/YYYY)Example: Feb. 20, 1995 stored as 34867142 (i.e. 1st word: 0214, 2nd word 07C6)

1st byte Month (1 to 12)

2nd byte Day (1 to 31)

3rd and 4th byte Year (1998 to 2094)

F19 32 bits TIME (HH:MM:SS:hh)Example: 2:05pm stored as 235208704 (i.e. 1st word: 0E05, 2nd word 0000)

1st byte Hours (0 to 23)

2nd byte Minutes (0 to 59)

3rd byte Seconds (0 to 59)

4th byte Hundreds of seconds (0 to 99) - Not used by 369

F20 16 bits 2’s COMPLEMENT SIGNED LONG VALUEExample: 1234 stored as 1234. Note: -1 means “Never”

F21 16 bits 2’s COMPLEMENT SIGNED VALUE, 2 DECIMAL PLACES (Power Factor)Example: Power Factor of 0.87 lag is used as 87 (i.e. 0057)

< 0 Leading Power Factor - Negative

> 0 Lagging Power Factor - Positive

F22 16 bits TWO 8-BIT CHARACTERS PACKED INTO 16-BIT UNSIGNEDExample: String "AB" stored as 4142 hex.

MSB First Character

LSB Second Character

F23 16 Bits UNSIGNED VALUE (For 1A/5 A CT, 1Decimal Place) (For 50: 0.025 A CT, 2 Decimal Places)Example: For 1A/5A CT, G/F current = 1000.0 AExample: For 50: 0.025 A CT, G/F current = 25.00

F26 16 Bits ANALOG OUTPUT SELECTION

0 0 - 1mA

1 0 - 20 mA

2 4 - 20 mA

Courtesy of NationalSwitchgear.com
Page 271: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-65

10 COMMUNICATIONS 10.4 MEMORY MAP

10

F27 16 Bits BACKSPIN DETECTION STATE

0 Motor Running

1 No Backspin

2 Slowdown

3 Acceleration

4 ---

5 Backspinning

6 Prediction

7 Soon to Restart

F30 16 Bits DISABLE/ENABLE SELECTION

0 Disabled

1 Enabled

F31 16 Bits COMMAND FUNCTION CODES

0 Not in use

1 Reset 369

2 Motor Start

3 Motor Stop

4 Waveform Trigger

5 Reserved

6 Clear Trip Counters

7 Clear Last Trip Date

8 Reserved

9 Reserved

10 Clear RTD Maximums

11 Reset Motor Info

12 Clear/Reset all Data

F85 Unsigned 16 bit integer WAVEFORM CAPTURE TRIGGER CAUSE

0 None

1 Manual

2 Automatic

F100 Unsigned 16 bit integer TEMPERATURE DISPLAY UNITS

0 Celsius

1 Fahrenheit

F101 Unsigned 16 bit integer RS485 BAUD RATE

0 1200 baud

1 2400 baud

2 4800 baud

3 9600 baud

4 19200 baud

F102 Unsigned 16 bit integer RS485 PARITY

0 None

1 Odd

2 Even

F103 Unsigned 16 bit integer OFF/ON OR NO/YES SELECTION

0 Off / No

1 On / Yes

F104 Unsigned 16 bit integer GROUND CT TYPE

0 None

1 1 A Secondary

2 5 A Secondary

3 Multilin CT 50/0.025

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 2 of 12)

CODE TYPE DEFINITION

Courtesy of NationalSwitchgear.com
Page 272: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-66 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

F105 Unsigned 16 bit integer CT TYPE

0 None

1 1 A Secondary

2 5 A Secondary

F106 Unsigned 16 bit integer VOLTAGE TRANSFORMER CONNECTION TYPE

0 None

1 Open Delta

2 Wye

F107 Unsigned 16 bit integer NOMINAL FREQUENCY

0 60 Hz

1 50 Hz

2 Variable

F108 Unsigned 16 bit integer REDUCED VOLTAGE STARTING TRANSITION ON

0 Current Only

1 Current or Timer

2 Current and Timer

F109 Unsigned 16 bit integer STARTER STATUS SWITCH

0 Starter Aux a (52a)

1 Starter Aux b (52b)

F110 Unsigned 16 bit integer EMERGENCY RESTART SWITCH INPUT FUNCTION

0 Off

1 Emergency Switch

2 General Switch

3 Digital Counter

4 Waveform Capture

5 Simulate Pre - Fault

6 Simulate Fault

7 Simulate Pre - Fault to Fault

F111 Unsigned 16 bit integer TRIP RELAYS

0 none

1 Trip

2 Aux1

3 Aux2

4 Trip & Aux1

5 Trip & Aux2

6 Aux1 & Aux2

7 Trip & Aux1 & Aux2

F112 Unsigned 16 bit integer NOT DEFINED

0

1

F113 Unsigned 16 bit integer ALARM RELAYS

0 None

1 Alarm

2 Aux1

3 Aux2

4 Alarm & Aux1

5 Alarm & Aux2

6 Aux1 & Aux2

7 Alarm & Aux1 & Aux2

F114 Unsigned 16 bit integer COUNTER TYPE

0 Increment

1 Decrement

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 3 of 12)

CODE TYPE DEFINITION

Courtesy of NationalSwitchgear.com
Page 273: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-67

10 COMMUNICATIONS 10.4 MEMORY MAP

10

F115 Unsigned 16 bit integer ALARM/TRIP TYPE SELECTION

0 Off

1 Latched

2 Unlatched

F116 Unsigned 16 bit integer SWITCH TYPE

0 Normally Open

1 Normally Closed

F117 Unsigned 16 bit integer RESET MODE

0 All Resets

1 Remote Reset Only

2 Local Reset Only

F119 Unsigned 16 bit integer BACKUP RELAYS

0 None

1 Aux 1

2 Aux1 & Aux2

3 Aux2

F120 Unsigned 16 bit integer RTD TYPE

0 100 Ohm Platinum

1 120 Ohm Nickel

2 100 Ohm Nickel

3 10 Ohm Copper

F121 Unsigned 16 bit integer RTD APPLICATION

0 None

1 Stator

2 Bearing

3 Ambient

4 Other

F122 Unsigned 16 bit integer LOCAL/REMOTE RTD VOTING SELECTION

0 Off

1 RTD #1

2 RTD #2

3 RTD #3

4 RTD #4

5 RTD #5

6 RTD #6

7 RTD #7

8 RTD #8

9 RTD #9

10 RTD #10

11 RTD #11

12 RTD #12

13 All Stator

F123 Unsigned 16 bit integer ALARM STATUS

0 Off

1 Not Active

2 Timing Out

3 Active

4 Latched

F124 Unsigned 16 bit integer PHASE ROTATION AT MOTOR TERMINALS

0 ABC

1 ACB

F125 Unsigned 16 bit integer STARTER TYPE

0 Breaker

1 Contactor

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 4 of 12)

CODE TYPE DEFINITION

Courtesy of NationalSwitchgear.com
Page 274: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-68 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

F127 Unsigned 16 bit integer ANALOG OUTPUT PARAMETER SELECTION

0 Phase A Current

1 Phase B Current

2 Phase C Current

3 Average Phase Current

4 AB Line Voltage

5 BC Line Voltage

6 CA Line Voltage

7 Average Line Voltage

8 Phase AN Voltage

9 Phase BN Voltage

10 Phase CN Voltage

11 Average Phase Voltage

12 Hottest Stator RTD

13 Local RTD #1

14 Local RTD #2

15 Local RTD #3

16 Local RTD #4

17 Local RTD #5

18 Local RTD #6

19 Local RTD #7

20 Local RTD #8

21 Local RTD #9

22 Local RTD #10

23 Local RTD #11

24 Local RTD #12

25 Power Factor

26 Reactive Power (kvar)

27 Real Power (kW)

28 Apparent Power (KVA)

29 Thermal Capacity Used

30 Relay Lockout Time

31 Current Demand

32 kvar Demand

33 kW Demand

34 kVA Demand

35 Motor Load

F128 Unsigned 16 bit integer CURVE STYLE

0 Standard

1 Custom

F130 Unsigned 16 bit integer DIGITAL INPUT PICKUP TYPE

0 Over

1 Under

F131 Unsigned 16 bit integer INPUT SWITCH STATUS

0 Open

1 Closed

F133 Unsigned 16 bit integer MOTOR STATUS

0 Stopped

1 Starting

2 Running

3 Overloaded

4 Tripped

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 5 of 12)

CODE TYPE DEFINITION

Courtesy of NationalSwitchgear.com
Page 275: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-69

10 COMMUNICATIONS 10.4 MEMORY MAP

10

F134 Unsigned 16 bit integer CAUSE OF EVENT

0 No Event

1 Forced Setpoints Dump

2 Speed Switch Trip

3 Diff Switch Trip

4 Access Switch Trip

5 Spare Switch Trip

6 Emergency Switch Trip

7 Unexpected Reset

8 Eeprom Memory

9 Reset Switch Trip

10 Factory Setpoints Dump

11 Overload Trip

12 Short Circuit Trip

13 Short Circuit Backup Trip

14 Mechanical Jam Trip

15 Undercurrent Trip

16 Current Unbalance Trip

17 Single Phasing Trip

18 Ground Fault Trip

19 Ground Fault Backup Trip

20 Overload Block

21 Acceleration Timer Trip

22 Start Inhibit Block

23 Starts Hour Block

24 Time Between Starts Block

25 Restart Block

26 Backspin Block

27 Single Shot Restart

28 Undervoltage Trip

29 Overvoltage Trip

30 Voltage Phase Reversal Trip

31 Underfrequency Trip

32 Overfrequency Trip

33 Lead Power Factor Trip

34 Lag Power Factor Trip

35 Positive Kvar Trip

36 Negative Kvar Trip

37 Underpower Trip

38 Reverse Power Trip

39 RTD1 Trip

40 RTD2 Trip

41 RTD3 Trip

42 RTD4 Trip

43 RTD5 Trip

44 RTD6 Trip

45 RTD7 Trip

46 RTD8 Trip

47 RTD9 Trip

48 RTD10 Trip

49 RTD11 Trip

50 RTD12 Trip

51 Trace Trigger Manual

52 Trace Trigger Automatic

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 6 of 12)

CODE TYPE DEFINITION

Courtesy of NationalSwitchgear.com
Page 276: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-70 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

F134con’t

53 Spare Switch Alarm

54 Emergency Switch Alarm

55 Diff Switch Alarm

56 Speed Switch Alarm

57 Reset Switch Alarm

58 Access Switch Alarm

59 Thermal Capacity Alarm

60 Overload Alarm

61 Mechanical Jam Alarm

62 Undercurrent Alarm

63 Current Unbalance Alarm

64 Ground Fault Alarm

65 Undervoltage Alarm

66 Overvoltage Alarm

67 Overfrequency Alarm

68 Underfrequency Alarm

69 Lead Power Factor Alarm

70 Lag Power Factor Alarm

71 Positive Kvar Alarm

72 Negative Kvar Alarm

73 Underpower Alarm

74 Reverse Power Alarm

75 RTD1 Alarm

76 RTD2 Alarm

77 RTD3 Alarm

78 RTD4 Alarm

79 RTD5 Alarm

80 RTD6 Alarm

81 RTD7 Alarm

82 RTD8 Alarm

83 RTD9 Alarm

84 RTD10 Alarm

85 RTD11 Alarm

86 RTD12 Alarm

87 RTD1 Hi Alarm

88 RTD2 Hi Alarm

89 RTD3 Hi Alarm

90 RTD4 Hi Alarm

91 RTD5 Hi Alarm

92 RTD6 Hi Alarm

93 RTD7 Hi Alarm

94 RTD8 Hi Alarm

95 RTD9 Hi Alarm

96 RTD10 Hi Alarm

97 RTD11 Hi Alarm

98 RTD12 Hi Alarm

99 Open RTD Alarm

100 Lost RTD Comm Alarm

101 Low RTD Alarm

102 Trip Counter Alarm

103 Current Demand Alarm

104 Kw Demand Alarm

105 Kvar Demand Alarm

106 Kva Demand Alarm

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 7 of 12)

CODE TYPE DEFINITION

Courtesy of NationalSwitchgear.com
Page 277: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-71

10 COMMUNICATIONS 10.4 MEMORY MAP

10

F134con’t

107 Digital Counter Alarm

108 Service Alarm

109 Control Power Lost

110 Control Power App

111 Emergency Restart Closed

112 Emergency Restart Open

113 Start While Blocked

114 Starter Fail Alarm

115 Breaker Failure

116 Welded Contactor

117 Incomplete Sequence Trip

118 Simulation Start

119 Simulation Stop

120 Waveform Capture

121 RRTD1 Trip

122 RRTD2 Trip

123 RRTD3 Trip

124 RRTD4 Trip

125 RRTD5 Trip

126 RRTD6 Trip

127 RRTD7 Trip

128 RRTD8 Trip

129 RRTD9 Trip

130 RRTD10 Trip

131 RRTD11 Trip

132 RRTD12 Trip

133 RRTD2 RTD1 Trip

134 RRTD2 RTD2 Trip

135 RRTD2 RTD3 Trip

136 RRTD2 RTD4 Trip

137 RRTD2 RTD5 Trip

138 RRTD2 RTD6 Trip

139 RRTD2 RTD7 Trip

140 RRTD2 RTD8 Trip

141 RRTD2 RTD9 Trip

142 RRTD2 RTD10 Trip

143 RRTD2 RTD11 Trip

144 RRTD2 RTD12 Trip

145 RRTD3 RTD1 Trip

146 RRTD3 RTD2 Trip

147 RRTD3 RTD3 Trip

148 RRTD3 RTD4 Trip

149 RRTD3 RTD5 Trip

150 RRTD3 RTD6 Trip

151 RRTD3 RTD7 Trip

152 RRTD3 RTD8 Trip

153 RRTD3 RTD9 Trip

154 RRTD3 RTD10 Trip

155 RRTD3 RTD11 Trip

156 RRTD3 RTD12 Trip

157 RRTD4 RTD1 Trip

158 RRTD4 RTD2 Trip

159 RRTD4 RTD3 Trip

160 RRTD4 RTD4 Trip

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 8 of 12)

CODE TYPE DEFINITION

Courtesy of NationalSwitchgear.com
Page 278: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-72 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

F134con’t

161 RRTD4 RTD5 Trip

162 RRTD4 RTD6 Trip

163 RRTD4 RTD7 Trip

164 RRTD4 RTD8 Trip

165 RRTD4 RTD9 Trip

166 RRTD4 RTD10 Trip

167 RRTD4 RTD11 Trip

168 RRTD4 RTD12 Trip

169 RRTD1 Alarm

170 RRTD2 Alarm

171 RRTD3 Alarm

172 RRTD4 Alarm

173 RRTD5 Alarm

174 RRTD6 Alarm

175 RRTD7 Alarm

176 RRTD8 Alarm

177 RRTD9 Alarm

178 RRTD10 Alarm

179 RRTD11 Alarm

180 RRTD12 Alarm

181 RRTD1 Hi Alarm

182 RRTD2 Hi Alarm

183 RRTD3 Hi Alarm

184 RRTD4 Hi Alarm

185 RRTD5 Hi Alarm

186 RRTD6 Hi Alarm

187 RRTD7 Hi Alarm

188 RRTD8 Hi Alarm

189 RRTD9 Hi Alarm

190 RRTD10 Hi Alarm

191 RRTD11 Hi Alarm

192 RRTD12 Hi Alarm

193 RRTD1 Open RTD Alarm

194 RRTD1 Low RTD Alarm

195 RRTD2 RTD1 Alarm

196 RRTD2 RTD2 Alarm

197 RRTD2 RTD3 Alarm

198 RRTD2 RTD4 Alarm

199 RRTD2 RTD5 Alarm

200 RRTD2 RTD6 Alarm

201 RRTD2 RTD7 Alarm

202 RRTD2 RTD8 Alarm

203 RRTD2 RTD9 Alarm

204 RRTD2 RTD10 Alarm

205 RRTD2 RTD11 Alarm

206 RRTD2 RTD12 Alarm

207 RRTD2 RTD1 Hi Alarm

208 RRTD2 RTD2 Hi Alarm

209 RRTD2 RTD3 Hi Alarm

210 RRTD2 RTD4 Hi Alarm

211 RRTD2 RTD5 Hi Alarm

212 RRTD2 RTD6 Hi Alarm

213 RRTD2 RTD7 Hi Alarm

214 RRTD2 RTD8 Hi Alarm

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 9 of 12)

CODE TYPE DEFINITION

Courtesy of NationalSwitchgear.com
Page 279: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-73

10 COMMUNICATIONS 10.4 MEMORY MAP

10

F134con’t

215 RRTD2 RTD9 Hi Alarm

216 RRTD2 RTD10 Hi Alarm

217 RRTD2 RTD11 Hi Alarm

218 RRTD2 RTD12 Hi Alarm

219 RRTD2 Open RTD Alarm

220 RRTD2 Low RTD Alarm

221 RRTD3 RTD1 Alarm

222 RRTD3 RTD2 Alarm

223 RRTD3 RTD3 Alarm

224 RRTD3 RTD4 Alarm

225 RRTD3 RTD5 Alarm

226 RRTD3 RTD6 Alarm

227 RRTD3 RTD7 Alarm

228 RRTD3 RTD8 Alarm

229 RRTD3 RTD9 Alarm

230 RRTD3 RTD10 Alarm

231 RRTD3 RTD11 Alarm

232 RRTD3 RTD12 Alarm

233 RRTD3 RTD1 Hi Alarm

234 RRTD3 RTD2 Hi Alarm

235 RRTD3 RTD3 Hi Alarm

236 RRTD3 RTD4 Hi Alarm

237 RRTD3 RTD5 Hi Alarm

238 RRTD3 RTD6 Hi Alarm

239 RRTD3 RTD7 Hi Alarm

240 RRTD3 RTD8 Hi Alarm

241 RRTD3 RTD9 Hi Alarm

242 RRTD3 RTD10 Hi Alarm

243 RRTD3 RTD11 Hi Alarm

244 RRTD3 RTD12 Hi Alarm

245 RRTD3 Open RTD Alarm

246 RRTD3 Low RTD Alarm

247 RRTD4 RTD1 Alarm

248 RRTD4 RTD2 Alarm

249 RRTD4 RTD3 Alarm

250 RRTD4 RTD4 Alarm

251 RRTD4 RTD5 Alarm

252 RRTD4 RTD6 Alarm

253 RRTD4 RTD7 Alarm

254 RRTD4 RTD8 Alarm

255 RRTD4 RTD9 Alarm

256 RRTD4 RTD10 Alarm

257 RRTD4 RTD11 Alarm

258 RRTD4 RTD12 Alarm

259 RRTD4 RTD1 Hi Alarm

260 RRTD4 RTD2 Hi Alarm

261 RRTD4 RTD3 Hi Alarm

262 RRTD4 RTD4 Hi Alarm

263 RRTD4 RTD5 Hi Alarm

264 RRTD4 RTD6 Hi Alarm

265 RRTD4 RTD7 Hi Alarm

266 RRTD4 RTD8 Hi Alarm

267 RRTD4 RTD9 Hi Alarm

268 RRTD4 RTD10 Hi Alarm

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 10 of 12)

CODE TYPE DEFINITION

Courtesy of NationalSwitchgear.com
Page 280: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-74 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

F134con’t

269 RRTD4 RTD11 Hi Alarm

270 RRTD4 RTD12 Hi Alarm

271 RRTD4 Open RTD Alarm

272 RRTD4 Low RTD Alarm

273 Power Failure

274 Software Reset

275 Clock Failure

276 A/D Failure

F135 Unsigned 16 bit integer MOTOR SPEED

0 Low Speed (Speed 1)

1 High Speed (Speed 2)

F138 Unsigned 16 bit integer SIMULATION

0 Off

1 Simulate Pre-Fault

2 Simulate Fault

3 Pre-Fault to Fault

F139 Reserved Reserved

F141 Unsigned 16 bit integer OUTPUT RELAY STATUS

bit 0 Trip

bit 1 Alarm

bit 2 Auxiliary 1

bit 3 Auxiliary 2

F149 Unsigned 16 Bit Integer CHANNEL 3 APPLICATION

0 MODBUS

1 Remote RTD

F150 Unsigned 16 Bit Integer OUTPUT RELAY STATUS

0 De - Energized

1 Energized

F151 Unsigned 16 Bit Integer CHANNEL TYPE

0 RS 485

1 Fiber Optic

F152 Unsigned 16 Bit Integer NUMBER OF RECORDS

0 1 × 64 cycles

1 2 × 32 cycles

2 4 × 16 cycles

3 8 × 8 cycles

F156 Unsigned 16 Bit Integer REMOTE RTD COMMUNICATION STATUS

0 Remote RTD Module Communication Lost

1 Remote RTD Communication on Line

F157 Unsigned 16 Bit Integer DIFFERENTIAL SWITCH INPUT FUNCTION

0 OFF

1 Differential Switch

2 General Switch

3 Digital Counter

4 Waveform Capture

5 Simulate Pre - Fault

6 Simulate Fault

7 Simulate Pre-Fault to Fault

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 11 of 12)

CODE TYPE DEFINITION

Courtesy of NationalSwitchgear.com
Page 281: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay 10-75

10 COMMUNICATIONS 10.4 MEMORY MAP

10

F158 Unsigned 16 Bit Integer SPEED SWITCH INPUT FUNCTION

0 OFF

1 Speed Switch

2 General Switch

3 Digital Counter

4 Waveform Capture

5 Simulate Pre - Fault

6 Simulate Fault

7 Simulate Pre-Fault to Fault

F159 Unsigned 16 Bit Integer SPARE SWITCH INPUT FUNCTION

0 OFF

1 Starter Status Switch

2 General Switch

3 Digital Counter

4 Waveform Capture

5 Simulate Pre - Fault

6 Simulate Fault

7 Simulate Pre-Fault to Fault

F160 Unsigned 16 Bit Integer RESET SWITCH INPUT FUNCTION

0 OFF

1 Reset Switch

2 General Switch

3 Digital Counter

4 Waveform Capture

5 Simulate Pre - Fault

6 Simulate Fault

7 Simulate Pre-Fault to Fault

F161 Unsigned 16 Bit Integer OUTPUT RELAY FAILSAFE CODE

0 Failsafe

1 Non Failsafe

F162 Unsigned 16 Bit Integer ACCESS LEVEL

0 Read Only

1 Read / Write

2 Factory Service

F163 Unsigned 16 Bit Integer RRTD DIGITAL INPUT FUNCTION

0 Off

1 undefined

2 General Switch

3 Digital Counter

F164 Unsigned 16 Bit Integer COMMUNICATIONS MODULE STATUS

0x0001 Ethernet Connection OK

0x0002 IP Configuration OK

0x0004 IP Address Error

0x0008 Communications Module Error

0x0010 Network Activity Present

Table 10–4: MEMORY MAP DATA FORMATS (Sheet 12 of 12)

CODE TYPE DEFINITION

Courtesy of NationalSwitchgear.com
Page 282: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

10-76 369 Motor Management Relay GE Power Management

10.4 MEMORY MAP 10 COMMUNICATIONS

10

Courtesy of NationalSwitchgear.com
Page 283: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay A-1

APPENDIX A A.1 CHANGE NOTES

AAPPENDIX A REVISIONSA.1 CHANGE NOTES A.1.1 REVISION HISTORY

A.1.2 MAJOR UPDATES FOR 369-BC

A.1.3 MAJOR UPDATES FOR 369-BB

A.1.4 MAJOR UPDATES FOR 369-BA

There were no changes to the content of the manual for this release.

Table A–1: REVISION HISTORY

MANUAL P/N 369 REVISION RELEASE DATE ECO

1601-0077-B1 53CMB105.000 07 May 1999 ---

1601-0077-B2 53CMB110.000 08 June 1999 369-082

1601-0077-B3 53CMB110.000 15 June 1999 369-085

1601-0077-B4 53CMB110.000 04 August 1999 369-094

1601-0077-B5 53CMB120.000 15 October 1999 369-116

1601-0077-B6 53CMB130.000 03 January 2000 369-123

1601-0077-B7 53CMB142.000 03 April 2000 369-130

1601-0777-B8 53CMB145.000 14 June 2000 369-146

1601-0777-B9 53CMB160.000 12 October 2000 369-158

1601-0777-BA 53CMB161.000 19 October 2000 369-161

1601-0077-BB 53CMB17x.000 09 February 2001 369-170

1601-0077-BC 53CMB18x.000 15 June 2001 369-176

CHANGES

Updated ORDERING TABLE to reflect Modbus/TCP option

Updated Figure 1–1: FRONT AND REAR VIEW to 840702BF

Updated Figure 3–4: TYPICAL WIRING

Added new Modbus/TCP setpoints and description in Section 5.2.4: COMMUNICATIONS

Updated Figures 5–3 and 5–4, REDUCED VOLTAGE STARTER AUXILIARY INPUTS

Updated Section 7.2.4: CT SELECTION to fix errors in the application example

Updated Figure 8–1: SECONDARY INJECTION TEST SETUP

Updated Table 9–1: SETPOINTS TABLE to include new Modbus/TCP setpoints

Updated MEMORY MAP and MEMORY MAP FORMATS to include new Modbus/TCP setpoints

CHANGES

Updated Figure 1–1: FRONT AND REAR VIEW

Corrected errors in Table 3–1: TERMINAL LIST

Updated Figure 3–4: TYPICAL WIRING

Removed SINGLE VT WYE/DELTA connection diagram in Chapter 3 (feature no longer supported)

Removed ENABLE SINGLE VT OPERATION setpoint from Section 5.3.2: CT/VT SETUP (feature no longer supported)

Added new Section 5.3.7: AUTORESTART

Courtesy of NationalSwitchgear.com
Page 284: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

A-2 369 Motor Management Relay GE Power Management

A.1 CHANGE NOTES APPENDIX A

AA.1.5 MAJOR UPDATES FOR 369-B9

A.1.6 MAJOR UPDATES FOR 369-B8

Firmware version 53CMB145.000 contains only minor software changes that do not affect the functional-ity of the 369 or the 1601-0777-B8 manual contents.

A.1.7 MAJOR UPDATES FOR 369-B7

CHANGES

Updated Figure 3-4: TYPICAL WIRING

Updated Figure 3-15: REMOTE RTD MODULE

Added menu item PROFIBUS ADDRESS to the 369 Setup Communications menu

Added menu item CLEAR ENERGY DATA to the 369 Setup Clear/Preset Data menu

Added Section 10.2: PROFIBUS PROTOCOL to Communications chapter

CHANGES

Revision change to match firmware and PC program

Added/changed setpoints of Backspin start inhibit

Updated memory map for the changes listed above

Changed FC to F for each of the format codes

Updated Phase 2 feature release document

Removed 32 bit format codes from the memory map

Added 369PC instruction section describing the converting of 269 setpoint files to 369

Added note in uploading setpoint section that versions 1.10 and 1.12 are not compatible with newer versions

Added a separate section for Backspin Metering

Made corrections to the application notes section

Added refresh RRTD setpoints to the PC program

Added some self-testing algorithms and programmable self-test relay assignment

NOTE

Courtesy of NationalSwitchgear.com
Page 285: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay A-3

APPENDIX A A.2 WARRANTY

AA.2 WARRANTY A.2.1 WARRANTY INFORMATION

GE POWER MANAGEMENT RELAY WARRANTY

General Electric Power Management (GE Power Management) warrantseach relay it manufactures to be free from defects in material and work-manship under normal use and service for a period of 24 months fromdate of shipment from factory.

In the event of a failure covered by warranty, GE Power Management willundertake to repair or replace the relay providing the warrantor deter-mined that it is defective and it is returned with all transportation chargesprepaid to an authorized service centre or the factory. Repairs or replace-ment under warranty will be made without charge.

Warranty shall not apply to any relay which has been subject to misuse,negligence, accident, incorrect installation or use not in accordance withinstructions nor any unit that has been altered outside a GE Power Man-agement authorized factory outlet.

GE Power Management is not liable for special, indirect or consequentialdamages or for loss of profit or for expenses sustained as a result of arelay malfunction, incorrect application or adjustment.

For complete text of Warranty (including limitations and disclaimers), referto GE Power Management Standard Conditions of Sale.

Courtesy of NationalSwitchgear.com
Page 286: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

A-4 369 Motor Management Relay GE Power Management

A.2 WARRANTY APPENDIX A

A

Courtesy of NationalSwitchgear.com
Page 287: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay i

INDEX

INDEX

Numerics2 PHASE CT CONFIGURATION .................................... 7-20269-369 CONVERSION TERMINAL LIST .......................... 3-3369

pc interface ................................................................ 4-35A

ground CT installation ................................................ 3-17input .......................................................................... 8-3

86 LOCKOUT SWITCH ................................................... 7-6

AA1 STATUS .................................................................. 6-3A2 METERING DATA ..................................................... 6-7A3 LEARNED DATA..................................................... 6-13A4 STATISTICAL DATA ............................................... 6-16A5 EVENT RECORD .................................................... 6-18A6 RELAY INFORMATION ............................................ 6-19ACCELERATION TRIP ......................................... 5-38, 7-12ACCESS SECURITY ...................................................... 5-4ACCESSORIES ............................................................. 1-2ACTUAL VALUES .......................................................... 6-1

main menu ................................................................. 6-1overview .................................................................... 6-1page 1 menu .............................................................. 6-3page 2 menu .............................................................. 6-7page 3 menu ............................................................ 6-13page 4 menu ............................................................ 6-16page 5 menu ............................................................ 6-18page 6 menu ............................................................ 6-19

ADDITIONAL FEATURES ............................................... 2-3ADDITIONAL FUNCTIONAL TING ................................... 8-7ALARM RELAY

setpoints .................................................................. 5-16ALARM STATUS ........................................................... 6-4AMBIENT TEMPERATURE ............................................. 2-8ANALOG

inputs and outputs ....................................................... 8-5outputs ................................................... 3-10, 3-11, 5-59outputs (Option M) ...................................................... 2-5

APPROVALS / CERTIFICATION ...................................... 2-8AUTO TRANSFORMER STARTER WIRING .................... 7-24AUTORESTART .................................................. 5-19, 5-20AUX 1 RELAY

see AUXILIARY RELAYSAUX 2 RELAY

see AUXILIARY RELAYSAUXILIARY RELAYS

setpoints .................................................................. 5-16

BBACK PORTS (3) .......................................................... 2-5BACKSPIN

detection .................................................................. 5-40voltage inputs ............................................................. 3-9

BEARING RTDS .......................................................... 7-12BSD INPUTS (OPTION B) .............................................. 2-5

CCLEAR/PRESET DATA ................................................ 5-10COMMUNICATIONS ..............................................2-5, 10-1

control ......................................................................5-17Modbus/TCP .............................................................. 5-6setpoints .................................................................... 5-6

CONFIGURATION ......................................................... 4-4CONTRAST .................................................................. 5-5CONTROL

functions ...................................................................5-17power ................................................................3-7, 3-12

COOL TIME CONSTANTS .............................................7-14CORE BALANCE CONNECTION ..................................... 7-3CRC-16 ALGORITHM ...................................................10-9CREATING A NEW SETPOINT FILE ................................ 4-5CT

burden ....................................................................... 7-8circuit ........................................................................ 7-8ground CT primary .....................................................5-11phase CT primary.......................................................5-11secondary resistance ................................................... 7-8selection .................................................................... 7-7setpoints ...................................................................5-11size andsaturation ....................................................... 7-7withstand ................................................................... 7-7

CT AND VTpolarity ...................................................................... 7-5

CT/VT SETUP ..............................................................5-11CURRENT

metering .................................................................... 6-7unbalance .................................................................5-35

CURRENT DEMAND ............................................ 5-13, 5-15CURRENT TRANSFORMER

see CTCUSTOM OVERLOAD CURVE .......................................5-27

DDATA

frame format and data rate ..........................................10-8packet format ............................................................10-8

DATE ........................................................................... 5-8DEFAULT MESSAGES

cycle time .................................................................. 5-5setpoints ...................................................................5-10timeout ...................................................................... 5-5

DEMANDcalculation ................................................................5-13metering ...................................................................6-11setpoints .......................................................... 5-13, 5-15

DIELECTRIC STRENGTH ............................................... 2-8DIFFERENTIAL SWITCH ...............................................5-56DIGITAL COUNTER ......................................................5-57DIGITAL INPUT ............................................................ 7-6

status ........................................................................ 6-5trip coil supervision ..................................................... 8-5

DIGITAL INPUT FUNCTIONdigital counter ............................................................5-57general switch ...........................................................5-57simulate fault .............................................................5-58simulate pre-fault .......................................................5-58simulate pre-fault to fault ............................................5-58waveform capture.......................................................5-58

DISPLAY ...................................................................... 4-1preferences ................................................................ 5-5

DO’S AND DON’TS ........................................................ 7-5DOWNLOAD

setpoint file to 369 ...................................................... 4-6DUST/MOISTURE ......................................................... 2-8

Courtesy of NationalSwitchgear.com
Page 288: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

ii 369 Motor Management Relay GE Power Management

INDEX

EEDITING A SETPOINT FILE ........................................... 4-6ELECTRICAL INSTALLATION ......................................... 3-6ELECTRICAL INTERFACE ............................................10-1EMERGENCY RESTART ...............................................5-55EMI ............................................................................. 2-8ENABLE

start inhibit ................................................................7-12ENVIRONMENATAL SPECIFICATIONS............................ 2-7ENVIRONMENT ............................................................ 2-8ERROR

checking ...................................................................10-8responses ............................................................... 10-10

EVENT RECORDER ................................................... 10-11EVENT RECORDING ....................................................4-12

FFACEPLATE

interface .................................................................... 4-1FACTORY DATA ..........................................................5-10FAQ ............................................................................ 7-2FAST TRANSIENTS ...................................................... 2-8FAULT SETUP .............................................................5-63FIBER OPTIC PORT (OPTION F) .................................... 2-5FIRMWARE

history ....................................................................... 1-2version .....................................................................6-19

FLA ............................................................................5-11FLASH MESSAGES

duration ..................................................................... 5-5FREQUENCY...............................................................5-12FREQUENTLY ASKED QUESTIONS ................................ 7-2FRONT PORT ............................................................... 2-5

communicating ........................................................... 7-2FULL LOAD AMPS .......................................................5-11

GGATEWAY ADDRESS .................................................... 5-7GENERAL SWITCH ......................................................5-57GROUND

(1A/5A) ACCURACY TEST ........................................... 8-3accuracy test .............................................................. 8-3bus ........................................................................... 7-5CT .................................................................. 5-12, 7-10current input ............................................................... 3-8fault ................................................................ 5-36, 7-12fault detection

ungrounded systems ........................................7-21filter .......................................................................... 7-5safety ........................................................................ 7-5

GUIDEFORM SPECIFICATIONS ..................................... 2-1

HHARDWARE FUNCTIONAL TESTING .............................. 8-2HGF GROUND CT INSTALLATION

3” and 5” window .......................................................3-188” window .................................................................3-18

HOT/COLD CURVE RATIO ................................... 5-29, 7-10HOT/COLD SAFE STALL RATIO ....................................5-22HUMIDITY .................................................................... 2-8

IIMPULSE TEST .............................................................2-8INITIAL START CAPACITY ............................................7-19INPUTS ........................................................................2-4INSTALLATION ..............................................................3-1

electrical .....................................................................3-6mechanical ..................................................................3-1upgrade ......................................................................4-3

INSULATION RESISTANCE ............................................2-8INTRODUCTION AND ORDERING ...................................1-1IP ADDRESS .................................................................5-6

KKEYPAD .......................................................................4-2

LLAG POWER FACTOR..................................................5-51LAST TRIP DATA ...........................................................6-4LEAD POWER FACTOR ................................................5-51LEARNED START CAPACITY ........................................7-19LOCAL / REMOTE RTD OPERATION .............................5-43LOCAL RTD ..................................................................6-9

maximums ................................................................6-14protection .................................................................5-41

MMAJOR UPDATES......................................................... A-2MECHANICAL INSTALLATION.........................................3-1MECHANICAL JAM ............................................. 5-33, 7-11MEMORY MAP .......................................................... 10-11

information .............................................................. 10-11MESSAGE SCRATCHPAD ..............................................5-9METERED QUANTITIES .................................................2-1METERING ...................................................................2-5MODBUS

serial communications control ......................................5-17setpoints ..............................................................5-6, 5-7

MODBUS COMMUNICATIONS .......................................10-1MODBUS/TCP COMMUNICATIONS..................................5-6MODEL INFORMATION ................................................6-19MONITORING SETUP ..................................................5-12MOTOR

cooling .....................................................................5-29data .........................................................................6-13FLA ..........................................................................5-11FLC..........................................................................7-10rated voltage .............................................................5-11statistics ...................................................................6-17status ..................................................................6-3, 6-5status detection .........................................................7-13thermal limits ...............................................................7-9

MOTOR FLA ................................................................5-11MPM-369

conversion terminal list .................................................3-4MTM-369

conversion terminal list .................................................3-4

NNEGATIVE REACTIVE POWER .....................................5-53NOMINAL FREQUENCY ...............................................5-12

Courtesy of NationalSwitchgear.com
Page 289: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

GE Power Management 369 Motor Management Relay iii

INDEX

OOPEN RTD ALARM ..................................................... 5-44OPERATION ............................................................... 5-16ORDERING .................................................................. 1-1OUTPUT RELAYS .......................................... 2-5, 3-12, 8-6

setpoints .................................................................. 5-16OUTPUTS .................................................................... 2-5OVERFREQUENCY ..................................................... 5-49OVERLOAD

alarm ....................................................................... 5-31curve ....................................................................... 7-11curve test ................................................................... 8-7pickup ..................................................................... 7-10

OVERLOAD CURVEScustom..................................................................... 5-27setpoints .......................................................... 5-23, 5-24standard ................................................. 5-24, 5-25, 5-26

OVERLOAD/STALL/THERMAL MODEL ............................ 2-5OVERVOLTAGE .......................................................... 5-47

PPARITY ........................................................................ 5-6PASSWORDS

comm password .......................................................... 5-4PC PROGRAM

software history .......................................................... 1-2PC SOFTWARE

obtaining .................................................................... 7-2PHASE

CT................................................................... 5-11, 7-10CT installation .......................................................... 3-16current (CT) inputs ...................................................... 3-7current accuracy test ................................................... 8-2line voltage input(VT) (Option M) ................................... 2-4reversal ................................................................... 5-48voltage (VT/PT) inputs ................................................. 3-9VT ........................................................................... 5-12

PHASE SEQUENCY .................................................... 5-12PHASORS .......................................................... 4-11, 6-11POLARITY

CT and VT.................................................................. 7-5POSITIVE REACTIVE POWER ...................................... 5-52POWER

measurement test ....................................................... 8-7metering .................................................................... 6-8metering (option m) ..................................................... 2-5

POWER DEMAND ............................................... 5-13, 5-15PRE-FAULT SETUP..................................................... 5-62PRINTING .................................................................... 4-8PRODUCT DESCRIPTION .............................................. 2-1PRODUCTION TESTS ................................................... 2-8PROFIBUS

setpoints .................................................................... 5-7PROFIBUS COMMUNICATIONS.................................... 10-2PROFIBUS PORT (OPTION P) ........................................ 2-5PROGRAMMING EXAMPLE ............................................ 7-9PROTECTION ELEMENTS ............................................. 2-5PROTOCOL ................................................................ 10-8

RREAL TIME CLOCK ....................................................... 6-6

setpoints .................................................................... 5-8REDUCED RTD LEAD NUMBER ................................... 7-23

REDUCED VOLTAGE START ............................... 5-17, 5-18RELAY LABEL DEFINITION ............................................ 1-4REMOTE RESET..........................................................5-56REMOTE RTD .............................................................6-10

maximums .................................................................6-15module electrical installation........................................3-15module mechanical installation ....................................3-14protection ..................................................................5-42

RESET ........................................................................5-16RESIDUAL GROUND FAULT CONNECTION ..................... 7-3REVERSE POWER .......................................................5-54REVISION HISTORY ..................................................... A-1RFI .............................................................................. 2-8ROLLING DEMAND WINDOW ........................................5-13RS232

communicating ........................................................... 7-2program port .............................................................. 4-1setpoints .................................................................... 5-6

RS4854 wire ........................................................................ 7-2cable ......................................................................... 7-6communication difficulties ............................................ 7-2communications .........................................................3-13communications port ................................................... 7-5converter ................................................................... 7-5distances ................................................................... 7-5full duplex .................................................................. 7-2interfacing master device ............................................. 7-6repeater ..................................................................... 7-6setpoints .................................................................... 5-6

RTD.....................................................................3-10, 7-52 wire lead compensation ............................................7-24accuracy test .............................................................. 8-4bias ........................................................ 5-22, 5-30, 5-31bias maximum ...........................................................7-11bias mid point ............................................................7-11bias minimum ............................................................7-11circuitry ....................................................................7-22grounding ................................................................... 7-6inputs .......................................................................3-10inputs (Option r) .......................................................... 2-4stator ........................................................................7-12

RUNNING COOL TIME..................................................7-10

SS10 ANALOG OUTPUTS ...............................................5-59S11 369 TESTING ........................................................5-61S2 SYSTEM SETUP .....................................................5-11S3 OVERLOAD PROTECTION .......................................5-21S4 CURRENT ELEMENTS .............................................5-32S5 MOTOR START / INHIBITS .......................................5-38S6 RTD TEMPERATURE ...............................................5-41S7 VOLTAGE ELEMENTS .............................................5-46S8 POWER ELEMENTS ................................................5-50S9 DIGITAL INPUTS .....................................................5-55SECONDARY INJECTION TEST SETUP .......................... 8-1SECURITY ................................................................... 5-4SELF-TEST MODE .......................................................5-15SELF-TEST RELAY ......................................................5-15SERIAL COMMUNICATION CONTROL ...........................5-17SETPOINTS ................................................................. 5-1

access ....................................................................... 5-4entry ......................................................................... 4-2main menu ................................................................. 5-1page 1 menu .............................................................. 5-4page 10 menu............................................................5-59

Courtesy of NationalSwitchgear.com
Page 290: 369 Motor Management Relay Instruction Manual · 369 Motor Management Relay Instruction Manual 369 Revision: 53CMB18x.000 Manual P/N: 1601-0077-BC (GEK-106288) ... GE Power Management

iv 369 Motor Management Relay GE Power Management

INDEX

page 11 menu ...........................................................5-61page 2 menu .............................................................5-11page 3 menu .............................................................5-21page 4 menu .............................................................5-32page 5 menu .............................................................5-38page 6 menu .............................................................5-41page 7 menu .............................................................5-46page 8 menu .............................................................5-50page 9 menu .............................................................5-55

SHORT CIRCUIT..........................................................5-32test ........................................................................... 8-8trip ...........................................................................7-11

SHORT/LOW TEMP RTD ALARM ...................................5-45SIMULATE FAULT ........................................................5-58SIMULATE PRE-FAULT ................................................5-58SIMULATE PRE-FAULT TO FAULT ................................5-58SIMULATION MODE .....................................................5-61SPARE SWITCH ..........................................................5-55SPEED SWITCH ..........................................................5-56START INHIBIT .......................................... 5-39, 7-14, 7-18

enabled ....................................................................7-19starter

status switch .............................................................5-18STARTER FAILURE ............................................ 5-13, 5-15STARTS/HOUR ............................................................7-12STATOR RTDS ............................................................7-12STOPPED COOL TIME .................................................7-11STOPPED COOL TIME CONSTANT ...............................7-14SUBNET MASK ............................................................. 5-6SUPPORTED MODBUS FUNCTIONS .............................10-9SYSTEM .....................................................................5-12SYSTEM FREQUENCY .................................................5-12

TTECHNICAL SPECIFICATIONS....................................... 2-4TEMPERATURE ............................................................ 2-8TEMPERATURE DISPLAY .............................................. 5-5TERMINAL

identification ............................................................... 3-2layout ........................................................................ 3-5list ............................................................................ 3-2

TESTburn in ....................................................................... 2-8calibration and functionality .......................................... 2-8dielectric strength ....................................................... 2-8ground accuracy ......................................................... 8-3hardware functional ..................................................... 8-2input accuracy ............................................................ 8-2overload curve ............................................................ 8-7phase current accuracy ................................................ 8-2power measurement .................................................... 8-7production .................................................................. 2-8RTD accuracy ............................................................. 8-4secondary injection ..................................................... 8-1setup ......................................................................... 8-1short circuit ................................................................ 8-8type test standards ...................................................... 2-8unbalance .................................................................. 8-8voltage

metering ......................................................... 6-8phase reversal ................................................. 8-8

TESTINGanalog outputs ...........................................................5-65output relays .............................................................5-65setpoints ...................................................................5-61

THERMAL

capacity calculation ....................................................7-17capacity used ............................................................7-17limit ..........................................................................7-14limit curves ...............................................................7-18

THERMAL CAPACITY USED .........................................5-22THERMAL MODEL

cooling .....................................................................5-30description ................................................................5-22limit curves ...............................................................5-21setpoints ...................................................................5-22

TIME ............................................................................5-8TIME BETWEEN STARTS .............................................7-12TIMING .......................................................................10-9TRENDING ....................................................................4-9TRIP COUNTER.................................5-12, 5-13, 5-15, 6-16TRIP RELAY................................................................3-12

setpoints ...................................................................5-16TROUBLESHOOTING ...................................................4-12TWO PHASE WIRING ...................................................7-20TWO WIRE RTD LEAD COMPENSATION ........................7-24TYPE TEST STANDARDS ...............................................2-8

UUNBALANCE

alarm and trip ............................................................7-12bias ..........................................................................5-28bias k factor ..............................................................7-10bias of thermal capacity ..............................................7-10setpoints ...................................................................5-22test ............................................................................8-8

UNDERCURRENT ............................................... 5-34, 7-11UNDERFREQUENCY....................................................5-48UNDERPOWER ...........................................................5-53UNDERVOLTAGE ........................................................5-46UPGRADING

relay firmware .............................................................4-4setpoint file to new revision ...........................................4-7

USER DEFINABLE MEMORY MAP AREA...................... 10-11

VVIBRATION ...................................................................2-8VOLTAGE

input accuracy test .......................................................8-2metering .....................................................................6-8phase reversal test .......................................................8-8

VOLTAGE TRANSFORMERsee VT

VTconnection type .........................................................5-12ratio .........................................................................5-12

VT RATIO .......................................................... 5-11, 5-12VT SETTINGS .............................................................7-10

WWARRANTY ................................................................. A-3WAVEFORM CAPTURE ...............2-5, 4-10, 5-8, 5-58, 10-11

setpoints .....................................................................5-8WIRING DIAGRAM .........................................................3-6

ZZERO SEQUENCE

ground CT placement ...................................................3-8

Courtesy of NationalSwitchgear.com