311 c h19

41
X.) Bolted Connections (Steel) A.) Introduction 1.) Types of bolts used with structural steel a.) A307 - low carbon (lowest strength) standard head size. b.)A325 - high strength - heavy duty nut.

Upload: gaconnhome1987

Post on 22-Jan-2015

1.313 views

Category:

Technology


4 download

DESCRIPTION

 

TRANSCRIPT

  • 1.
    • X.)Bolted Connections (Steel)
  • A.) Introduction
  • 1.) Types of bolts used withstructural steel
  • a.)A307- low carbon (lowest
  • strength) standard head size.
  • b.) A325- high strength - heavyduty nut.

2.

  • c.)A490 - high strength - heavy
  • duty nut.Sizes range from 1/2 to1-1/2 in 1/8 increments.

3.

  • 2.)Types of Connections
  • a.) Tension/Compression Connection
  • (Axial Members - Trusses)
  • i.) Lap Joint - Bolts in single shear
  • - Eccentric - not as good

4.

  • ii.) Butt Joint - bolts inDouble Shear
  • - concentric
  • - better

5.

  • b.) Shear Connection (Beams)
  • -Simple Support (No momenttransferred at connection)
  • - Connect web only
  • - Bolts in Shear

+ + 6.

  • c.)Moment & Shear (Beam Connections)
  • - Fixed Support
  • - Connect Flange & Web

+ + d.)Any combination ofa.), b.), & c.) + + 7.

  • B.)Possible Way a Bolted Connectioncould fail (failure modes)
  • 1.) Bolts fail in Shear

8.

  • 2.) Member or Connection plates fail in
  • bearingor crushing
  • - making the bolt holes oblong
  • (crushingsteel in plate)
  • - excessive deformation

9.

  • 3.)Member or Plates fail in tension
  • a.) failure by yielding on gross area is
  • b.) failure by fracture on net area

Gross Area Net Area a. b. 10.

  • 4.)Member or Connecting plates fail byend or edge tear-out

enddistance too small or edgedistance too small 11.

  • C.) Design of Bolted Connections
  • - check all 4 possible failure modes:
  • 1.) Bolt Shear
  • 2.) Member/Plate bearing failure
  • 3.) Member/Plate tension failure
  • 4.) Member/Plate end or edge tear-out

12.

  • 1.) Bolt Shear
  • P V = A B v,all Nn
  • N=__ P v ___(solving for N)
  • nA B v,all
  • P v = allowable load on connection,based on bolt shear (k)
  • A B = C.S.A. of one bolt (in 2 )
  • N =No. of bolts in connection
  • n= number of shear planes

13.

  • v,all = Allow. shear stress (ksi) ,Table 19-1
  • a.) Slip Critical -when no slippage of joint can be permitted.
  • b.) Bearing Type - when slippage of joint
  • joint can be permitted so that bolts can bear on connected parts.
  • c.) Threads in or out of shear plane (for bearing connections only)

14. threadsinshearplane threadsnotin shearplane 15. 2.) Member/Plate Bearing P P = dt p,all N P P = Allowable load on connectionbased on bearing(k) d = Bolt diameter (in.) t = thickness of member/plate (in.) N = Number of bolts in connection 16.

  • p,all= allowable bearing stress ofmember/plate (ksi)
  • = 1.5 t,ult
  • = 1.5 (58ksi) = 87 ksi for A36 steel
  • t,ultin Table 19-2 for othermaterials.

17.

  • 3.) Tension in member/plates -must satisfy
  • two requirements:
  • P all< A g(0.60 Y )
  • P all< A n(0.50 t,ult )
  • A g= Gross CSA of member orconnection plate
  • Y = yield strength of member orplate

18.

  • A n= Net CSA of member or plate= A g- A holes
  • t,ult= ultimate strength of member orplate

19.

  • 4.)Bolt Spacing Edge/End Distance

P L B L end L edge L edge L B 20.

  • a.)L end = distance from center ofstandard hole to end of connectedpart along the line of transmitted force.
  • Must satisfytworequirements:
  • L end> 2P B __
  • t,ult (t)
  • L end>Table J3.5

21.

  • P B = Applied load per bolt = P/N
  • t,ult = ultimate strength of member/plate
  • t = thickness of member or plate

22.

  • b.)L edge= distance from center of
  • standard hole to edge of connectedpart, perpendicular to line of force
  • L edge>TableJ3.5

23.

  • c.)L B= Distance between centerlines of
  • standard holes. Again,twocriteria
  • L B> 2.67 d(all directions)
  • L B> 2P B __ +d(in direction of load)
  • t,ult (t)2
  • d = bolt diameter
  • P B t,ult, & tdefined previously

24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34.

  • A.) INTRO. TO WELDED CONNECTIONS
  • 1.) 6500 o F electric arc melts the weld electrode to the material being connected ( the base metal).
  • 2.) Weld electrode must be compatible material for the base metal, i.e. same chemical makeup

35.

  • 3.) E60xx means 60 ksi ultimate strength
  • would use with low carbon (A36 or 1020)
  • steel.
  • 4.) Weld geometry
  • a.) Groove welds:
  • - Full Penetration
  • - Partial Penetration
  • b.) Fillet Welds

36.

  • B.) WELDED CONNECTION STRENGTH
  • 1.) Groove Welds: Full strength of the connected part is developed if:
  • a.) full penetration
  • b.) full length
  • Edge prep. increases cost

37.

  • 2.) Fillet Welds
  • Required size (a dimension) of weld is controlled by:
  • a.) Minimum size is controlled by thickness of the thicker of two parts joined. (Table 19-4)
  • b.) Maximum size is controlled by thethickness of the welded edge. (Table 19-4)

38.

  • 2.) Fillet Welds
  • b.) Maximum size:

a max t 39.

  • 2.) Fillet Welds
  • Required length of weld (L) is controlled by:
  • a.) weld shear strength:
  • P v= v,allt e (units of lb/in)
  • = (0.3 t,u) t e
  • t e= effective throat thickness
  • = a(sin45 o ) = 0.707a
  • P v=(0.3 t,u) (0.707a )
  • P v= 0.212 t,ua (units of lb/in of weld)

40.

  • b.) L>4a
  • c.) L>w
  • >width of part
  • d.) L>5 t min
  • e.) Returns>2a

return L = weld length Section View w t min a 41.