302.l9.fatigue.20nov02 (1)

Upload: abhiarvind

Post on 29-May-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    1/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    1

    Microstructure-Properties: II

    Fatigue

    27-302

    Lecture 9

    Fall, 2002

    Prof. A. D. Rollett

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    2/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    2

    Materials Tetrahedron

    Microstructure Properties

    Processing

    Performance

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    3/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    3

    Objective

    The objective ofthis lectureisto explainthephenomenon of fatigue and also to show howresistanceto fatigue failuredepends on

    microstructure. For27-302, Fall 2002: thisslidesetcontains morematerial thancan becoveredinthetime available.Slidesthatcontain material overand abovethat

    expected forthiscourse are marked *.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    4/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    4

    References

    Mechanical BehaviorofMaterials (2000), T. H. Courtney,McGraw-Hill, Boston.

    Phasetransformationsin metals and alloys, D.A. Porter, &K.E. Easterling, Chapman & Hall.

    Materials Principles & Practice, Butterworth Heinemann,Edited by C. Newey & G. Weaver.

    Mechanical Metallurgy, McGrawHill, G.E. Dieter, 3rd Ed.

    Light Alloys(1996), I.J. Polmear, Wiley, 3rd Ed.

    Hull, D. and D. J. Bacon(1984). Introductionto Dislocations.Oxford, UK, Pergamon.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    5/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    5

    NotationW

    a:=Alternatingstress

    Wm := MeanstressR := Stressratio

    I := strainNf := numberofcyclesto failureA := AmplituderatioIpl := PlasticstrainamplitudeIel := ElasticstrainamplitudeK:= Proportionalityconstant, cyclicstress-strainn:= Exponentincyclicstress-strainc := Exponentin Coffin-Manson Eq.;

    also, crack lengthE := Youngsmodulusb := exponentin Basquin Eq.

    m:= exponentin ParisLawK:= Stressintensity

    K:=Stressintensityamplitude

    a := crack length

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    6/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    6

    Fatigue

    Fatigueisthenamegivento failureinresponsetoalternating loads(as opposedto monotonicstraining).

    Instead of measuringtheresistanceto fatigue failurethrough anupperlimitto strain(asinductility), thetypicalmeasure of fatigueresistanceisexpressedinterms ofnumbers ofcyclesto failure. Fora givennumberofcycles(requiredin an application), sometimesthestress(thatcan besafelyendured bythe material) isspecified.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    7/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    7

    Fatigue: general characteristics

    Primarydesigncriterioninrotatingparts.

    Fatigue as a name forthephenomenon based onthenotionof a material becoming tired, i.e. failing at lessthanitsnominal strength.

    Cyclical strain(stress) leadsto fatigue failure. Occursin metals andpolymers butrarelyinceramics.

    Also anissue forstatic parts, e.g. bridges.

    Cyclic loadingstress limit

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    8/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    8

    Fatigue:general characteristics

    Most applications ofstructural materialsinvolvecyclicloading; anynettensilestress leadsto fatigue.

    Fatigue failuresurfaceshavethreecharacteristic features:[seenextslide, also Courtney figs. 12.1, 12.2]

    A (near-)surfacedefect asthe origin ofthecrack Striationscorrespondingto slow, intermittentcrackgrowth

    Dull, fibrous brittle fracturesurface(rapidgrowth).

    Life ofstructural componentsgenerally limited bycyclicloading, notstaticstrength.

    Mostenvironmental factorsshorten life.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    9/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    9

    S-NCurves

    S-N [stress-numberofcyclesto failure] curvedefines locusofcycles-to-failure forgivencyclicstress.

    Rotating-beam fatiguetestisstandard; also alternatingtension-compression.

    Plotstressversusthelog(numberofcyclesto failure), log(Nf).[seenextslide,also Courtney figs. 12.8, 12.9]

    Forfrequencies< 200Hz,metals areinsensitivetofrequency; fatigue lifeinpolymersis frequency

    dependent.

    [Hertzberg]

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    10/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    10

    Fatigue testing, S-Ncurve

    [Dieter]

    Note the presence of a

    fatigue limit in manysteels and its absence

    in aluminum alloys.

    log Nf

    Wa

    Wmean 1Wmean 2Wmean 3

    Wmean 3 > Wmean 2 > Wmean 1Thegreaterthenumberofcyclesinthe loadinghistory,thesmallerthestressthatthe material can withstand

    without failure.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    11/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    11

    Endurance Limits

    Some materialsexhibitendurance limits, i.e. astress below whichthe lifeisinfinite: [fig. 12.8] Steelstypicallyshow anendurance limit, = 40% ofyield;

    thisistypically associated withthepresence of a solute

    (carbon, nitrogen) thatpines dislocations andpreventsdislocation motion atsmall displacements orstrains(whichis apparentin an upperyieldpoint).

    Aluminum alloys do notshow endurance limits; thisisrelatedto the absence of dislocation-pinningsolutes.

    At large Nf, the lifetimeis dominated by nucleation. Thereforestrengtheningthesurface(shotpeening) is beneficial to

    delay crack nucleation andextend life.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    12/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    12

    Fatigue fracture

    surface

    [Hertzberg]

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    13/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    13

    Fatigue crack stages

    Stage 1

    Stage 2[Dieter]

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    14/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    14

    Fatigue Crack Propagation

    Crack Nucleationpstressintensification atcracktip.

    Stressintensitypcrackpropagation(growth);- stage I growth onshearplanes(45),stronginfluence ofmicrostructure [Courtney: fig.12.3a]- stage II growthnormal to tensile load(90)weakinfluence ofmicrostructure [Courtney: fig.12.3b].

    Crackpropagationpcatastrophic, orductile failure atcrack

    lengthdependent on boundaryconditions, fracturetoughness.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    15/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    15

    Fatigue CrackNucleation

    Flaws, cracks, voidscan all act ascracknucleationsites,especially atthesurface.

    Therefore, smoothsurfacesincreasethetimeto nucleation;notches, stressrisersdecrease fatigue life.

    Dislocation activity(slip) can also nucleate fatiguecracks.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    16/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    16

    Dislocation Slip CrackNucleation

    Dislocationslip -> tendencyto localizeslipin bands. [seeslide10, also Courtney fig. 12.3]

    Persistent Slip Bands(PSBs) characteristic ofcyclicstrains.

    Slip Bands -> extrusion at freesurface. [seenextslide forfig.from Murakamiet al.] Extrusions -> intrusions andcracknucleation.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    17/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    17

    Slip steps

    and thestress-strain

    loop

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    18/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    18Design Philosophy:Damage Tolerant

    Design

    S-N (stress-cycles) curves = basiccharacterization.

    Old Design Philosophy = InfiniteLifedesign: acceptempirical information about fatigue life(S-N curves); apply a(large!) safety factor; retirecomponents orassemblies atthe

    pre-set life limit, e.g. Nf=107. *CrackGrowth Ratecharacterization ->

    *Modern Design Philosophy(AirForce, not Navycarriers!) =DamageTolerantdesign: acceptpresence ofcracksin

    components. Determine life based onprediction ofcrackgrowthrate.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    19/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    19

    Definitions: StressRatios

    Alternating Stress

    Meanstress| Wm = (Wmax +Wmin)/2.

    Puresine wave|Meanstress=0.

    Stressratio | R= Wmax/Wmin.

    ForWm = 0, R=-1

    Amplituderatio|

    A = (1-R)/(1+R). Statistical approachshowssignificantdistributioninNf forgivenstress.

    See Courtney fig. 12.6; also followingslide.

    | Wa

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    20/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    20

    AlternatingStressDiagrams

    [Dieter]

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    21/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    21

    Mean Stress

    Alternatingstress| Wa = (Wmax-Wmin)/2. Raisingthemeanstress (Wm) decreasesNf. [seeslide19, also

    Courtneyfig. 12.9]

    Variousrelations between R = 0 limit andtheultimate (or

    yield) stress areknown as Soderberg (linearto yieldstress),Goodman (linearto ultimate) andGerber(parabolictoultimate). [Courtney, fig. 12.10, problem12.3]

    Wa

    Wmeantensile strength

    endurance limit at zero mean stress

    Wa ! Wfat 1 Wmean

    tensile strength

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    22/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    22

    Cyclic strain vs. cyclic stress

    Cyclicstraincontrol complementscyclicstresscharacterization: applicableto thermal fatigue, orfixeddisplacementconditions.

    Cyclicstress-straintestingdefined by a controlledstrainrange, Ipl. [seenextslide, Courtney, figs. 12.24,12.25]

    Soft, annealed metalstendto harden; strengthenedmetalstendto soften.

    Thus, many materialstendtowards a fixedcycle, i.e.constantstress, strain amplitudes.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    23/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    23

    Cyclic stress-strain curve

    [Courtney]

    Largenumberofcyclestypicallyneededto reachasymptotichysteresis loop(~100).

    Softening orhardeningpossible. [fig. 12.26]

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    24/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    24

    Cyclic stress-strain

    Wavy-slip materialsgenerallyreach asymptoteincyclicstress-strain: planarslipmaterials(e.g. brass) exhibithistorydependence.

    Cyclicstress-straincurvedefined bytheextrema, i.e.the tips ofthehysteresisloops. [Courtney fig. 12.27]

    Cyclicstress-straincurvestendto lie below those for

    monotonictensiletests. Polymerstendto softenin

    cyclicstraining.

    [Courtney]

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    25/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    25

    Cyclic Strain Control

    Strainis a more logical independentvariable forcharacterization of fatigue. [fig. 12.11]

    Define anelasticstrainrange as Iel = W/E.

    Define a plasticstrainrange, Ipl. Typically observe a changeinslope betweenthe

    elastic andplasticregimes. [fig. 12.12]

    Low cycle fatigue(small Nf) dominated byplasticstrain: highcycle fatigue(largeNf) dominated byelasticstrain.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    26/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    26

    Strain control

    of fatigue

    [Courtney]

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    27/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    27

    Cyclic Strain control: low cycle

    Constitutiverelationforcyclicstress-strain:

    n 0.1-0.2

    Fatigue life: CoffinMansonrelation:

    If

    ~true fracturestrain; closeto tensileductility

    c -0.5to -0.7 c = -1/(1+5n); largenp longerlife.

    ( ! dK (I dn

    (I

    2! dIf 2 f

    c

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    28/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    28

    Cyclic Strain control: high cycle

    Forelastic-dominatedstrainsathighcycles, adaptBasquinsequation:

    Intercept onstrain axis ofextrapolatedelastic line = Wf/E. Highcycle = elasticstraincontrol:

    slope(inelasticregime) = b = -n/(1+5n)[Courtney, fig. 12.13]

    Thehighcycle fatiguestrength, Wf, scaleswiththeyieldstress highstrengthgoodinhigh-cycle

    Wa ! E(Ie2

    ! dWf 2 b

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    29/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    29

    Strain amplitude - cycles

    [Courtney]

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    30/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    30

    Total strain (plastic+elastic) life

    Low cycle = plasticcontrol: slope = c

    Addtheelastic andplasticstrains.

    Cross-overbetweenelastic andplasticcontrol istypically atNf= 103 cycles.

    Ductilityuseful forlow-cycle; strengthforhighcycle

    Examples ofMaragingsteel forhighcycleendurance,annealed4340 forlow cyclefatiguestrength.

    (

    2

    !(Iel

    2

    (Ipl

    2

    !f2 f

    b dIf 2Nf

    c

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    31/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    31

    Fatigue Crack Propagation

    CrackLength := a.Numberofcycles := NCrackGrowth Rate := da/dNAmplitude of Stress Intensity := K= Wc.

    Definethreestages ofcrackgrowth, I, II and III,

    in a plot of da/dN versus K. Stage II crackgrowth: application of linearelastic fracture mechanics.

    Canconsiderthecrackgrowthrateto berelatedto the appliedstressintensity.

    Crackgrowthratesomewhatinsensitiveto R (if R

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    32/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    32

    Fatigue Crack Propagation

    Threestages ofcrackgrowth, I, II and III.

    Stage I: transitionto afinitecrackgrowthratefrom no propagationbelow a thresholdvalue ofK.

    Stage II: powerlawdependence ofcrackgrowthrate on K.

    Stage III: acceleration of

    growthrate with K,approachingcatastrophicfracture.

    da/dN

    th

    c

    I

    IIIII

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    33/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    33

    *Paris Law

    ParisLaw:

    m~ 3 (steel); m~4(aluminum).

    Cracknucleationignored! Threshold~ Stage I Thethresholdrepresents anendurance limit.

    Forceramics, thresholdiscloseto KIC. Crackgrowthrateincreases withR (forR>0).

    [fig. 12.18a]

    dc

    d! A((K)m

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    34/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    34

    *Striations- mechanism

    Striations occurbydevelopment ofslip bandsineachcycle, followed bytip blunting, followed byclosure.

    Canintegratethegrowthrateto obtaincycles asrelatedto cyclicstress-strain behavior. [Eqs. 12.6-12.8]

    NII !dc

    AEm (W c mc0

    cf

    NII !dc

    dc / dNc0

    cf

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    35/52

    Objective

    Crack

    InitiationS-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    35

    *Striations, contd.

    Providedthat m>2 andEisconstant, canintegrate.

    Iftheinitial crack lengthis much lessthanthe final length,c0

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    36/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    36

    *Damage TolerantDesign

    Calculateexpectedgrowthrates from dc/dN data. Perform NDE on all flight-critical components.

    Ifcrackis found, calculatetheexpected life ofthe

    component. Replace, rebuildiftoo closeto life limit.

    Endurance limits.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    37/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    37

    Geometrical effects

    Notchesdecrease fatigue lifethroughstressconcentration. Increasingspecimensize lowers fatigue life. Surfaceroughness lowers life, againthroughstress

    concentration.

    Moderatecompressivestress atthesurfaceincreases life(shotpeening); itisharderto nucleate a crack whenthelocal stressstate opposescrack opening.

    Corrosiveenvironment lowers life; corrosioneitherincreasestherate at which material isremoved from the

    cracktip and/oritproduces material onthecracksurfacesthat forcesthecrack open(e.g. oxidation). Failure mechanisms

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    38/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    38

    Microstructure-FatigueRelationships

    What aretheimportantissuesin microstructure-fatiguerelationships?

    Answer: three majorfactors.1: geometry ofthespecimen(previousslide); anything onthesurface

    thatis a site ofstressconcentration will promotecrack formation(shortenthetimerequired fornucleation ofcracks).

    2: defectsinthe material; anythinginsidethe material thatcanreducethestress and/orstrainrequiredto nucleate a crack(shortenthetimerequired fornucleation ofcracks).

    3: dislocationslipcharacteristics; ifdislocationglideisconfinedtoparticularslipplanes(calledplanarslip) thendislocationscanpileup at anygrain boundary orphase boundary. Thehead ofthepile-upis a stressconcentration whichcaninitiate a crack.

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    39/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    39

    Microstructure affects CrackNucleation

    The maineffect ofmicrostructure(defects,surfacetreatment, etc.) isalmost all inthe low stressintensityregime, i.e. StageI. Defects, forexample,

    makeiteasierto nucleatea crack, whichtranslatesinto a lowerthreshold forcrackpropagation(Kth).

    Micr ostructure also affectsfracturetoughness andtherefore Stage III.

    da/dN

    th

    c

    I

    IIIII

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    40/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    40

    Defects in Materials

    Descriptions ofdefectsin materials atthesophomore level focuses,appropriately onintrinsicdefects(vacancies, dislocations). Forthematerialsengineer, however, defectsincludeextrinsicdefectssuch asvoids, inclusions, grain boundary films, and othertypes ofundesirablesecondphases.

    Voids areintroducedeitherbygasevolutioninsolidification orbyincompletesinteringinpowderconsolidation.

    Inclusions aresecondphasesentrainedin a material duringsolidification. In metals, inclusions aregenerally oxides from thesurfaceofthe metal melt, ora slag.

    Grain boundary films arecommoninceramics asglassy films from

    impurities. In aluminum alloys, thereis a hierachy ofnames forsecondphaseparticles; inclusions areunwanted oxides(e.g. Al2O3); dispersoids areintermetallicparticlesthat, onceprecipitated, arethermodynamicallystable(e.g. AlFeSicompounds); precipitates areintermetallicparticlesthatcan bedissolved orprecipiateddepending ontemperature(e.g.

    AlCucompounds).

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    41/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    41

    Metallurgical Control: fine particles

    Tendencyto localization of flow isdeleteriousto theinitiation of fatiguecracks, e.g. Al-7050 withnon-shearablevs. shearableprecipitates(Stage I in a da/dNplot). Also Al-Cu-Mg withshearableprecipitates butnon-shearable

    dispersoids, vs. onlyshearableppts.

    graph courtesy of J.

    Staley,Alcoa

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    42/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    42

    Coarse particle effect on fatigue

    Inclusionsnucleatecrackspcleanliness(w.r.t. coarseparticles) improves fatigue life, e.g. 7475improved by lowerFe+Sicomparedto 7075:0.12Fein 7475, comparedto 0.5Fein 7075;

    0.1Siin 7475, comparedto 0.4Siin 7075.

    graph courtesy of J.

    Staley,Alcoa

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    43/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    43

    Alloy steel heat treatment

    Increasinghardnesstendsto raisetheendurance limit forhighcycle fatigue. Thisis largely a function oftheresistanceto fatiguecrack formation(Stage I in a plot ofda/dN).

    [Dieter]

    Mobilesolutesthatpindislocationspfatiguelimit, e.g. carbon in steel

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    44/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    44

    Casting porosity affects fatigue

    Castingtendsto resultinporosity. Pores areeffectivesitesfornucleation offatigue cracks. Castingsthustendto have lowerfatigueresistance(asmeasured by S-N curves) than wrought materials.

    Castingtechnologies, such assqueeze casting, thatreduceporositytendtoeliminatethisdifference.

    [Polmear]

    Gravity castversussqueeze castversus

    wroughtAl-7010

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    45/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    45

    Titanium alloys

    FormanyTi alloys, theproportion ofhcp(alpha) and bcc(beta) phasesdepends

    strongly ontheheattreatment. Cooling from thetwo-phaseregionresultsin a two-phasestructure, as Polmearsexample, 6.7a. Rapidcooling from abovethetransusinthesinglephase(beta) regionresultsin a two-phase microstructure with Widmanstttenlaths of(martensitic) alpha in a beta matrix, 6.7b.

    The fatigueproperties ofthetwo-phasestructure aresignificantly betterthantheWidmanstttenstructure(moreresistanceto fatiguecrack formation).

    The alloyinthisexampleis IM834, Ti-5.5Al-4Sn-4Zr-0.3Mo-1Nb-0.35Si-0.6C.

    [Polmear]

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    46/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    46

    *Design Considerations

    Ifcrackgrowthrates arenormalized bytheelastic modulus,then material dependenceis mostlyremoved![Courtney fig.12.20]

    Candistinguish betweenintrinsic fatigue [use Eq. 12.4 for

    combinedelastic, plasticstrainrange] forsmall cracksizesandextrinsic fatigue [use Eq. 12.6 forcrackgrowthratecontrolled] at longercrack lengths. [fig. 12.21.]

    Inspection ofdesigncharts, fig. 12.22, showsthatceramicssensitiveto crackpropagation(highendurance limitinrelationto fatiguethreshold).

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    47/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    47

    *Design Considerations: 2

    Metalsshow a higherfatiguethresholdinrelationtotheirendurance limit. PMMA andMg are atthelowerend ofthetoughnessrangeintheirclass.[Courtney fig. 12.22]

    Also interestingto compare fracturetoughness withfatiguethreshold. [Courtney fig. 12.23]

    Notethatceramics are almost onratio=1 line,

    whereas metalstendto lie well below, i.e. fatigueismoresignificantcriterion.

    48

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    48/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    48

    *Fatigue

    property map

    [Courtney]

    49

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    49/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    49

    *Fatigue

    property map

    [Courtney]

    50

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    50/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    50

    *Variable Stress/Strain Histories

    Whenthestress/strainhistoryisstochasticallyvarying, a rule forcombiningportions of fatigue lifeisneeded.

    Palmgren-MinerRuleisuseful: ni isthenumberofcycles ateachstress level, and Nfi isthe failurepoint forthatstress.[Ex. Problem 12.2]

    ni

    Nfi! 1

    i

    * Courtneys Eq. 12.9isconfusing; hehas Nfinthenumeratoralso

    51

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    51/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    51

    *Fatigue in Polymers

    Manydifferences from metals

    Cyclicstress-strain behavioroftenexhibitssoftening; also affected byvisco-elasticeffects;

    crazinginthetensileportionproducesasymmetries, figs. 12.34, 12.25.

    S-N curvesexhibitthreeregions, withsteeplydecreasingregion II, fig. 12.31.

    Nearnessto Tg resultsinstrongtemperaturesensitivity, fig. 12.42

    52

  • 8/9/2019 302.L9.fatigue.20Nov02 (1)

    52/52

    Objective

    Crack

    Initiation

    S-N

    curves

    Cyclic

    stress-strn

    Crack

    Propagate

    Microstr.

    effects

    Design

    52

    Fatigue: summary

    Critical to practical use ofstructural materials. Fatigue affects moststructural components, even

    apparentlystatically loaded ones.

    Well characterizedempirically. Connection betweendislocation behaviorand

    fatigue life offersexcitingresearch opportunities,i.e. physically based models are lacking!