2.similitude laws in centrifuge modeling

Upload: hasen-bebba

Post on 01-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    1/24

    Similitude laws incentrifuge modelling

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    2/24

    Content

    • Principle of scaling laws – Vashy-Bukingham theorem• Scaling laws for centrifuge tests• Scaling laws of water flow in centrifuge•Grain size effects on interface and shear band pattern

    22

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    3/24

    • Vaschy-Buckingham theorem

    « If we have a physically meaningful equation involving a certain number, n , of physicalvariables, and these variables are expressible in terms of k independent fundamentalphysical quantities, then the original expression is equivalent to an equation involving aset of = n − k dimensionless arameters constructed from the ori inal variables »

    0,...,, 21 = n X X X f

    kiii ki r r r X

    ×××→ ...21 21i=1,n

    niii ni X X X

    π ×××→ ...21 21i=1,n-k

    ( ) 0,...,, 21 =− k n f π

    33

    similar (they differ only in scale); they are equivalent for the purposes of the equation,

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    4/24

    • Application on the equation of dynamic equilibrium

    0σdiv2

    = ∂++

    σp: stress tensoru p: distance

    L: meter

    n=6 k=3

    t p ∂p

    g p: volumic forcest p: time

    ξp: displacement

    M: massT: time

    - Direct method

    p

    m

    p

    m == **ρ

    ρρ

    σ

    σσ 1***

    *

    = L

    σ

    m m

    p

    m

    p

    m

    L L

    L

    t t

    g g

    ==

    ==

    **

    **

    ξ

    ξξ 12**

    *

    =

    ρ

    ξ

    44

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    5/24

    - Second method

    ( ) 0,,,,, = t gu f

    MM TT LL

    11 --22 --11 uu

    11 00 --33

    gg 11 --22 00 i ti giiuii t gui

    ξ ξ×××××=

    dimensional parameters

    tt 00 11 00

    ξ 00 00 11

    Rank 3 → p=3

    ***1 1 h g

    σπ ==

    **2 1 t

    ξπ == *3 1 u

    ξπ ==

    55

    ρ

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    6/24

    • Scalling law for reduce scale tests

    Experimental work on geotechnical structures

    • Models at reduce scale ξ* = 1/nsca ing actor L =1 n

    • Test at 1g : g*=1

    • Material with the same*=

    ε*= 1σ* = 1/n* =

    Hooke law

    −+

    += ij kkijij E δ

    ν

    νε

    νσ

    211

    ''

    E n

    E 1' = Mechanical characteristics of thematerial must be modified

    −+

    += ij kkijij

    E

    ν

    νε

    νσ '' 211

    1 ν='

    66

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    7/24

    • Some examples of 1g tests problem on reduced scale model

    - Bearing capacity of shallow foundation (De Beer cited by Corté, 1989; Garnier, 2003)

    Terza hi 1943

    ( )γ BN qu 1=

    effect of B on Ny for cohesionless soils Kn=(q u(B)/B)/(q u(B 0)/B0)(De Beer cited by Corté, 1989)

    nComabrieu (1997)

    R a t i o

    ( ) ( )( )

    φ

    ψ

    γ λγ

    γsin1

    sin1sin

    23

    34

    21 +

    +

    +==

    B A

    B N B BN qu

    77Ratio B/B 0Sol : E=E

    0(1+ λz)

    (Garnier, 2003)

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    8/24

    • Some example of 1g tests problem on reduced scale model

    • Suction anchors (Puech A)model Full scale

    (Garnier, 2001)

    • Shallow foundation – reinforcement with a geotextil (Garnier 1995 – 1997) mo e

    (Garnier, 2001)

    88

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    9/24

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    10/24

    Technical committee 2 TC2 of the ISSMGE

    • Scaling law for centrifuge tests

    Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling.J. Garnier, C. Gaudin, S.M. Springman, P.J. Cullingan, D. Goodings, D. Konig, B. Kutter, R.Phillips, M.F. Randolph and L. Thorel. IJPMG, Vol. 3 (2007)

    Available one line : http://www.tc2.civil.uwa.edu.au

    1010

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    11/24

    • Scalling law derived from the equation of equilibrium + σ*=1Scaling factorScaling factor

    *

    distancedistance u*u* 1/n1/n

    stressstress σσ** 11*ξ

    ***1 1 h gσπ ==

    soil densitysoil density (same soil as prototype)(same soil as prototype) ρρ** soilsoil 11

    gravitygravity g*g* nn

    *3 1 u

    ξπ ==

    *ξπ

    displacementdisplacement ξξ** 1/n1/n

    dynamic timedynamic time t* t* dyndyn 1/n1/n

    **2 t gπ ==

    strainstrain εε** 11

    velocityvelocity v*v* 11

    *** / dyn tv ξ=

    accelerationacceleration a* a* nn

    frequencyfrequency f*f* nn

    dyn tv a =**

    /1 dyn t f =forceforce F*F* 1/n1/n 22

    Unit weightUnit weight γγ** nn

    2*** u F ×=σ3*** u m ×= ρ

    1111

    massmass m*m* 1/n1/n 33*** g×= ρ

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    12/24

    • Vertical stress with depth in centrifuge tests

    Center of rotation

    Surface of the soil layerR0 R1 RN R

    z

    Schofield A. N. (1980)Bottom of the container

    dR

    G=2ω For a constant ω, centrifuge n

    dR RGdr d v2ω==

    Minimum difference for

    Rn= H/3 below the soil surface

    1212( )2022 20 R R RG dR R n R

    Rv −== ∫ ρω

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    13/24

    • Scaling law of water flow in centrifuge models

    Navier Stokes equation (incompressible and Newtonien fluid)

    p p fl p p p p p p p

    p

    pu P grad gu grad u

    t fl

    pΔ+−=+

    ∂ ν

    ρ1

    Dimensional analysis (direct method)

    ρ **2**2*

    p p

    f

    p p p m m m m m

    m

    u P grad P g x gu grad u t fl p Δ+−=+∂ ννρ

    ρ *1

    ***

    1**

    2**

    == xu

    F fl

    r

    Froud number Reynolds number

    1*

    **

    * == xu

    R fl 1*

    2**

    = P

    u fl fl

    ν11 ** == fl and P ρ

    1313

    1= fl u

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    14/24

    • Scaling law of water flow in centrifuge models

    Dimensiona ana ysis secon met o

    Hypothesis : not deformable porous media, incompressible and Newtonian fluid

    ( ) 0,,,,, = L d u P f

    p fl

    P: fluid pressure

    fl: m croscop c u ve oc y n ers a ve oc y

    d p: pore diameter

    L: length

    (Babendrier, 1991; Stephensen, 1979;Menand, 1995)

    μ:dynamic viscosityρ:density of the fluid

    Reynolds number***ρ

    Friction factor***

    14141

    *

    * ==μ

    ρ R

    e*

    *

    fl

    p

    f u F =

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    15/24

    Flow re imen Flow medium Flow domain

    • Scaling law of water flow in centrifuge models

    Reynolds number***ρ

    Friction factor***

    * g d iForchheimer equation

    i K u fl fl =*

    *

    μ

    ρ Re =*

    fl f u

    =

    t

    c bv avi fl fl fl

    ∂++= 2

    Permanent flowFlow in porous media Creeping flow

    Transient flow

    Flow ex:waves

    Laminar flow without orwith non-linear convective

    inertia forces

    Fully turbulent flow

    **

    2** u F r =

    Froud number Forchheimer equationi K u fl fl =

    1515

    2

    fl fl bu aui +=

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    16/24

    Same fluid

    • Scaling law of water flow in centrifuge models

    Scaling factordistance L* 1/n

    *

    Same soil Scaling factorDiffusion time T* diff 1/n²

    gravity g* n

    dynamic time t* dyn 1/n

    u ve oc ty fl n

    Dynammicviscosity

    μ 1

    velocity v* 1

    Darcy’s formulation Hydraulic gradient express as a pressure

    i g

    i K v fl fl μ

    == gradP gradP K v flp fl μ==

    P*

    *1* == i

    Li

    ni

    K ==*

    L*

    1*

    ** == flp v

    i K

    1616

    v fl

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    17/24

    • Scaling law of water flow in centrifuge models

    -

    Same fluidScalingfactor

    Scaling factor

    distance L* 1/n

    soil density ρ* soil 1

    Same soil

    2 ndapproach

    Diffusion time T* diff 1/n²

    Fluid velocity V* fl n

    gravity g* n

    dynamic time t* dyn 1/n

    Dynammic viscosity μ 1

    Intrinsic permability K* 1

    ve oc y v

    Grain diameter d* i 1

    Pore size * 1

    Friction factor eyno s num er

    n n d v

    R i fl e =××== 11*

    ****

    μ

    ρ n n

    n nv

    g d i F

    fl

    i f =

    ××== 1*

    ****

    1717

    μ

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    18/24

    Scaling law of water flow in centrifuge models

    Static domain – permanent regimen: limit of validity of the Darcy law

    (Khalifa et al., 2000 ; Goodings, 1994 ; Bezuijen,2010 ; Wahuydy, 1998)

    - Several definition of the reynolds number and friction factor in soils3

    ( ) nv

    R eq fl e −=

    13

    2

    μ

    τ

    ( ))13 3 nv F

    fl

    eq f −

    (Khalifa et al., 2000 )

    μ

    ρ

    n

    d v R fl e

    50=22

    50

    fl f v

    gnid F =

    (Goodings, 1994)

    Re=3.9 -5.5 (5%) Re=3.3

    (Khalifa et al., 2000 )Goodin s 1994

    1818

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    19/24

    • Scaling law of water flow in centrifuge modelsStatic domain – permanent regimen: limit of validity of the Darcy law

    Pokrovski & Fyodorov, 1975 : maximum hydraulic gradient for staticgeotechnical problems : i max =1

    Fontainebleau Labenne Hostun Le Rheu Loire

    d 50 0.21 0.3 0.35 0.55 0.65

    5% error 78 36 21 12 2

    10% error 155 72 43 23 5

    Maximum gravity level for similar behaviour between model and prototype (Khalifa et al., 2000 )

    1919

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    20/24

    Scaling law of water flow in centrifuge models

    Dynamic domain 0≠∂v Non steady state flow

    Same fluid

    Scaling factor

    dynamic time t* dyn 1/n

    velocity v* 1

    2 ndapproach

    Scaling factor

    Diffusion time T* diff 1/n²

    Fluid velocity V* fl n

    Forchheimer equation

    t c bv avi fl

    fl fl ∂++= 2

    During the shaking : consolidation+dynamic strains After the shaking : consolidation

    2 stages

    Dynamic loading of the soil mass :t* dyn =1/n

    Pore pressure dissipation : t* diff =1/n²Pore pressure dissipation : t*diff=1/n²

    2020

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    21/24

    Stewart et al. 1998

    • Scaling law of water flow in centrifuge models

    Nondimensional time factor (consolidation)

    t km t c diff v diff vHypothesis : Darcy law valuable

    ²2 h h μ== I μ*=n, t* diff =t* dyn

    water HPMC μ×=10

    30g centrifuge

    gradP k

    v fl μ

    =1** ==vv fl

    **

    dyn diff t t =

    11s

    p m n μ×=

    n n

    d v R i fl e

    1111*

    **** =××==

    μ

    ρ

    2121

    +4.5s

    +45s(Stewart et al., 1998)

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    22/24

    • grain size effects on interfaces and shear band patterns

    - Scale effects on shear mobilisation (Garnier & König, 1998)

    Pull out testsScaling effects ?

    - roughness effect : R/D50

    D (1/n) R (selected)

    - pile diameter e ect : B/D50

    D50 (1)

    B (1/n)

    (Garnier & König, 1998)

    2222

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    23/24

    Roughness effect : R/D50

    Normalized roughness: R n=R max /D 50Shear box tests

    interface)

    Centrifuge pull out

    ,

    ., es on ver ca

    piles (b=12mm,D50=0,2mm 50g)

    Three different zones of roughness

    (Garnier & König, 1998)

    - smooth interface : interfacial shear along the soil-grain contact, small strength, no dilatency

    -Intermediate roughness : frictional resistance increases with the increase in roughness, lowdilantency

    2323

    - angle independant from the roughness, large dilantency

  • 8/9/2019 2.Similitude Laws in Centrifuge Modeling

    24/24

    Pile diameter effect : B/D50

    •Balachoski tests (1995)Hostun sand d50=0.32mm

    Pile diameter BB: 16 to 55mm

    Centrifuge acceleration : 100g

    •LCPC testsFontainebleau sand D50=0.2 mm

    Pile diameter B from 2 to 36 mm

    Centrifuge acceleration 50g

    (Garnier & König, 1998)

    If B/d50 > 100 scale effect on τp is limited

    2424