2007d14

Upload: htopaven4340

Post on 04-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 2007D14

    1/8

    SISOM 2007 and Homagial Session of the Commission of Acoustics, Bucharest 29-31 May

    CHARACTERISTIC FREQUENCIES RELATIONSHIPS IN THE RHEODYNAMICS OFSTANDARD LINEAR VISCOELASTIC SOLID

    Horia PAVEN

    ICECHIM - National Research and Development Institute of Research for Chemistry and Petrochemistry, Bucharest; email:[email protected]

    The contribution is dealing with the effect of representation type on the apparent rheodynamic

    properties within the realm of standard linear viscoelastic model of solid-like behaviour. Taking

    into account the dynamic strain-, and stress-controlled processes, respectively, the characteristicfrequencies relationships corresponding to maximum and/or inflection conditions for welldefined sets of viscoelastic quantities are established in terms of meaningful rheologicalparameters, the consequences being illustrated in case of natural, semi-logarithmic,

    logarithmic, and double-logarithmic representations.

    Key words: rheodynamics, linear viscoelasticity, representations, characteristic frequencies.

    1. INTRODUCTION

    The viscoelastic features of operation of structural materials are rather a premium than a weakness if

    the know-how and the know-why aspects of rheological behaviour are carefully balanced, the matter being

    critical especially in case of polymer materials, where the involved native relaxation/retardation and mixedmechanisms drive in a well defined manner the effective response to different loadings [1]-[3].

    Aiming at to point out the influence of the peculiarities of strain- and stress-controlled processes,

    respectively on the corresponding response of different viscoelastic-like solids, the flow chart includes the

    rheological equations, which provide the background, the expressions of the rheodynamic properties, which

    definine the self contained sets of quantities to be considered from the standpoint of characteristic

    frequencies, as well as the explicit illustration of using different representations [4]-[7].

    2. PHENOMENOLOGICAL PREREQUISITES

    The rheological equation in case of standard linear viscoelastic solid is defined as

    tt DAADB 101 +=+ (1.1)for a strain()-controlled process [8], [10], [12], and

    tt DCCDD 101 +=+ (2.1)

    for a stress()-controlled one [9], [11]; , are the natural rheological variables, whereas and

    represent the characteristic rheological parameters, and

    110 ;, BAA

    110 ;, DCC dtdDt /= stands for the first ordertime derivative.

    Consequently, in the circumstance of a sinusoidal -controlled process of circular frequency , the

    resulting set of rheodynamic quantities comprises the primary ones - the storage modulus, )()1,1(M , loss

    modulus, )()1,1(M , absolute modulus, , and loss factor,|)(|*

    )1,1( M )()1,1( M - as well as the secondary

  • 7/29/2019 2007D14

    2/8

    Characteristic frequencies relationships in the rheodynamics of standard linear viscoelastic solid57

    ones - the storage compliance, )()1,1( MJ , loss compliance, )()1,1( MJ , and absolute

    compliance, | , defined by)(| * )1,1( MJ

    )1/()()( 22

    1

    2

    110)1,1( BBAAM ++= , )1/()()(22

    1101)1,1( BBAAM +=

    2/1221

    221

    20)1,1(

    * )]1/()[()( BAAM ++= , (1.2))/()()( 2110101)1,1( BAABAAM +=

    )/()()( 22

    1

    2

    0

    2

    110)1,1( AABAAJM ++= , )/()()(22

    1

    2

    0101)1,1( AABAAJM +=2/122

    1

    2

    0

    22

    1

    *

    )1,1( )]/()1[()( AABJM ++= , (1.3))/()()(2

    110101)1,1( BAABAA

    MJ+=

    where the rheological parameters are given in terms of meaningful quantities

    , (1.4.1)00)1,1(lim

    0 )( AMM == 11)1,1(lim

    /)( BAMM ==

    , (1.4.2)000)1,1(lim

    0 /1/1)( MAJJM === === MABJJM /1/)( 11)1,1(lim

    On the other hand, in the situation of a sinusoidal -controlled process of circular frequency , the

    resulting set of rheodynamic quantities contains the primary ones - the storage compliance, )()1,1(J , losscompliance, )()1,1(J , absolute compliance, , and loss factor,|)(|

    *

    )1,1( J )()1,1(J - as well as the

    secondary ones - the storage modulus, )()1,1(JM , loss modulus, )()1,1(JM , and absolute

    modulus, , stated as|)(| * )1,1( JM

    )1/()()( 22

    1

    2

    110)1,1( DDCCJ ++= , )1/()()(22

    1110)1,1( DCDCJ +=2/122

    1

    22

    1

    2

    0)1,1(* )]1/()[()( DCCJ ++= , (2.2)

    )/()()(2

    110110)1,1( DCCCDCJ +=

    )/()()( 22

    1

    2

    0

    2

    110)1,1( CCDCCMJ ++= , )/()()(22

    1

    2

    0110)1,1( CCCDCMJ +=2/122

    1

    2

    0

    22

    1

    *

    )1,1( )]/()1[()( CCDMJ ++= , (2.3))/()()(2

    110110)1,1( DCCCDC

    JM+=

    the different rheological parameters being expressed in the form

    00)1,1(

    lim

    0 )( CJJ == , (2.4.1)11)1,1(lim

    /)( DCJJ ==

    000)1,1(

    lim

    0 /1/1)( JCMMJ === , (2.4.2) === JCDMMJ /1/)( 11)1,1(lim

    3. RELATIONSHIPS AND MODELLING RESULTS

    The key relationships providing the necessary conditions of maximum (m) and inflection (i) for distinct casesof independent - dependent variables for different natural, semi-logarithmic, logarithmic and double-

    logarithmic representations - result by solving well established equations. As a matter of fact one obtain

    - for natural )(, R - representation

    maximum: ;0)(=

    d

    dRinflection: 0

    )(2

    2

    =

    d

    Rd. (3.1)

    - for semi-logarithmic )(,ln R - representation

    maximum:

    0)(

    1

    1)(

    ln

    1)(

    ln

    )(

    ln

    )(=====

    RR

    ddd

    dR

    d

    d

    d

    dR

    d

    dR;

  • 7/29/2019 2007D14

    3/8

    Horia PAVEN 58

    inflection: (3.2)

    0])()([ln

    1)(

    ln

    )(

    ln

    )(

    ln

    )(2

    2

    =+=

    =

    =

    =

    RR

    d

    dd

    Rd

    d

    d

    d

    Rd

    d

    Rd

    d

    Rd.

    - for logarithmic )(ln, R - representationmaximum:

    0)(

    )()(ln=

    =

    R

    R

    d

    Rd; (3.3)

    inflection: 0)(

    )()()()(

    )(ln2

    2

    2

    2

    =

    =

    =

    R

    RRR

    d

    R

    Rd

    d

    Rd.

    - for double-logarithmic )(ln,ln R - representation

    maximum:

    ;0)(

    )(

    ln

    1

    ln

    )(ln

    ln

    )(ln

    =

    =

    ==

    R

    R

    d

    dR

    R

    d

    d

    d

    Rd

    d

    Rd

    inflection: (3.4)

    0)(

    )(

    )(

    )(1

    )(

    )()(

    ln

    1)(

    ln

    )(

    ln

    ln

    )(ln

    ln

    )(ln

    2

    2

    2

    2

    =

    +

    =

    +

    =

    =

    =

    ==

    R

    R

    R

    R

    R

    R

    R

    RRR

    R

    R

    d

    dd

    R

    Rd

    d

    R

    Rd

    d

    d

    Rdd

    d

    Rd

    The natural characteristic relaxation frequencies corresponding to maximum (m) and/or inflection (i)

    conditions are disposed in the well defined sequence (Table 1.1)

    }{}{}{}{}{}{MJMJMMMM

    imJiJmJiJi

  • 7/29/2019 2007D14

    4/8

    Characteristic frequencies relationships in the rheodynamics of standard linear viscoelastic solid59

    Table 1.1 Characteristic frequencies of rheodynamic quantitiesforcontrolled processes.

    Viscoelastic

    Quantity

    Frequency Value

    [rad/s]M

    }{Mi )3/3(

    M }{Mm

    M }{Mi 3

    M}{Mi 1/31)/)(3/3( 20

    2

    0 + MMMM

    M }{ Mm MM /0

    M }{ Mi MM /3 0 MJ }{ MJi )/)(3/3( 0 MM

    MJ }{ MJm )/( 0 MM

    MJ }{ MJi )/(3 0 MM

    MJ }{ MJi 1/31)3/3( 220 + MM

    MJ }{

    MJm MM /0

    MJ }{

    MJi MM /3 0

    Table 1.2. Calculated values of different characteristic frequenciesin case ofcontrolled processes

    Viscoelastic

    Quantity

    Characteristic frequencies

    [rad/s]

    M1 wi{M1} 0.57735 1.154701 2.886751

    wm{M2} 1 2 5M2

    wi{M2} 1.732051 3.464102 8.660254

    M wi{M} 0.024021 0.048042 0.120105

    wm{BM} 0.031623 0.063246 0.158114BMwi{BM} 0.054772 0.109545 0.273861

    J1M wi{J1M} 0.000577 0.001155 0.002887

    wm{J2M} 0.001 0.002 0.005J2M

    wi{J2M} 0.001732 0.003464 0.008661

    JM wi{JM} 0.000707 0.001414 0.003536

    wm{BJM} 0.031623 0.063246 0.158114BJM

    wi{BJM} 0.054772 0.109545 0.273861

  • 7/29/2019 2007D14

    5/8

    Horia PAVEN 60

    Table 2.1 Characteristic frequencies of rheodynamic quantities

    forcontrolled processes.

    ViscoelasticQuantity

    Frequency Value[rad/s]

    J }{Ji )3/3(

    J }{Jm

    J }{Ji 3

    J }{Ji 1/31)/)(3/3( 202

    0 + JJJJ

    BJ }{ Jm JJ /0

    BJ }{ Ji JJ /3 0

    JM }{ JMi ,)/)(3/3( 0 JJ

    JM }{ JMm )/( 0 JJ

    JM }{ JMi )/(3 0 JJ

    JM }{ JMi 1/31)3/3( 220 + JJ

    JMB }{

    JMm JJ /0

    J

    MB }{J

    Mi

    JJ /30

    Table 1.2. Calculated values of different characteristic frequenciesin case ofcontrolled processes.

    Viscoelastic

    Quantity

    Characteristic frequencies

    [rad/s]

    J1 wi{J1} 0.57735 1.154701 2.886751

    J2 wm{J2} 1 2 5

    wi{J2} 1.732051 3.464102 8.660255

    J wi{J} 0.707107 1.4142 3.536BJ wm{BJ} 31.62277 63.246 158.114

    wi{BJ} 54.77226 109.545 273.861

    M1J wi{M1J} 577.35 1154.701 2886.751

    M2J wm{M2J} 1000 2000 5000

    wi{M2J} 1732.051 3464.102 8660.254

    MJ wi{MJ} 24.02118 48.0423 120.105

    BMJ wm{BMJ} 31.62277 63.246 158.114

    wi{BMJ} 54.77226 109.545 273.861

  • 7/29/2019 2007D14

    6/8

    Characteristic frequencies relationships in the rheodynamics of standard linear viscoelastic solid61

    Figure 1. -controlled rheodynamic quantities vs. frequency in different representations.

  • 7/29/2019 2007D14

    7/8

    Horia PAVEN 62

    Figure 2. -controlled rheodynamic quantities vs. frequency in different representations

  • 7/29/2019 2007D14

    8/8

    Characteristic frequencies relationships in the rheodynamics of standard linear viscoelastic solid63

    4. CONCLUSIONS

    The self contained evaluation of viscoelastic behaviour needs, even in the framework of linear

    approximation, the consideration of well established full sets of modulus- as well as of compliance-like

    quantities.

    The characteristic frequencies are obtained in terms of rheological parameters and point out meaningfulinformation on the intrinsic inter-relations underlying the effective response of the material.

    It is necessary to distinguish between the true effects and possible artefacts arising due to different

    representations.

    REFERENCES

    1. SPERLING, L. H.,Introduction to Physical Polymer Science, Wiley, New York, 2006.

    2. PAVEN, H.,Efecte reodinamice in compozite polimerice binare - I. Cuplajul morforeologic "Pi", Revista de Chimie, 49(9), 878-883, 199 1998.

    3. PAVEN, H.,Efecte reodinamice in compozite polimerice binare - II. Cuplajul morforeologic "Sigma", Revista de Chimie,49(12),910-915, 1998.

    4. PAVEN, H., POPOVICS, S., Efecte reodinamice fundamentale in sisteme compozite binare cu componenti cu comportarevascoelastica liniara - I. Modulul de inmagazinare, SISOM, Bucharest, 173-184, 1999.

    5. PAVEN, H., POPOVICS, S., Efecte reodinamice fundamentale in sisteme compozite binare cu componenti cu comportare

    vascoelastica liniara - II. Modulul de pierderi, SISOM, 185-196, 1999.6. PAVEN, H., Efecte reologice cantitative si calitative in cazul compozitelor solide binare cu componenti cu comportare

    vascoelastica liniara, Proc. IXth European Conference on Composite Materials "Composites-from Fundamentals toExploitation", IOM, London, X01-X10 , London, 2000.

    7. PAVEN, H., Restrictii intrinseci asupra regulilor de selectie reologice pentru compozite binare cu componenti cu comportare

    vascoelastica liniara, Proc. XIIIth International Congress on Rheology, Vol. 4, 18-20, BSR, Cambridge, 2000.8. PAVEN, H., POPOVICS, S., Interdependente reodinamice fundamentale in cadrul comportarii vascoelastice liniare standard a

    solidului PTZ.- I. Procese cu deformare controlata , SISOM, 277-286, 2002.9. PAVEN, H., POPOVICS, S., Interdependente reodinamice fundamentale in cadrul comportarii vascoelastice liniare standard a

    solidului PTZ.- II. Procese cu tensionare controlata, SISOM, 287-296, 2002.10. PAVEN, H., Relatii exacte in analiza fenomenologica a proceselor reodinamice de relaxare/retardare in vascoelasticitatea

    liniara a sistemelor polimerice. I.1 Marimi caracteristice primare in cazul proceselor reodinamice de deformare controlata,Materiale Plastice, 40(4), 171-176, 2003.

    11. PAVEN, H., Relatii exacte in analiza fenomenologica a proceselor reodinamice de relaxare/retardare in vascoelasticitatea

    liniara a sistemelor polimerice. II.1 Marimi caracteristice primare in cazul proceselor reodinamice de tensionare controlata,Materiale Plastice, 41(2), 56-61, 2004.

    12. PAVEN, H., Relatii exacte in analiza fenomenologica a proceselor reodinamice de relaxare/retardare in vascoelasticitatea

    liniara a sistemelor polimerice. I.1 Marimi caracteristice secundare in cazul proceselor reodinamice de deformare

    controlata, Materiale Plastice, 43(4), 345-351, 2006.