20_01fig_pchem.jpg

33
20_01fig_PChem.jpg Hydrogen Atom M m r Potential Energy 2 () 4 4 e n o o qq Ze Vr r r + Kinetic Energy ˆ ˆ ˆ n e K K K R C 2 2 2 2 ˆ 2 2 R r K M m 2 2 ˆ () 2 r Kr m M m m

Upload: jenis

Post on 18-Feb-2016

24 views

Category:

Documents


2 download

DESCRIPTION

20_01fig_PChem.jpg. Hydrogen Atom. Potential Energy. Kinetic Energy. m. r. C. +. M. R. Hydrogen Atom. Radial. Angular. Coulombic. 20_01fig_PChem.jpg. 20_01fig_PChem.jpg. Hydrogen Atom. will be an eigenfunction of . Separable. 20_01fig_PChem.jpg. Hydrogen Atom. Recall. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 20_01fig_PChem.jpg

20_01fig_PChem.jpg

Hydrogen Atom

M

m

r

Potential Energy2

( )4 4

e n

o o

q q ZeV rr r

+

Kinetic Energy

ˆ ˆ ˆn eK K K

R

C2 2

2 2ˆ2 2R rKM m

22ˆ ( )

2 rK rm

M m m

Page 2: 20_01fig_PChem.jpg

20_01fig_PChem.jpg

Hydrogen Atom2 2

2ˆ ˆ ˆ( ) ( )2 4r

o

ZeH K r V rm r

22 2

2 2 2 2 2

1 1 1sinsin sinr

d d d d drr dr dr r d d r d

22 2

2 2

1 1ˆ sinsin sin

d d dLd d d

2 2 22

2 2

ˆˆ2 2 4 o

d d L ZeH rmr dr dr mr r

Radial Angular Coulombic

Page 3: 20_01fig_PChem.jpg

20_01fig_PChem.jpg

Hydrogen Atom( , , )r will be an eigenfunction of 2ˆ ˆ ˆ, & zH L L

.( , , ) ( ) ( , )n l mr R r Y Separable

ˆ ( , , ) ( , , )H r E r

2 2 22

. .2 2

ˆ( ) ( , ) ( ) ( , )

2 2 4 n l m n n l mo

d d L Zer R r Y E R r Ymr dr dr mr r

2 22

. .2 2

( 1)( , ) ( ) ( , ) ( )2 2l m n l m n

d d l lY r R r Y R rmr dr dr mr

2

. .( , ) ( ) ( ) ( , )4l m n n n l m

o

ZeY R r E R r Yr

2 2 22

2 2

( 1) ( ) 02 2 4 n n

o

d d l l Zer E R rmr dr dr mr r

Page 4: 20_01fig_PChem.jpg

20_01fig_PChem.jpg

Hydrogen Atom2

22 2 2 2

21 ( 1) ( ) 02

nn

o

E md d l l Zmer R rr dr dr r r

2 22 2

2 2 2 2

1 1 22d d d d d dr r rr dr dr r dr dr r dr dr

Recall

2

2

4 0.0529ooa nm

me

Bohr Radius

2

2 2 2

22 ( 1) 2 ( ) 0nn

o

E md d l l Z R rr dr dr r a r

Page 5: 20_01fig_PChem.jpg

20_01fig_PChem.jpg

Hydrogen Atom

21

2 2 2

22 ( 1) 2 0r

o

E md d l l Z er dr dr r a r

Assume1( ) 0 asR r r

1( ) rR r e Let’s try

2 12 2

22 ( 1) 2 0r

o

E ml l Z er r a r

2 12 2

21 2 1( 1) 2 0o

E mZl lr a r

2 12

22( 1) 0; 2 0; & 0o

E mZl la

It is a ground state as it has no nodes

Page 6: 20_01fig_PChem.jpg

20_01fig_PChem.jpg

Hydrogen Atom

2 2

10; ; &2o

Zl Ea m

2 12

22( 1) 0; 2 0; & 0o

E mZl la

22 2 2 2 2

1 2 202 2 4 o

Z Z meEa m m

2 4

2 24 2o

Z me

0

1

0,( , , ) ( ) ( , ) ( )

Zral

n l mr R r Y CR r Ce

The ground state as it has no nodes n=1, and since l=0 and m = 0, the wavefunction will have no angular dependence

2 2

1 202

ZEa m

Page 7: 20_01fig_PChem.jpg

20_01fig_PChem.jpg

Hydrogen AtomIn general:

Laguerre Polynomials

11

12

33

1 23

33

55

1 0 ( ) 1

2 0 ( ) (2!)(2 )

1 ( ) (3!)

3 0 ( ) (3!) 3 3 0.5

1 ( ) (4!)(4 )

2 ( ) (5!)

n l L x

n l L x x

l L x

n l L x x x

l L x x

l L x

0

2Zrxna

0

32 1

4 3 30 0 0

4 ( 1)! 2 2( )[( )]

l Zrnal l

n n lZ n l Zr ZrR r e Ln a n l na na

2 1

0

2ln l

ZrLna

1S- 0 nodes

2S- 1 node

3S-2 nodes

Page 8: 20_01fig_PChem.jpg

Energies of the Hydrogen AtomIn general:

4 2

2 2 2

124

n

o

me ZEn

2 2

20

124 o

e Za n

2

22Zn

2

0

27.24H

o

eE eVa

Hartrees

kJ/mol

627.51 / 2625.5 /kcal mol kJ mol

Page 9: 20_01fig_PChem.jpg

Wave functions of the Hydrogen AtomIn general:

0

32 1

4 3 30 0 0

4 ( 1)! 2 2( )[( )]

l Zrnal l

n n lZ n l Zr ZrR r e Ln a n l na na

,1( , ) (cos( ))2

mm iml m l lY C P e

,( , , ) ( ) ( , )ln l mr R r Y

Z=1, n = 1, l = 0, and m = 0:

00 (cos( )) 1P 0

012

C

11

0

2 1rLa

01 0,0( , , ) ( ) ( , )r R r Y

001 3

0

2( )raR r e

a

0,0

1( , )2

Y

0 0

3 30 0

2 1 12

r ra ae e

a a

Page 10: 20_01fig_PChem.jpg

Z=1, n = 2, l = 0, and m = 0:

12

0 0

2! 2r rLa a

0,01( , )

2Y

02

300

122 2

rae r

aa

0202 3

00

1( ) 122

ra rR r e

aa

02 0,0( , , ) ( ) ( , )r R r Y

Wave functions of the Hydrogen Atom

Page 11: 20_01fig_PChem.jpg

Hydrogen AtomZ=1, n = 2, l = 1

022,1,0 3

0 0

1 2( , , ) cos8

rarr e

a a

m = 0: m = +1/-1:

022,1, 1 3

0 0

1 1( , , ) sin8

rarr e e

a a

022,1, 2,1, 1 2,1, 1 3

0 0

1 1 1( , , ) ( , , ) ( , , ) sin cos2 8

ra

xrr r r e

a a

022,1, 2,1, 1 2,1, 1 3

0 0

1 1 1( , , ) ( , , ) ( , , ) sin sin2 8

ra

yrr r r e

i a a

+

_

-+-+

+-

-+

+- -

+

Page 12: 20_01fig_PChem.jpg

20_06fig_PChem.jpg

* 2, , , ,( ) ( , , ) ( , , ) sinn l m n l mP R r r r drd d

* * 2, ,( ) ( , ) ( ) ( , ) sinl l

n l m n l mR r Y R r Y r drd d * 2 *

, ,( ) ( ) ( , ) ( , )sinl ln n l m l mR r R r r dr Y Y d d

For radial distribution functions we integrate over all angles only2

* 2 *, ,

0 0

( ) ( ) ( ) ( , ) ( , )sinl ln n l m l mP r R r R r r Y Y d d

* 2( ) ( )l ln nR r R r r Prob. density as a function of r.

Radial Distribution Functions

Page 13: 20_01fig_PChem.jpg

20_09fig_PChem.jpg

Radial Distribution Functions0

22

30

4 rar e

a

0* 0 21,0,0 1 1( ) ( ) ( )P r R r R r r00

1 30

2( )raR r e

a

0202 3

00

1( ) 122

ra rR r e

aa

0* 0 22,0,0 2 2( ) ( ) ( )P r R r R r r

0 3 42

30 0 02 4

rae r rra a a

Page 14: 20_01fig_PChem.jpg

20_08fig_PChem.jpg

* 2, , , ,( , , ) ( , , ) ( , , ) sinn l m n l mP r r r r

* 2 *, , , ,( ) ( ) ( , ) ( , )sinl l

n n l m l mR r R r r Y Y

, ,( ) ( , )n l l mP r P

X

Y

Z

Probability Distributions

0

42

2,1 1,0 50

( ) ( , ) cos sin32

rarP r P e

a

, ( )n lP r, ( , )l mY

Page 15: 20_01fig_PChem.jpg

20_12fig_PChem.jpg

Atomic UnitsSet:

2

2

4 1 . .ooa a u

me

2 4 2

2 22 2 24 2n

o

Z me ZEnn

2 2 22

2 2

ˆˆ2 2 4e e o

d d L ZeH rm r dr dr m r r

2

0

1, 1, & 14eem

Hartrees

22

2 2

ˆ12 2

d d L Zrr dr dr r r

2

2Zr

a.u.

Much simpler forms.

0

3 3

1 30

Zra Zr

sZ Ze ea

023 3 2

2 300

1 12 22 22 2

r ra

sZ e r Z e r

aa

Page 16: 20_01fig_PChem.jpg

AtomsPotential Energy

2

( )4 4

e nen i

o i o i

q q ZeV rr r

Kinetic Energy2 2

2 2ˆ2 2 iR r

i e

KM m

22ˆ ( )

2 ii ri i e

K rm

C

me

me

2

( )4 4

i jee

o ij o ij

q q eV rr r

=r12

M

2

2i

i

i

Zr

1

ijr

1

1( ) ( )en i ee iji i j i iji ij

ZV V r V rr r

Page 17: 20_01fig_PChem.jpg

Helium Atom

C

me

me

=r12

M

2 1ˆ ˆ ˆ2i

i i j ii ij

ZH K Vr r

2 12i

i i ji ij

Zr r

,

1ˆi

i i i j ij

Hr

1 212

1ˆ ˆH Hr

Cannot be separated!!!

2

2i

ii

ZHr

Hydrogen like 1 e’ Hamiltonian

i.e. r12 cannot be expressed as a function of just r1 or just r2

What kind of approximations can be made?

Page 18: 20_01fig_PChem.jpg

Ground State Energy of Helium Atom

Eo

E1

E2

I1 = 24.587 ev

Eo

E1

E2

I2 = 54.416 evIonization Energy of He

EFree

Eo=- 24.587 - 54.416 ev =- 79.003 ev =- 2.9033 Hartrees

Perturbation Theory 1 212

1ˆ ˆ ˆH H Hr

01 2

ˆ ˆ ˆH H H 1

12

1Hr

0 0 01 2 1 2( , ) ( ) ( )r r r r

0 0 01 1 1 1 1 1

ˆ ( ) ( )H r E r 101

1(1 ) rs e

1

20 11

12r ZH

r

2 2

0 11 2 2

1

2 22 2 1ZEn

Page 19: 20_01fig_PChem.jpg

Ground State Energy of Helium Atom0

1 2ˆ ˆ ˆH H H 0 0 0

1 2 1 2( , ) ( ) ( )r r r r

0 0 0 01 2 1 2 1 2

ˆ ˆ ˆ( , ) ( ) ( )H r r H H r r 0 0 0 0

1 1 2 2 1 2ˆ ˆ( ) ( ) ( ) ( )H r r H r r

0 0 0 02 1 1 1 2 1

ˆ ˆ( ) ( ) ( ) ( )r H r r H r

0 0 0 02 1 1 1 2 1( ) ( ) ( ) ( )r E r r E r

1 2 0 00 0 2 1( ) ( )E E r r

0 01 2( , )E r r

0 0 01 2 2 2 4E E E H

20 011 22

1

22ZE En

Not even close.Off by 1.1 H, or3000 kJ/mol

Therefore e’-e’ correlation, Vee, is very significant

Page 20: 20_01fig_PChem.jpg

Ground State Energy of Helium Atom0

12

1ˆ ˆH Hr

1

12

1Hr

0 0 01 2 1 2( , ) ( ) ( )r r r r

0 01 1 1 1 1 1

ˆ ( ) ( )H r E r

01 2

ˆ ˆ ˆH H H

0 1 0 0 0 1 01 2 1 2 1 2

ˆ, ,E E E E E r r H r r

1 2

0 1 0 0* 01 2 1 2 1 2 1 2 1 2

12

1ˆ, , , ,S S

r r H r r r r r r dV dVr

1 2 1 2ˆ ( , ) ( , )H r r E r r 0 1

1 2 1 2 1 2( , ) ( , ) ( , )r r r r r r

Page 21: 20_01fig_PChem.jpg

Ground State Energy of Helium Atom

30 (1 ) iZri

Zs e

1 2

1 0 1 0 0* 01 2 1 2 1 2 1 2 1 2

12

1ˆ, , , ,S S

E r r H r r r r r r dV dVr

1 2

0* 0* 0 01 2 1 2 1 2

12

1

S S

r r r r dV dVr

1 2 1 2

2 22 2

1 2 1 2 1 2 1 2 1 2120 0 0 0 0 0

2 2 2 2 1 2 2 2 2 sin sinZr Zr Zr Zre e e e r r dr dr d d d dr

12

1 5 51 (1)1 (2) 1 (1)1 (2)8 4Zs s s s

r

0 1 54 2.75H4

E E E Closer but still far off!!!

1

0

1.25 31.5%4

EE

Perturbation is too large for PT to be accurate, much higher corrections would be required

Page 22: 20_01fig_PChem.jpg

Variational Method

exact exactH E

i ii

c i i iH E

The wavefunction can be optimized to the system to make it more suitable

Consider a trail wavefunction t and exactIs the true wavefunction, where:

Then0

ˆt t

t t

HE

The exact energy is a lower bound

,n exactis a complete set

Assume the trial function can be expressed in terms of the exact functions

0 0ˆ ˆ 0t t t t t tH E H E

We need to show that

texact

t

Page 23: 20_01fig_PChem.jpg

Variational Method

0 0ˆ ˆ

t t i i j ji j

H E c H E c

*0

ˆi j i j

i j

c c H E *

i j i j i ji j

c c H E *

0i j i ij iji j

c c E E

*0 0i i i

i

c c E E *

00 & 0i i ic c E E

Since

0

ˆt t

t t

HE

Variational Energy

var

ˆ( ) ( )( )

( ) ( )t t

t t

HE

E0

Evar()

var ( ) 0d Ed

min

2

var2 ( ) 0d Ed

Page 24: 20_01fig_PChem.jpg

Variational Method For He Atom3

1,0,01 ( ) ( ) iZri

Zs i e

r

Let’s optimize the value of Z, since the presence of a second electrons shields the nucleus, effectively lowering its charge.

1 2 1 2var

1 2 1 2

ˆ( , ) ( , )( , ) ( , )

HE

r r r rr r r r

33

1,0,01 ( ) ( ) eff ieff Z ri

Zs i e

r 1 2( , ) 1 (1)1 (2)s s r r

1 2 1 2( , ) ( , ) 1 (1) 1 (1) 1 (2) 1 (2) 1s s s s r r r r

var 1 212

1ˆ ˆ1 (1)1 (2) 1 (1)1 (2)E s s H H s sr

Page 25: 20_01fig_PChem.jpg

Variational Method For He Atom

var 1 212

1ˆ ˆ1 (1)1 (2) 1 (1)1 (2)E s s H H s sr

1 2

12

ˆ ˆ1 (1)1 (2) 1 (1)1 (2) 1 (1)1 (2) 1 (1)1 (2)

11 (1)1 (2) 1 (1)1 (2)

s s H s s s s H s s

s s s sr

1 2

12

ˆ ˆ1 (1) 1 (1) 1 (2) 1 (2) 1 (2) 1 (2) 1 (1) 1 (1)

11 (1)1 (2) 1 (1)1 (2)

s H s s s s H s s s

s s s sr

1 212

1ˆ ˆ1 (1) 1 (1) 1 (2) 1 (2) 1 (1)1 (2) 1 (1)1 (2)s H s s H s s s s sr

Page 26: 20_01fig_PChem.jpg

Variational Method For He Atom

31

3

1 (1) effeff Z rZs e

var 1 212

1ˆ ˆ1 (1) 1 (1) 1 (2) 1 (2) 1 (1)1 (2) 1 (1)1 (2)E s H s s H s s s s sr

1 1 11 1 1 1

ˆ ˆ ˆ1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)eff effZ ZZ Zs H s s K s s K sr r r r

11 1

1ˆ1 (1) 1 (1) 1 (1) 1 (1)effeff

Zs K s Z Z s s

r r

1 11

ˆ ˆ effZH K

r

2

1ˆ 1 (1) 1 (1)

2effZ

H s s 2

22eff

n

ZE

n

2

11 1

1ˆ1 (1) 1 (1) 1 (1) 1 (1)2eff

eff

Zs H s Z Z s s

r

Page 27: 20_01fig_PChem.jpg

Variational Method For He Atom2

11 1

1ˆ1 (1) 1 (1) 1 (1) 1 (1)2eff

eff

Zs H s Z Z s s

r

3 31 1

3 322

1 1 1 1 11 10 0 0

1 11 (1) 1 (1) sineff effeff effZ r Z rZ Zs s e e r dr d d

r r

31

3 22

1 1 1 1 10 0 0

sineffZ reffZre dr d d

3123

1 10

4 effZ reffZ re dr

2

00

1 ( 1)au auue du au ea

23 0

2

14 2 1 2 0 12

effZ aeff eff eff

eff

Z Z e Z eZ

32

14 14eff eff

eff

Z ZZ

Page 28: 20_01fig_PChem.jpg

Variational Method For He Atom2

11 1

1ˆ1 (1) 1 (1) 1 (1) 1 (1)2eff

eff

Zs H s Z Z s s

r

2

2eff

eff eff

ZZ Z Z

2

2ˆ1 (2) 1 (2)

2eff

eff eff

Zs H s Z Z Z

12

1 51 (1)2 (2) 1 (1)2 (2)8 effs s s s Z

r

Similarly

Recall from PT

var 1 212

1ˆ ˆ1 (1) 1 (1) 1 (2) 1 (2) 1 (1)1 (2) 1 (1)1 (2)E s H s s H s s s s sr

2 2 52 2 8eff eff

eff eff eff eff eff

Z ZZ Z Z Z Z Z Z

Page 29: 20_01fig_PChem.jpg

Variational Method For He Atom2 2

var528eff eff eff effE Z Z ZZ Z

2 528eff eff effZ ZZ Z

var5 52 2 08 16eff eff

eff

d E Z Z Z ZdZ

5 27216 16effZ

2

var27 27 5 272(2) 2.8479H16 16 8 16

E Much closer to -2.9033 H

(D E= 0.055 H =144.4 kJ/mol error)

Page 30: 20_01fig_PChem.jpg

Variational Method For He Atom

27 1.6916effZ

3 27161 271 ( )

16ir

s i e

1 23 27 27

16 161 2

1 27( , ) 1 (1)1 (2)16

r rs s e e

r r

Optimized wavefunction

Page 31: 20_01fig_PChem.jpg

Variational Method For He Atom2716effZ

3 27161 271 ( )

16ir

s i e

1 23 27 27

16 161 2

1 27( , ) 1 (1)1 (2)16

r rs s e e

r r

Optimized wavefunction

1 2 1 2

32

1 2( , ) Z r Z r Z r Z rZ Ze e e e

r r

1.19 & 2.18Z Z var 2.8757HE

Other Trail Functions

(D E= 0.027 H =71.1 kJ/mol error)

Optimizes both nuclear charges simultaneously

Page 32: 20_01fig_PChem.jpg

Variational Method For He Atom

1 2( )1 2 12

1( , ) (1 )Z r re brN

r r

1.849 & 0.364Z b var 2.8920HE

Other Trail Functions

(D E= 0.011 H =29.7 kJ/mol error)

Z’, b are optimized. Accounts for dependence on r12.

In M.O. calculations the wavefunction used are designed to give the most accurate energies for the least computational effort required.

The more accurate the energy the more parameters that must be optimizedthe more demanding the calculation.

Page 33: 20_01fig_PChem.jpg

Variational Method For He Atom

In M.O. calculations the wavefunction used are designed to give the most accurate energies for the least computational effort required.

The more accurate the energy the more parameters that must be optimizedthe more demanding the calculation.

-2.862879 H

-2.862871 H-2.84885 H

Experimental -79.003 ev -2.9003 H