20 aberration theory

Upload: joshua-smith

Post on 07-Aug-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/21/2019 20 Aberration Theory

    1/44

    20. Aberration Theory

    20. Aberration Theory

    Wavefront aberrations (파면수차)

    Chromatic Aberration (색수차)

    Third-order (Seidel) aberration theory

    Spherical aberrations

    Coma

     Astigmatism

    Curvature of Field

    Distortion

  • 8/21/2019 20 Aberration Theory

    2/44

    Aberrations

    Aberrations

    ChromaticChromatic MonochromaticMonochromatic

    UnclearUnclear

    imageimage

    DeformationDeformation

    of imageof image

    SphericalSpherical

    ComaComa

    astigmatismastigmatism

    DistortionDistortion

    Field CurvatureField Curvature

    n (n (λλ))

    Five third-order (Seidel) aberrations

  • 8/21/2019 20 Aberration Theory

    3/44

    Aberrations: Chromatic

    Aberrations: Chromatic

    • Because the focal length of a lens depends on therefractive index (n), and this in turn depends on thewavelength, n = n(λ), light of different colors

    emanating from an object will come to a focus atdifferent points.

    • A white object will therefore not give rise to a whiteimage. It will be distorted and have rainbow edges

    n (n (λλ))

  • 8/21/2019 20 Aberration Theory

    4/44

    Five monochromatic AberrationsFive monochromatic Aberrations

    Unclear imageUnclear image Deformation of imageDeformation of image

    SphericalSpherical

    ComaComa

    astigmatismastigmatism

    DistortionDistortion

    Field curvatureField curvature

  • 8/21/2019 20 Aberration Theory

    5/44

    Spherical aberrationSpherical aberration

    • This effect is related to rays which make large anglesrelative to the optical axis of the system

    • Mathematically, can be shown to arise from the fact thata lens has a spherical surface and not a parabolic one

    • Rays making significantly large angles with respect tothe optic axis are brought to different foci

  • 8/21/2019 20 Aberration Theory

    6/44

    ComaComa

    • An off-axis effect which appears when a bundle of incident raysall make the same angle with respect to the optical axis (sourceat )

    • Rays are brought to a focus at different points on the focal plane• Found in lenses with large spherical aberrations

    • An off-axis object produces a comet-shaped image

  • 8/21/2019 20 Aberration Theory

    7/44

    Astigmatism and curvature of fieldAstigmatism and curvature of field

    Yields elliptically distorted imagesYields elliptically distorted images

  • 8/21/2019 20 Aberration Theory

    8/44

    Distortion: Pincushion, BarrelDistortion: Pincushion, BarrelDistortion: Pincushion, Barrel

    • This effect results from the difference in lateralmagnification of the lens.

    • If f differs for different parts of the lens,

    o

    i

    o

    iT 

     y

     y

    s

    s M    will differ also

    objectobject

    Pincushion imagePincushion image Barrel imageBarrel imagef f ii>0>0 f f ii

  • 8/21/2019 20 Aberration Theory

    9/44

    A mathematical treatment of the monochromatic aberrations

    can be developed by expanding the binomial series

    up to higher orders

     Third-order aberration theory

    Paraxial approximation

  • 8/21/2019 20 Aberration Theory

    10/44

    Now, let’s derivethe expression ofthe third-order aberrations

    (Seidel aberrations, Ludwig von Seidel)

    Now, let’s derivethe expression of

    the third-order aberrations

    (Seidel aberrations, Ludwig von Seidel)

  • 8/21/2019 20 Aberration Theory

    11/44

    20-1. Ray and wave aberrations20-1. Ray and wave aberrations

    LA

    TALA : ray aberration - longitudinal

    TA : ray aberration - transverse (lateral)

    Actual wavefront

    Wave aberration Ideal wavefront Paraxial Image plane

    Paraxial Image point

  • 8/21/2019 20 Aberration Theory

    12/44

    Longitudinal Ray AberrationLongitudinal Ray Aberration

    Modern Optics, R.Guenther, p. 199.

    n = 1.0nL = 2.0

    R

    sinsin sin sin

    2

    ii i t t t  n n

         

    R

  • 8/21/2019 20 Aberration Theory

    13/44

    Longitudinal Aberration – cont’dLongitudinal Aberration – cont’d

    n = 1.0nL = 2.0

    Rsint

    sinsin sin

    t i i t  

    t i t 

     R R z

     

       

     

     

     Z =  Z ( i )

    R

    sin sini i t t  

    n n  

  • 8/21/2019 20 Aberration Theory

    14/44

    Modern Optics,R. Guenther, p. 199.

    n = 1.0

    nL = 2.0

    ( )

    z/R 

    Longitudinal Aberration – cont’dLongitudinal Aberration – cont’d

    Z

    sin

    sin   t i t  R

     R z

       

    sin sini i t t  n n  

  • 8/21/2019 20 Aberration Theory

    15/44

    20-2. Third-order treatment of refraction

    at a spherical interface

    20-2. Third-order treatment of refraction

    at a spherical interface

    1 2 1 2opd a Q PQI POI n n n s n s

    To the paraxial (first-order) ray approximation, PQI = POI according to Fermat’s principle.

    Beyond a first approximation, PQI (depends on the position of Q)   POI.Thus we define the aberration at Q as

    Let’s start the aberration calculation for a simple case.

    P

    Q

    I

    O

    h

    Figure 20-3

  • 8/21/2019 20 Aberration Theory

    16/44

    Rℓ

    P

    Q

    CO

    s

    2 2 2

    2 222 2 2 2 2

    2

    2 2 2

    22 2

    cos sin

    sin cos 1 2

    2 cos

    :

    2 cos

     Rs R s R

     Rs R R R

    s Rs R R R s R R

    Substituting and rearranging we obtain

    s R R R s R

     

         

         

       

     

    Refraction at a spherical interface – cont’dRefraction at a spherical interface – cont’d

    Let’s describe l in terms of R, s,  .

  • 8/21/2019 20 Aberration Theory

    17/44

    R s’-Rℓ '

     

     

     

    Refraction at a spherical interface – cont’dRefraction at a spherical interface – cont’d

    I

    C

    O

    22 2

    2 222 2 2 2

    2

    22 2 2 2 2

    22 2

    cos sin

    sin cos 1

    2 2

    cos 2 cos

     R

    s R s R

    s Rs R

     R R R R s R

    s R R s R R s R

     

       

       

     

     

     

    l’

  • 8/21/2019 20 Aberration Theory

    18/44

    1/ 22 2 4

    2

    2 4

    21/ 2

    2

    cos :

    cos 1 sin 1 12 8

    1 12 8

    exp

    1

    Writing the term in terms of h we obtain

    h h h

     R R R

    where we have used the binomial expansion

     x x x

    Substituting into our ressions for and and rearranging

    h R ss

     R

     

     

     

    1/ 24

    2 3 2

    1/ 22 4

    2 3 2

    6

    22 4 4

    2 3 2 2 4

    4

    ' 14

    exp

    12 8 8

    h R s

    s R s

    h R s h R ss

     Rs R s

    Use the same binomial ansion and neglecting terms of 

    order h and higher we obtain

    h R s h R s h R ss

     Rs R s R s

     

    22 4 4

    2 3 2 2 4' 1 2 8 8h R s h R s h R ss

     Rs R s R s

    Refraction at a spherical interface – cont’dRefraction at a spherical interface – cont’d

    P

    Q

    I

    O

    h

    Third-order angle effect

  • 8/21/2019 20 Aberration Theory

    19/44

    2 2 4 4 4 4 4

    2 2 2 3 4 3 2 2

    2 2 4 4 4 4 4

    2 2 2 3 4 3 2 2

    12 2 8 8 8 4 8

    12 2 8 8 8 4 8

    h h h h h h hs

    s Rs R s R s s Rs R s

    h h h h h h hs

    s Rs R s R s s Rs R s

    Refraction at a spherical interface – cont’dRefraction at a spherical interface – cont’d

    1 2 2 1

    '

    n n n n

    s s R

    Imaging formula

    (first-order approx.)

    1 2 1 2a Q n n n s n s

     Aberration for axial object points (on-axis imaging): This aberration will be referred to as spherical aberration.

    The other aberrations will appear at off-axis imaging!

    P

    Q

    O

    h

    a QWave aberration

    2 24

    41 21 1 1 1

    8 ' '

    n nha Q ch

    s s R s s R

  • 8/21/2019 20 Aberration Theory

    20/44

    20-3. Spherical Aberration20-3. Spherical Aberration

    Optics, E. Hecht,p. 222.

    TransverseSpherical Aberration

    LongitudinalSpherical

     Aberration

    4a Q c h

     yb

     zb

    3

    2

    4 ' y

    c sb h

    n

    2

    2

    2

    4 ' z

    c sb h

    n

     h

     n 2

  • 8/21/2019 20 Aberration Theory

    21/44

    Spherical AberrationSpherical Aberration

    Modern Optics,R. Guenther, p.

    196.

    Least SA

    Most SA

  • 8/21/2019 20 Aberration Theory

    22/44

    Spherical AberrationSpherical Aberration

    For a thin lens with surfaces with radii of curvature R1 andR2, refractive index nL, object distance s, image distance s',the difference between the paraxial image distance s'p and

    image distance s'h is given by

     

    322 2

    3

    2 1

    2 1

    21 14 1 3 2 1

    8 1 1 1

    where,

    ( hape factor),

     L L L L L

    h p L L L L

    n nhn p n n p

    s s f n n n n

     R R   s ss p

     R R s s

     

     

     

     

    22 12

     L

     L

    n p

    Spherical aberration is minimized when :

  • 8/21/2019 20 Aberration Theory

    23/44

    Spherical AberrationSpherical Aberration

    Optics, E. Hecht,p. 222.

    = -1 

    = +1

    For an object at infinite ( p = -1, nL = 1.50 ), ~ 0.7

    worse better 

    2 1

    2 1 ,

     R R   s s

     p R R s s 

       

    22 12

     L

     L

    n

     pn 

    Spherical aberration is minimized when :

  • 8/21/2019 20 Aberration Theory

    24/44

    Spherical AberrationSpherical Aberration

    2 1

    2 1

     R R R R

    s s p

    s s

       

    ~ 0.7

  • 8/21/2019 20 Aberration Theory

    25/44

    Third-Order Aberration :

    Off-axis imaging by a spherical interface

    ThirdThird--Order Aberration :Order Aberration :

    Off Off --axis imaging by a spherical interfaceaxis imaging by a spherical interfaceNow, let’s calculate the third-order aberrations in a general case.

    Q

    O

    B

    ’r 

    h’

    4 4

    2 2 2

    ( ' )

    ' 2 cos ,

    ; , , '

    '

    a Q a Q a O c b

    r b

    a Q a Q r  

    r h

    h

    b b

      

     

       

    Q

    Q

    O

    4 4

    4 4

    ( ) '

    ( )

    opd 

    opd 

    a Q PQP PBP c BQ c

    a O POP PBP c BO cb

      

    On the lens surface

    B

    b

  • 8/21/2019 20 Aberration Theory

    26/44

    Third-Order Aberration TheoryThird-Order Aberration Theory

     After some very complicated analysis the third-order aberration equation is obtained:

    40 40

    3

    1 31

    2 2 22 22

    2 2

    2 20

    3

    3 11

    cos

    cos

    cos

    a Q C r  

    C h r 

    C h r 

    C h r 

    C h r 

     

     

     

    Spherical Aberration

    Coma

     Astigmatism

    Curvature of Field

    Distortion

    Q

    O

    B

    ’r 

    On-axis imaging에서의 a(Q) = ch 4와일치

    'h r 

    C  

  • 8/21/2019 20 Aberration Theory

    27/44

    20-4. Coma20-4. Coma

    31 31 ' cos ( ' 0, cos 0)a Q C h r h  

    Q

    O

    B

    ’r 

  • 8/21/2019 20 Aberration Theory

    28/44

    ComaComa

    Optics, E.Hecht, p.224.

  • 8/21/2019 20 Aberration Theory

    29/44

    ComaComa

    Modern Optics,R. Guenther, p.205.

    LeastComa

    MostComa

  • 8/21/2019 20 Aberration Theory

    30/44

    ComaComa

  • 8/21/2019 20 Aberration Theory

    31/44

    20-5. Astigmatism20-5. Astigmatism

    2 2 22 22 ' cos ( ' 0, cos 0)a Q C h r h  

    Optics, E. Hecht,p. 224.

  • 8/21/2019 20 Aberration Theory

    32/44

    AstigmatismAstigmatism

    Tangential plane(Meridional plane)

    Sagittalplane

  • 8/21/2019 20 Aberration Theory

    33/44

    AstigmatismAstigmatism

    Coma

  • 8/21/2019 20 Aberration Theory

    34/44

    AstigmatismAstigmatism

    Modern Optics,R. Guenther, p.207.

    Least

     Astig.

    Most

     Astig.

  • 8/21/2019 20 Aberration Theory

    35/44

    Field CurvatureField Curvature

    2 22 20 ' ( ' 0)a Q C h r h

     Astigmatism when  = 0.

     A flat object normal to the optical axis cannot be brought into focus on a flat image plane.

    This is less of a problem when the imaging surface is spherical, as in the human eye.

    Q

    O

    B

    ’r 

  • 8/21/2019 20 Aberration Theory

    36/44

    Field CurvatureField Curvature

    2 22 20 ' ( ' 0)a Q C h r h  Astigmatism when  = 0.

    If no astigmatism is present,the sagittal and tangential image surfaces coincide on the Petzval surface.

    The best image plane, Petzval surface, is actually not planar, but spherical.

    This aberration is called field curvature.

  • 8/21/2019 20 Aberration Theory

    37/44

    20-6. Distortion20-6. Distortion

    33 11 ' cos ( ' 0, cos 0)a Q C h r h  

  • 8/21/2019 20 Aberration Theory

    38/44

    20-7. Chromatic Aberration20-7. Chromatic Aberration

    Optics, E. Hecht,p. 232.

  • 8/21/2019 20 Aberration Theory

    39/44

    Achromatic DoubletAchromatic Doublet

    (1) (2)

    Power of two lenses, P1D and P2D are differentat the Fraunhofer wavelength, D = 587.6 nm.

    20-13

    * Note: What is the definition of the Fraunhofer wavelengths (lines)?

    Figure 20-13

    * Note: Fraunhofer wavelengths (lines)

  • 8/21/2019 20 Aberration Theory

    40/44

    Note: Fraunhofer wavelengths (lines)

    Spectrum of a blue sky somewhat close to the horizon pointing east at around 3 or 4 pm on a clear day.

    The dark lines in the solar spectrum were caused byabsorption by those elements in the upper layers of the Sun.

    D = 587.6 nm (yellow)

    C = 656.3 nm (red)F = 486.1 nm (blue)

  • 8/21/2019 20 Aberration Theory

    41/44

    Achromatic DoubletsAchromatic Doublets

    1 1 1 1

    1 11 12

    2 2 2 2

    2 21 22

    1 2 1 2

    1 2 1 2

    1 2 1 1 2

    1 1 11 1

    1 1 11 1

    587.6

    :

    1 1 1

    0 :

    1

     D D D

     D

     D D D

     D

     D

    P n n K   f r r 

    P n n K   f r r 

    nm center of visible spectrum

    For a lens separation of L

     LP P P L P P

     f f f f f 

    For a cemented doublet L

    P P P n K n

     

      21  K 

    Total power is

    1 21 2

    1 2

    :

    0

    , " " :

    0

    ,  .

    Chromatic aberration is eliminated when

    n nPK K 

     In general for materials with normal dispersion

    n

    That means that to eliminate chromatic aberrationK and K must have opposite signs

    The partial derivat 

     

     

    :

    .

    , 486.1 656.3 .

    F C 

    F C 

    F C 

    ive of refractive index with

    wavelength is approximated 

    n nn

     for an achromat in the visible region of the spectrum

     In the above equation nm and nm

     

     

  • 8/21/2019 20 Aberration Theory

    42/44

    Achromatic DoubletsAchromatic Doublets

    1 11 1 11 1

    1 1

    2 22 2 22 2

    2 2

    1 2

    1:

    1

    1

    1

    1

     D

    F C 

    F C  D D D

    F C D F C  

    F C  D D D

    F C D F C  

    n Defining the dispersive constant V V 

    n n

    we can writen nn n P

    K K n V 

    n nn n PK K 

    n V 

    V and V are functions only of the material

     

     

    1 2

    2 1 1 2

    1 2

    .

    0 0 D D  D DF C F C  

     properties of the two lenses

    P PV P V P

    V V   

     Achromatic condition for doublets

    A h ti D bl t

  • 8/21/2019 20 Aberration Theory

    43/44

    Achromatic DoubletsAchromatic Doublets

    1 2

    1 22 1 1 2 1 2

    2 1 2 1

    1 1 2 2

    1

    :

    0

      where 1 1

     D D D

     D D D D D D

     D D D

    We can solve for the power of each lens in terms of the desired power of the doublet 

    P P P

    V V V P V P P P P P

    V V V V  

    P n K n K  

    PK 

    1 22

    1 2

    1 2

    1211 21 12 22

    2 12

    ,1 1

    , 4

    1

     D D

     D D

    12

    PK 

    n n

    From the values of K and K the radii of curvature for the two surfaces

    of the lenses can be determined.

     If lens1 is bi - convex with equal curvature for each surface :

    r r r r r r  

    K r 

    2

    21 22

    1 1where, K 

    r r 

    A h ti D bl t

  • 8/21/2019 20 Aberration Theory

    44/44

    Achromatic DoubletsAchromatic Doublets

    Table 20-1