2 fatigue mechanisms

20
FATIGUE MECHANISMS IN MARINE STRUCTURES Prof. Ir. Eko Budi Djatmiko, MSc., PhD. Nur Syahroni, ST., MT. F a t i g u e & F r a c t u r e M e c h a n i c s ( M O - 0 9 1 3 3 4 ) Teknik Kelautan FTK- ITS

Upload: enrimaury

Post on 24-Oct-2014

74 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 2 Fatigue Mechanisms

FATIGUE MECHANISMS IN MARINE STRUCTURESProf. Ir. Eko Budi Djatmiko, MSc., PhD.

Nur Syahroni, ST., MT.

Fatigue &

Fracture M

echanics (MO

-091334)Te

knik

Kela

uta

n F

TK-

ITS

Page 2: 2 Fatigue Mechanisms

OUTLINE

Mechanisms of Fatigue FailureFatigue TerminologyFatigue Testing & AnalysisSN Curve

2

Fatigue &

Fracture M

echanics (MO

-091334)

Page 3: 2 Fatigue Mechanisms

ILLUSTRATION OF FATIGUE FAILURE

3

Fatigue &

Fracture M

echanics (MO

-091334)

0

com

pres

sion

LO

AD

(kN

)

tens

ion

cycle

Stress concentrated

Fatigue occurs even though the maximum stress is lower than the yield stress

Page 4: 2 Fatigue Mechanisms

FATIGUE COMPRISES OF FOLLOWING STAGES

Crack Initiation (Ni)

Stable Crack Propagation (Np) Unstable Fracture

4

Fatigue &

Fracture M

echanics (MO

-091334)

+

Total Fatigue Life ():

Page 5: 2 Fatigue Mechanisms

5

Fatigue &

Fracture M

echanics (MO

-091334)Fatigue crack initiation in smooth specimen involves the PSB lead to extrusions & intrusions

Crack initiation period is dominant in smooth specimen

Page 6: 2 Fatigue Mechanisms

6

Fatigue &

Fracture M

echanics (MO

-091334)Crack initiation stage in welded joints is almost negligible due to weld defects and other weld discontinuities in which the crack is favorable to initiate

Crack propagation stage becomes a dominant period in welded joint

Page 7: 2 Fatigue Mechanisms

7

Fatigue &

Fracture M

echanics (MO

-091334)Fatigue crack propagation can be microscopically observed by striation and macroscopically by beach mark

• Striation is produced by one cycle load• Beach mark will be form when there is a

variation of load

Page 8: 2 Fatigue Mechanisms

TYPICAL FATIGUE FRACTURE SURFACE

8

Fatigue &

Fracture M

echanics (MO

-091334)

crack initiation

crack growth final fracture

Page 9: 2 Fatigue Mechanisms

FINAL FAILURE IS OCCURRED WHEN SIF REACH FRACTURE TOUGHNESS OF MATERIAL

9

Fatigue &

Fracture M

echanics (MO

-091334)

IC cK Y a

Page 10: 2 Fatigue Mechanisms

FATIGUE TERMINOLOGY10

Fatigue &

Fracture M

echanics (MO

-091334)

o Main parameter affect on the fatigue is stress (S) range

Ds = smax - smin

o It is equal to two times of stress amplitude

Ds = 2·sa

o Mean stress gets

sm = (smax + smin) / 2

o Stress ratio (R)

R = smin / smax

0

Str

ess

time

Ds

smax

smin

sa

sm

Page 11: 2 Fatigue Mechanisms

FATIGUE TESTING11

Fatigue &

Fracture M

echanics (MO

-091334)

Page 12: 2 Fatigue Mechanisms

SN-CURVE (DNV RP C203)12

Fatigue &

Fracture M

echanics (MO

-091334)

log N = log â − m logΔσwhere:N = predicted number of cycles to failure for stress range ΔσΔσ = stress rangem = negative inverse slope of S-N curvelog â = intercept of log N-axis by S-N curve

log â = log a − 2 slogN

where:log a = intercept of mean S-N curve with the log N axisslogN = standard deviation of log N

Page 13: 2 Fatigue Mechanisms

SN-CURVE IN AIR13

Fatigue &

Fracture M

echanics (MO

-091334)

DNV RP C203

Page 14: 2 Fatigue Mechanisms

SN-CURVE IN AIR (TABLE FORM)14

Fatigue &

Fracture M

echanics (MO

-091334)

Table 2-1 S-N curves in air

S-N curve N ≤ 10 7 cycles N > 10 7 cycleslog a2

m2 = 5.0

Fatigue limit at10 7 cycles *)

Thickness exponent k Structural stress concentration embedded in the detail (S-N class), ref.

also equation (2.3.2)m1 log a

1

B1 4.0 15.117 17.146 106.97 0  

B2 4.0 14.885 16.856 93.59 0  

C 3.0 12.592 16.320 73.10 0.15  

C1 3.0 12.449 16.081 65.50 0.15  

C2 3.0 12.301 15.835 58.48 0.15  

D 3.0 12.164 15.606 52.63 0.20 1.00

E 3.0 12.010 15.350 46.78 0.20 1.13

F 3.0 11.855 15.091 41.52 0.25 1.27

F1 3.0 11.699 14.832 36.84 0.25 1.43

F3 3.0 11.546 14.576 32.75 0.25 1.61

G 3.0 11.398 14.330 29.24 0.25 1.80

W1 3.0 11.261 14.101 26.32 0.25 2.00

W2 3.0 11.107 13.845 23.39 0.25 2.25

W3 3.0 10.970 13.617 21.05 0.25 2.50

T 3.0 12.164 15.606 52.63 0.25 for SCF ≤ 10.00.30 for SCF >10.0

1.00

*) see also section 2.11

DNV RP C203

Page 15: 2 Fatigue Mechanisms

EFFECT OF SEAWATER WITH CP 15

Fatigue &

Fracture M

echanics (MO

-091334)

DNV RP C203

Page 16: 2 Fatigue Mechanisms

SN CURVE IN SEAWATER WITH CP(TABLE FORM)

16

Fatigue &

Fracture M

echanics (MO

-091334)

DNV RP C203

Table 2-2 S-N curves in seawater with cathodic protection

S-N curve N ≤ 10 6 cycles N > 10 6 cycleslog a

m2= 5.0

Fatigue limit at10 7 cycles*)

Thickness exponent k Stress concentration in the S-N detail as derived by the hot

spot methodm1 loga1

B1 4.0 14.917 17.146 106.97 0  

B2 4.0 14.685 16.856 93.59 0  

C 3.0 12.192 16.320 73.10 0.15  

C1 3.0 12.049 16.081 65.50 0.15  

C2 3.0 11.901 15.835 58.48 0.15  

D 3.0 11.764 15.606 52.63 0.20 1.00

E 3.0 11.610 15.350 46.78 0.20 1.13

F 3.0 11.455 15.091 41.52 0.25 1.27

F1 3.0 11.299 14.832 36.84 0.25 1.43

F3 3.0 11.146 14.576 32.75 0.25 1.61

G 3.0 10.998 14.330 29.24 0.25 1.80

W1 3.0 10.861 14.101 26.32 0.25 2.00

W2 3.0 10.707 13.845 23.39 0.25 2.25

W3 3.0 10.570 13.617 21.05 0.25 2.50

T 3.0 11.764 15.606 52.63 0.25 for SCF ≤ 10.00.30 for SCF >10.0

1.00

*) see also 2.11

Page 17: 2 Fatigue Mechanisms

SN CURVE FREE CORROSION (TABLE FORM)17

Fatigue &

Fracture M

echanics (MO

-091334)

DNV RP C203

Table 2-3 S-N curves in seawater for free corrosion

S-N curve log aFor all cycles m = 3.0

Thickness exponent k

B1 12.436 0

B2 12.262 0

C 12.115 0.15

C1 11.972 0.15

C2 11.824 0.15

D 11.687 0.20

E 11.533 0.20

F 11.378 0.25

F1 11.222 0.25

F3 11.068 0.25

G 10.921 0.25

W1 10.784 0.25

W2 10.630 0.25

W3 10.493 0.25

T 11.687 0.25 for SCF ≤ 10.00.30 for SCF >10.0

Page 18: 2 Fatigue Mechanisms

THICKNESS EFFECT

18

Fatigue &

Fracture M

echanics (MO

-091334)

Page 19: 2 Fatigue Mechanisms

THICKNESS EFFECT

19

Fatigue &

Fracture M

echanics (MO

-091334)

log N = log K − m log(Δσ(t/tref)k)where:tref = reference thickness equal 25 mm for welded

connections other than tubular joints. For tubular joints the reference thickness is 32 mm.

t = thickness through which a crack will most likely grow. t = tref is used for thickness less than tref

k = thickness exponent on fatigue strength as given in Table 2-1, Table 2-2 and Table 2-3

Page 20: 2 Fatigue Mechanisms

MEAN STRESS EFFECT

20

Fatigue &

Fracture M

echanics (MO

-091334)

DNV RP C203