2-design for action effects - m & p (2011)

34
CE5510 Advanced Structural CE5510 Advanced Structural Concrete Design 2 Design for Action Effects 2. Design for Action Effects Part 1 Bending & Axial Load Part 1 Bending & Axial Load Professor Tan Kiang Hwee Department of Civil Engineering National University of Singapore National University of Singapore

Upload: omar-riley

Post on 03-Oct-2015

222 views

Category:

Documents


2 download

DESCRIPTION

Design for Action Effects

TRANSCRIPT

  • CE5510 Advanced Structural CE5510 Advanced Structural Concrete Design

    2 Design for Action Effects2. Design for Action Effects

    Part 1 Bending & Axial LoadPart 1 Bending & Axial Load

    Professor Tan Kiang HweeDepartment of Civil EngineeringNational University of SingaporeNational University of Singapore

  • Action Effects

    Flexure (Bending)Compression/Tension

    MyNMx

    pShearTorsionT T

    V

    MyT

    weightMxz

    NV xy

    Tan K H, NUS

  • BENDING with or without AXIAL FORCE

    Method of strain compatibility & force equilibriump y q

    3 basic requirements: Compatibility Compatibility Strains (deformations) at various locations are related to one another

    Material Laws Material Laws Stress-strain relations (aka constitutive relations)

    Equilibrium Externally applied forces/moments = Internal resisting forces/moments

    Tan K H, NUS

  • Uni-axial Bending

    w

    ULSSLS

    w

    w steelyieldingSLS

    1

    23 -Inelastic,cracked

    3

    cracking

    1Assumptions : Plane sections remain plane

    1 - Elastic,uncracked

    2 - Elastic,cracked

    Plane sections remain plane Perfect bond between concrete

    & reinft. Tensile strength of concrete is

    Tan K H, NUS

    gneglected after cracking

  • Uniaxial bendingg

    cElastic,

    uncracked

    C

    Ts

    n.a.

    M

    x

    TsTc

    M

    Elastic,Cn.a.

  • >0.4fc

    Inelastic,k dM

    C

    T

    n.a.

    crackedM T

    cu

    UltimateMn Cn.a.

    T

    Compatibility: ~ c Material laws: ~ Equilibrium: F = 0 ; M = M

    Tan K H, NUS

  • Serviceability Limit State

    A /bd

    x/3 fcc CC

    b d

    As = As/bd = As/bdn = Es/Ec fs

    s

    s

    n.a.

    M

    C

    T

    dh

    xAs

    Ass c

    Section Strain Stress

    s T

    Strain compatibility:

    / /( d)

    Material laws:

    f = E c/s = x/(x-d)c/s = x/(d-x)

    fc = Ec cfs = Es sf E fs = Es s

    Tan K H, NUS

  • x/3 fccs

    n a CC

    b

    d

    d

    xAs = As/bd

    fs

    fss

    n.a.

    MT

    hAs

    s = As/bdn = Es/Ec

    Section Strain Stress

    Stress resultants:C = bxfc/2C=fsAs=nfcAs(x-d)/x

    Equilibrium:C + C = TC fs As nfcAs (x d )/x

    T=fsAs=nfcAs(d-x)/xM = C(d - x/3) + C(d-d)

    x/d = [(+)2n2 + 2(+d/d)n]1/2 - (+)n Tan K H, NUS

  • Ultimate limit state fcd = cc fck / c

    If width of compression zone decreases in the

    i i fcu (0/00) = 3,5 for fck 50 MPacu (0/00) = 2,6 + 35[(90-fck)/100]4 for fck 50 MPa

    direction of extreme compression fibre, fcdshould be reduced by 10%.

    Tan K H, NUS

    10%.

  • Example RC Box GirderpCalculate the ultimate moment of resistance of the box girder shown.

    1200 120 mm50

    g

    f 30 MP

    1000 mm2

    fck = 30 MPafyk = 500 MPa

    800

    2502000 mm2

    5000 mm2

    120

    505000 mm

    Tan K H, NUS

  • 0.567fck= 0.0035x=200

    cu160 C C100 mm

    M

    mmCs C2s

    Mu s1s2

    Ts1Ts2

    s=0.0035x150/200 = 0.0263>y=(fy/m)/Es = (500/1.15)/(200,000) = 0.0217s1> y ; s2 > yC1 =0.567x30x1200x120x10-3 = 2449 kNC2 =0.567x30x240x40x 10-3 = 163 kNCs =1000x435x 10-3 = 435 kN

    Mu= [2449x140 + 163x60 + 435x150 + 870x300 s

    Ts1=2000x435x 10-3 = 870 kNTs2 =5000x435x 10-3 = 2175 kNC1+C2+Cs- Ts1- Ts2 = 2 0 OK

    + 435x150 + 870x300 + 2175x550] kNmm= 1875 kNmC1 C2 Cs Ts1 Ts2 2 0 OK

    Tan K H, NUS

  • Example Isolated L-beamExample Isolated L beam

    A simply-supported beam with an inverted L-section isan inverted L-section issubjected to vertical loads as shown. The beam is free to deflect vertically and laterally

    200 mm

    0

    m

    m

    Mdeflect vertically and laterally between its supports. Determine the designmoment of resistance of the

    6

    0

    50 mm

    M

    L-section. The reinforcement consisted of four uniformly spaced steel bars of equal di t ith t t l f

    300 mm 300 mm

    50 mm

    diameter, with a total area of 2250 mm2. Assume vertical loads to pass through shear centre of section

    Material properties: fck = 40 MPa; fyk =500 MPa; and centre of section.

    Tan K H, NUS

    yk

    Es = 200 GPa.

  • T = Asfyk/s=978.8 kNC = T gives (450 g) (0.567fck)

    = 9788000C x

    300 mm150

    g = 9788000

    g = 191.8 mm

    0

    0

    m

    m

    M

    C x

    6

    0

    50 mm

    M

    T x

    Check s >yk(= 0.00217)

    Mn= 978.8 x (550 191.8/3) =978.8 x 486.1 = 475.7 kNm300 mm 300 mm

    Tan K H, NUS

  • What if beam is prevented from deflecting laterally?y

    xn.a.

    My = 491.4 kNm

    xMz = ?

    Tan K H, NUS

  • Effect of prestressing cuxd

    p gfcd

    0.8x

    dpsM

    dsA peP

    As

    Aps ApsfpsAsfs

    ps = pe + ce + cu (dps - x)/xcecu(dps/x-1)

    N = 0p p pwhere pe = fpe/Eps = P/ApsEps

    ce = fce/Ec = P[1/Ac + eo2/I]/Ec = (d - x)/x

    N 0M = M

    Tan K H, NUS

    s cu (ds x)/x

  • Example PC Box GirderpCalculate the ultimate moment of resistance of the prestressed concrete box girder shown. The effective prestessin the tendons is 1100 MPa

    Ac = 374,400 mm2I = 30.8 x 109 mm4 yt = 356 mm 1200 120 mm50

    in the tendons is 1100 MPa.

    yt 356 mm fck = 30 MPafyk = 500 MPaE = 200 GPa

    120 mm50

    1000 mm2

    yt Es = 200 GPafpk = 1860 MPafp0.1k = 1580 MPaE 195 GP

    800

    2501000 mm2

    120

    ytc.g.c.

    Eps = 195 GPafpe = 1100 MpaAssume bi-linear relations for steel

    250

    504600 mm2

    relations for steel.

    Tan K H, NUS

  • 0.567fck= 0.0035

    300

    cuC C1 240

    1000 2

    50

    x = 300 mm

    M

    CsC2

    s

    ce + pec.g.c.mmmm

    2

    250

    200

    56 n.a.

    Ms

    TpTs

    ce pe1000 mm2

    4600 mm2250

    50

    Stress in concrete at c.g.s. due to P (= 1100 kN)fce = P/Ac + Peo2/I = 1100x103/374,400 + 2500x103x1442/(30.8x109)

    = 4.62 MPa

    Strain components in tendonspe = fe/Eps = 1100/195,000 = 0.00564pe fe/Eps 1100/195,000 0.00564Ecm = 22(fck + 8)0.3 = 22 x (30 + 8)0.3 = 32.8 GPace = fce/Ecm = 4.62/32,800 = 0.000141

    00705015.1/1580/

    008120300500 10 skpf

    Tan K H, NUS

    00705.0000,195

    15.1/158000812.0300

    300500 1.0

    ps

    skpcucepeps E

    f

  • 0.567fck= 0.0035

    300

    cuC C1 240

    1000 2

    50

    x = 300 mm

    M

    CsC2

    s

    ce + pec.g.c.mmmm

    2

    250

    200

    56 n.a.

    Ms

    TpTs

    ce pe1000 mm2

    4150 mm2250

    50

    Steel strains

    00217043515.1/500/

    )(0029205030000350' sykfcomp 00217.0000,200000,200

    )(00292.0300

    0035.0 ss Ecomp

    00217.0/

    00525.0300

    3007500035.0

    syks Ef

    all steel have yielded.300 ss E

    Tan K H, NUS

  • 0.567fck= 0.0035

    300

    cuC C1 240

    1000 2

    50

    x = 300 mm

    M

    CsC2

    s

    ce + pec.g.c.mmmm

    2

    250

    200

    56 n.a.

    Ms

    TpTs

    ce pe1000 mm2

    4150 mm225050

    Forces kNC 244910120120030567.0 31

    kNC 49010120240305670 32 Ult. moment capacity (taken about n.a.)

    kNTp 137410)15.1/1580(10003

    kNC 4901012024030567.02 kNCs 43510)15.1/500(1000

    3 M = 2449x240 + 490x120+435x250 + 1374x200+ 2001x450 kNmm

    kNTs 200110)15.1/500(46003

    2 Check for Equilibrium

    + 2001x450 kNmm= 588 + 58.8 + 109 + 275 + 9001

    1931 kNTan K H, NUS

    kNF 1200113744354902449 = 1931 kNm

  • Exercise PC GirderCalculate the ultimate moment of resistance of the 350PC girder shown. 200

    150

    100

    2H16Ac = 290,000 mm2y = 356 mm

    500

    yt = 356 mm fck = 40 MPafyk = 500 MPaE 200 GP

    1502H20

    12-12.9 strands

    150

    Es = 200 GPafpk = 1860 MPafp0.1k = 1580 MPa 2H20200

    150 100100100150p

    Eps = 195 GPafpe = 1100 MPaA = 100 mm2 /strand

    Tan K H, NUS

    Aps 100 mm /strand

  • Effect of axial loadN

    c2 =0.002ed

    N

    0.0035

    x

    cu2 = 0.0035

    x0.0035

    d

    M

    N x0.0020.0020.002

    e = 0 increasingM = Ne

    N = Nx = decreasing

    Tan K H, NUSM = M

  • N-M (Column) Interaction Diagram

    N

    ( ) g

    No Compression failured

    N

    NbBalanced

    failure

    d

    M

    N

    M = Ne

    e

    NoTensionfailure

    Tan K H, NUS

  • Examplep

    A reinforced concrete short column, hexagonal in cross- N, gsection, contains six 25 mm diameter longitudinal bars and is subjected to an

    7

    5

    m

    m

    5

    0

    m

    m

    N

    eccentric compression load. Given that fck = 30 MPa; fyk = 500 MPa and Es = 200 GP l l t th

    2

    7

    200 GPa, calculate the design ultimate load N that the column can carry at an eccentricity e = 275 mm

    450 mmeccentricity, e = 275 mm

    Tan K H, NUS

  • 0

    m

    N2

    7

    5

    m

    m

    5

    0

    m

    m

    450 mm

    Tan K H, NUS

  • Biaxial Bendingg

    M Mzz due towind load

    MyMz

    y

    due to

    wind load

    My due togravity load

    y

    z

    MM1tan

    22zy MMM

    Tan K H, NUS

  • yC22

    zy MMM

    MyyCzC

    y

    z

    MM1tan

    z

    nMz

    j

    ji

    i TCC )(

    j

    cjjy CzzTM1

    n CTM C>0 comp

    j

    cjjz CyyTM1

    C>0 comp.T>0 tension

    Tan K H, NUS

  • My/bh2fck

    Increasingb g

    As/AcfcuAs/4As/4M

    b

    As/4As/4

    My

    M

    h

    Mz

    Mz/b2hfckTan K H, NUS

  • Example Biaxial bendingSo,

    A concrete beam has a 250 mm square section and is reinforced by 4T28 steel bars, one bar being placed at 50 mm from each edge in

    h f th ti E l t th fl l t th f theach corner of the section. Evaluate the flexural strength of the section if it is subjected to biaxial bending moments of equal magnitude about axes parallel to the edges. The material properties are: fyk = 500 MPa, fck = 30 MPa, and Es = 200 GPa.are: fyk 500 MPa, fck 30 MPa, and Es 200 GPa.

    50 250

    Tan K H, NUS

  • fcd = 0.9x0.567fck= 0.51fckck

    x=148 0.8x CsC

    s

    Ts1

    Ts2

    s1s2

    Ans:

    Tan K H, NUS

  • Biaxial bending with axial loading

    N Mey

    z

    NNMe zy

    ez

    NM

    e yz y

    22zyr eee

    e.g. corner columns

    z

    y

    y

    z

    MM

    ee 11 tantan

    Tan K H, NUS

  • N x ez x er Cy

    x

    0 8

    T

    N jTCN0.8x

    j

    j

    j

    ijczy zTCzNeMC

    Tjj

    ijcyz yTCyNeMTj

    Tan K H, NUS

  • N-My-Mzi t ti N

    eyinteraction diagram for rectangular

    section N

    Nez

    er

    Note:section

    1 kk MMN

    When Pn is small, My + Mz 1 (i t i ht li ) 1 zy MM (i.e. a straight line)When Pn is large, M 2 + M 2 1

    Mz=Ney

    Mnx2 + Mny2 1 (i.e. a circle)

    My=Nez

    Mz Ney

    Tan K H, NUS

  • Exercise (Exam 2010)Exercise (Exam 2010)A corner column in a multi-storey building is to be designed with a cross-sectional shape as

    shown in Fig. Q-1. At ultimate limit state, the column is to carry bi-axial bending moments, M and M of equal magnitude about two orthogonal axes y and z besides an axial load NMy and Mz, of equal magnitude, about two orthogonal axes, y and z, besides an axial load N. Determine the maximum value of My or Mz, if no tension is allowed in any part of the section. Assume fck = 30 MPa; fyk = 500 MPa; Es = 200 GPa; c = 1.5; s = 1.15. The section has eight 25 bars placed around the periphery, with a cover of 50 mm to each bar.

    y

    200

    200

    axis ofsymmetry

    All

    z200 All

    dimensions are in mm.

    200 200

    200

    Tan K H, NUSFig. Q-1

  • Further Reading

    Nilson A H Darwin D & Dolan C W Design ofNilson, A.H., Darwin, D. & Dolan, C.W., Design of Concrete Structures, 14e in SI Units, Ch 3.

    Wight, J.K. & MacGregor, J.G., Reinforced Concrete: g gMechanics & Design, 5 ed., Ch 4.

    Martin, L. & Purkiss, J., Concrete Design to EN 1992, , Ch 6Ch 6.

    Tan K H, NUS