2) concepts of lung protective ventilation

Upload: irwandi-irwandi

Post on 07-Aug-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    1/13

    1

    Rational for and strategies oflung protective ventilation (including

    the Open Lung Concept) 

    Prof. Peter C. Rimensberger, MD Service of Neonatology and Pediatric Intensive Care

     

    Department of Pediatrics 

    University Hospital of Geneva 

    Geneva, Switzerland 

    The postnatal pulmonary injury sequence

    The choices: 1) Try to avoid mechanical ventilation2) Use gentle lung protective

     mechanical ventilation

    Problem No 1 = Atelectasis: --> Open the lung

    T --> Surfactant

    Surfactant as a recruitment agent

    PEEP PIP PEEP PIP

    pre post

       V  o   l  u  m  e

    Pressure

    Kelly E Pediatr Pulmonol 1993;15:225-30

    Soll RF (Cochrane Database) 2002 

    mortality

    bronchopulmonary dysplasia

    Morris S MJM 2006 9:95-101

    Group 2: after introduction

    of surfactant

    Group 3: ten years later

    Group 1: before introduction

    of surfactant

    a retrospective chart review of twoepochs, 1990-1991 and 1999-2000:

    Effects of surfactant

    and changes inventilator strategies

    over time

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    2/13

    2

    Morris S MJM 2006 9:95-101

    Group 3: + lower PIP

    Group 2: + surfactant

    Group 1: no surfactant

    Group 3: + lower PIP

    ?

    Group 2: + surfactant

    Problem No 1 = Atelectasis: --> Open the lung

    T --> Surfactant

    P --> positivepressure:

    - CPAP

    - CMV / HFO 

    % onmechanicalventilation

    % onCPAP

    Inborn infants GA

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    3/13

    3

    SUPPORT- Trial

    NEJM 2010: 362;1970-9

    Need for mechanicalventilation (duration)

    Survival w/o need formechanical ventilation

    Postnatal steroidstherapy for BPD

    intubation andsurfactant treatment

    (within 1 hour after

    birth) or to CPAPtreatment initiated inthe delivery room

    From CPAP group83 % intubated later  

    !"#"$ &'

    (#)*"+,"

    -.#&/0

    1232

    4"56/.$ -.#&/0

    3$6"/+.7#"

    41232 #0 +& 0588&/6!"#$% '(() ** +,-./ 0

    1$ 234 '((5 ** +,-./ +0/ 6

    41232 #0 )+659.7&+

    78%9$: '((; ** +,-./ 0

    ,. '(?( ** +,-./ +0/ 66

    * reduced intubation rate (37% vs 51%; P=0.04)** requirement for intubation, postnatal use of corticosteroids for BPD, days of mechanical

    ventilation, and mechanical ventilation by day

    NCPAP used early or prophylactically for respiratory distress

    Levels of Evidence

    Level I Systematic review of randomized controlled trials

    Level II Randomized controlled trial

    Level I I I Cohort s tudy

    Level IV Case-control studyLevel V Case series or historical controls

    Level VI Animal or mechanical model study

     Adapted form SE Courtney in Neonatal and Pediatric Mechanical Ventilation:From Basics to Clinical Practice, ed. Rimensberger, Springer (2015)

    7 but no difference for death or BPD (at 36 wks)

    Derecruitment (poor oxygenation and ventilation ) with „shallow“ tidalvolumes 

    Recruitment (good oxygenation and ventilation) with large tidal volumes 

    Bendixen NEJM 1963; 269:991-996 

    40 years ago 

    Parker JC et al. Crit Care Med 1993;21:131-143 

    Barotrauma is notonly gross airleak 

    Ventilator induced lung injury:

    Experimental data

    PIP 45cmH2O

    for 5min

    PIP 45cmH2Ofor 20

    min

    Nonventilated lung

    Dreyfuss D AJRCCM 1998;157:294-323 

    Effect of ventilation at peak airway pressures of 45 cmH2O on: 

    Pulmonary edema  Permeability  Albumin distribution 

    Dreyfuss D et al. ARRD 1985;132:880-884 

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    4/13

    4

    HVZP40 ml/kg0 cm H2O

    Biotrauma:

    cytokines

    Tremblay L J Clin Invest 1997; 99:944-952

    ControlVt 7 ml/kgPEEP 3 cm H2O

    MVZP15 ml/kg0 cm H2O

    MVHP15 ml/kg10 cm H2O

    HVZP40 ml/kg0 cm H2O

    Ito Y AJRCCM 1997; 155:493-499

    Surfactant conversion from large to small aggregates

    surfactant inactivation

    1) high Vt (15 ml/kg)/ PEEP 3.52) normal Vt (10 ml/kg) / PEEP 3.53) low Vt (5 ml/kg)/ PEEP 3.5

    Bjorklund LJ Ped Research 1997; 42:348-55 

    Manual ventilation with a few large breath 

    The classical inflation breaths in the labor room  

    Surfactant before first breath  Bagging before surfactant

     

    Small Vt-Ventilation or

    Peak Pressure Limitation

    (Permissive Hypercapnia) 

    •  15 infants (2000 - 4800 g/bw); PPHN and severe respiratory failure

    (FiO2 1.0)

    •  PaCO2 allowed to increase to 60 mmHg

    • 

    maximum PIP 25 to 35 cmH2O (increased ventilatory rates);

    no paralysis

    •  --> all survived, 1 infant with CLD

    1984: Controlled hypoventilation in status asthmaticus 

    Wung J-T Pediatrics 1985;76:488-494

    1985: Management of infants with severe respiratory failure 

    Darioli R, Perret C. Am Rev Respir Dis 1983; 129:385-387

    1994: Low mortality rate in adult respiratory distresssyndrome using low-volume, pressure-limited

    ventilation with permissive hypercapnia 

    Hickling KG. Crit Care Med 1994;22:1568-1578

    Permissive hypercapnia in preterm infants

    Mariani G, Cifuentes J, Carlo WA Pediatrics 1999;104:1082-1088

    p = 0.002 Log rank test

    Duration of MV (hours)0 12 24 36 48 60 72 84 96

       I  n   f  a  n   t  s  o  n   M   V   (   %   )

    0

    20

    40

    60

    80

    100

    NormocapniaPermissive hypercapnia

    RESPIRATORY OUTCOMES

     Hypercapnia Normocapnia

    Days on MV 2.5 (1.5 - 11) 9.2 (2 - 22)

    Days on O2  15 (4 - 53) 32 (17 - 50) O2 at 28 days (%) 43 64

    O2 at 36 weeks (%) 10 9

    Reintubation (%) 67 54

    Air leaks (%) 8 16

    Steroids (%) 12 24

    all differences between groups did not reach significance

    Birth weight 601-1250 gm

    RDS requiring ventilation

    Postnatal age less than 24 hours

    PaCO2  pH(mmHg)

    Permissivehypercapnia 45 - 55 > 7.20

    Normocapnia 35 - 45 > 7.25

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    5/13

    5

    Carlo W et al. J Pediatr 2002;141:370-5

    Minimal ventilationto prevent BPD

    Carlo W et al. J Pediatr 2002;141:370-5

    Minimal ventilationto prevent BPD

    vs.

    PCO2 target >52 mm Hg

    PCO2 target

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    6/13

    6

    Mechanism 2: Intratidal collapse

    and decollapse

    (opening) 

    PEEP and lung function

    assessment

    to prevent VILI

    during small Vt

    ventilation

    Pinf  (LIP)

    PEEP > Pinf   Control

    PEEP = 0

    Muscedere AJRCCM 1994;149:1317-1334

    PEEP = 4

    Tremblay L J Clin Invest 1997; 99:944-952

    Biotrauma:

    Protection

    by PEEP

    HVZP40 ml/kg0 cm H2O

    ControlVt 7 ml/kgPEEP 3 cm H2O

    MVZP15 ml/kg0 cm H2O

    MVHP15 ml/kg10 cm H2O

    Effects of Ventilation with Different PEEP: on CytokineExpression in the Preterm Lamb Lung 

    Naik AS Am J Respir Crit Care Med 2001; 164:494–498 

    LA-pool size recovery 

    Michna J AJRCCM 1999;160:634–639 

    PEEP preserves surfactant function inpreterm lambs

     

    surfactant alone 

    Atelectasis

    Ventilator induced lung injury (VILI)

       V  o   l  u  m  e

    0 3 6 9 12 15 18 21 24 27 30

    transpulmonary pressure (cmH2O)

    Atelectrauma: Concept of « high » PEEP

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    7/13

    7

    QuickTime™etun décompresseurPhoto- JPEGsont requispour visualiser

    cette image.

    The combination of Low Vt  + High PEEP 

    LIP 

    Tremblay L J Clin Invest 1997; 99:944-952

    Biotrauma:

    Combined

    Vt and PEEPeffects

    MVHP15 ml/kg

    10 cm H2O

    HVZP40 ml/kg

    0 cm H2O

    identicalend-inspiratory

    distension

    Tidal Breath

    Recruitment

    Tidal Breath

    Recollapse

    28’800 times/day  57’600 times/day

      86’400 times/day 

    VILI

    Tidal Breath

    Overdistention

    In heterogeneous lung injury inflation behavior is heterogeneous

    Lung heterogeneity

    Courtesy from Niemann G

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    8/13

    8

    Lung protective mechancial ventilation:

    Concept of low Vt or peak pressure limitation and

    « high » PEEP

    Froese ACrit Care Med 1997;25:906-8

    How much istoo much or

    how high is too

    high ?

    How low is toolow ?

    Lung Opening:

    Experience from

    the adults 

    Radford: in Respiratory Physiology (eds. Rahn and Fenn)

    Anatomical  Recruitment

    during increasing PEEP steps

    P

    t

    Gattinoni L AJRCCM 2001; 164:1701–1711 Courtesy from Niemann G

    Barbas C Crit Care Med 2003; 31[Suppl.]:S265–S271

    Lung volumerecruitment

    and

    higher PEEP

    CT-aeration

    poorly areated

    poorly areatednormal

    normal

    At ZEEP and

    2 PEEP levels

    = turning up

    the PEEP

    approach 

    Diffuse CT-attenuations

    Focal CT-attenuations

    Rouby JJ AJRCCM2002;165:1182-6

    Radford: in Respiratory Physiology (eds. Rahn and Fenn)

    Behavior of the whole lung: Hysteresis 

    Lung opening and closing

    Pressure

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    9/13

    9

    Factors that influence the efficiency of RM

    1) Recruiting pressure (CPAP, SI or Pplat)

    Gattinoni L A JRCCM 2001; 164:1701–1711

    Recruitment occurs over the whole PV-range

    Rimensberger PC Crit Care Med 1999; 27:1946

    Rimensberger PC Crit Care Med 1999; 27:1946

    PEEP is an end-expiratory phenomenon

    It does not recruit

    It does maintain 

    Optimal PEEP

    Recruited vol

    Rimensberger PC Crit Care Med 1999; 27:1946

    8

    30

       P  r  e  s  s   i  o  n

    small tidal volume ventilation (5 ml/kg)

    Optimal PEEP

    Recruited vol

    Rimensberger PC Crit Care Med 1999; 27:1946

    8

    30

       P  r  e  s  s   i  o  n

    small tidal volume ventilation (5 ml/kg)

    0

    100

    200

    300

    400

    500

    600

    0 60 120 180 240

    Time (min)

    Postlavage

    OxygenationGradient PaO2 /FiO2

    Optimal PEEP

    Recruited vol

    Rimensberger PC Crit Care Med 1999; 27:1946

    8

    30

       P  r  e  s  s   i  o  n

    small tidal volume ventilation (5 ml/kg)

    Rimensberger PCCrit Care Med 1999; 27:1940

    A B

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    10/13

    10

    Hickling KG et al. AJRCCM 2001; 163:69-78

    Optimal = Maximum dynamic compliance andbest oxygenation at the least pressure required

     

    Volume effect of various levels of PEEP(In- and decremental PEEP steps)

    Courtesy from David Tingay, Melbourne

    before RM after RM

    Halter JM AJRCCM 2003, 167:1620-6 

    alveoli per field

    inspiration expiration

    I – E

    Factors that

    influence theefficiency of RM

    PEEP after

    Rimensberger PC Crit Care Med 1999; 27:1946

    CPAP-Recruiting Maneuver (Sustained Inflation)

    Common RM-Techniques

    CPAP to 40 – 60 cmH2Ofor 20 to 60 secondes

    Lapinsky SE Intensive Care Med 1999; 25: 1297-1301

    45/20 

    ?

    CPAP-Recruiting Maneuver (Sustained Inflation)

    Common RM-Techniques

    CPAP to 40 – 60 cmH2Ofor 20 to 60 secondes

    Lapinsky SE Intensive Care Med 1999; 25: 1297-1301

    Individuel PEEP level

    Radford: in Respiratory Physiology (eds. Rahn and Fenn)

    Behavior of the whole lung: Hysteresis 

    Volumederecruitment

    throughout

    deflationUIPdefl 

    Pclosing

    Alveolarrecruitment

    throughout

    inflation

    LIP

    UIPinfl 

    Lung opening and closingFrequency distribution of

    opening and closing pressurein patients with ARDS

    Crotti S AJRCCM 2001;164: 131–140

    Use of dynamic

    compliance for open

    lung positive end-

    expiratory pressure

    titration in an

    experimental study

    F Suarez-SipmanCrit Care Med 2007; 35:214–221

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    11/13

    11

     A Roncally S Carvalho et al.  Critical Care 2006, 10:R122

    Effects of descending positive end-expiratory pressure on lung

    mechanics and aeration in healthy anaesthetized piglets

    Volume controlled ventilation

    end-inspiration end-expiration

    PEEP 6 PEEP 24

    PEEP 6

    PEEP 18

    PEEP 14

    end-inspiration

    end-expiration

    PEEP 14 = level of bestcompliance

    PEEP 10

    F Suarez-SipmanCrit Care Med 2007; 35:214–221

    PEEP 14

    Volumedistribution

    Frerichs I, Dargaville P, Rimensberge r PC Intensive Care Med 2003; 29:2312-6

    Frerichs I et al. J Appl Physiol 2002; 93: 660–666

    Get the lung as much homogeneous as possible Volumedistribution

    Tidal volume

    distribution

    Frerichs I, Dargaville P, Rimensberger PC Intensive Care Med 2003

    Dargaville P, Frerichs I, Rimensberger PC

    right lung dependent region

    normal lung

    injured lung

    post surfactant lung

    Regional «homogeneity» on the deflation limb

    right lung non-dependent region

    normal lung

    injured lung

    post surfactant lung

    median

    ventral

    dorsal

    Delivered tidal volume(% of maximal Vt)

    Regional ventilation (L)

    Dargaville P, Rimensberger PC, Frerichs I Intensive Care Med 2010

    Regional ventilation (R)

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    12/13

    12

    C = 1

     ARDS / RDS lung

    (Heterogeneous)

    C = 2

    VT= 1ml/kg

    = ==

    32= /=

    Vt=5ml/kg

    AlveolarRupture!

    C = 2

    Vt=2.5ml/kg

    Vt=2.5ml/kg

    = ==

    32= /=

    Normal lung / recruited lung

    at optimal lung volumes

    Vt=5ml/kg

    C = 2

    Vt=4ml/kg

    PEEP titration vs. recruitment maneuvers

    Recruitment maneuvers:

    Sustained inflation

    Intermittentlyincreased PEEP

    StepwisePEEP increase

    Intermittentlyincreased VT 

    How high, and what afterwards ?

    ?

    ?

    From the lab to the bedside: The principal concepts

     Adapted from Suzuki H Acta Pediatr Japan 1992; 34:494-500

    Lung Recruitment Using Oxygenation during OpenLung High-Frequency Ventilation in Preterm Infants

    De Jaegere Ann et al. Am J Respir Crit Care Med 2006: 174; 639–645

     Adapted from Suzuki H

     Acta Pediatr Japan 1992

    Lung Recruitment Using Oxygenation during Open

    Lung High-Frequency Ventilation in Preterm Infants

    De Jaegere Ann et al. Am J Respir Crit Care Med 2006: 174; 639–645

     Adapted from Suzuki H Acta Pediatr Japan 1992

    Lung Recruitment Using Oxygenation during Open

    Lung High-Frequency Ventilation in Preterm Infants

    De Jaegere Ann et al. AJRCCM 2006: 174; 639–645

    before surfactant after surfactant

  • 8/19/2019 2) Concepts of Lung Protective Ventilation

    13/13

    13

    Ventilation efficiency during optimal CDP finding

    Alveolar Ventilation during HFV is defined as:

    f x Vt 2 (  Vmineff  or  DCO2  )

    Diffusion coefficient of CO2 (DCO2) = alveolar ventilation

    RIP PV-curve inRSV pneumonitis

    on HFOV 

    Optimal O2 = Paw 19Optimal Vt = Paw 10.5

    Optimal CO2 = Paw 8

    David Tingay,Melbourne, 2004

    pO2

    pCO2

    Cdyn

    pO2

    pCO2

    Cdyn

    pO2

    pCO2

    Cdyn

    CMV: Optimal = Maximum dynamic

    compliance and best oxygenation at

    the least pressure required 

    Optimal lung expansion (the mosthomogeneous one) adapted to the lung

    pathology assures best oxygenation and

    ventilation

    pO2

    pCO2

    Vt (VCO2)

    pO2

    pCO2

    Vt (VCO2)

    pO2

    pCO2

    Vt (VCO2)

    Optimal lung expansion (the mosthomogeneous one) adapted to the lung

    pathology assures best oxygenation and

    ventilation

    HFOV: Optimal = Maximum DCO2(f x Vt2) and best oxygenation at the

    least pressure required 

    Suzuki H Acta Pediatr Japan 1992; 34:494-500

    Setting PEEP and lung volume recruitment 

    )3 = =2 3 1= =

    ( / / = /

    //

     

    = ==

    = 3 3 = = 3=

    / 3 =3/ / 3 3 =2=

    = 3 / //