1938-11 workshop on nanoscience for solar energy conversion · bolink chem. phys. lett. 46557–62...

49
1938-11 Workshop on Nanoscience for Solar Energy Conversion Juan BISQUERT 27 - 29 October 2008 Departament de Fisica, Universitat Jaume 1 Avda. Sos Baynata sn 12071 Castello de la Plana Spain Impedance Spectroscopy of Nanostructured Dye-Sensitized and Organic Bulk Heterojunction Solar Cells

Upload: others

Post on 11-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 1938-11

    Workshop on Nanoscience for Solar Energy Conversion

    Juan BISQUERT

    27 - 29 October 2008

    Departament de Fisica, Universitat Jaume 1Avda. Sos Baynata sn 12071 Castello de la Plana

    Spain

    Impedance Spectroscopy of Nanostructured Dye-Sensitized and Organic BulkHeterojunction Solar Cells

  • Impedance spectroscopy of nanostructured dye‐sensitized and organic bulk heterojunction solar cells

    Juan Bisquert

    Departament de Física

    Universitat Jaume I

    12071 Castelló

    Spain

    Trieste, Italia, 28 october 2008

  • Fundamental model of a solar cell

  • Fundamental model for a solar cell

    J. Bisquert, D. Cahen, G. Hodes, S. Rühle, A. ZabanJournal of Physical Chemistry B, 108, 8106-8118 (2004)

    1. Generation

    2. Recombination(radiative)

    3. Extraction

    The necessary spatial extensionof the light absorbing material makes it necessary to considerelectron diffusion

    Diffusion competes withrecombination as described by diffusion length

  • Fundamental impedance model for a solar cell

  • Fundamental impedance model for a solar cell

    Recombination resistance isunavoidable. Prevents the internalloss of photogenerated carriers

    Chemical capacitanceconverts excess carriersnumber into a potential(Fermi level)

  • Fundamental impedance model for a solar cell

  • Diffusion‐recombination transmission line model

  • Diffusion‐recombination transmission line model

    J. Bisquert, J. Phys. Chem. B 106, 325-333 (2002) F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt Solar En. Mat. Sol.Cells, 87, 117-131 (2005).

    Impedance spectroscopy gives allparameters of electronicprocesses at once:ConductivityChemical capacitanceRecombination resistance

  • Transmission line for diffusion‐recombination

    chemical capacitance

    recombination

    transport

  • Transmission line for diffusion‐recombination

    Diffusioncoefficient

    Electron Lifetime

    LD much longer than thickness(low recombination)

    ( ) ( )[ ]2/12/12/1

    /i+1/coth/i+1 kdkkkW RRZ ωωωωωω ⎟

    ⎟⎠

    ⎞⎜⎜⎝

    ⎛=

  • Silicon solar cell

    Lifetime τ = Rrec Cμ

  • Silicon solar cell

    Lifetime

    Chemical capacitance

    Recombination resistance

  • Some results on dye‐sensitized solar cells withdifferent hole conductors with impedancespectroscopy

  • Impedance of 11% efficiency dye solar cell

    This solar cell shows ideal characteristic of diffusion-recombination modelwith recombinationresistance much largerthan transport resistanceR3 >> R1

    Recombination arc R3 Diffusion WarburgR1/3

    Michael Grätzel, Francisco Fabregat-Santiago, Juan Bisquert et al.,

    J. Phys. Chem. B. 110, 25210-25221 (2006)

  • Electron diffusion coefficient

    Parameters of 11% DSC

    Temperature dependence ofelectron diffusion coefficient in a DSC, as a function ofpotential

    This data concordates with theprediction of the multipletrapping model

    Michael Grätzel, Francisco Fabregat-Santiago, Juan Bisquert et al.,

    J. Phys. Chem. B. 110, 25210-25221 (2006)

    )(

    2

    μCRLDt

    n =

  • Impedance characteristics of DSCs

    DSC with ionic liquid

    Ion diffusion in electrolyte

    Electron recombination

    Charge transfer at CE

    Stability

    Upscaling

  • Steady‐state characteristics of 11% DSC

    Photocurrent-voltage curve of 11% efficiency DSC obtained at AM 1.5 solar radiation.

    The dots show the calculated values based on impedance measurements carried out at different voltage bias of the cell with the same illumination.

    Dashed line represents the simulated curve after subtraction of the series resistance contribution. A 10 % increase in the fill factor is obtained.

  • F. Fabregat-Santiago, J. Bisquert et al JPCC (2007), 111, 6550F. Fabregat-Santiago, M. Grätzel, J. Bisquert et al (2008), submited

    DSC cell with spiro‐OMeTAD as hole conductor

  • DSC cell with spiro‐OMeTAD as hole conductor

    LrR tt =

    )1( pSRL

    t −=σ

    ⎥⎦⎤

    ⎢⎣⎡ −=

    kTEE cbFnexp0σσ

    neμσ =

    Conductivity in TiOConductivity in TiO22

  • DSC cell with spiro‐OMeTAD as hole conductor

    Chemical diffusion coefficient of electrons in TiO2

    ⎥⎦⎤

    ⎢⎣⎡ −−= )()1(exp0 cbFnn EEkT

    DD β

  • Lifetime

    μτ CRctn =Voc decayVoc decay

    A. Zaban et al. ChemPhysChem, 4 (2004) 859F. Fabregat-Santiago et al. J. App. Phys. 100 (2006) 034510

    Potential (V)

    0.60.40.20.0

    τ (s

    )

    0.001

    0.01

    0.1

    1

    10

    100OMeTADliquid

    DSC cell with spiro-OMeTAD as hole conductor

    1

    dd −

    ⎥⎦⎤

    ⎢⎣⎡=

    tV

    kTe oc

    decayτ

  • Diffusion length of electronsnD DL τ=

    DSC cell with spiro-OMeTAD as hole conductor

  • Evolution of DSC at UJI

    DSC record laboratorio UJI:7.2% eficiencia referencia con N719

    Área 0.3 cm2

    Evolución Eficiencias DSC en la UJI

    Tiempo (meses)

    Julio 07 Sept 07 Nov 07 Febr 08 Mayo 08 Julio 08

    Efic

    ienc

    ia (%

    )

    1

    2

    3

    4

    5

    6

    7

    8

  • CdSe quantum dot sensitized SC

    Ivan Mora-Seró

    Universidad de AlicanteRoberto GómezTeresa Lana

  • CdSe quantum dot sensitized SC

    3 electrodes measurements

    Closed cell

    ⎥⎦

    ⎤⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛ −

    −−−⎟

    ⎠⎞

    ⎜⎝⎛ −= )()1(exp)(exp0 refref VVkT

    eVVkT

    ejj αα

    j0 (Polysulfide) = 11.4 nA/cm2

    j0 (I3-/I- ) = 40.7 μA/cm2

  • Impedance spectroscopy of P3HT:PCBM organic solar cell

  • The standard model – the pin model

  • The pin model for amorphous Si

  • The pin model for amorphous Si

  • Results of impedance on P3HT:PCBM solar cells

    Henk J. Bolink, Michele Sessolo, Alejandra Soriano (ICMol Valencia)

    Juan Bisquert, Germà Garcia-Belmonte, Antoni Munar

    Irati Ugarte, Roberto Pacios

  • Characteristics of P3HT:PCBM solar cell

    G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, R. Pacios Organic Electronics 9, 847-851 (2008)

    Diffusion-recombination of electrons (minority carrier

    Schottky barrier

  • Impedance measurements in the dark varying forward bias ITO/PEDOT:PSS/P3HT:PCBM/Al

    ITO/PEDOT:PSS/P3HT:PCBM/Al

    G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, R. Pacios Organic Electronics 9, 847-851 (2008)

    Bias voltage (V)

    0.2 0.4 0.6 0.8 1.0

    Ele

    ctro

    n m

    obilit

    y (1

    0 -3

    cm

    2 V-1

    s-1

    )

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    illuminationdark

    ~2×10-3 cm2 V-1 s-1TkeD Bnn /=μ

    V. D. Mihailetchi et al. Avd. Funct. Mater. 13, 43-46 (2003)

  • Doping of P3HT‐Schottky barrier

    Oxidation of P3HTp-doping level ~5×1016 cm-3

    Minority carrier storage (electrons)

    G. Garcia-Belmonte, A. Munar, E. M. Barea, J. Bisquert, I. Ugarte, R. Pacios Organic Electronics 9, 847-851 (2008)

    M. S. A. Abdou et al. J. Am. Chem. Soc., 119, (1997)

    Forward bias

  • Shift of Mott‐Schottky plot

    Forward bias

    J. Bisquert, G. Garcia‐Belmonte, A. Munar, A Soriano, M. Sessolo, H. J. Bolink Chem. Phys. Lett. 465 57–62 (2008)

  • Shift of Mott‐Schottky plot

    Kelly-MemmingJ. Electrochem. Soc. 75, 085316 (1982)

  • Kinetic limitation

    J. Li and L.M. Peter, J. Electroanal. Chem. 193 (1985) 27.

  • Photovoltaic model

    F. El Guibaly, K. Colbow and B.L. Funt, J. Appl. Phys. 52 (1981) 3480.

  • Negative capacitance in solar cells

    I. Mora-Seró, J. Bisquert, et al. Nano Letters 6, 640, (2006)

    CdS/CdTe solar cell

    Forward bias

  • Model of electron injection in organic LEDs

    J. Bisquert, G. Garcia-Belmonte, A. Pitarch, H. J. Bolink, Chem. Phys. Lett. 422, 184 (2006)

    1.Equilibrium

    2.Equibrium between metal and surface state

    3. Decrease of the occupation of the intermediate state at increasing forward bias due to higher kinetics of transfer at higher forward bias

    movie

  • Glass substrate

    ITO

    PEDOT

    LEP (Super Yellow)

    cathode

    0 / 200 nm

    80 / 150 nm

    100 nm

    *

    OCH3

    OCH3

    *

    OC4H9

    OC4H9

    OC4H9

    OC4H9

    x

    y

    zn

    Bias voltage [V]

    0 1 2 3 4 5 6

    Cur

    rent

    den

    sity

    [A c

    m-2

    ]

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    AuAg

    Mg

    Frequency [Hz]

    100 101 102 103 104 105

    Abs

    (Cap

    acita

    nce)

    [F c

    m-2

    ]10-9

    10-8

    10-7

    10-6 1.0 V2.0 V3.0 V3.6 V 4.0 V4.6 V

    (b) Geometric Capacitance+ SCLC

    Interface states: transit from positive to negative capacitance

    ITO/PEDOT:PSS/SY/Al

    Negative capacitance in OLEDs

  • Model

    J. Bisquert, G. Garcia‐Belmonte, A. Munar, A Soriano, M. Sessolo, H. J. Bolink Chem. Phys. Lett. 465 57–62 (2008)

  • Model

    θqNVCVC Iscscdd =−

    020

    2

    2=

    Φ+

    −−

    ∂ − xnn

    eDL

    nnxn αα

    { }BAkNJ I θθ −−= )1(1212{ }HnCNkNJ cI )1)(0(2323 θθ −−=

    ( )1)()0( −Φ+= − wnn ewJJ α

    Electrostatic at the interface

    Generation, recombination, diffusion in neutral region, collection in scr

    Transference through ss

  • Model

    Ln

    TkqVn

    I

    n

    n

    L

    gTkqV

    n

    nc

    In

    yDHeL

    kN

    LnD

    yJ

    HeDLCN

    kNJBsc

    Bsc

    tanh)1(

    1

    tanh)1(

    )0( /23

    0/

    23θ

    θ

    −+

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛+−−

    =

    ⎥⎥⎦

    ⎢⎢⎣

    ⎡⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛−−

    −+−Φ= −−

    −− ww

    LnL

    L

    n

    nwg eeyLy

    eL

    LeJ αα

    αα

    αα

    αtanh1

    cosh11

    22

    22

    The solution of the model provides the following expression for the photocurrent

    This allows to determine ss occupancy and therefore, the distribution of potential and Fermi level at the interface

  • Potential in space charge region and dipole layer

    Voltage = 0

    EFn

    - 4 - 2 0 2 4

    - 0.4

    - 0.2

    0.0

    0.2

    0.4

    position

    volta

    geEFn

    Voltage = 0.1- 4 - 2 0 2 4

    - 0.4

    - 0.2

    0.0

    0.2

    0.4

    position

    volta

    ge

    Voltage = - 0.1

    EFn

    - 4 - 2 0 2 4

    - 0.4

    - 0.2

    0.0

    0.2

    0.4

    position

    volta

    ge

    dark

    light

  • Model simulation of current-potential curve

    dark

    light

  • Shift of Mott-Schottky plot

    dark

    light

    : The total density (per unit area) of interfacial levels [1012 cm-2]

    Electron density in equilibrium [10^12 cm-3]

    J. Bisquert, G. Garcia‐Belmonte, A. Munar, A Soriano, M. Sessolo, H. J. Bolink Chem. Phys. Lett. 465 57–62 (2008)

  • Acknowledgments

    Funding:MCINN, ESF, Fundació Caixa Castelló Bancaixa

    Homepage:  www.elp.uji.es/jb.htm

    E‐mail: [email protected]

  • Acknowledgments

    www.hopvconference.org