190 - ieee 519‐2014 - what has stayed the same (26-10-2015)

Upload: jacques-deroualle

Post on 20-Feb-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    1/23

    12/18/20

    IEEE5192014

    MarkHalpin

    November2014

    WhatHasStayedtheSame?

    Mostimportantly,theoverallphilosophy

    Usersareresponsibleforlimitingharmonic

    currents

    Systemowner/operatorareresponsiblefor

    managingvoltagequality

    AllrecommendedlimitsapplyonlyatthePCC

    Existingrecommendedlimitsareretained

    Somenewonesadded

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    2/23

    12/18/20

    WhatHasBeenChanged?

    Philosophyofchanges Drivenby20yearsofexperiencewith5191992andincreasedcooperationwithIEC

    Multiplechangesrelatedto Measurementtechniques

    Timevaryingharmoniclimits

    Lowvoltage(

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    3/23

    12/18/20

    Indices

    FromIEC61000430

    3sveryshortvalue

    10minshortvalue

    2

    15

    1i

    2i,nvs,n F

    15

    1F

    2 200

    1i

    2i),vs,n(sh,n F

    2001F

    AssessmentofLimitCompliance

    02

    4

    6

    8

    10

    12

    14

    16

    18

    1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

    Time (h)

    TDD

    (%)

    Whatvalueshouldbecomparedagainstthelimit?

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    4/23

    12/18/20

    WeeklyStatisticalIndices

    0

    20

    40

    60

    80

    100

    0 1 2 3 4 5 6 7 8 91011121314151617181920

    TDD (%)

    Frequency

    .0%

    20.0%

    40.0%

    60.0%

    80.0%

    100.0%

    95th or99th

    percentile

    Valuetobe

    comparedagainstlimit

    ChangestotheLimits

    Newvoltagelimitprovisionforlowvoltage(161

    kV)

    Maximum Harmonic Current Distortion in Percent of IL

    Individual Harmonic Order (Odd Harmonics)

    Isc/IL

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    5/23

    12/18/20

    PercentileBasedVoltageLimits

    Daily99thpercentileveryshorttime(3s)values

    shouldbelessthan1.5timesthevaluesgivenin

    Table

    Weekly95thpercentileshorttime(10min)values

    shouldbelessthanthevaluesgiveninTable

    PercentileBasedCurrentLimits

    Daily99thpercentileveryshorttime(3s)harmonic

    currentsshouldbelessthan2.0timesthevalues

    giveninTable

    Weekly99thpercentileshorttime(10min)harmonic

    currentsshouldbelessthan1.5timesthevalues

    giveninTable

    Weekly

    95th

    percentile

    short

    time

    (10

    min)

    harmonic

    currentsshouldbelessthanthevaluesgiveninTable

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    6/23

    12/18/20

    Interharmonic Limits(Recommendations)

    Voltageonly0120Hzlimitsbasedonflicker

    0

    1

    2

    3

    4

    5

    6

    0 510

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    105

    110

    115

    120

    Frequency (Hz)

    Vo

    ltage

    (%o

    fNom

    ina

    l

    V1kV

    1 kV

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    7/23

    12/18/20

    ExperienceSoFar

    Granted,thisislimitedmostlytoexperimentsoverthelast612months

    Userswithrelativelystableharmonicemissionsareessentiallyunaffected

    Userswithrapidlychangingharmonicemissionsmayshowreducedlevelsinmeasurements

    The200ms windowactsasasmoothingfilter

    Percentilesandmultipliersappeartoberelativelyconsistentwithshorttimeharmonicmultipliersoftenusedwith5191992

    PassiveMitigationofPower

    SystemHarmonics

    MarkHalpin

    November2014

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    8/23

    12/18/20

    Outline

    PassiveFilters

    Basicresonanceconcepts

    Singletunefilters

    Ctypefilters

    Performancecomparisons

    Sensitivitiestonetworkconditions

    Overalleffectiveness

    Conclusions

    SeriesResonanceConcept

    CL

    eq

    XXj

    C

    1LjZ

    LC

    1r

    Majorconcept: Theimpedancecanbecomeaverylowvalue

    resonantfrequency,r

    inductive

    capacitive

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    9/23

    12/18/20

    SeriesResonanceInPractice

    Harmonic

    Voltages

    harmonic

    currents

    Effectsinclude:

    1. Heatingintransformer

    2. Fuseblowingatcapacitorbank

    Typicalresonances:

    500kVA,12.47kV,5%

    3001200kvar capacitor

    r=173346Hz(3rd6th harmonic)

    ParallelResonance

    CLCL

    eq

    XX

    XXj

    Cj

    1//LjZ

    LC

    1r

    Majorconcept: Theimpedancecanbecomeaveryhighvalue

    resonantfrequency,r

    capacitive

    inductive

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    10/23

    12/18/20

    ParallelResonanceinPractice

    harmonic

    voltages

    Harmonic

    Currents

    Effectsinclude:

    1. Excessivevoltagedistortion

    2. Capacitorbankfuseblowing

    Typicalresonances500kVA,480V,5%

    400kVAload,80%pf lagging

    pfcorrectionto95%lagging(120kvar)

    r=547Hz(9th harmonic)

    ResonanceSummary

    Seriesresonance

    Widelyexploitedinharmonicfilters

    Canleadto(harmonic)overcurrents

    Parallelresonance

    Frequentlyleadsto(harmonic)overvoltages

    Sometimes

    used

    in

    blocking

    filters

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    11/23

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    12/23

    12/18/20

    ApplicationConsiderations

    Ratings

    Capacitor RMSvoltage

    Peakvoltage

    RMScurrent

    kVA

    Reactorcurrents Peakcurrent

    RMScurrent Losses

    FilterApplicationProcedure Usefrequencyscanandharmonicstudytodetermine

    requirements

    Numberoffilters(estimate)

    Tunedfrequencyforeach

    Ratings(estimate)

    Startwithlowestfrequencyfilterandworkupward(infrequency)

    Eachfilterhasparametersthancanbeatleastpartiallyoptimized

    Considercrediblesystemchanges

    Assessimpactsoffilterparametervariations(10%,maybemore)

    Evaluatetotalperformancevs.requirements

    Considercrediblesystemchanges

    Specifyrequiredratings(tweakdesignasnecessary)

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    13/23

    12/18/20

    CommentsonFrequencyScans

    Theseresultsindicatethepotentialforaproblem

    Theyareextremelyusefulfordesigningfilters Identificationofhigh/lowimpedancefrequencies

    (resonantconditions)

    Assessmentoffilterimpactsonfrequencyresponse Alterationofundesirableimpedancecharacteristics Demonstrationofintentionallowimpedancepath(s)

    Theyaresubjecttotheaccuracyofthemodelsused

    Completeassessmentsrequireaharmonicstudy Resultssubjecttomodelaccuracyandassumptions

    Limitcompliance Ratingsofcomponents

    DemonstrationCase

    Basicharmonicsituationandsensitivities Seriesandparallelresonanceconditions

    Mitigationusingfilters Singletunedindustrial

    Ctypeutility

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    14/23

    12/18/20

    NormalConditionFrequency

    ResponseLVFilterApplication(Areimpedanceshighorlowatknownharmonicfrequencies?)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 1 2 3 4 5 6 7 8 910

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    Impe

    dance

    ()

    Harmonic#

    SystemNormal

    SensitivitiesSubstation

    SC

    Power(equivalentimpedanceatLVbus)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 1 2 3 4 5 6 7 8 910

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    Impe

    dance

    ()

    Harmonic

    #

    130

    MVA

    150

    MVA

    170

    MVA

    IncreasingseverityandfrequencywithfaultMVA

    Decreasingseverityand

    IncreasingfrequencywithfaultMVA

    Increasingseverity(lowerZ)

    andincreasing

    frequencywithFaultMVA

    Thesesensitivitieswouldbeconsideredprettysmallandinsignificant

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    15/23

    12/18/20

    SensitivitiesCapacitorStatus(equivalentimpedanceatLVbus)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 1 2 3 4 5 6 7 8 910

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    Impe

    dance

    ()

    Harmonic#

    AllCaps

    LVOnly

    MVOnly

    NoCaps

    Low(er)frequencyresonancenotmuchaffectedbyMVcap

    High(er)frequency

    resonancesignificantly

    affectedbyMVcap

    inductive

    capacitive

    Low(er)frequencyresonancesnotmuchaffectedbythingsthat

    impacthigh(er)frequencyresponseoppositenottrue!!

    SensitivitiesConclusions

    Largechangesinsystemimpedances,

    equivalents,etc.,(faultMVA)areusually

    neededforsignificanteffects

    Relativelysmallchangesincapacitorbank

    status(orsize)canhavemajorimpacts

    Filters

    must

    function

    under

    all

    of

    the

    potential

    scenarios

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    16/23

    12/18/20

    DesignApproach

    Convertexisting480Vcapbanktofilterbankbyaddingseries

    reactor

    Capacitorvoltageratingoftenwillbeexceededintheend!

    X/Rratioofreactorcanhavesignificantimpact

    Losses

    Performance

    Additionalresistancecanbeaddedinseriesifneeded(losseswill

    increase!)forperformance

    m4.15X

    H7.40L

    006908.L2

    1300

    LC2

    1f

    L

    tune

    Note: Tunedfrequencynormally

    taken 5%belowtargetAvoidoverload

    Parametervariation

    5th HarmonicSingleTuneDesign

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    0 1 2 3 4 5 6 7 8 910

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    Impe

    dance

    ()

    Harmonic#

    X/R=100

    X/R=10

    X/R=1

    R=0.0770Ohm

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    17/23

    12/18/20

    FilterQuality(Q)Factor

    Thesharpnessofthefrequencyresponseofafilter

    isoftenindicatedbythefilterQ

    ThefilterQindicates

    Damping(lesssharpcharacteristicmore damped)

    LowerQ,moredamping

    Losses

    LowerQ,morelosses

    Forthepreviousslide

    Q=500,50,5,1

    R

    Lf2

    R

    XhQ tune

    )60(Ltune

    ACloserLookatQ

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    0 1 2 3 4 5 6 7 8 910

    Impe

    dance

    ()

    Harmonic

    #

    Q=500

    Q=50

    Q=5

    Q=1

    AllthisdiscussionofQdoesntlooklikeabigdeal

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    18/23

    12/18/20

    PerformanceEvaluation(480VBusImpedance)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 1 2 3 4 5 6 7 8 910

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    Impe

    dance

    ()

    Harmonic#

    NoFilter

    5thFilter(Q=500)

    5thFilter(Q=1)

    5thFilter(Q=10)

    FilterQhasanobviousimpactontheentireresponse!

    5th harmoniccurrents

    producemuchless5th

    voltageafterfilter

    Performance

    Evaluation(LVFilterImpactonMVSystematCapBank)

    0

    5

    10

    15

    20

    25

    0 1 2 3 4 5 6 7 8 910

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    Impe

    dance

    ()

    Harmonic#

    NoFilter

    HighQ(500)

    LowQ(10)

    LowerQ: Notasmuchfilteringat5th harmonic

    muchlessamplificationathigherfrequencies

    5th harmoniccurrents

    producemuchless5th

    voltageafterfilter

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    19/23

    12/18/20

    Filteringon12kVNetwork

    Discussionsofarbasedonfilteringoncustomerside

    (LV)

    Presumablyassociatedwithlimitcompliance

    Ifallnetworkusersareincompliance(currents),

    excessivevoltagedistortionmaystillexist

    Strongresonancescancreatelarge(noncompliant)voltage

    effectsfromsmall(withincompliance)currents

    SolutionistofilteronMV(utility)side

    FilterdesignsmustaccountforLVfilterpresence(ornot)

    SameApproachforFilterDesign

    367.10X

    mH5.27L

    235.10L2

    1300

    LC2

    1f

    L

    tune

    Q=100R=0.5184Q=10R=5.1835

    Note: Tunedfrequencynormally

    taken 5%belowtarget

    Avoidoverload

    Parametervariation

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    20/23

    12/18/20

    12kVFilterPerformance

    0

    2

    4

    6

    8

    10

    12

    14

    16

    0 1 2 3 4 5 6 7 8 910

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    Impe

    dance

    ()

    Harmonic#

    NoFilter

    HighQ(100)

    LowQ(10)

    Filtereliminates5th resonance,butcreatesnewonesthatcouldbeasbad(orworse).

    Bestsolutionprobablytosplit600kvar into2x300kvar andmaketwofilters5th and7th

    TheCtypeFilter Tuning(selectionofparameters)ismore

    difficultthanforsingletunedfilters

    StartingfromanexistingcapbankCtotal Step1 ChooseLtotunefilterfrequencyasfor

    singletuneddesigns(basedonCtotal)

    Step2 Divideexistingcapacitanceintotwo

    parts

    C2

    chosen

    so

    that

    L

    and

    C2are

    series

    resonant

    (Z=0)

    atthepowerfrequency

    C1 determinedfromCtotalC2(Cinseriescombines

    asparallel)

    Step3 PickRtoprovidedesiredhigh(er)

    frequencydamping

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    21/23

    12/18/20

    CtypeFilterExample

    Willa12kVCtypeperformbetterthanthe

    conventionalsingletuneddesign?

    Existing600kvar bankCtotal=10.235FL=10.367(27.5mH)forftune=300Hz(fromST

    design)

    For60Hzbypasstuning,C2=255.85F C1=10.66F

    SelectRfordesireddamping NoteQdefineddifferently

    Lf2R

    Xh

    RQ

    tune)60(Ltune

    Ctypevs.STFilterPerformance

    0

    2

    4

    6

    8

    10

    12

    0 1 2 3 4 5 6 7 8 910

    Impe

    dance

    ()

    Harmonic

    #

    NoFilter

    STQ=100

    STQ=10

    CTQ=5

    CTQ=10

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    22/23

    12/18/20

    12kVFilterSensitivities(LVCap/FilterOffline)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0 1 2 3 4 5 6 7 8 910

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    Impe

    dance

    ()

    Harmonic#

    ST

    Q=10

    (No

    LV)

    CT

    Q=15

    (No

    LV)

    STQ=10

    CT

    Q=15

    CTQ=0.5(noLV)

    TherealadvantageoftheCtypeiscontrolofHFresponse

    CommentsonComparisons

    Bothfiltertypesareeffectiveatthetunedfrequency

    Ctypehasverylowpowerfrequencylosses Singletunedfilterhasresistivelossesproportionaltocapbank

    reactivecurrentsquared

    LowQsingletuneddesignsarehelpfultoreducesecondaryresonancescreatedbyfilteradditions Alternativeistoaddsecondaryfilters

    LowQCtypedesignsprovidegooddampingofsecondaryresonancesbydefault

    Muchlesslikelytoencountersecondaryproblems

    Ctypedesignsmakepoorutilizationofexistingcapbanks Considerusingonebankforvar compensationwithaseparate

    filterinstallation

  • 7/23/2019 190 - IEEE 5192014 - What Has Stayed the Same (26-10-2015)

    23/23

    12/18/20

    PassiveFilterConclusions

    Twomaintypesexistbothwork

    Singletuned Mainadvantages: Simplicity,upfrontcost

    Maindisadvantages:losses,cancreatesecondaryproblems

    Ctype Mainadvantages: Lowlosses,HFresponse

    Maindisadvantage:upfrontcost,poorutilizationofexistingcapbanks

    Frequencyscansareagreattoolforfilterdesign

    Aharmonicstudyisrequiredtodeterminenecessaryratings