16657596-mbegrowth

Upload: mohammad-rameez

Post on 03-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 16657596-MBEgrowth

    1/26

    Theoretische Physik und Astrophysik

    & Sonderforschungsbereich 410

    Julius-Maximilians-Universitt Wrzburg

    Am Hubland, D-97074 Wrzburg, Germany

    Mathematics and Computing Science

    Intelligent Systems

    Rijksuniversiteit Groningen, Postbus 800,

    NL-9718 DD Groningen, The Netherlands

  • 7/29/2019 16657596-MBEgrowth

    2/26

    Non-equilibrium growth - Molecular Beam Epitaxy (MBE)

    several levels of theoretical description

    deposition and transient kineticsthermally activated processes, Arrhenius dynamics

    problems and limitations

    mound formation and coarsening dynamicsII) (ALE) growth of II-VI(001) systems

  • 7/29/2019 16657596-MBEgrowth

    3/26

    control parameters:substrate/adsorbate materialsdeposition ratesubstrate temperature T

    ultra high vacuumdirected deposition ofadsorbate

    material onto a substrate crystal

    production of, for instance, high quality

    layered semiconductor devices

    magnetic thin films

    nano-structures: quantum dots, wires

    clear-cut non-equilibrium situation

    interplay: microscopic processes macroscopic properties

    self-organized phenomena, e.g. dot formation

    Mikrostrukturlabor, Wrzburg

    oven

    UHV

    T

  • 7/29/2019 16657596-MBEgrowth

    4/26

    faithful material specific description

    including electronic properties

    often: configuration of a few atoms/molecules,

    unit cells of periodic structures,

    zero temperature treatment

    important tool:

    description in terms of electron densities

    energy/stability of surface reconstructions,

    preferred arrangement of surface atoms

    CdTe (001) surface reconstructions

  • 7/29/2019 16657596-MBEgrowth

    5/26

    numerical integration of equations of motion + thermal fluctuations

    effective interactions, e.g. classical short range pair potentials

    (QM treatment: e.g. Car Parinello method )

    microscopic dynamics of particles

    limited system size and (10-6 s)

    example: on a surface

    atomic vibrations ( ~10-12 s)

    with occasional hops to the next local minimum

    dissociation of deposited

    dimers at the surface,

    transient mobility of arriving atoms

  • 7/29/2019 16657596-MBEgrowth

    6/26

    stochastic dynamics, consider only significant changes of the configuration

    simplifying

    of

    empty / occupied sites

    hops from site to site

    models:

    exclude bulk vacancies, overhangs,

    defects, stacking faults, etc.

    d+1 dim. crystal represented by

    integer array above d-dim. substrate lattice

  • 7/29/2019 16657596-MBEgrowth

    7/26

    Deposition of particles, e.g. with flux F = 1 atom / site / s(incoming momentum, attraction to the surface...)

    processes, examples:

    upon deposition

    knockout-processes

    at terrace edges

    downhillfunnelling

    steering

    weakly bound, highly mobileintermediate states

    regular lattice site

    potentialenergy

    distance from the surface

    vac.

  • 7/29/2019 16657596-MBEgrowth

    8/26

    waiting timeTBk

    oe

    rateTBk

    oeR

    attempt frequency , e.g.o

    energy barrier , e.g. for

    simplifying representation:

    112

    o10~

    s

    after incorporation: mobile at surface sites

  • 7/29/2019 16657596-MBEgrowth

    9/26

    R(ab) = 0 exp[ / (kBT) ]

    R(ba) = 0 exp[ ( Ea-Eb+ ) / (kBT) ]a

    bEb

    Ea

    more general:

    transition states and energy barriers affect onlythe of the system

    Ett

    R (ab) exp[ - Ea / (kBT) ] = R (ba) exp[ - Eb / (kBT) ]

    stationary P(s) exp[- Es / (kBT) ]

    for states of type a,b,...

    in absence of deposition and desorption:system approaches

  • 7/29/2019 16657596-MBEgrowth

    10/26

    an example

    ESE

    E

    adatoms attach toupper terraces preferentially

    uphill current favors

    additional

    hinders inter-layer diffusion

    non-equilibrium, kinetic effect:

    additional barrier ES is irrelevant forequilibrium properties of the system

  • 7/29/2019 16657596-MBEgrowth

    11/26

    deep (local) minima,exclude, e.g., double or multiple jumps:

    :correct treatment takes into account entropies / free energies

    - temperature independent

    -

    disregard actual shape of the

    energy landscape

    o(ab) = o(ba)consistent with discretized state spaceand concept of

    :e.g. single, mobile particle in a static environment, neglectconcerted rearrangements of the entire crystal / neighborhood

  • 7/29/2019 16657596-MBEgrowth

    12/26

  • 7/29/2019 16657596-MBEgrowth

    13/26

    (rejection free)

    perform the selected event

    (evaluate physical real time step)

    initial configuration of the (SOS) system

    catalogue of all relevant processes i=1,2,...n

    and corresponding Arrhenius rates

    R1

    R2

    R3

    Rn

    ... rat

    pick one of the possible events

    with probability pi Ri

    0

    1

    ra

    ndomnumber

    update the catalogue of possible processes

    and associated energy barriers and rates

    R3

  • 7/29/2019 16657596-MBEgrowth

    14/26

    e.g. exchange vs. hopping diffusion

    direct / indirect experimental measurement

    calculations/estimates: first principlessemi-empirical potentials

    quantitative match of simulations and experiments

    potentially relevant processes:

  • 7/29/2019 16657596-MBEgrowth

    15/26

    defects, dislocations ?

    hetero-epitaxial growth ?

    strain and other mismatch effects ?

    realistic lattices or off-lattice simulations

    interaction potentials, realistic energy barriers

    particularities of materials / material classes

    basic questions

    example: (universal?) dynamical scaling behavior

  • 7/29/2019 16657596-MBEgrowth

    16/26

    SOS lattice (e.g. simple cubic) neglect overhangs, defects

    knock-out process upon deposition momentum of incoming particles

    irreversible attachment

    immobile islands

    forbidden downward diffusion

    high barriers (large enough flux)

    limited diffusion length forterrace / step edge diffusion

    effective representation of

    nucleation events

    single particle picture

    characteristic length of step edge diffusion

  • 7/29/2019 16657596-MBEgrowth

    17/26

    initial

    due to Schwoebel effect

    merging of mounds driven by

    - deposition noise

    and/or - step edge diffusion

    finite system size single mound

    example: (associated length lsed=1 lattice const. )

    16 ML 256 ML 4096 ML

    selection of a

    compensating particle currents

    upward (Schwoebel)

    downward (knockout)

  • 7/29/2019 16657596-MBEgrowth

    18/26

    time t (film thickness)

    ~mound height

    w =t for t< tx

    wsat L for t> tx

    growth exponent

    roughness exponent

    saturation time tx L dynamic exponent z= /

    systemsizesL = 80

    100125

    140256512

    w

    /L

    scaling plot, data collapse

    =1 (slope selection)

    z=4=1/4

    relatively slowcoarsening

  • 7/29/2019 16657596-MBEgrowth

    19/26

    for the morphology and coarsening dynamics

    64ML

    (lsed L)

    sed drivencoarsening

    128ML

    (lsed 1)

    noise assistedcoarsening

    128ML

    absence of

    slope selection,

    rough surface

    hindered sed,

    noise assisted

    coarsening

    128ML

  • 7/29/2019 16657596-MBEgrowth

    20/26

    characteristic exponents:

    for 1

  • 7/29/2019 16657596-MBEgrowth

    21/26

    anisotropicbinding structure:

    011

    110

    example system:

    lattice, (001) orientation:alternating layers (square lattices) of, e.g.,

    representation, four sub-lattices

    observed:

    - c(2x2), (2x1) Cd-terminated

    - (2x1) Te-terminated

  • 7/29/2019 16657596-MBEgrowth

    22/26

    properties of

    maximum coverage 50 %

    two competing vacancy structures: checkerboard or missing rows

    simultaneous occupation

    of NN sites in y-direction,

    i.e. [1-10], is(extremely unfavorable)

    TeCd

    xempty

    electron counting rule, DFT

    [Neureiter et al., 2000]

    small difference in surface energies

    favors checkerboard c(2x2)-order at low temperatures

    e.g. DFT: E 0.008 eV per site in CdTe [Gundel, private comm.]

    0.03 eV ZnSe

  • 7/29/2019 16657596-MBEgrowth

    23/26

    isotropic N.N. interaction

    additional Te dimerization

    : coverage 3/2 observed under flux of excess Teallows for Te deposition on a perfect c(2x2) Cd surface

    weakly bound, highly mobile Te-atoms on the surface, e.g.

    at a Cd-site (Te-trimers)

    bound to a single Cd (neutralizes repulsion)temporary position

    time consuming explicit treatment / mean field like Te* reservoir

    for elementary processes = o = 1012/s

    choice of parameters: qualitative features, plausibility argumentssemi-quantitative comparison,prospective first principle results

  • 7/29/2019 16657596-MBEgrowth

    24/26

    alternating pulses (1s)of Cd and Te

    flux: 5ML/sdead time: 0.1s

    at high temperature

    experiment [Faschinger, Sitter] simulation [M. Ahr, T. Volkmann]

    overcome at lower T due to presence of highly mobile, weakly bound Te*

  • 7/29/2019 16657596-MBEgrowth

    25/26

    Non-equilibrium growth - Molecular Beam Epitaxy (MBE)

    several levels of theoretical description

    following talks: continuum descriptions, multi-scale approach,...

    deposition and transient kinetics

    thermally activated processes, Arrhenius dynamics

    problems and limitations

    mound formation and coarsening dynamics

    II) (ALE) growth of II-VI(001) systems

  • 7/29/2019 16657596-MBEgrowth

    26/26

    application of KMC method in off-lattice modelstreatment of

    - hetero-epitaxy, mismatched lattices

    - formation of dislocations

    - strain-induced island growth

    - surface alloys of immiscible materials