16. cramer rao bounds - rebecca willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-crlb.pdfthe...

35
16. Cramer Rao Bounds ECE 830, Spring 2014 1 / 35

Upload: hoangtruc

Post on 18-Mar-2018

228 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

16. Cramer Rao BoundsECE 830, Spring 2014

1 / 35

Page 2: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

The Cramer-Rao Lower Bound

The Cramer-Rao Lower Bound (CRLB) sets a lower bound on thevariance of any unbiased estimator. This can be extremely usefulin several ways:

1. If we find an estimator that achieves the CRLB, then we knowthat we have found an MVUE estimator!

2. The CRLB can provide a benchmark against which we cancompare the performance of any unbiased estimator (We knowwe’re doing very well if our estimator is “close” to the CRLB)

3. The CRLB enables us to rule-out impossible estimators. Thatis, we know that it is physically impossible to find an unbiasedestimator that beats the CRLB. This is useful in feasibilitystudies.

4. The theory behind the CRLB can tell us if an estimator existswhich achieves the bound.

2 / 35

Page 3: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

The CRLB in a Nutshell

We wish to estimate a parameter

θ∗ = [θ∗1, θ∗2, · · · , θ∗p]>.

What can we saw about the (co)variance of any unbiased

estimator θ, where E[θi

]= θ∗i , i = 1, · · · , p?

The CRLB tells us that

Var(θi) ≥[I−1(θ∗)

]ii

where I(θ∗) is the Fisher Information Matrix:

[I(θ∗)]ij = −E[∂2log p(x|θ)∂θi∂θj

∣∣∣θ=θ∗

], i, j = 1, . . . , p

3 / 35

Page 4: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Fisher Information Matrix

Definition: Fisher Information Matrix

For θ∗ ∈ Rp, the Fisher Information Matrix is

I(θ∗) = E

[(∂

∂θlog p(x|θ)

)(∂

∂θlog p(x|θ)

)> ∣∣∣θ=θ∗

]

= −E[

∂2

∂θ∂θ>log p(x|θ)

∣∣∣θ=θ∗

]∈ Rp×p.

so that

[I(θ∗)]j,k = −E[∂2 log p(x|θ)∂θj∂θk

∣∣∣θ=θ∗

]Note that if θ∗ ∈ R (i.e. p = 1), then

I(θ∗) := E

[(∂ log p(x|θ)

∂θ

)2 ∣∣∣θ=θ∗

]= −E

[∂2 log p(x|θ)

∂θ2

∣∣∣θ=θ∗

].

4 / 35

Page 5: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Note about vector calculus

Recall that if φ : Rp −→ R, then

∂φ

∂θ:=

[∂φ

∂θ1· · · ∂φ

∂θp

]>,

∂φ

∂θ>:=

[∂φ

∂θ1· · · ∂φ

∂θp

]≡(∂φ

∂θ

)>,

∂2φ

∂θ∂θ>:=

∂2φ∂θ21

∂2φ∂θ1∂θ2

· · · ∂2φ∂θ1∂θp

∂2φ∂θ2∂θ1

∂2φ∂θ22

· · · ∂2φ∂θ2∂θp

......

. . ....

∂2φ∂θp∂θ1

∂2φ∂θp∂θp

· · · ∂2φ∂θ2p

5 / 35

Page 6: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Theorem: Cramer-Rao Lower Bound

Assume that the pdf p(x|θ) satisfies the “regularity” condition

E[∂ log p(x|θ)

∂θ

]= 0∀θ.

Then the covariance matrix of any unbiased estimator θ satisfies

Cθ � I−1(θ∗).

Moreover, an unbiased estimator θ(x) may be found that attains thebound ∀θ∗ if and only if

∂ log p(x|θ)∂θ

= I(θ)(θ(x)− θ).

6 / 35

Page 7: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Positive semi-definite matrices

Recall that A � B means that A−B � 0, or A−B is a positivesemi-definite (PSD) matrix, so that x>(A−B)x ≥ 0 for any x.Let’s say A−B is a PSD matrix, and write its eigendecompositionas

A = V >ΛV = V >(ΛA − ΛB)V

where V is an orthogonal matrix and Λ,ΛA and ΛB are diagonal.Then

0 ≤ x>(A−B)x =x>V >(ΛA − ΛB)V x = y>(ΛA − ΛB)y

where y := V x is x transformed or rotated into the coordinatesystem corresponding to V . Since the above must hold for all x,we have that A−B is PSD if y>(ΛA − ΛB)y ≥ 0 for all y, whichoccurs if (ΛA)ii ≥ (ΛB)ii for all i.

7 / 35

Page 8: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

In the context of the CRLB, this suggests that we can compute theeigendecomposition of C

θ− I−1(θ∗) = V >(ΛC −ΛI)V , rotate any

θ into the coordinate system corresponding to V to get ψ = V θ.First note that C

ψis diagonal (i.e. we have diagonalized the

covariance matrix), and then

Cθ�I−1(θ∗)

= CV θ

= V CθV > �V I−1(θ∗)V = I−1(ψ∗)

Var(ψi) ≥[I−1(ψ∗)]ii ∀i

8 / 35

Page 9: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Example: DC Level in White Gaussian Noise

xn = A+ wn, wniid∼ N (0, σ2). Assume σ2 is known, and we wish

to find the CRLB for θ = A. First check the regularity condition:

E[∂ log p(x|θ)

∂θ

]

= E

∂ log(1/(2πσ2)N/2 exp{

(1/2σ2)∑N

n=1(xn −A)2}

)

∂A

= E

[∂

(1/2σ2)∑N

n=1(xn −A)2

∂A

]

= E

[

1

σ2

N∑n=1

(xn −A)

]

=

1

σ2

N∑n=1

(Exn −A) = 0∀A

9 / 35

Page 10: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Example: (cont.)

Now we can compute the Fisher Information:

I(θ) = −E[∂2 log p(x|θ)

∂θ2

]

=

− E

∂[

1σ2

∑Nn=1(xn −A)

]∂A

=

EN

σ2=N

σ2

so the CRLB isCRLB =

σ2/N.

∴ Any unbiased estimator A has Var(A) ≥

σ2/N

. But we knowthat A = (1/N)

∑Nn=1 xn has Var(A) =

σ2/N =⇒ A = x is theMVUE estimator.

10 / 35

Page 11: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Proof of CRLB Theorem (Scalar case, p = 1)Now let’s derive the CRLB for a scalar parameter θ where the pdfis p(x|θ). Consider any unbiased estimator of θ:

θ(x) : E[θ(x)

]=

∫θ(x)p(x|θ)dx = θ.

Now differentiate both sides∫θ(x)

∂p(x|θ)∂θ

dx =∂θ

∂θ

or ∫θ(x)

∂ log p(x|θ)∂θ

p(x|θ)dx = 1.

Now exploiting the regularity condition, since∫θ∂ log p(x|θ)

∂θp(x|θ)dx =

θE[∂ log p(x|θ)

∂θ

]= 0

we have ∫

(θ(x)− θ)

∂ log p(x|θ)∂θ

p(x|θ)dx = 1.

11 / 35

Page 12: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Proof (cont.)

Now apply the Cauchy-Schwarz inequality to the integral above

1 =

(∫(θ(x)− θ)∂ log p(x|θ)

∂θp(x|θ)dx

)2

∫(θ(x)− θ)2p(x|θ)dx︸ ︷︷ ︸

Var(θ(x))

·∫ (

∂ log p(x|θ)∂θ

)2

p(x|θ)dx︸ ︷︷ ︸I(θ)

⇒ Var(θ(x)) ≥ 1

E[(

∂ log p(x|θ)∂θ

)2]

12 / 35

Page 13: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Proof (cont.)

Now note that

E

[(∂ log p(x|θ)

∂θ

)2]

= −E[∂2 log p(x|θ)

∂θ2

]Why? Regularity condition

0 = E[∂ log p(x|θ)

∂θ

]=

∫∂ log p(x|θ)

∂θp(x|θ)dx

⇒ 0 =∂

∂θ

∫∂ log p(x|θ)

∂θp(x|θ)dx

⇒ 0 =

∫ [∂2 log p(x|θ)

∂θ2p(x|θ) +

∂ log p(x|θ)∂θ

∂p(x|θ)∂θ

]dx

13 / 35

Page 14: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Proof (cont.)

Rearranging terms we find

−E[∂2 log p(x|θ)

∂θ2

]=

∫∂ log p(x|θ)

∂θ

∂ log p(x|θ)∂θ

p(x|θ)dx

=

E

[(∂ log p(x|θ)

∂θ

)2]

Thus,

Var(θ(x)) ≥ 1

−E[∂2 log p(x|θ)

∂θ2

]

14 / 35

Page 15: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

The CRLB is not always attained.

Example: Phase Estimation (Kay p 33)

xn = A cos(2πf0n+ φ) + wn, n = 1, · · · , N

The amplitude and frequency are assumed known, and we want toestimate the phase φ. We assume

wn ∼ N (0, σ2)iid.

p(x|φ) =1

(2πσ2)N/2exp

{− 1

2σ2

N∑n=1

(xn −A cos(2πf0n+ φ))2

}

15 / 35

Page 16: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Example: (cont.)

∂ log p(x|φ)

∂φ=

− A

σ2

N∑n=1

(xn sin(2πf0n+ φ)

−A2

sin(4πf0n+ 2φ)

)

∂2 log p(x|φ)

∂φ2=

− A

σ2

N∑n=1

(xn cos(2πf0n+ φ)

−A2

cos(4πf0n+ 2φ)

)

−E[∂2 log p(x|φ)

∂φ2

]=

A

σ2

N∑n=1

(A cos2(2πf0n+ φ)− A

2cos(4πf0n+ 2φ)

)

=

A2

σ2

N∑n=1

(1/2 + 1/2 cos(4πf0n+ 2φ)

− cos(4πf0n+ 2φ))

16 / 35

Page 17: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Example: (cont.)

Since 1N

∑cos(4πf0n) ≈ 0 for f0 not near 0 or 1/2,

I(φ) ≈

NA2

2σ2

Var(φ) ≥

2σ2

NA2

In this case, it can be shown that there does not exist a g such that

∂ log p(x|φ)

∂φ=

I(φ)(g(x)− φ)

Therefore an unbiased phase estimator that attains the CRLB doesnot exist. However, a MVUE estimator may still exist – only itsvariance will be larger than the CRLB. Sufficient statistics can helpus determine whether a MVUE still exists.

17 / 35

Page 18: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

CRLB For Signals in White Gaussian Noise

(Kay p 35)

xn = sn(θ) + wn, n = 1, · · · , N

p(x|θ) =1

(2πσ2)N/2exp

{− 1

2σ2

N∑n=1

(xn − sn(θ))2

}∂ log p(x|θ)

∂θ=

1

σ2

N∑n=1

(xn − sn(θ))∂sn(θ)

∂θ

∂2log p(x|θ)∂θ2

=1

σ2

N∑n=1

[(xn − sn(θ))

∂2sn(θ)

∂θ2−(∂sn(θ)

∂θ

)2]

E[∂2log p(x|θ)

∂θ2

]= − 1

σ2

N∑n=1

(∂sn(θ)

∂θ

)2

18 / 35

Page 19: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

CRLB For Signals in WGN, cont.

Var(θ) ≥ σ2∑Nn=1

(∂sn(θ)∂θ

)2Signals that change rapidly as θ changes result in more accurateestimators.

19 / 35

Page 20: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Definition: Efficient estimator

An estimator which is unbiased and attains the CRLB is said to beefficient.

Example:

Sample-mean estimator is efficient.

Example: Efficient estimators are MVUE, but MVUE may notbe efficient.

Suppose three unbiased estimators exist for a parameter θ.

Efficient and MVUE MVUE but not efficient

20 / 35

Page 21: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Example: Sinusoidal Frequency Estimation (Kay p 36)

sn(f0) = A cos(2πf0n+ φ), 0 < f0 < 1/2

xn = sn(f0) + wn, n = 1, · · · , N

A, φ known, f0 unknown.

Var(f0) ≥

σ2

A2∑N

n=1 [2πn sin(2πf0n+ φ)]2

(from CRLB for signals in AWGN earlier.) Suppose: A2/σ2 = 1(SNR), N = 10, φ = 0.

Some frequencies are easier toestimate (lower CRLB) thanothers!

21 / 35

Page 22: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Example: DC Level in White Gaussian Noise (Kay p 40).

xn =A+ wn, wn ∼ N (0, σ2) n = 1, · · · , Nx =A1 + w w ∼ N (0, σ2IN×N )

θ =[A, σ2]> A and σ2 both unknown

log p(x|θ) =

− N

2log 2π − N

2log σ2 − 1

2σ2

N∑n=1

(xn −A)2

∂ log p(x|θ)∂A

=

1

σ2

N∑n=1

(xn −A)

∂ log p(x|θ)∂σ2

=

− N

σ2+

1

2σ4

N∑n=1

(xn −A)2

∂2log p(x|θ)∂A2

=

− N

σ2E−→ −N

σ2

22 / 35

Page 23: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Example: (cont.)

∂2log p(x|θ)∂A∂σ2

=

− 1

σ4

N∑n=1

(xn −A)E−→ 0

∂2log p(x|θ)∂(σ2)2

=

N

2σ4− 1

σ6

N∑n=1

(xn −A)2E−→ − N

2σ4

⇒ I(θ) =

[Nσ2 0

0 N2σ4

]

Var(A) ≥

σ2

N

Var(σ2) ≥

2σ4

N

23 / 35

Page 24: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Remarks

Note that CRLB for A is the same whether or not σ2 is known.This happens in this case due to the diagonal nature of the FisherInformation Matrix.

In general the Fisher Information Matrix is not diagonal andconsequently the CRLBs will depend on other unknown parameters.

24 / 35

Page 25: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

CRLBs for Subspace Models

We saw before that we could compute a minimum varianceunbiased estimator (MVUE) for θ in the subspace model

x = Hθ + w

by using sufficient statistics and the Rao-Blackwell Theorem.

Does this estimator achieve the Cramer-Rao Lower Bound?

25 / 35

Page 26: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Linear models

General Form of Linear Model (LM)

x = Hθ + w

x = observation vectorH = known matrix (“observation” or “system” matrix)θ = unknown parameter vectorw = vector of white Gaussian noise w ∼ N (0, σ2I)Probability Model for LM

x = Hθ + w

x ∼ p(x|θ) = N (Hθ, σ2I)

26 / 35

Page 27: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

The CRLB and MVUE EstimatorRecall

θ = g(x)

achieves the CRLB if and only if

∂ log p(x|θ)∂θ

= I(θ)(g(x)− θ)

In the case of the linear model,

∂ log p(x|θ)∂θ

=

− 1

2σ2∂

∂θ

[x>x− 2x>Hθ + θ>H>Hθ

]

Now using identities

∂b>θ

∂θ= b and

∂θ>Aθ

∂θ= 2Aθ for A symmetric

we have∂ log p(x|θ)

∂θ=

1

σ2[H>x−H>Hθ]

.

27 / 35

Page 28: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Now

I(θ) =E

[(∂

∂θlog p(x|θ)

)(∂

∂θlog p(x|θ)

)>]=

1

σ4E[H>(x−Hθ)(x−Hθ>)H

]

=

1

σ4H>E

[(x−Hθ)(x−Hθ>)

]H

=

H>H

σ2

Assuming H>H is invertible, we can write

∂ log p(x|θ)∂θ

=H>H

σ2︸ ︷︷ ︸I(θ)

(H>H)−1H>x︸ ︷︷ ︸θ(x)

−θ

θ = (H>H)−1H>x is MVUE Estimator for x = Hθ + w

28 / 35

Page 29: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Theorem: MVUE Estimator for the LM

If the observed data can be modeled as

x = Hθ + w

where w ∼ N (0, σ2I) and H>H is invertible, then the MVUEestimator is

θ = (H>H)−1H>x = H#x,

the covariance of θ is

= σ2(H>H)−1

and θ attains the CRLB. Note:

θ ∼ N (θ, σ2(H>H)−1)

29 / 35

Page 30: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Linear Model Examples

Example: Curve fitting.

x(tn) = θ1 + θ2tn + · · ·+ θptp−1n + w(tn), n = 1, · · · , N

w(tn)iid∼ N (0, σ2)

x = [x(t), · · · , x(tn)]>

θ = [θ1, θ2, · · · , θp]>

H =

1 t1 · · · tp−11

1 t2...

......

1 tN tp−1N

← Vandermode Matrix

The MVUE estimator for θ is

θ = (H>H)−1H>x

30 / 35

Page 31: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Example: System Identification.

There is an FIR filter h, and we want to know its impulse response.To estimate this, we send a probe signal u through the filter andobserve

x[n] =

m−1∑k=0

h[k]u[n− k] + w[n], n = 0, · · · , N − 1.

Goal: given x and u estimate h. In matrix form

x =

u[0] 0 · · · 0u[1] u[0] · · · 0

......

...u[N − 1] u[N − 2] · · · u[N −m]

︸ ︷︷ ︸H

h[0]

...

h[m− 1]

︸ ︷︷ ︸θ

+w

θ = (H>H)−1H>x← MVUE estimator

Cov(θ) = σ2(H>H)−1 = Cθ

31 / 35

Page 32: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Example: (cont.)

An important question in system id is how to chose the input u[n]to “probe” the system most efficiently. First note that

Var(θi) = e>i Cθei

where ei = [0, · · · , 0, 1, 0, · · · , 0]>. Also, since C−1θ

is symmetricand positive definite, we can factor it using Cholesky factorization:

C−1θ

= D>D,

where D is invertible. Note that

(e>i D>(D>)−1ei)

2 = 1

32 / 35

Page 33: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Example: (cont.)

The Schwarz inequality shows

1 = (e>i D>(D>)−1ei)

2

= 〈Dei, (D>)−1ei〉

(e>i D>Dei)(e

>i

((D>)−1

)>(D>)−1ei)

(1)

=

(e>i D>Dei)(e

>i (D>D)−1ei)

=

(e>i C−1θei)(e

>i Cθei)

⇒ Var(θi) ≥

1

(e>i C−1θei)

=σ2

[H>H]ii

The minimum variance is achieved when equality is attained abovein (1).

33 / 35

Page 34: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

Example: (cont.)

This happens only if ξ1 = Dei is proportional to ξ2 = (D>)−1ei.That is ξ1 = cξ2for some constant c. Equivalently

D>Dei = ciei for i = 1, 2, · · · ,m

D>D = C−1θ

=H>H

σ2

D>Dei =H>H

σ2ei = ciei

Combining these equations in matrix form

H>H = σ2

c1 0 0

0. . . 0

0 0 cm

.∴ In order to minimize the variance of the MVUE estimator, u[n]should be chosen to make H>H diagonal.

34 / 35

Page 35: 16. Cramer Rao Bounds - Rebecca Willettwillett.ece.wisc.edu/wp-uploads/2016/01/16-CRLB.pdfThe Cramer-Rao Lower Bound The Cramer-Rao Lower Bound (CRLB) sets a lower bound on the variance

When the CRLB Doesn’t Help

The Cramer-Rao lower bound gives a necessary and sufficientconditionfor the existence of an efficient estimator. However,MVUEs are not necessarily efficient. What can we do in suchcases?

The Rao-Blackwell theorem, when applied in conjunction with acomplete sufficient statistic, gives another way to find MVUEs thatapplies even when the CRLB is not defined.

35 / 35