1254108407_m2v104_fs_01e

Upload: vincent-lau

Post on 05-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 1254108407_M2V104_FS_01e

    1/21

    NSS Mathematics in Action Module 2 Vol.1 Full Solutions

    52

    4 More about Trigonometric

    Functions (I)

    Classwork

    Classwork (p. 4.3)(a) 2 rad (b) 4 rad

    Quick Practice

    Quick Practice 4.1 (p. 4.5)

    (a)

    rad5

    3

    rad180

    108108

    rad,180

    1Since

    =

    =

    =

    (b)

    rad3

    rad180

    540540

    rad,180

    1Since

    =

    =

    =

    Quick Practice 4.2 (p. 4.5)

    (a)

    =

    =

    =

    40

    9

    1802rad

    9

    2

    ,180radSince

    (b)

    =

    =

    =

    342

    10

    18019rad

    10

    19

    ,180radSince

    (c)

    fig.)sig.3to(cor.143

    1805.2rad.52

    ,180

    rad1Since

    =

    =

    =

    Quick Practice 4.3 (p. 4.7)

    (a)

    cm

    2

    5

    cm

    12

    56

    =

    =)

    AB

    (b) Area of sectorOAB

    2

    22

    cm2

    15

    cm12

    56

    2

    1

    =

    =

    Quick Practice 4.4 (p. 4.8)

    (a) ROS

    rad3

    rad180

    60

    =

    =

    (b) Area of the shaded region

    fig.)sig.3to(cor.cm181.0

    cm3

    sin)2(2

    1

    3)2(

    2

    1

    2

    222

    =

    =

    Quick Practice 4.5 (p. 4.9)

    (a) LetAB =x cm andBOC= rad.In sectorOAD, we have

    2

    3

    6

    =

    =

    In sectorOBC, we have

    2

    1062

    3

    102

    3

    10

    =

    =+

    +=

    +=

    x

    x

    x

    x

    OB = (2 + 3) cm = cm5

    rad2=BOC

    (b) Area of the shaded region= area of sectorOBC area of sectorOAD

    = 222 cm232

    125

    2

    1

    = 2cm16

    Quick Practice 4.6 (p. 4.15)

    (a) Let rbe the length ofOP. Then, 543 22 =+=r .

    By definition, we have

    4

    3cot

    3

    5sec

    4

    5cosec

    3

    4tan

    5

    3cos

    5

    4sin

    ==

    ==

    ==

    ==

    ==

    ==

    y

    x

    x

    r

    y

    r

    x

    y

    r

    x

    r

    y

  • 8/2/2019 1254108407_M2V104_FS_01e

    2/21

    4 More about Trigonometric Functions (I)

    53

    2

    2

    22

    242

    cos

    sin

    1sincos

    cosec)coscos(

    =

    =

    (b) Let rbe the length ofOP. Then, 133)2( 22 =+=r .

    By definition, we have

    3

    2

    3

    2cot

    2

    13

    2

    13sec

    3

    13cosec

    2

    3

    2

    3tan

    13

    2

    13

    2cos

    13

    3sin

    =

    ==

    =

    ==

    ==

    =

    ==

    =

    ==

    ==

    y

    x

    x

    r

    y

    r

    x

    y

    r

    x

    r

    y

    Quick Practice 4.7 (p. 4.17)

    2

    3

  • 8/2/2019 1254108407_M2V104_FS_01e

    3/21

    NSS Mathematics in Action Module 2 Vol.1 Full Solutions

    54

    1

    )cosec(sin

    2

    3secsin

    2

    3secsin

    2

    3sec

    2

    3cos

    =

    =

    =

    =

    +

    (b)

    cot

    sin

    cossincossin

    cossin

    sin

    1

    sin

    cos

    cos

    sinsin

    1

    cottan

    cosec

    2

    22

    2

    22

    =

    =

    +=

    +

    =+

    Quick Practice 4.10 (p. 4.21)

    L.H.S.

    R.H.S.

    1sin

    cot

    )cosec1(sin

    cosec1

    cosec1

    cosec1

    sin

    cosec1

    sin

    cosec1

    2

    2

    =

    =

    =

    +=

    +=

    1sin

    cot

    sin

    cosec1 2

    =

    +

    Quick Practice 4.11 (p. 4.22)

    (a)

    1sin

    cos

    sin

    1

    cotcosec

    )2(cot2

    3sec

    2

    2

    2

    22

    22

    =

    =

    =

    (b)

    Quick Practice 4.12 (p. 4.23)

    42

    2

    22

    2

    22

    2

    4

    2

    42

    21

    2

    )1(

    2

    )sin1(

    1sin1

    cos

    1cos

    secsec

    kk

    k

    k

    k

    +

    =

    =

    +=

    +=

    +

    Quick Practice 4.13 (p. 4.24)

    (a)

    32cotcosec

    1)cotcosec(2

    3

    1)cot)(coseccotcosec(

    1cotcosec

    coseccot1

    22

    22

    =

    =

    =+

    =

    =+

    xx

    xx

    xxxx

    xx

    xx

    (b)

    =

    =+

    (2)3

    2cotcosec

    (1)2

    3cotcosec

    LL

    LL

    xx

    xx

    (1) + (2):

    12

    13cosec

    6

    13cosec2

    =

    =

    x

    x

    (1) (2):

    12

    5cot

    6

    5cot2

    =

    =

    x

    x

    Quick Practice 4.14 (p. 4.27)

    (a)

    The graph repeats itself at intervals of3

    2.

    y = cosec 3x is a periodic function with period3

    2.

    (b) From the graph,y = cosec 3x does not have maximum or

    minimum values. Also, it cannot take any value in the

    interval (1, 1). Thus, the range is < cosec 3x1 or1 cosec 3x < + .

    Quick Practice 4.15 (p. 4.29)

    (a) Draw the straight liney = 1 on the graph ofy = cosecx.

    The two graphs intersect atx =2

    3for 0 x 2.

    The solution of cosecx = 1 for 0 x 2isx =2

    3.

  • 8/2/2019 1254108407_M2V104_FS_01e

    4/21

    4 More about Trigonometric Functions (I)

    55

    (b)

    xx

    xx

    x

    cosecsin

    sin

    1sin

    1sin2

    =

    =

    =

    The two graphs intersect atx =2

    and

    2

    3

    for 0 x 2.

    The solutions of sin2x = 1 for 0 x 2arex =2

    or

    2

    3.

    Quick Practice 4.16 (p. 4.35)

    (a) cotx=2.5

    tanx = 0.4

    x 21.80 or 180 + 21.80

    x = 8.21 (cor. to 3 sig. fig.) or 202 (cor. to 3 sig.

    fig.)

    (b) Let 2x+ 60 =.

    Since 0 x 360, 60 780.

    Now, we solve the equation 2 sin 1 = 0 for 60

    780.

    =

    +

    ++=

    =

    =

    750or510,390,150

    30720

    or)30180(360,30360,30180

    2

    1sin

    01sin2

    Then,

    =

    =+

    345or225,165,45

    750or510,390,150602

    x

    x

    Quick Practice 4.17 (p. 4.36)

    +

    =

    =

    =+

    =+

    =+=+

    46.348or54.191

    54.11360or54.11180

    (rejected)2or5

    1sin

    2

    1or5cosec

    0)1cosec2)(5cosec(

    05cosec9cosec2

    03cosec92cosec203cosec9cot2

    2

    2

    2

    x

    x

    x

    x

    xx

    xx

    xxxx

    = 192x (cor. to 3 sig. fig.) or 348 (cor. to 3 sig. fig.)

    Quick Practice 4.18 (p. 4.36)

    0)1cossin2(cos

    0coscossin2

    sin

    coscos2

    cotcos2

    2

    2

    2

    =+

    =+

    =

    =

    xxx

    xxx

    x

    xx

    xx

    When cosx = 0,

    2

    3or

    2

    =x

    When 2sinx cosx + 1 = 0,

    4

    7or

    4

    3

    1tan

    0)cos(sin

    0)cos(sincossin2

    2

    22

    =

    =

    =+

    =++

    x

    x

    xx

    xxxx

    4

    7or

    2

    3,

    4

    3,

    2

    =x

    Exercise

    Exercise 4A (p. 4.10)

    Level 1

    1. (a)

    rad

    5

    rad180

    3636

    rad,180

    1Since

    =

    =

    =

    (b)

    rad5

    4

    rad180

    144144

    rad,180

    1Since

    =

    =

    =

    (c)

    rad4

    9

    rad180

    405405

    rad,180

    1Since

    =

    =

    =

    2. (a)

    fig.)sig.3to(cor.rad1.22

    rad180

    7070

    rad,180

    1Since

    =

    =

    =

    (b)

    fig.)sig.3to(cor.rad0.393

    rad180

    22.522.5

    rad,180

    1Since

    =

    =

    =

  • 8/2/2019 1254108407_M2V104_FS_01e

    5/21

    NSS Mathematics in Action Module 2 Vol.1 Full Solutions

    56

    (c)

    fig.)sig.3to(cor.rad2.27

    rad180

    130130

    rad,180

    1Since

    =

    =

    =

    3. (a)

    =

    =

    =

    270

    1805.1rad1.5,180radSince

    (b)

    =

    =

    =

    288

    5

    1808rad

    5

    8

    ,180radSince

    (c)

    fig.)sig.3to(cor.19.8

    180

    7

    1rad

    7

    1

    ,180

    rad1Since

    =

    =

    =

    4.

    5. Angle sum of triangle = rad

    rad18

    7

    rad9

    4

    6

    =

    =C

    6. Let A =x.Then B = 2x, C= 3x and D = 4x.

    rad5

    rad2432

    =

    =+++

    x

    xxxx

    rad5

    =A , rad

    5

    2=B , rad

    5

    3=C ,

    rad5

    4=D

    7. (a)

    cm2

    cm12

    6

    =

    =)CD

    (b) Area of sectorOCD

    2

    22

    cm2

    3

    cm12

    62

    1

    =

    =

    8. (a) Let XOY= rad.

    5

    2

    20102

    1 2

    =

    =

    rad5

    2=XOY

    (b) Perimeter of the sector

    cm)4(20

    cm5

    210102

    +=

    +=

    ++=)

    XYOYOX

    9. (a) Area of OAB = 10 cm2

    fig.)sig.3to(cor.5.28

    100.8sin2

    1 2

    =

    =

    r

    r

    (b) Area of sectorOAB

    2

    22

    cm1514.11

    cm8.028.52

    1

    =

    =

    Area of the shaded region

    = area of sectorOAB area of OAB

    fig.)sig.3to(cor.cm1.15

    cm)101514.11(

    2

    2

    =

    =

    10. Let OM= rcm and MON= rad.

    (2)82

    1

    (1)4

    2KK

    KK

    =

    =

    r

    r

    4

    22

    1:

    )1(

    )2(

    =

    =

    r

    r

    By substituting r= 4 into (1), we have

    1

    44

    =

    =

    rad1=MON

    11. (a) Let COD = rad. Area of the shaded region = 24 cm2

    5.1

    2422

    16

    2

    1 22

    =

    =

    rad5.1=COD

    (b) Perimeter of the shaded region

    cm20

    cm]2)26(5.165.12[

    =

    ++=

    +++= BDACCDAB))

    12. (a))2(

    2+=

    +=

    r

    rrP

    (b) IfP=A,

    2

    4

    42

    2

    1)2( 2

    =

    =+

    =+

    r

    r

    rr

    Level 2

    13. (a) (i) AC= rsin

    Angle (in degree) 30 45 90 120 150

    Angle (in radian)6

    4

    2

    3

    2

    6

    5

  • 8/2/2019 1254108407_M2V104_FS_01e

    6/21

    4 More about Trigonometric Functions (I)

    57

    cossin2

    1

    sincos2

    1

    2

    1ofArea

    2r

    rr

    ACOCOAC

    =

    =

    =(ii)

    (iii) Area of the shaded region

    = area of sectorOAB area of OAC

    )cossin(2

    1

    cossin2

    1

    2

    1

    2

    22

    =

    =

    r

    rr

    (b) Area of the shaded region > 0

    cos

    1sin

    cossin

    0)cossin(2

    1 2

    >r

    14. (a) Let OA = rcm and COD = rad.

    3

    4)1(

    =+r (1)

    (rejected)7

    3or3

    0)37)(3(

    09187

    169189

    9

    16)1(

    9

    16

    2

    1

    )1(2

    1

    2

    22

    2

    2

    2

    2

    =

    =+

    =

    =++

    =+

    =+

    r

    rr

    rr

    rrr

    r

    r

    r

    r

    By substituting r= 3 into (1), we have

    rad3

    3

    3

    4)13(

    =

    =

    =+

    COD

    (b) Area of the shaded region

    2

    222

    cm6

    7

    cm3

    321

    3)13(

    21

    sectorofareasectorofarea

    =

    +=

    = OABOCD

    15.

    cm3

    25

    cm6

    510

    =

    =)

    AB

    cm6

    25

    cm3

    25)(2

    =

    =

    AN

    AN

    In OAN,

    cm6

    2510

    2

    2

    22

    =

    = ANOAON

    (Pyth. theorem)

    Volume of the cone

    fig.)sig.3to(cor.cm165

    cm

    6

    2510

    6

    25

    3

    1

    3

    3

    2

    2

    2

    =

    =

    16. (a) BC=BEandBC=EC

    EBCis an equilateral triangle.

    EBC= rad3

    (b) Area of the shaded region= area of sectorBEC+ area of sectorCBE

    area of EBC

    fig.)sig.3to(cor.cm614.0

    cm3

    sin12

    1

    31

    2

    1

    31

    2

    1

    2

    2222

    =

    +=

    17. (a)

    rad6

    2

    1sin

    4

    2)cos(90

    =

    =

    =

    (b) Area of the shaded region= area of rectanglePQRS area of sectorPST

    area of PQT

    fig.)sig.3to(cor.cm347.0

    cm3

    tan2221

    64

    2142

    2

    22

    =

    =

    18.

    3

    2

    3

    2

    32

    3

    12

    6cos

    =

    ==

    =

    =

    AOB

    COD

    OOD

    OOD

    Length of the thread))

    DYCAXBBCAD +++=

    fig.)sig.3to(cor.cm64.8

    cm3

    49

    3

    236122 22

    =

    ++=

    Exercise 4B (p. 4.30)

    Level 1

    1. Let rbe the length ofOA. Then, r 2952 22 =+= .

    By definition, we have

    sin

    29

    5==

    r

    y

    cos 29

    2==

    r

    x

  • 8/2/2019 1254108407_M2V104_FS_01e

    7/21

    NSS Mathematics in Action Module 2 Vol.1 Full Solutions

    58

    tan 2

    5==

    x

    y

    cosec 5

    29==

    y

    r

    sec

    2

    29==

    x

    r

    cot 5

    2==

    y

    x

    2. Let rbe the length ofOB. Then, r 587)3( 22 =+= .

    By definition, we have

    sin 58

    7==

    r

    y

    cos 58

    3==

    r

    x

    tan 37==

    xy

    cosec 7

    58==

    y

    r

    sec 3

    58==

    x

    r

    cot 7

    3==

    y

    x

    3. Let rbe the length ofOC. Then,

    r 3.1)2.1()5.0(22

    =+= .By definition, we have

    sin 13

    12

    3.1

    2.1=

    ==

    r

    y

    cos 13

    5

    3.1

    5.0=

    ==

    r

    x

    tan 5

    12

    5.0

    2.1=

    ==

    x

    y

    cosec 12

    13

    2.1

    3.1=

    ==

    y

    r

    sec 5

    13

    5.0

    3.1

    === x

    r

    cot 12

    5

    2.1

    5.0=

    ==

    y

    x

    4. Let rbe the length ofOD. Then, r 11)3()2( 22 =+= .

    By definition, we have

    sin 11

    3==

    r

    y

    cos 11

    2==

    r

    x

    tan 2

    3==

    x

    y

    cosec 3

    11==

    y

    r

    sec

    2

    11==

    x

    r

    cot 3

    2==

    y

    x

    5. (a) 7

    9lies in quadrant III.

    7

    9sec

    is negative.

    (b)

    =

    6

    11tan

    6

    11tan

    6

    11lies in quadrant IV.

    6

    11tan

    is negative.

    i.e.

    6

    11tan

    is positive.

    (c) 36

    29lies in quadrant II.

    36

    29sin

    is positive.

    (d)3

    5cot

    3

    5cot

    =

    3

    5 lies in quadrant IV.

    3

    5cot

    is negative.

    i.e.

    3

    5cot

    is positive.

    6. sin is positive.

    lies in quadrant I or quadrant II.

    cot is negative.

    must lie in quadrant II.

    7.

    2

    3

  • 8/2/2019 1254108407_M2V104_FS_01e

    8/21

    4 More about Trigonometric Functions (I)

    59

    In particular, we may take r= 7 andy = 3.

    Since lies in quadrant III,x < 0.

    102

    )3(7 22

    22

    =

    =

    = yrx

    102

    7sec

    102

    3tan

    =

    =

    8.

    22

    3 0.

    62

    )1(5 22

    22

    =

    =

    = xry

    62tan = ,

    5

    1cos =

    3

    65

    6

    10

    5

    6

    62

    5

    11

    62

    cos1

    tan

    =

    =

    =

    =

    11. 05

    3tan

  • 8/2/2019 1254108407_M2V104_FS_01e

    9/21

    NSS Mathematics in Action Module 2 Vol.1 Full Solutions

    60

    lies in quadrant II

    5

    3tan =

    In particular, we may takex = 5 andy = 3.

    34

    3)5( 22

    22

    =

    +=

    += yxr

    34

    3sin = ,

    5

    34sec =

    25

    343

    5

    34

    34

    3secsin

    2

    2

    =

    =

    Case 2:

    lies in quadrant IV

    5

    3tan =

    In particular, we may takex = 5 andy = 3.

    34

    )3(5 22

    22

    =

    +=

    += yxr

    34

    3sin = ,

    5

    34sec =

    25

    343

    5

    34

    34

    3secsin

    2

    2

    =

    =

    12.

    1

    cossin

    cossin

    )cos)(sincos(sin

    cossin

    cossin

    22

    22

    2222

    22

    44

    =

    +=

    +=

    13. cosec2+ sec2 (tan + cot )2= (cosec2 cot2) + (sec2 tan2) 2= 1 + 1 2= 0

    14.

    2

    2

    cot

    1cosec

    sin

    sin11cosec

    sin

    )1cosec)(sin1(

    =

    =

    +=

    +

    15.

    xx

    xx

    x

    x

    x

    xxxx

    xxxxx

    seccosec

    cossin

    sin1

    cos

    sin

    cos

    1

    cos

    1

    cossin

    1

    )tan(seccos

    1

    cossin

    1

    3

    2

    3333

    22

    =

    =

    +=

    +

    16. R.H.S.

    L.H.S.

    sec

    1tan

    tantan)1(tan

    tantansec

    2

    2

    2422

    244

    =

    =

    +=

    +=

    =

    sec2 = sec4 tan4 tan2

    17. (a)4

    3cot

    6

    5sin

    +

    2

    1

    12

    1

    4cot

    6sin

    4cot

    6sin

    =

    =

    =

    +

    =

    (b)

    1

    12

    13

    sec

    13

    sec4

    tan3

    2sec

    =

    +=

    +=

    +

    =+

    (c)

    2

    1

    22

    14

    cosec4

    cos

    4cosec

    42cos

    4

    5cosec

    4

    7cos

    =

    =

    =

    ++

    =+

    18. (a) sin)sin( =

    (b)

    sin2

    3cos =

    +

    (c) sec)sec( =

  • 8/2/2019 1254108407_M2V104_FS_01e

    10/21

    4 More about Trigonometric Functions (I)

    61

    (d)

    cot

    2tan

    22tan

    2

    5tan

    =

    +=

    ++=

    +

    (e)

    cot

    )cot(

    )2cot()3cot(

    =+=

    ++=+

    (f)

    sec

    2cosec

    24cosec

    2

    7cosec

    2

    7cosec

    2

    7cosec

    =

    =

    =

    +=

    +=

    19.

    sec

    sin

    tan

    2

    5cos

    )2(tan

    =

    =

    +

    20.

    2

    5tan)(5cosec 22

    1

    cotcosec22

    =

    =

    21.

    The graph repeats itself at intervals of 2.

    2

    tanx

    y = is a periodic function with period 2.

    22.

    The graph repeats itself at intervals of.

    xy 2cosec2

    1= is a periodic function with period .

    23. Draw the straight liney = 1 on the graph of2

    cotx

    y = .

    The two graphs intersect at2

    =x for 0 x 2.

    The solution of cot 12

    =x

    for 0 x 2is2

    =x .

    Level 2

    24. cot = 2.5 < 0

    lies in quadrant II or quadrant IV.

    LetP(x,y) be a point on the terminal side ofand OP= r.

    Case 1:

    lies in quadrant II

    255.2cot ==

    In particular, we may takex = 5 andy = 2.

    29

    2)5( 22

    22

    =

    +=

    += yxr

    29

    2sin = ,

    29

    5cos =

    292942

    129

    52

    29

    2)1cos2(sin

    2

    2

    =

    =

    Case 2:

    lies in quadrant IV

    2

    5cot =

  • 8/2/2019 1254108407_M2V104_FS_01e

    11/21

    NSS Mathematics in Action Module 2 Vol.1 Full Solutions

    62

    In particular, we may takex = 5 andy = 2.

    29

    )2(5 22

    22

    =

    +=

    += yxr

    29

    2sin = ,

    29

    5cos =

    2929

    42

    129

    52

    29

    2

    )1cos2(sin

    2

    2

    =

    =

    25. cosec = 2 > 0

    lies in quadrant I or quadrant II.

    LetP(x,y) be a point on the terminal side ofand OP= r.

    cosec = 2

    In particular, we may take r= 2 andy = 1.

    Case 1:

    lies in quadrant I

    Since lies in quadrant I,x > 0.

    3

    12 22

    22

    =

    =

    = yrx

    2

    1sin = ,

    2

    3cos = ,

    3

    1tan =

    8

    3

    3

    3

    2

    1

    2

    3

    3

    1sincostan

    2

    2

    =

    =

    Case 2:

    lies in quadrant II

    Since lies in quadrant II,x < 0.

    3

    )1(2 22

    22

    =

    =

    = yrx

    2

    1sin = ,

    2

    3cos = ,

    3

    1tan =

    sincostan 2

    83

    33

    2

    1

    2

    3

    3

    12

    =

    =

    26.

    m=

    =

    =

    =

    =

    cot

    sin

    cos

    cossin

    sin1

    cos

    sin

    cossin

    1tan

    cossin

    1

    2

    27.

    )2(

    1

    )1(1

    1

    )sin1(1

    1

    cos1

    1

    1sec

    sec

    22

    22

    22

    44

    4

    =

    =

    =

    =

    28.

    =

    =+

    )2(2

    1cossin

    )1(1cossin

    22

    22

    KK

    KK

    xx

    xx

    (1) + (2):

    3

    2cosec

    2

    3sin

    2

    3sin2 2

    =

    =

    =

    x

    x

    x

    (1) (2):

    2sec

    2

    1cos

    2

    1cos2 2

    =

    =

    =

    x

    x

    x

    29.

    )sin1(tan

    )1(coscos

    )sin1)(1)(cos1cos(

    )1cos(

    )sin1(cos

    1cos

    2sin

    )sin1)(seccos(

    2sin

    )sin1)(sin1)(sec1(

    2sin

    )sin1)(sec1(

    22

    22

    222

    2

    2

    2

    4

    2

    222

    2

    224

    2

    44

    +=

    +

    ++=

    +

    +

    =

    +=

    +=

  • 8/2/2019 1254108407_M2V104_FS_01e

    12/21

    4 More about Trigonometric Functions (I)

    63

    30. sinx cosx (sinx + cosx)(secx + cosecx)

    xx

    xxxxxx

    xxxxxx

    cossin21

    coscossincossinsin

    )cosec)(seccossincos(sin

    22

    22

    +=

    +++=

    ++=

    xx

    xxxxxx

    cosecsec

    cossin21)cos(sincossin

    +

    +=+

    31. (1 + cosx + cotx + cosecx)(1 + sinx cosx)

    )sin1)(cossin1(

    cossincossinsin21

    sincosec

    1eccoscossincossinsin

    cotcos1eccoscossincossinsin

    cot1seccosin

    cos

    coscotcoscossincoscossin1

    2

    2

    2

    2

    2

    xxx

    xxxxx

    xx

    xxxxxx

    xxxxxxxx

    xxx

    x

    xxxxxxxx

    +++=

    ++++=

    +

    +++++=

    +++++=

    ++

    +++++=

    x

    xxxxxxx

    sin1coseccotcos1

    cossin1cossin1

    + +++=+ ++

    32. L.H.S.

    R.H.S.

    1

    sin

    sin

    )1(cossin

    1

    sin

    1

    sin

    cos

    sin

    1

    sin

    cos

    )](cosec)()[cotcosec(cot

    2

    2

    2

    2

    =

    =

    =

    =

    +

    =

    ++=

    x

    x

    xx

    xx

    x

    xx

    x

    xxxx

    (cotx cosecx)[cot (+x) cosec (+x)] = 1

    33. L.H.S.

    R.H.S.

    tan

    cos1

    )1(costan

    cos1

    tansin

    2

    3sin1

    2cotsin

    =

    =

    =

    =

    +

    ++

    =

    x

    x

    xx

    x

    xx

    x

    xx

    x

    x

    xx

    tan

    2

    3sin1

    2cotsin

    =

    +

    ++

    34. (a)

    The graph repeats itself at intervals of 2. y = cosec (x ) is a periodic function with

    period 2.

    (b) From the graph,y = cosec (x ) does not have

    maximum or minimum values. Also, it cannot take

    any value in the interval (1, 1). Thus, the range is

    < cosec (x ) 1 or 1 cosec (x ) < + .

    35. (a)

    The graph repeats itself at intervals of3

    2.

    xy 3sec2

    1= is a periodic function with period

    3

    2.

    (b) From the graph, xy 3sec21= does not have

    maximum or minimum values. Also, it cannot take

    any value in the interval

    2

    1,

    2

    1. Thus, the range is

    2

    13sec

    2

    1

  • 8/2/2019 1254108407_M2V104_FS_01e

    13/21

    NSS Mathematics in Action Module 2 Vol.1 Full Solutions

    64

    2

    6sin

    2

    3

    6cos

    rAD

    r

    AD

    rOD

    r

    OD

    =

    =

    =

    =

    0secsin

    1secand1sin0

    I,quadrantinliesWhen

    >+

    >

  • 8/2/2019 1254108407_M2V104_FS_01e

    14/21

    4 More about Trigonometric Functions (I)

    65

    fig.)sig.3to(cor.rad915

    orfig.)sig.3to(cor.rad52.3

    3747.02or3747.0

    (rejected)2

    31or

    2

    31sin

    01sin2sin22

    .

    x

    x

    x

    xx

    =

    +

    +=

    =

    fig.)sig.3to(cor.rad89.5

    orfig.)sig.3to(cor.rad393.0

    82or

    8

    8coscos

    =

    =

    =

    Exercise 4C (p. 4.37)

    Level 1

    1.

    2.

    rad)3218.0(orrad3218.0

    3

    1tan

    3cot

    +

    =

    =

    fig.)sig.3to(cor.rad463

    orfig.)sig.3to(cor.rad322.0

    .

    =

    3.

    3794.0or3794.0

    7.2

    1sin

    7.2cosec

    =

    =

    fig.)sig.3to(cor.rad762

    orfig.)sig.3to(cor.rad379.0

    .

    =

    4.

    2780.12or2780.132

    1cos

    32sec

    =

    =

    fig.)sig.3to(cor.rad01.5

    orfig.)sig.3to(cor.rad28.1=

    5.

    18

    cos)2(cosor

    18

    coscos

    )182

    (sin)2(cosor)182

    (sincos

    9

    4sincos

    ==

    ==

    =

    xx

    xx

    x

    18

    35or

    18

    =x

    6.

    611or

    65

    62or

    6

    3

    1tan

    3cot

    3tancot

    =

    =

    =

    =

    =

    x

    x

    x

    x

    7.

    0)1cosec4)(9cosec(

    09cosec35cosec4 2

    =+

    =+

    xx

    xx

    111.02or111.0

    9

    1

    sin

    (rejected)4

    1cosecor9cosec

    01cosec4or09cosec

    +=

    ==

    ==+

    x

    x

    xx

    xx

    fig.)sig.3to(cor.rad17.6

    orfig.)sig.3to(cor.rad25.3=x

    8.

    9.

    0)3sin2)(1sin2(

    03sin4sin4

    01sin4sin44

    01sin4cos4

    2

    2

    2

    =+

    =+

    =

    =

    xx

    xx

    xx

    xx

    6

    5or

    6

    6or

    6

    (rejected)2

    3sinor

    2

    1sin

    03sin2or01sin2

    =

    =

    ==

    =+=

    x

    xx

    xx

    fig.)sig.3to(cor.rad62.2

    orfig.)sig.3to(cor.rad524.0=x

    10.

    0)4)(sec3(sec

    012sec7sec

    013sec7tan

    2

    2

    =

    =+

    =+

    xx

    xx

    xx

    4

    1cosor

    3

    1cos

    4secor3sec

    04secor03sec

    ==

    ==

    ==

    xx

    xx

    xx

    When

    052.5or231.1

    1.2312or231.1

    ,3

    1cos

    =

    x

    x

    x

    When

    .9654or318.1

    1.3182or318.1

    ,4

    1cos

    =

    x

    x

    x

    fig.)sig.3to(cor.

    rad05.5orfig.)sig.3to(cor.rad97.4

    fig.),sig.3to(cor.

    rad32.1fig.),sig.3to(cor.rad23.1=x

  • 8/2/2019 1254108407_M2V104_FS_01e

    15/21

  • 8/2/2019 1254108407_M2V104_FS_01e

    16/21

    4 More about Trigonometric Functions (I)

    67

    fig.)sig.3to(cor.cm43.4

    cm41sin332

    1ofArea

    2

    2

    =

    = .OAB

    fig.)sig.3to(cor.rad.245

    orfig.)sig.3to(cor.rad464

    fig.),sig.3to(cor.rad.143

    fig.),sig.3to(cor.rad821

    fig.),sig.3to(cor.rad05.1

    .

    .

    =

    19. (a)

    3322

    3

    cotcot3cot31

    )cot1(

    kkk

    k

    +++=

    +

    (b)

    2

    1cot

    0)cot21(

    01cot6cot12cot8

    3

    23

    =

    =+

    =+++

    fig.)sig.3to(cor.rad185

    orfig.)sig.3to(cor.rad03.2

    .

    =

    Revision Exercise 4 (p. 4.41)

    Level 1

    1. (a)

    fig.)sig.3to(cor.rad7330

    rad180

    4242

    rad,180

    1Since

    .=

    =

    =

    (b)

    fig.)sig.3to(cor.rad572

    rad180

    147147

    rad,180

    1Since

    .=

    =

    =

    (c)

    fig.)sig.3to(cor.rad026

    rad180

    345345

    rad,180

    1Since

    .=

    =

    =

    2. (a)

    fig.)sig.3to(cor.189

    1803.3rad3.3

    ,180

    rad1Since

    =

    =

    =

    (b)

    fig.)sig.3to(cor.111

    21

    18013

    21

    13

    ,180radSince

    =

    =

    =

    (c)

    fig.)sig.3to(cor.0.81

    1802rad2

    ,180

    rad1Since

    =

    =

    =

    3. (a) Let OA = rand AOB = rad.

    The length of)

    AB is twice that of the radius.

    2

    2

    =

    =

    rr

    rad2=AOB

    (b)

    fig.)sig.3to(cor.605

    10

    10(2)2

    1

    cm10sectorofArea

    2

    2

    2

    .r

    r

    r

    OAB

    =

    =

    =

    =

    The radius of the sector is 5.60 cm.

    4. (a)

    (b)

    Area of the shaded region

    fig.)sig.3to(cor.cm87.1

    cm)435.44.13

    2

    1(

    2

    22

    =

    =

    5. (a)

    525 = 360 + 165

    The angle 525 lies in quadrantII.

    (b)

    22

    7

    2

    3

    11

    20 +=

    The angle11

    20lies in quadrantIV.

    (c)

    )12

    5(

    12

    17

    +=

    The angle

    12

    17 lies in quadrantII.

    6. (a)

    Let rbe the length ofOP. Then,

    .859)2( 22 =+=r

    By definition, we have

    9

    2cot

    2

    85sec

    9

    85cosec

    2

    9tan

    85

    2cos

    85

    9sin

    ==

    ==

    ==

    ==

    ==

    ==

    y

    x

    x

    r

    y

    r

    x

    y

    r

    x

    r

    y

    (b)

    Let rbe the length ofOP. Then,

    .6)2(2 22 =+=r

    By definition, we have

  • 8/2/2019 1254108407_M2V104_FS_01e

    17/21

    NSS Mathematics in Action Module 2 Vol.1 Full Solutions

    68

    R.H.S.

    sinsin

    sinsin

    sin

    sin

    sin

    sin

    1sin

    sin

    sin

    sin1

    )sin(sinsin

    1

    sin

    1

    )sin)(sincoseccosec(L.H.S.

    22

    =

    =

    =

    +=

    +=

    +=

    yx

    yx

    x

    y

    y

    x

    y

    x

    x

    y

    yxyx

    yxyx

    22

    2cot

    2

    3

    2

    6sec

    32

    6cosec

    2

    1

    2

    2tan

    3

    2

    6

    2cos

    3

    1

    6

    2sin

    =

    ==

    ===

    =

    ==

    =

    ==

    ===

    =

    ==

    y

    x

    x

    r

    y

    r

    x

    y

    r

    x

    r

    y

    7. sec is negative.

    lies in quadrant II or quadrant III.

    cosec is negative.

    lies in quadrant III or quadrant IV.

    lies in quadrant III.

    8.

    2

    3 0

    lies in quadrant I or quadrant II.

    sec < 0

    must lie in quadrant II.

    LetP(x,y) be a point on the terminal side ofand OP= r.

    cosec = 6

    In particular, we may take r= 6 andy = 1.

    Since lies in quadrant II,x < 0.

    35

    16 22

    22

    =

    =

    = yrx

    cot = 35 ,6

    1sin = ,

    35

    6sec =

    35

    34

    )35

    6(6

    135secsincot

    =

    =

    10. (a)

    xxxx

    cosec2sin

    2

    cosec)1(cos

    22

    ==

    (b)

    sec

    cossin

    cos1

    sin

    cos

    cossin

    1cot)cosec

    cossin

    1(

    2

    2

    222

    =

    =

    =

    11. (a)

    yx

    yx

    yxyx

    sinsin

    sinsin

    )sin)(sincoseccosec(

    22 =

    +

    (b)

    L.H.S.

    sec)(

    sec)1(tan

    sectan

    )sectan)(sectan(R.H.S.

    222

    2222

    22222

    2

    =

    =

    +=

    +=

    ++=

    ba

    ba

    aba

    ababa

    2

    222

    )sectan)(sectan(

    sec)(

    ababa

    ba

    ++=

  • 8/2/2019 1254108407_M2V104_FS_01e

    18/21

    4 More about Trigonometric Functions (I)

    69

    2

    )2()2(1)1(

    4cosec4sec4cot4tan

    4

    32cosec

    4

    52sec

    4

    72cot

    4tan

    4

    3cosec

    4

    5sec

    4

    7cot

    4

    3tan

    =

    =

    +

    =

    =

    6216

    1

    3

    242

    3

    1

    2

    1

    3cosec4

    4sec

    3cot6sin

    3

    104cosec4

    4sec

    32cot

    6sin

    3

    10cosec4

    4

    21sec

    3

    5cot

    6

    7sin

    =

    +

    =

    +

    =

    +

    +

    +

    =

    +

    2cos

    2sin

    2cot

    2sin

    22tan

    2sin

    2tan

    2sin

    2tanL.H.S.

    C

    CC

    CC

    CC

    CBA

    =

    =

    =

    =

    +=

    12. (a)

    2

    331

    2

    )3(

    2

    1

    )30180(cosec

    60tan45sin

    )210360(cosec

    )60360(tan)45180(sin

    )210cosec(

    420tan225sin

    32

    32

    32

    32

    +=

    +

    =

    +=

    +++=

    +

    (b)

    (c)

    13. (a)

    A

    AAA

    CBA

    2

    2

    cosec

    1cot1)(cotcot

    1)(cotcotL.H.S.

    =

    ==

    +=

    AA

    A

    A

    A

    A

    AA

    A

    AA

    A

    CBA

    2cosecsin

    sin

    cos

    cos

    1

    sin

    cotsec

    sin

    )(cotsec

    sin

    )(cotsecR.H.S.

    =

    =

    =

    =

    +=

    A

    CBACBA

    sin

    )(cotsec1)(cotcot

    R.H.S.L.H.S.

    +=+

    =

    (b)

    2cos

    22sin

    2sin

    2sinR.H.S.

    C

    C

    C

    BA

    =

    =

    =

    +=

    2sin

    2sin

    2tan

    R.H.S.L.H.S.

    BACBA +=

    +

    =

    14.

    The graph repeats itself at intervals of2

    .

    +=

    22cot

    xy is a periodic function with period

    2

    .

    15.

    The graph repeats itself at intervals of .

    y = 1 + cosec 2x is a periodic function with period .

  • 8/2/2019 1254108407_M2V104_FS_01e

    19/21

    NSS Mathematics in Action Module 2 Vol.1 Full Solutions

    70

    fig.)sig.3to(cor.rad3.57

    orfig.)sig.3to(cor.rad429.0

    185.2cot

    2tancot

    =

    =

    =

    16. Draw the straight liney= 2 on the graph of2

    secx

    y = .

    The two graphs intersect at3

    2=x for 0 x 2.

    The solution of 22

    sec =x

    for 0 x 2is3

    2=x .

    17.

    fig.)sig.3to(cor.rad4.94

    orfig.)sig.3to(cor.rad49.4

    975.0sin

    7

    4sinsin

    =

    =

    =

    18.

    fig.)sig.3to(cor.rad3.05

    orfig.)sig.3to(cor.rad1090.0

    11cosec

    =

    =

    19.

    20.

    fig.)sig.3to(cor.rad71.4

    (rejected)5

    1or1cosec

    0)cosec51)(cosec1(

    0cosec5cosec41 2

    =

    =

    =+

    =

    21.

    0)2sin3)(1sin3(

    02sin9sin9

    011sin9cos9

    2

    2

    =

    =+

    =+

    fig.)sig.3to(cor.rad80.2

    orfig.)sig.3to(cor.rad41.2

    fig.),sig.3to(cor.rad730.0

    fig.),sig.3to(cor.rad340.0

    3

    2or

    3

    1sin

    =

    =

    22.

    0)2cosec3)(15cosec(

    030cosec43cosec3

    027cosec43cot3

    2

    2

    =+

    =

    =

    fig.)sig.3to(cor.rad07.3

    orfig.)sig.3to(cor.rad0667.0

    (rejected)3

    2or15cosec

    =

    =

    Level 2

    23. Let OA=rcm and AOB=rad.

    )2......(52

    1

    )1......(122

    2 =

    =+

    r

    rr

    From (1), )3.....(221

    =r

    By substituting (3) into (2), we have

    1or5

    0)1)(5(

    056

    10212

    5212

    2

    1

    2

    2

    2

    ==

    =+

    =

    =

    r

    rr

    rr

    rr

    rr

    When r= 5,5

    22

    5

    12==

    When r= 1, 1021

    12== (rejected)

    rad5

    2=AOB

    24. (a) (i) Area of 22 msin2

    1xOCF=

    (ii) Area ofABCDEF

    222

    222

    msin2

    1)(

    2

    120

    msin2

    1)(

    2

    1102

    ++=

    ++=

    xyx

    xyx

    (b) x+y= 80In ODE,

    =

    =+

    05.44

    cos)80(2608080 2222

    In OCF,

    667.2

    05.44cos22 2222

    =

    =+

    x

    xxx

    Area ofABCDEF

    fig.)sig.3to(cor.m2480

    m

    05.44sin)667.2(2

    1

    05.44180

    )80(2

    120

    2

    2

    2

    2

    =

    +

    =

  • 8/2/2019 1254108407_M2V104_FS_01e

    20/21

    4 More about Trigonometric Functions (I)

    71

    25. (a)

    The graph repeats itself at intervals of2

    .

    y= cot 2x+ 1 is a periodic function with period

    2

    .

    (b) From the graph,y= cot 2x+ 1 does not have

    maximum or minimum values. Thus, the range is

    < cot 2x+ 1 < +.

    26. (a)

    The graph repeats itself at intervals of.

    y= cosec 2x 1 is a periodic function with

    period .

    (b) From the graph,y= cosec 2x 1 does not have

    maximum or minimum values. Also, it cannot take

    any value in the interval (2, 0). Thus, the range is < cosec 2x 1 2 or 0 cosec 2x 1 < +.

    27.

    2sec

    2

    1cos

    2

    1cos1

    2

    1sin

    cosecsin2

    2

    2

    2

    2

    =

    =

    =

    =

    =

    x

    x

    x

    x

    xx

    Draw the straight liney= 2 on the graph ofy= sec2x.

    The two graphs intersect at

    4

    5,

    4

    3,

    4

    =x and

    4

    7for 0 x 2.

    The solutions of 2 sinx= cosecx for 0 x 2are

    4

    5,

    4

    3,

    4

    =x or

    4

    7.

    28.

    13

    5or1cot

    0)5cot13)(1(cot

    05cot8cot13

    0cosec13cot818

    2

    2

    =

    =+

    =

    =+

    fig.)sig.3to(cor.rad5.08

    orfig.)sig.3to(cor.rad3.93

    fig.),sig.3to(cor.rad1.94

    fig.),sig.3to(cor.rad0.785=

    29.

    22

    22

    sin4sin2894sin4545

    sin4sin2894cos45

    sin27cos45

    7cos45sin2

    sec745tan2

    +=

    +=

    =

    =+

    =+

    (rejected)2.85

    orfig.)sig.3to(cor.290.0

    7

    2sin

    0)2sin7(

    04sin28sin49

    2

    2

    =

    =

    =

    =+

    rad0.290=

    30.

    6

    19or

    6

    17,

    6

    7,

    6

    52

    2

    32cos

    3

    22sec

    3cosec2sec

    =

    =

    =

    =

    12

    19or

    12

    17,

    12

    7,

    12

    5 =

    31. (a) 222 )2(44 yxyxyx +=++

    (b)

    L.H.S.

    4cossin4sin3

    3sincoscossin4sin3

    3coscossin4sin4R.H.S.

    2

    222

    22

    =

    ++=

    ++++=

    +++=

    3coscossin4

    sin44cossin4sin3

    2

    22

    ++

    +=++

    (c)

    3)cossin(2

    3coscossin4sin4

    4cossin4sin3)(

    2

    22

    2

    ++=

    +++=

    ++=

    f

    Iff() attains its minimum value, (2 sin + cos )2

    attain minimum value.i.e. 0)cossin(2 2 =+

  • 8/2/2019 1254108407_M2V104_FS_01e

    21/21

    NSS Mathematics in Action Module 2 Vol.1 Full Solutions

    cmtan4 r

    OPOC

    =

    =

    fig.)sig.3to(cor.82.5

    orfig.)sig.3to(cor.68.2

    2

    1tan

    =

    =

    Minimum value of 3)( =f

    32. (a)

    2

    1

    2

    2

    1

    tantan2

    tan1

    tancossin2

    sincos

    2

    2

    2

    22

    +=

    =

    =

    =

    t

    tt

    t

    y

    (b) (i)

    3

    41

    22

    1

    2

    2tancossin2

    sincos

    2

    2

    2

    22

    ==

    =+

    =

    t

    t

    t

    The equation has2tancossin2

    sincos22

    =

    no solutions.

    (ii)

    2or,0

    0tan

    0

    0

    2

    1

    2

    1

    2

    2

    1tan

    cossin2

    sincos

    1tancossin

    sincos

    cossintan)sin(cos

    2

    2

    22

    22

    22

    =

    =

    =

    =

    =+

    =

    =

    =

    t

    t

    t

    The equation

    cossintan)sin(cos 22 =

    has 3 solutions.

    33. (a)

    1

    cosecsin

    =

    = n

    (b)

    4cosecsin

    4)cosec(sin

    cosecsin4)cosec(sin)cosec(sin

    cosecsin

    2

    22

    22

    =

    =

    +=

    =+

    m

    m

    m

    (c)

    =

    =+

    )2......(4cosecsin

    )1......(cosecsin

    2m

    m

    (1) + (2) :2

    4sin

    2 +=

    mm

    (d) Ifm=3,

    2

    433sin

    2 +=

    fig.)sig.3to(cor.rad89.5

    orfig.)sig.3to(cor.rad53.3=

    34. (a)

    (b) Area of trapeziumABCD

    )tan8

    1(tan4

    tan)tan4tan4(

    2

    1

    )(2

    1

    22

    +=

    ++=

    +=

    r

    rrrr

    OABCAD

    (c) Area of trapeziumABCD= 64 cm2

    )tan8

    1)(tan4(464 22 +=

    (rejected)16

    2571or

    16

    2571tan

    08tantan82

    +=

    =+

    754.0= (cor. to 3 sig. fig.)