12.158 lecture 2 mass spectrometry - dspace@mit home

79
12.158 Lecture 2 Mass Spectrometry Some Fundamental Background Information for Organic Geochemists and Geobiologists Reference: McLafferty & Tureček Interpretation of Mass Spectra 4 th Ed http://i-mass.com/

Upload: others

Post on 09-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

12.158 Lecture 2

Mass Spectrometry

Some Fundamental Background Information for Organic Geochemists and Geobiologists

Reference:McLafferty & Tureček

Interpretation of Mass Spectra 4th Edhttp://i-mass.com/

Contents •Mass Spectrometers and their component parts, things you need to know •Formation of mass spectrum •Interpretation of mass spectra •Detection of specific compounds using ion chromatograms •Selected ion recording (SIR) •Multiple Reaction Monitoring (MRM and MRMQ) •LC-MS

Components of the Mass Spectrometer (1)

•Vacuum System •any collisions of an ion with a gas molecules in its path destroys it --> no MS

•System to convert intact molecules to ions -THE ION SOURCE

•electron impact (EI), chemical ionisation (volatiles) • electrospray or sputtering (non-volatiles eg proteins, DNA)

•Mass Analyser - To filter by mass (and KE) •Ion Detector and ion current amplifier •Display mechanisms and Data Acquisition System

This image has been removed due to copyright restrictions. Image from Micromass Manual.

AUTOSPEC Mass Spectrometer

Example: Vacuum System Schematic for Double Focussing MS VG 70E

This image has been removed due to copyright restrictions. Image from Micromass Manual.

Source Options: Micromass Autospec

This image has been removed due to copyright restrictions. Image from Micromass Manual.

Outer: lenses and heater

This image has been removed due to copyright restrictions. Image from Micromass Manual.

Inner: ion chamber, filament, repeller; easily cleaned/swapped

Components of the Mass Spectrometer (2)

•Mass Analyser - To filter by mass (and KE) •single magnet or quadrupole -->

low resolution ~ 1 dalton •double sector- magnet plus electrostatic analyser --> �high resolution� --> accurate mass to 1-2ppm -->

elemental composition by mass defect •multiple sector --> hybrid such as Autospec Q or triple quadrupole (TSQ) --> target compound analysis by reaction chromatography •time of flight (TOF), ion cyclotron resonance

•Ion Detector and ion current amplifier •Display mechanisms and Data Acquisition System

Components of the Vacuum System

•1st Stage --> Rotary pump(s) •monitored by Pirani guage (pump to 10-2 torr)

problems - oil level, bearings, drive, dirty oil •2nd Stage --> Oil Diffusion pump(s)

•monitored by ion guage (pumps to 10-8 torr)•70E and Autospec are �differentially pumped� to give better vacuum in the analyser and hence better resolution

problems - oil level, cooling water, vacuum interlocks

•Isolation valves to separate pumps, source, analyserproblem - interlocks •2nd Stage can be turbomolecular pump(s) (pumps to 10-9 torr)

Components of the Ion Source•Ion volume (or block) – Autospec accelerating potential 6-8kV

•space to form the ions problems - dirt, high voltage •Filament

•hot tungsten wire creates an electron beam problems - broken, misaligned, bad contacts, low emission

•Repeller and focus places •causes ions to exit source as collimated beam

problems - bad contacts, ion burns •Exit slit

•causes ion beam to enter analyser with tightly defined dimensions problems - ion burns, slide mechanism

Components of the Analyser

•Electrostatic analyser (2 for Autospec) •Filters ions for kinetic energy. Narrow energy window allows magnet to gives less dispersion and better separation

•Magnetic analyser •Electromagnet driven by a high current

problems - current control, cooling water, interlocks

•Collision cells - fill with gas to cause fragmentation •Collector slit

•causes ion beam to enter detector with tightly defined dimensions

Components of the Mass Spectrometer (3)

•Ion Detector (must be fast response) •Off axis detectors so need deflector plate to bend beam •Electron multiplier (HP) continuous or discrete dynode •Photomultiplier (Autospec) •Preamplifier and amplifier --> gain and noise controls problems - slow degradation, noise

•System for Display and Acquisition •Analogue to digital conversion noise filtering and mass measurement •data storage, manipulation and presentation

computer bugs, software evolution

Separate physical and electronic bits

•Physical bits need to be clean •most problems come down to dirt of some kind or other •most problems occur in the GC or in the source

•Develop skills to distinguish dirt and other contamination from electronic faults which are much harder to resolve

Inlet Systems

• Compound must be volatile for EI and CI

• Gas Reservoir (Hot Inlet System) • Solids Probe • Gas Chromatograph • Liquid Chromatograph

Ionization Methods

• Electron Impact Ionization – High energy, fragmentation = information

• Chemical Ionization – Low energy collisions with a gas such as CH4,

NH3

• Electrospray LC-MS • Atmospheric Pressure CI LCMS

Formation of the mass spectrum •Compound ionises in source •Molecular ions fragments as a result of excess energy imparted by the ionising electrons (standard energy 70eV) •Ions pushed from source with repeller•Accelerated by high voltage •Ions separated by mass analyser •Ions counted and recorded

Calibration and leak checking

•Perfluorokerosene (PFK) - a mixture of fluoroalkanes with ions to > 900 dalton 69, 100, 119, 219, 231 …….. •Heptacosafluorotributylamine - a single compound MW 614 with 69, 119, 219 ... •Background spectrum should look like air; •17,18,28-32 and 40 Da •Argon useful to detect leaks

Perfluorokerosene (PFK) - a mixture of fluoroalkanes with ions to > 900 dalton

m/z Rel. Abundance Formula Exact Mass ------- -------------- ------- ----------

18.01 30.00 28.01 50.00 31.0 3.80 CF 30.99840 39.96 1.70 51.00 6.70 69.00 100.00 C1F3 68.99521 81.00 0.50 C2F3 80.99521 84.97 1.00

93.00 3.30 C3F3 92.99521 99.99 5.60 C2F4 99.99361

118.99 26.40 C2F5 118.99201 130.99 24.00 C3F5 130.99

Ionisation & Fragmentation Processes

CH3OH + e- --> CH3OH+. (m/z 32) + 2 e- ionisation

CH3OH +. --> CH2OH+ (m/z 31) + H. sigma cleavage

CH3OH +. --> CH3+ (m/z 15) + . OH sigma cleavage

CH2OH +--> CHO+ (m/z 29) + H2 neutral loss

N.B. Only charged species detected

100

M+.

31

50 15 13C

10 20 30

Characteristic ion series

•Silicone bleed (silicon isotopes) 207, 281,355• Alkanes 57, 71, 85, 99, 113 ... •Alkenes 55, 69, 83, 97, 111 … •Cyclohexanes 83, 97, 111•Terpanes 123, 149, 191, 205, 217, 231 •Monoaromatics 77, 91, 105, 119, 133 …..

Ionisation & Fragmentation Processes

CH3OH + e- --> CH3OH+. (m/z 32) + 2 e- ionisation

CH3OH +. --> CH2OH+ (m/z 31) + H. sigma cleavage

CH3OH +. --> CH3+ (m/z 15) + . OH sigma cleavage

CH2OH + --> CHO+ (m/z 29) + H2 neutral loss

H

H C O H

H

Appearance of the Mass Spectrum

•Average spectrum has 250 bits of information •Molecular ion and its isotopic abundances •Ionisation energy and structure determine degree of fragmentation; 70 eV is standard •Fragment abundances reflect to relative stabilities of the fragment ions - most abundant are the most stable •Multiply charged and metastable ions lost in data reduction

Interpretation of the mass spectrum

•Identify molecular ion •Assess isotope abundances for:

A elements H and F A+1 elements C, N A+2 elements Si, S, Cl, Br

•Determine # rings and double bonds Acyclic saturated hydrocarbons CnH2n+2 •Identify �characteristic� ions and low mass series

Interpretation of the mass spectrum

•Identify molecular ion –Molecular Ion corresponds to the loss of one electron from the intact molecule –Molecular ion is an �odd electron� ion –Odd electron ions are generally present and have an even mass unless an odd number of nitrogens

Identify:

1947 sats Molecular Ion? 100 64

Isotopic features?

Ion series?

256

128

160

96192

66

9857 71 850 m/z50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

%

Nuclidic Masses and AbundancesElement Mass Isotope Abundance

carbon 12.00000 13.0034

98.9 1.1

hydrogen 1.007825 2.0140

99.985 0.015

nitrogen 14.00307 15.0001

99.63 0.37

oxygen 15.9949 17.9992

99.8 0.2

fluorine 18.9984 100

sulfur 31.9720 32.9715 33.9679

94.8 0.8 4.4

This table has been removed due to copyright restrictions.

Please see Table 2.1 ©McLafferty & Tureček: Interpretation of Mass Spectra 4th Ed

This table has been removed due to copyright restrictions.

Please see Table 2.2 ©McLafferty & Tureček: Interpretation of Mass Spectra 4th Ed

This table has been removed due to copyright restrictions.

Please see Table 2.3 ©McLafferty & Tureček: Interpretation of Mass Spectra 4th Ed

GC-MSCommonly done on low resolution (1 dalton) quadrupole instruments in the

selected ion (mass) mode. e.g. Hewlett-Packard MSD, Thermo, Shimadzu Can be done at high resolution; accurate mass

What has to be right for successful GC-MS? Every single time you try!!

•GC working with correct column in good condition, right gas flows, autosampler working, correct conditions of injection, temp program, hot interface, no leaks, no bleed, clean injector, clean syringe, clean wash solvents, correct vials and septa ……...

•Good vacuum, clean source, right source temp and ionising conditions, appropriate peak resolution & tune, correct slits, correct gain setting, low instrument noise ……..

• DS interface (noise, threshold) set correctly, correct experiment for the job, instrument in calibration, file structure correct, adequate storage space, no bugs before starting sequence ………

•Samples correctly ordered in sampler, blanks & external standards included, data archived , QUAN set up correctly ….

•Interpretive skill ….

Familiarity with the instruction manual

•Don�t even think about operating a mass spectrometer without being familiar with the manual! •If it is not clear, ask or read on! •Be familiar with the emergency shutdown procedures •Be familiar with OH&S issues (eg High Voltages) •Mistakes are inevitable and part of the scenery

tell your colleagues immediately and log it so that they can be avoided by others get help or do what you can to fix the problem collegiality is critical when machines are shared

= 412

A7NO12A#3-1007 Identify 100 % 55

80

60

40

20

0

100 % 55

60 80 100 120 140 160 180 200 220 240 260 280 300 m/z

266125

111

97

83

69 Molecular ion

Odd electron ions; A+1 or A+2?

low mass series

#carbons

rings & double bonds

x10.00

80

60

40

20

0 60 80 100 120 140 160 180 200 220 240 260 280 300 m/z

266

238196182168

154

125

111

97

83

69

1947 sats

100 57

71

85

55

99

11383127

141 240155 16967 183 197 211

0 m/z50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

%

68 sats

100 57 71

85

55

113 1276999

97183

197141155

1696753 81211 225 253 267 282179

0 m/z50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

%

68 sats

57100 71

85

55 113

69 99 183

127

97 141 155

6753 81 169 197 225 239 253 2680 m/z50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

%

1947 sats

57100

71

85

55

9969

11383 127

141 254155 169 183 19767 211 2250 m/z50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

%

1947 sats

100 57

71

85

281

69 99

83 11397 127

141 155 169 183 197 211 225 25367295

0 m/z50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

%

1947 sats

57100

55

97

71

69

83

8167 111

99125

53 79 139 153 168 183 207 224 25291 10565 2390

119 197131m/z

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

%

Standard Interpretation Procedure • Verify masses (calibration); determine elemental

compositions & rings+unsaturations • Mark odd electron ions and verify molecular ion • Study appearance of spectrum, molecular stability,

labile bonds • Identify low mass ion series • Identify neutral fragments, logical mass losses • Postulate structures of low mass ions • Postulate identity; test against ref. spectrum or library;

rationalize fragmentation pattern

©McLafferty: Interpretation of Mass Spectra

HPLC-ESI-MS data for Intact Polar Lipids

Water Column Biomass or Sediment: Extract lipids (DCM: MeOH)

Density MapTLE

Mas

s

component separation by HPLC

Coeluting peaks make density map preferable

Retention time

ESI source

Mass spectrometer

Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea

Florence Schubotz1, Stuart G. Wakeham, Julius S. Lipp, Helen F. Fredricks, Kai-Uwe Hinrichs

Environmental Microbiology11, 2720–2734, October 2009

This image has been removed due to copyright restrictions.

GC-MS of fossil hydrocarbons

αβ-Hopane a fossil hydrocarbon

Structure

MW = 412 191

369

%100 Mass spectrum

50 100 150 200 250 300 350 400 450 500

412 397

206

191

177 163

149

137 123

109

95 81

68

369

362

347

217

NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)

Triterpanes - 191 Da

Gippsland

NW Shelf

Middle East

Ts Tm

C29Ts

Dia

30-nor

C30 αβ

C29 αβ C31 αβ S R C32 αβ C33 αβ

File A6MA15C:4 SIM-GCMS: 221.221 Da Scale Factor: 4.9

AGSO Standard 221 Da

D4

Int.

Std

.

%

0

10

20

30

40

50

60

70

80

90

100

50:00 55:00 1:00:00 1:05:00 1:10:00 1:15:00 TIME (min.)

%

0

10

20

30

40

50

60

70

80

90

100

D3

Rec

. Std

.

AGSO Standard 234 Da

File A6MA15C:4 SIM-GCMS: 234.232 Da Scale Factor: 5.4

50:00 55:00 1:00:00 1:05:00 1:10:00 1:15:00 TIME (min.)

%

0

10

20

30

40

50

60

70

80

90

100

C29

αββ

20R

C

29 αββ

20S

C28

αββ

20R

C28

αββ

20S

+ B

icad

T1

C27

αββ

20S

C29

βα

20R

C29

ααα

20S

C29

ααα

20R

C27

ααα

20S

C27

ααα

20R

C28

ααα

20S

+ B

icad

T

C28

ααα

20R

+B

icad

R

C28

βα

20S

, 24S

+R

C28

βα

20R

, 24S

+ R

C27

βα

20RC

27 βα

20S

C29

βα

20S

+C

27 αββ

20R

C30

βα

20S

C30

ααα

20R

Bic

ad W

AGSO Standard 217 Da

File A6MA15C:4 SIM-GCMS: 217.196 Da Scale Factor: 4.9

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

TIME (min.)

AGSO Standard: steranes SIM vs. MRM SIM-GCMS: 217 Da

C27

βα

20S

C27

βα

20R

C28

βα

20S

, 24S

+R

C28

βα

20R

, 24S

+ R

Bic

ad W

C

27 ααα

20S

C29

βα

20S

+C

27 αββ

20R

C

27 αββ

20S

C27

ααα

20R

C

29 βα

20R

C30

βα

20S C

28 ααα

20S

+

Bic

ad T

C28

αββ

20R

C

28 αββ

20S

+ B

icad

T1

C28

ααα

20R

+ B

icad

R

C29

ααα

20S

C29

αββ

20R

C

29 αββ

20S

C29

ααα

20R

C30

ααα

20R

MRM-GCMS: 400 -> 217 Da

MRM-GCMS: 386 -> 217 Da

MRM-GCMS: 372 -> 217 Da

%

0

10

20

30

40

50

60

70

80

90

100

C29

αββ

20S

C28

αββ

20S

C27

αββ

20R

C27

αββ

20S

C29

αββ

20R

C28

αββ

20R

AGSO Standard 218 Da

File A6MA15C:4 SIM-GCMS: 218.203 Da Scale Factor: 4.1

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00 TIME (min.)

%

0

10

20

30

40

50

60

70

80

90

100

C19Tri

C20Tri C21Tri

C22Tri

C23Tri

C24Tr i

C 25

Tri (

R +

S)

C 26

Tri(R

+ S

)

C24Tet

AGSO Standard 191 Da

File A6MA15C:4 SIM-GCMS: 191.179 Da Scale Factor: 6.4

26:00 28:00 30:00 32:00 34:00 36:00 38:00 40:00 42:00 44:00 46:00 48:00 50:00

TIME (min.)

File A6MA15C:4 SIM-GCMS: 191.179 Da Scale Factor: 25.1

100%

90

80

70

60

50

40

30

20

10

0

AGSO Standard 191 Da

C29H

C30H

C30

H βα�

30-n

or C

30HC

29 T

s C

29H

βα�

Ts Tm

C31

H βα�

C31H S

C31H R

C32H S

C32H R C33H

S C33H R

C34HSC34HR C35HS C35HR

29,3

0 C

28H

C29

Dia

C30

H D

ia

25-n

or C

29H

+4

Bic

ad T

O

Bicad W

γ�

1,2

+ 28

,30

C28

H

Tx

Compounds 1, 2 and 4 are Oleanoid Triterpanes (see Murray et al. (1997), Geochim. Cosmochim. Acta, in press. Tx is Taraxastane

50:00 55:00 1:00:00 1:05:00 1:10:00 1:15:00

TIME (min.)

%

0

10

20

30

40

50

60

70

80

90

100

Bicad W

Bicad T

Bicad T1

Bicad R

W = cis-cis-trans Bicadinane T = trans-trans-trans Bicadinane T1,R = isomers of T

AGSO Standard 369 Da

File A6MA15C:4 SIM-GCMS: 369.352 Da Scale Factor: 10.3

50:00 55:00 1:00:00 1:05:00 1:10:00 1:15:00 TIME (min.)

%

0

10

20

30

40

50

60

70

80

90

100 8 β(H)-Homodrimane

AGSO Standard 123 Da

File A6MA15C:4 SIM-GCMS: 123.117 Da Scale Factor: 100

10:00 14:00 18:00 22:00 26:00 30:00 34:00 38:00

TIME (min.)

%

0

10

20

30

40

50

60

70

80

90

100

File A6MA15C:4 SIM-GCMS: 205.194 Da Scale Factor: 10.3

C31

3M

eH

C31

2M

eH

AGSO Standard 205 Da

56:00 58:00 1:00:00 1:02:00 1:04:00 1:06:00

TIME (min.)

%

0

10

20

30

40

50

60

70

80

90

100

File A6MA15C:4 SIM-GCMS: 231.212 Da Scale Factor: 2.5

AGSO Standard 231 Da

Bicad T

C31

ααα

4M

e20R

Bicad W

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

TIME (min.)

GC-MS-MS True GC-MS-MS requires an instrument with at least two, independently controllable mass selection regions.

Various configurations possible, e.g. Triple Sector Quadruple,��Hybrid�� magnet/ quadrupole etc. e.g. Autospec-Q, Finnagin MAT 95Q etc.

Very high sensitivity and selectivity very powerful for biomarker work.

AGSO Standard: steranes SIM vs. MRM SIM-GCMS: 217 Da

C27

βα

20S

C27

βα

20R

C28

βα

20S

, 24S

+R

C28

βα

20R

, 24S

+ R

Bic

ad W

C

27 ααα

20S

C29

βα

20S

+C

27 αββ

20R

C

27 αββ

20S

C27

ααα

20R

C

29 βα

20R

C30

βα

20S C

28 ααα

20S

+

Bic

ad T

C28

αββ

20R

C

28 αββ

20S

+ B

icad

T1

C28

ααα

20R

+ B

icad

R

C29

ααα

20S

C29

αββ

20R

C

29 αββ

20S

C29

ααα

20R

C30

ααα

20R

MRM-GCMS: 400 -> 217 Da

MRM-GCMS: 386 -> 217 Da

MRM-GCMS: 372 -> 217 Da

MRM-GC-MSMetastable Reaction Monitoring GC-MS Monitoring of ion reactions (e.g. Molecular-Daughter) by selecting metastable ions in the first field free region.

Not ��true�� GCMSMS but allows selective recording of biomarker molecular weight groups (e.g. only C30 steranes cf. all steranes at once).

MRM-GC-MS (2) Metastable Reaction Monitoring GC-MS

Higher selectivity and sensitivity.

Can be done on double focussing, high resolution instruments such as VG 70E etc but parent ions can only be selected at low resolution - some interference or ��cross talk��between traces.

%

0

10

20

30

40

50

60

70

80

90

100

3-C

D3 -

5α-(

H)-

chol

esta

ne C28

389 → 234 Da 8.6

Method recovery standard

AGSO Standard

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

C27 372 → 217 Da 18.3

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

%

0

10

20

30

40

50

60

70

80

90

100

C27

βα

20S

C27βα

20R

C27

ααα

20R

C27

αββ

20S

C

27 αββ

20R

C

27 ααα

20S

AGSO Standard

C28 386 → 217 Da 5.2

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

%

0

10

20

30

40

50

60

70

80

90

100

C28

βα

20S

C28

ααα

20R

C28

αββ

20S

C28

αββ

20R

C

28 ααα

20S

C28

βα

20R

{

{

AGSO Standard

%

D 4 -ααα

-stig

mas

tane

20R

0

10

20

30

40

50

60

70

80

90

100 C29 404 → 221 Da 13.4

GCMS Internal Standard

AGSO Standard

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

%

0

10

20

30

40

50

60

70

80

90

100

C29

βα

20S

C29

βα

20R

C29

ααα

20R

C29

αββ

20S

C

29 αββ

20R

C

29 ααα

20S

C29 400 → 217 Da 13.4

AGSO Standard

C30

αββ

20(

R+S

)

%

C30

ααα

20R

C30

ααα

20S

C30

βα

20S

C30

βα

20R

0

10

20

30

40

50

60

70

80

90

100 C30 414 → 217 Da 0.9

AGSO Standard

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

AGSO Standard

100 % C30

90

80

70

60

50

40

30

20

10

0 48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

C30

Me

20R

+ D

ino

C30

Me

20R

C

30 2α

Me

20R

+

4α M

e ββ

20S

C30

Me

20S

C

30 4αββ

Me

20R

C30

Me

20S C

30 3βM

e 20

S C

30 3β

Me ββ

20R

+ S

414 → 231 Da 2.2

56:00 58:00 1:00:00 1:02:00 1:04:00 1:06:00

%

0

10

20

30

40

50

60

70

80

90

100

C31

Me

C31

Me

C31 426 → 205 Da 4.7

AGSO Standard

File:A6MA16 #1-986 Acq:17-MAR-1996 00:09:04 GC EI+ MRM Autospec-UltimaQ Sample Text:AGSOSTD 1/2A File Text:Ultra-1, 50m, H2@20psi

Exp:MRM_OZOILS_STD S:6 F:2

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

%

Bic

ad R

Bic

ad T

1

0

10

20

30

40

50

60

70

80

90

100 Bicad T

Bicad W

C30 412 → 369 Da 100

AGSO Standard

100

90

80

70

60

50

40

30

20

10

0

% Ts

Tm + Bic T1

C27

17β(H

)

Bic

T

C27 370 → 191 Da 23.2

AGSO Standard

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

AGSO Standard

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

%

0

10

20

30

40

50

60

70

80

90

100

28,3

0 C

28H

29,30 C28H

C28 384 → 191 Da 7.6

48:00 50:00 52:00 54:00 56:00 58:00 1:00:00

%

0

10

20

30

40

50

60

70

80

90

100 C29 H

C29Ts

C29

Dia

C29H βα�

C29

Dia

neo

C29 398 → 191 Da 40.2

AGSO Standard

56:00 58:00 1:00:00 1:02:00 1:04:00 1:06:00

%

0

10

20

30

40

50

60

70

80

90

100 C30H

C30

H D

ia

C30H βα�

O 30-nor C30H

γ�

C30 412 → 191 Da 35.4

Oleanoid triterpanes

AGSO Standard

1 2 3

4 6

Tx

Compounds 1 - 6 are Oleanoid Triterpanes (see Murray et al. (1997), Geochim. Cosmochim. Acta, in press. Tx is Taraxastane

56:00 58:00 1:00:00 1:02:00 1:04:00 1:06:00

%

0

10

20

30

40

50

60

70

80

90

100 C31HS

C31

Dia

SC

31 D

ia R

C31HR

C31 426 → 191 Da 15.9

AGSO Standard

Note: This trace is from run A6FE24:5

45:00 50:00 55:00 1:00:00 1:05:00

%

0

10

20

30

40

50

60

70

80

90

100 C34HS

C34HR

C34 468 → 191 Da

using MRM-OZOILS_50 AGSO Standard

Note: This trace is from run A6FE24:5

%

0

10

20

30

40

50

60

70

80

90

100 C35 482 → 191 Da

C35HS

C35HR

using MRM-OZOILS_50 AGSO Standard

45:00 50:00 55:00 1:00:00 1:05:00

MIT OpenCourseWarehttp://ocw.mit.edu

12.158 Molecular Biogeochemistry Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.