120403102 pipeline soil interaction

19
Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland [email protected] ENGI 8673 Subsea Pipeline Engineering Lecture 15: Pipeline/Soil Interaction

Upload: lamafluida

Post on 24-Nov-2015

57 views

Category:

Documents


0 download

DESCRIPTION

pipelinesubsea

TRANSCRIPT

  • Shawn Kenny, Ph.D., P.Eng.Assistant ProfessorFaculty of Engineering and Applied ScienceMemorial University of [email protected]

    ENGI 8673 Subsea Pipeline Engineering

    Lecture 15: Pipeline/Soil Interaction

  • 2 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Lecture 15 Objective

    to examine engineering models to analysegeotechnical loads, pipeline/soil interaction and structural load effects for offshore pipelines

  • 3 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Overview

    Geotechnical Loads Soil mechanical behaviour

    Pipeline/Soil Interaction Load transfer mechanisms

    Structural Load Effects Pipeline mechanical response

  • 4 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Design Considerations Installation

    Pipeline embedment On-bottom roughness

    Mechanical response, free spans Intervention

    Pre-sweep, clearance Trenching

    Natural in-fill, mechanical backfill Rock dump

    Operations Thermal expansion Lateral and upheaval buckling On-bottom stability

    Ref: Langley (2005)

  • 5 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Geotechnical Loads Soil Mechanics

    Seabed Surveys Remote sensing In-situ testing and sample recovery Index and laboratory testing

    Key Issues Soil type Strength

    parameters Load-

    displacementbehaviour

    Ref: BCOG (2001)

  • 6 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Pipeline/Soil Interaction Engineering Tools

    Guidance documents ALA, DNV, NEN

    Numerical models Structural Continuum

    Physical models Full-scale Large-scale Centrifuge

    Key Issues Load transfer mechanisms Stress or strain based design Model uncertainty

    Ref: C-CORE

  • 7 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Structural Load Effects

    Design Checks Limit States

    SLS ULS

    Stress Combined loading

    criteria Strain

    Rupture Local buckling

  • 8 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Pipeline/Soil Interaction Analysis

    Structural Finite Element Procedures Standard tool Rigid pipeline/structure Soil load-displacement

  • 9 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Soil Load-Displacement Relationships

    Axial

    Transverse Lateral

    Vertical Upward

    Vertical DownwardRef: ALA (2001)

  • 10 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Trench Effects

    Engineering ModelsLoad-Displacement Centrifuge

    models Large-scale

    physicalmodels

    Continuum FEA Ref: Phillips et al. (2004)

  • 11 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Buried Performance

    Thermal Flow assurance

    Mechanical Uplift, flotation, subsidence during pipe lay Upheaval buckling during operations

    Ref: C-CORE

  • 12 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Example 15-01

    Calculate the virtual anchor point, axial strain and end deflection due to thermal expansion for a buried pipeline

    Design condition Partial restraint

    Shore approach Platform tie-in

  • EN 8673 Subsea Pipeline Engineering Lecture 15Example 15-01

    Winter 2008

    Example 15-01

    Calculate the anchor point, axial strain and end deflection due to thermal expansion for a buried offshore pipelinelocated outside the 500m excursion limit.

    DEFINED UNITS

    MPa 106Pa:= kPa 103Pa:= GPa 109Pa:= C K:= kN 103N:=

    PIPELINE SYSTEM PARAMETERS

    Nominal Outside Diameter Do 273.1mm:=Initial Selection Nominal Wall Thickness (Sec.5 C203 Table 5-3) tnom 9.525mm:=External Corrosion Protection Coating Thickness tcpc 0mm:=Fabrication Process (Sec.7 B300 Table 7-1) [SMLS, HFW, SAW] FAB "SMLS":=Corrosion Allowance (Sec.6 D203) tcorr 3mm:=Elastic Modulus E 205GPa:=Specified Minimum Yield Stress (Sec.7 B300 Table 7-5) SMYS 450MPa:=Speciifed Minimum Tensile Stress (Sec.7 B300 Table 7-5) SMTS 535MPa:=Coefficient of Thermal Expansion T 1.15 10

    5 C 1:=Poisson's Ratio 0.3:=Pipeline Route Length Lp 25km:=Linepipe Density s 7850kg m

    3:=Concrete Coating Thickness tc 50mm:=Concrete Coating Density c 3050kg m

    3:=OPERATATIONAL PARAMETERS

    API Gravity API 38:=Product Contents Density

    cont 1000 kg m 3 141.5131.5 API+:= cont 835 m3 kg=

    Design Pressure (Gauge) Pd 10MPa:=Safety Class (Sec.2 C200-C400) [L, M, H] SC "M":=Design Pressure Reference Level href 5m:=Temperature Differential T 50 C:=Maximum Water Depth hl 0m:=Seawater Density w 1025kg m

    3:=Hydrotest Fluid Density t 1025kg m

    3:=

    3/3/2008 Page 1 of 5

  • EN 8673 Subsea Pipeline Engineering Lecture 15Example 15-01

    Winter 2008

    GEOTECHNICAL PARAMETERS

    Undrained Shear Strength Cu 25kPa:=Adhesion Factor soil 0.25:=

    DNV OS-F101 PARTIAL FACTORS AND DESIGN PARAMETERS

    System Operations Incidental/Design Pressure Factor (Sec.3 B304) inc_o 1.10:=System Test Incidental/Design Pressure Factor (Sec.3 B304) inc_t 1.00:=Material Resistance Factor (Sec.5 C205 Table 5-4) m 1.15:=Safety Class Resistance Factor (Sec.5 C206 Table 5-5) SC 1.138:=Material Strength Factor (Sec.5 C306 Table 5-6) U 0.96:=Maximum Fabrication Factor (Sec.5 C307 Table 5-7)

    fab 1.00 FAB "SMLS"=if0.93 FAB "HFW"=if0.85 FAB "SAW"=if

    := fab 1.00=

    3/3/2008 Page 2 of 5

  • EN 8673 Subsea Pipeline Engineering Lecture 15Example 15-01

    Winter 2008

    Diameter Fabrication Tolerance(Sec.7 G200 Table 7-17)

    Do max 0.5mm 0.0075 Do, ( ) FAB "SMLS"= Do 610mmif0.01 Do FAB "SMLS"= Do 610mm>ifmin max 0.5mm 0.0075 Do, ( ) 3.2mm, ( ) FAB "HFW"= Do 610mmifmin 0.005 Do 3.2mm, ( ) FAB "HFW"= Do 610mm>ifmin max 0.5mm 0.0075 Do, ( ) 3.2mm, ( ) FAB "SAW"= Do 610mmifmin 0.005 Do 3.2mm, ( ) FAB "SAW"= Do 610mm>if

    := Do 2.048 mm=

    Wall Thickness Fabrication Tolerance(Sec.7 G307 Table 7-18)

    tfab 0.5mm FAB "SMLS"= tnom 4mmif0.125 tnom FAB "SMLS"= tnom 4mm>if0.125 tnom FAB "SMLS"= tnom 10mmif0.100 tnom FAB "SMLS"= tnom 25mmif3mm FAB "SMLS"= tnom 30mmif0.4mm FAB "HFW"= tnom 6mmif0.7mm FAB "HFW"= tnom 6mm>if1.0mm FAB "HFW"= tnom 15mm>if0.5mm FAB "SAW"= tnom 6mmif0.7mm FAB "SAW"= tnom 6mm>if1.0mm FAB "SAW"= tnom 10mm>if1.0mm FAB "SAW"= tnom 20mm>if

    := tfab 1.191 mm=

    Material Derating (Sec.5 C300 Figure 2)

    SMYS 0MPa T 50C

  • EN 8673 Subsea Pipeline Engineering Lecture 15Example 15-01

    Winter 2008

    ENGINEERING ANALYSIS

    PIPELINE GEOMETRIC PROPERTIES

    Inside Pipeline Diameter (Operations Case)

    Di_o Do 2. tcorr 2. tfab:= Di_o 264.72 mm=Inside Pipeline Radius (Operations Case)

    Ri_o 0.5 Di_o:= Ri_o 132.36 mm=Effective Outside Pipeline Diameter

    De Do 2. tcpc+ 2. tc+:= De 373.10 mm=Pipeline Steel Area

    Ast

    4Do

    2 Do 2 tnom( )2 := Ast 7.89 103 mm2=Concrete Area

    Ac

    4Do 2 tc+( )2 Do2 := Ac 5.08 104 mm2=

    Effective Outside Pipeline Area

    Ae

    4Do 2 tc+( )2:= Ae 1.09 105 mm2=

    Inside Pipeline Area

    Ai

    4Di_o

    2:= Ai 5.50 104 mm2=

    BUOYANCY FORCE (per meter basis)

    BF g m w Ae c Ac s Ast( ):= BF 1.03 kN=Buoyancy Force Check

    BFchk "NEGATIVE BUOYANCY" BF 0

  • EN 8673 Subsea Pipeline Engineering Lecture 15Example 15-01

    Winter 2008

    Distance to Virtual Anchor Point - Assumes constant temperature (conservative) - Equation 9 of Palmer and Ling (1981) OTC4067

    z Pd Ri_o2

    f1 2 2 tnom

    Pd Ri_oE T T+

    := z 157.51 m=

    Virtual Anchor Length Check

    zchk "VIRTUAL ANCHOR OK" z 0.5 Lp= Z)

    l Pd Ri_o

    tnom E T T:= l 76.19 MPa=

    EQUIVALENT STRESS CHECK

    eq h2

    h l l2+:= eq 293.73 MPa=eqchk "EQUIVALENT STRESS OK" eq 0.9 SMYS

  • 18 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    Reading List http://www.fugro.com/survey/offshore/gcs.asp

    ALA (2001). Guideline for the Design of Buried Steel Pipe. July 2001, 83p.[2001_ALA_Design_Guideline.pdf]

    Cathie, D.N., Jaeck, C., Ballard, J.-C. and Wintgens, J.-F. (2005). Pipeline geotechnics state-of-the-art. Frontiers in Offshore Geotechnics, ISFOG, ISBN 0 415 39063 X, pp.95-114[2005_Cathie_PSI.pdf]

    Palmer, A.C. and Ling, M.T.S. (1981). Movements of Submarine Pipelines Close to Platforms. Proc., OTC, OTC 4067, pp.17-24.

    Palmer, A.C., Ellinas, C.P., Richards, D.M. and Guijt, J. Design of Submarine Pipelines Against Upheaval Buckling. Proc., OTC, OTC 6335, pp.551-560.

  • 19 ENGI 8673 Subsea Pipeline Engineering Lecture 15 2008 S. Kenny, Ph.D., P.Eng.

    References http://en.wikipedia.org/wiki/Geotechnical_engineering http://en.wikipedia.org/wiki/Soil_mechanics BCOG (2001). BC Offshore Oil & Gas Technology

    Update, JWEL Project No. BCV50229, October 19, 2001 DNV (2007). Submarine Pipeline Systems. Offshore

    Standard, DNV OS-F101, October 2007, 240p. Langley, D. (2005). A Resourceful Industry Lands the

    Serpent, Journal of Petroleum Technology, 57(10), 6p. Phillips, R. A. Nobahar and J. Zhou (2004). Trench

    effects on pipe-soil interaction. Proc. IPC, IPC 04-0141, 7p.

    ENGI 8673 Subsea Pipeline EngineeringLecture 15 ObjectiveOverviewDesign ConsiderationsGeotechnical Loads Soil MechanicsPipeline/Soil InteractionStructural Load EffectsPipeline/Soil Interaction AnalysisSoil Load-Displacement RelationshipsTrench EffectsBuried PerformanceExample 15-01Example 15-01 (cont)Example 15-01 (cont)Example 15-01 (cont)Example 15-01 (cont)Example 15-01 (cont)Reading ListReferences