12 fares hilift

Upload: tutou

Post on 08-Jul-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 12 Fares Hilift

    1/46

    Enrico Fabiano , Ehab Fares, Swen Nölting

    Exa GmbH

     Acknowledgements

    Judith A. Hannon

    Bruno Moschetta

    Unsteady Flow Simulation

    of High-Lift stall Hysteresis

    using a Lattice Boltzmann

     Approach

     AIAA-2012-2922

    30th Applied Aerodynamics

    Conference

    25-28 June, 2012, New Orleans, LA

  • 8/19/2019 12 Fares Hilift

    2/46

    © Exa Corporation2

    Overview

    Introduction

     –TrapWing Geometry

    Numerical Method – Lattice-Boltzmann based code (PowerFLOW)

    Turbulence Modeling

    Boundary Conditions

    Results – 1st  High-Lift Workshop / AIAA 2011 - 0869 results review

     – Simulation Overview

     –Sensitivity to laminar regions

     – Investigation of hysteresis effect Coarse and fine simulation

    Conclusions & Outlook

  • 8/19/2019 12 Fares Hilift

    3/46

    © Exa Corporation3

    Introduction

    Geometry and Measurements –  provided through 1st   High-Lift prediction

    workshop held in June 2010 

     Model details: – Semi-span, three-element configuration

    mounted on a body pod – Untwisted trapezoidal wing

     – MAC of 39.6”, AR of 4.56, LE Sweep 29.97 °  

     – ReMAC =4.3e6 , Ma=0.2

    Experimental details:

     –NASA Langley 14’x 22’  

     – Forces, moments, Cp distributions

     – Free and SA transition documented in  Shown in NASA Ames tunnelMcGinley C.B., Jenkins L.N., Watson R.D., and Bertelrud A., “3-D High-Lift Flow-

    Physics Experiment – Transition Measurements”, AIAA Paper, 2005-5148, 2005

    Eliasson P., Hanifi A., Peng S.-H., “Influence of transition on high – lift prediction

     for the NASA trap wing model”, AIAA Paper, 2011-3009, 2011

  • 8/19/2019 12 Fares Hilift

    4/46

    © Exa Corporation4

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    -5 0 5 10 15 20 25 30 35 40

          C      L

           [   -

           ]

    Experiment - Uncorrected forces- increasing Alpha

    Experiment - Uncorrected forces- decreasing Alpha

    Trap Wing in the NASA Langley WT

    Introduction

    Hysteresis effect discussed

    in the talk

    Windtunnel Measurement ~30s per AoA

    ΔAoA ~0.5°-2°

    (~20s rotating, 8s data acquisition & 2s data writing)

  • 8/19/2019 12 Fares Hilift

    5/46

    © Exa Corporation5

    Overview

    Introduction

     –TrapWing Geometry

    Numerical Method – Lattice-Boltzmann based code (PowerFLOW)

    Turbulence Modeling

    Boundary Conditions

    Results – 1st  High-Lift Workshop / AIAA 2011 - 0869 results review

     – Simulation Overview

     –Sensitivity to laminar regions

     – Investigation of hysteresis effect Coarse and fine simulation

    Conclusions & Outlook

  • 8/19/2019 12 Fares Hilift

    6/46

    © Exa Corporation6

    Lattice Boltzmann Method

    Fluid properties are described by distribution functions

     –  f is the number density for particles with velocity value v at

    ( , , ) f x v t 

    ( , ) x t 

    Discrete Lattice Boltzmann Equation (LBE)

     – Advection is by a constant velocity

     – BGK collision term

     – Fluid variables are obtained via simple summations:

    ( , ) ( , ) ( , )i i i i f x v t t t f x t x t 

      bi   i   t  x f  t  x   ),(),( 

         ( , ) ( , )bi   i iu x t v f x t      

    Shan X., Yuan X.-F, and Chen H. “Kinetic  theory

    representation of hydrodynamics: a way beyond the Navier

    Stokes equation”,  J. Fluid Mech., Vol. 550, 2006, pp. 413-

    441

    Chen H., Orszag S., Staroselsky I., and Succi S., “Expanded 

    analogy between Boltzmann Kinetic Theory of Fluid and

    Turbulence”, J. Fluid Mech., Vol 519, 2004, pp. 307-314

  • 8/19/2019 12 Fares Hilift

    7/46© Exa Corporation7

    Turbulence Modeling

    LBM– VLES Turbulence modeling approach

     – ‘Coherent’ statistically anisotropic eddies at larger scalescomputed

     – Statistically universal eddies in the inertial & dissipation

    ranges modeled Boltzmann-τ model, uses a modified relaxation parameter 

    Extended RNG 2-equation model

     – Swirl term used to switch between modeling & simulating

    eddies Extended wall model

     – Rescale the thickness of the turbulent boundary layerto account for pressure gradient effects

    Chen, H., Kandasamy, S., Orszag, S., Shock, R., Succi, S., and Yakhot, V., “Extended Boltzmann Kinetic Equation for Turbulent Flows,” Science, Vol. 301, 2003, pp. 633-636.

    Chen H., Teixeira C., and Molving K., “Realization of Fluid Boundary Condition via Discrete Boltzmann Dynamics”, Int. J. Mod. Phys. C , vol.9, pp.1281-1292, 1998.

  • 8/19/2019 12 Fares Hilift

    8/46© Exa Corporation8

    Overview

    Introduction

     –TrapWing Geometry

    Numerical Method – Lattice-Boltzmann based code (PowerFLOW)

    Turbulence Modeling

    Boundary Conditions

    Results – 1st  High-Lift Workshop / AIAA 2011 - 0869

     – Simulation Overview

     –Sensitivity to laminar regions

     – Investigation of hysteresis effect Coarse and fine simulation

    Conclusions & Outlook

  • 8/19/2019 12 Fares Hilift

    9/46

  • 8/19/2019 12 Fares Hilift

    10/46© Exa Corporation10

    Results – Brackets influence

  • 8/19/2019 12 Fares Hilift

    11/46© Exa Corporation11

    Results – Brackets influence

  • 8/19/2019 12 Fares Hilift

    12/46

  • 8/19/2019 12 Fares Hilift

    13/46© Exa Corporation13

    Model of TrapWing (with brackets) in the NASA Langley WT

    Experimental lift polar

    Results – Blockage effect

    Unsteady Flow simulation of a High Lift Configuration using a

    Lattice Boltzmann Approach AIAA 2011 –  0869

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    -5 0 5 10 15 20 25 30 35 40

         C     L     [  -     ]

    AoA [°]

    Uncorrected - increasing Alpha

    Corrected - increasing Alpha

  • 8/19/2019 12 Fares Hilift

    14/46© Exa Corporation14

    Results - Blockage Effects - Lift 

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    -5 0 5 10 15 20 25 30 35 40

         C     L

         [  -     ]

    Experiment - Uncorrected force

    Experiment - Corrected forces

    PowerFLOW - with WT wall

    PowerFLOW - Free Air

  • 8/19/2019 12 Fares Hilift

    15/46© Exa Corporation15

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    -5 0 5 10 15 20 25 30 35 40

         C     D

         [  -     ]

    Experiment - Uncorrected forces

    Experiemnt - Corrected forces

    PowerFLOW - with WT wall

    PowerFLOW - Free Air

    Results - Blockage Effects - Drag 

  • 8/19/2019 12 Fares Hilift

    16/46© Exa Corporation16

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    -5 0 5 10 15 20 25 30 35 40

         C    m    y

         [  -     ]

    α []

    Experiment - Uncorrected Moments

    Experiemnt - Corrected Moments

    PowerFLOW - with WT wall

    PowerFLOW - Free Air

    Results - Blockage Effects - Pitching Moment 

  • 8/19/2019 12 Fares Hilift

    17/46© Exa Corporation17

    Simulation Overview – Meshes

    Setup 1 Setup 2

    Setup1  Setup 2 

    Finest voxel size  1.25mm 1.25mm

    Total number of Voxels  127 million 79 million

    CPU-Hours  16,000 12,000

  • 8/19/2019 12 Fares Hilift

    18/46

    © Exa Corporation18

    Results – Sensitivity to laminar regions

       S   t   a    b   i    l   i   t   y   a   n   a    l   y   s   i   s

       L   a   m   i   n   a   r   R   e   g   i   o   n   s

       L   a   m   i   n   a   r   r   e   g

       i   o   n   s

        f   r   o   m    E

       x   p   e   r   i   m   e   n   t

  • 8/19/2019 12 Fares Hilift

    19/46

    © Exa Corporation19

    Results – Sensitivity to LR – Lift

  • 8/19/2019 12 Fares Hilift

    20/46

    © Exa Corporation20

    Results – Sensitivity to LR – AoA 36° 

    h

    1

     

    h

    5

     

    h

    9

     

  • 8/19/2019 12 Fares Hilift

    21/46

    © Exa Corporation21

    Results – Sensitivity to LR – AoA 36° 

    LR from Experiment SA Laminar Regions

  • 8/19/2019 12 Fares Hilift

    22/46

    © Exa Corporation22

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    -5 0 5 10 15 20 25 30 35 40

          C      L

           [   -

           ]

    Experiment - Uncorrected forces- increasing Alpha

    Experiment - Uncorrected forces- decreasing Alpha

    Model of TrapWing (with brackets) in the NASA Langley WT

    Used in the present simulations

    Results – hysteresis effect

    Experimental lift polar.

    Hysteresis effect

    Rotation zone used to pitch the trapwing with an

    LBM specific sliding mesh approachLattice Boltzmann approach for local reference frames

    Commun. Comput. Phys Vol. 9, No. 5, May 2011

  • 8/19/2019 12 Fares Hilift

    23/46

    © Exa Corporation23

    Coarse case  Fine case 

    Finest voxel size  1.875mm 1.25mm

    Total number of Voxels  37 million 79 million

    Total number of Surfels  5.4 million 9 million

    Total number of Timesteps  1,454,700 3,313,660

    Physical time  4.570s 5.280s

    Covered AoA range  28°  –  36°  –  28°  32°  –  36°  –  32° 

    CPU-Hours  54,200 166,000

    Results – hysteresis effect

  • 8/19/2019 12 Fares Hilift

    24/46

    © Exa Corporation24

    Coarse case

    α=28°-36°-28° in 1° steps

    Initialized from steady 28° 

    0.27s per 1°

    (0.02s rotating, 0.15s settling & 0.1s sampling)

    Results – hysteresis effect – Coarse case

  • 8/19/2019 12 Fares Hilift

    25/46

    © Exa Corporation25

    Results – hysteresis effect – Coarse case

  • 8/19/2019 12 Fares Hilift

    26/46

    © Exa Corporation26

    Results – hysteresis effect – Coarse case

  • 8/19/2019 12 Fares Hilift

    27/46

  • 8/19/2019 12 Fares Hilift

    28/46

    © Exa Corporation28

    Results – hysteresis effect – Coarse case

    Stall sequence - AoA 33°

  • 8/19/2019 12 Fares Hilift

    29/46

    © Exa Corporation29

    Results – hysteresis effect – Coarse case

    Stall sequence - AoA 34°

  • 8/19/2019 12 Fares Hilift

    30/46

    © Exa Corporation30

    Results – hysteresis effect – Coarse case

    Stall sequence - AoA 35°

  • 8/19/2019 12 Fares Hilift

    31/46

    © Exa Corporation31

    Results – hysteresis effect – Coarse case

    Stall sequence - AoA 36°

  • 8/19/2019 12 Fares Hilift

    32/46

    © Exa Corporation32

    Results – hysteresis effect – Coarse case

  • 8/19/2019 12 Fares Hilift

    33/46

  • 8/19/2019 12 Fares Hilift

    34/46

    © Exa Corporation34

    Results – hysteresis effect – Coarse case

    AoA 33 Increasing AoA 33 Decreasing

  • 8/19/2019 12 Fares Hilift

    35/46

    © Exa Corporation35

    Results – hysteresis effect – Coarse case

    AoA 34 Increasing AoA 34 Decreasing

  • 8/19/2019 12 Fares Hilift

    36/46

    © Exa Corporation36

    Fine case

    α=32°-36°-32° in 1° steps

    Initialized from steady 32° 

    Variable settling time 

    Results – hysteresis effect – Fine case

  • 8/19/2019 12 Fares Hilift

    37/46

  • 8/19/2019 12 Fares Hilift

    38/46

    © Exa Corporation38

    Results – hysteresis effect – Fine case

  • 8/19/2019 12 Fares Hilift

    39/46

    © Exa Corporation39

    Results – hysteresis effect – Fine case

  • 8/19/2019 12 Fares Hilift

    40/46

    © Exa Corporation40

    Results – hysteresis effect – Fine case

    l h ff

  • 8/19/2019 12 Fares Hilift

    41/46

    © Exa Corporation41

    Results – hysteresis effect – Fine case

    AoA 32 Increasing AoA 32 Decreasing

    l h ff

  • 8/19/2019 12 Fares Hilift

    42/46

    © Exa Corporation42

    Results – hysteresis effect – Fine case

    AoA 33 Increasing AoA 33 Decreasing

    l h i ff i

  • 8/19/2019 12 Fares Hilift

    43/46

    © Exa Corporation43

    Results – hysteresis effect – Fine case

    AoA 34 Increasing AoA 34 Decreasing

  • 8/19/2019 12 Fares Hilift

    44/46

    © Exa Corporation44

    Results – hysteresis effect – Fine case

    h

    1

     

    h

    5

     

    h

    9

     

  • 8/19/2019 12 Fares Hilift

    45/46

    © Exa Corporation45

    Overview

    Introduction

     –TrapWing Geometry

    Numerical Method – Lattice-Boltzmann based code (PowerFLOW)

    Turbulence Modeling

    Boundary Conditions

    Results – 1st  High-Lift Workshop / AIAA 2011 - 0869 results review

     – Simulation Overview

     –Sensitivity to laminar regions

     – Investigation of hysteresis effect Coarse and fine simulation

    Conclusions & Outlook

    C l i & O tl k

  • 8/19/2019 12 Fares Hilift

    46/46

    Conclusions & Outlook

    Unsteady Flow Simulations

     –Lattice Boltzmann Approach

     – Trap Wing with brackets in the NASA Langley WT

    Hysteresis Study – Sensitivity to laminar regions for HiLift flows

    Stall behavior – Reasonable prediction of the hysteresis effect

    Underlying physical phenomena correctly captured Hysteresis predicted ~1°AoA compared to Experiment

    Future studies will address –

    Larger settling time per AoA Better agreement with exp. pitch – pause approach

     – Other transition data? – Dynamic laminar regions modification