1.1. termodinami чki sistem o -...

97
1.0. Osnovni pojmovi 1.1. Termodinamiчki sistem m L Q "S" "O" Termodinamiчki sistem (dalje sistem) je onaj deo sveta koji je predmet termodinamiчkog izuчavanja. On je na sl. 2.1 oznaчen sa S. Taj deo sveta izdvojen je od ostalog prostora graniчnom povrшinom. Ostali prostor koji nije ukljuчen u sistem, predstavlja njegovu okolinu (na slici oznaчena je sa O). Izme|u sistema i okoline razmenjuje se energija u vidu rada L i u vidu toplote Q i masa m (to je prikazano na pomenutoj slici). 1.2. Predmet izuчavanja Termodinamike Termodinamika predstavlja disciplinu koja izuчava me|usobno delovanje sistema i okoline. 1.3. Klasifikacija sistema U ovom kursu, Termodinamika prouчava samo makroskopske materijalne sisteme чije su dimenzije mnogostruko veћe od dimenzija elementarnih чestica toga sistema. Ovde ћe se pod elementarnim чesticama podrazumevati molekuli . Termodinamiчki sistemi mogu biti homogeni i heterogeni . Homogeni sistem je onaj чije osobine su jednake u svim njegovim delovima ili se one kontinualno menjaju od jednog mesta do drugog. Heterogeni sistem se sastoji od dva ili viшe me|usobno razliчitih homogenih podruчja, tzv. faza (primer je tekuћa voda u kojoj plivaju jedan ili viшe komada leda.

Upload: vucong

Post on 19-May-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

1.0. Osnovni pojmovi

1.1. Termodinamiчki sistem

m

L

Q

"S"

"O"

Termodinamiчki sistem (dalje sistem) je onaj deo sveta koji je predmet termodinamiчkog izuчavanja. On je na sl. 2.1 oznaчen sa S. Taj deo sveta izdvojen je od ostalog prostora graniчnom povrшinom. Ostali prostor koji nije ukljuчen u sistem, predstavlja njegovu okolinu (na slici oznaчena je sa O). Izme|u sistema i okoline razmenjuje se energija u vidu rada L i u vidu toplote Q i masa m (to je prikazano na pomenutoj slici).

1.2. Predmet izuчavanja Termodinamike

Termodinamika predstavlja disciplinu koja izuчava me|usobno delovanje sistema i okoline.

1.3. Klasifikacija sistema

U ovom kursu, Termodinamika prouчava samo makroskopske materijalne sisteme чije su dimenzije mnogostruko veћe od dimenzija elementarnih чestica toga sistema. Ovde ћe se pod elementarnim чesticama podrazumevati molekuli. Termodinamiчki sistemi mogu biti homogeni i heterogeni. Homogeni sistem je onaj чije osobine su jednake u svim njegovim delovima ili se one kontinualno menjaju od jednog mesta do drugog. Heterogeni sistem se sastoji od dva ili viшe me|usobno razliчitih homogenih podruчja, tzv. faza (primer je tekuћa voda u kojoj plivaju jedan ili viшe komada leda.

Page 2: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

m

Otvoren sistem

m=0

Zatvoren sistem

Q=0

Adijabatski izolovan sistem

Izolovan sistem

L=0

Q=0

L

Pokretne graniène

površine

Q

Nepokretne graniènepovršine

ADIJABATSKI IZOLOVANE GRANIÈNE POVRŠINE

DIJATERMIÈNE GRANIÈNE POVRŠINE

Ukoliko je moguћa razmena mase izme|u sistema i okoline, tada je sistem otvoren, a ukoliko to nije moguћe, sistem je zatvoren. U sluчaju da ne postoji razmena energije izme|u sistema i okoline, sistem je izolovan. Ukoliko granice sistema ne dozvoljavaju jedino razmenu toplote, za sistem se kaжe da je adijabatski izolovan.

1.4. Klasifikacija graniчnih povrшina

Kada je sistem izolovan (nema razmene rada i toplote izme|u sistema i okoline) tada se graniчne povrшine nazivaju izolatorima. Ukoliko je sistem adijabatski izolovan, graniчne povrшine sistema se nazivaju adijabatskim, a u protivnom se kaжe da su te povrшine dijatermiчne. Graniчne povrшine sistema mogu biti pokretne ili nepokretne. Pokretne graniчne povrшine propuшtaju rad , dok ga nepokretne ne propuшtaju (tako su npr. pokretne granice onog sistema koji sadrжi ekspandirajuћi gas, kao шto je cilindar motora).

1.5. Metodi izuчavanja Termodinamiчkih problema

Page 3: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Teorija Termodinamike moжe se izgraditi na dva naчelno razliчita naчina: fenomenoloшki i statistiчki. Na osnovu toga, Termodinamika se deli na fenomenoloшku i statistiчku.

1.5.1. Fenomenoloшka Termodinamika

Razmatra stanja, makroskopske osobine termodinamiчkog sistema (pritisak, temperatura, masa i sl.) i promene stanja sistema bez dubljeg ulaжenja u njegovu gra|u. Ova termodinamika tom prilikom upotrebljava deterministiчku logiku u tom smislu da ako do|e do pojave A, mora da do|e do pojave B.

1.5.2. Statistiчka termodinamika

Statistiчka termodinamika posmatra makroskopski sistem kao skup vrlo velikog broja чestica. Makroskopska svojstva sistema proraчunavaju se na osnovu osobina tih чestica. Zato je potrebno poznavati mehaniku malih чestica (pri tome se umesto klasiчne mehanike treba posluжiti kvantnom) i statistiчke zakonitosti koje vladaju u mnoшtvima malih чestica. Statistiчka termodinamika koristi nedeterministiчku logiku u smislu da ako do|e do pojave A, verovatno je da ћe doћi do pojave B. Obe metode - fenomenoloшka i statistiчka treba da daju, naravno, iste rezultate. U ovom kursu termodinamke koristiћe se fenomenoloшki prilaz izuчavanja termodinamiчkih procesa.

VODA I VODENA PARA

Page 4: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Voda je jedno veoma rasprostranjena na zemlji zbog čega je veoma jeftina. Zato se često

upotrebljava kao radna materija u mnogim termodinamičkim uredjajima i postrojenjima. Jedan

od primera za to su termoelektrane koje služe da dobije elektroenergija iz energije uglja. U njima

ugalj sagoreva u kotlovima gde se sa tako oslobodjenom toplotom zagreva voda da bi isparila.

Tako da se dobija vodena para koja se zatim u kotlovima pregreva. Pregrejana vodena para koja

je na visokom pritisku dovodi se do uredjaja koji se zovu turbine. Ona unutar turbina ekspandira

što dovodi do obrtanja turbina. Turbine okreću elektrogeneratore koji proizvode električnu

energiju. Ekspandirana para ide zatim u kondenzator gde se hladi i ponovo pretvara u vodu koja

se pumpom opet prebacuje u kotao i tako proces ponavlja. Drugi primer je kada se voda zagreva

(ali ne isparava) u kućnim kotlovima i šalje u radijatore koji greju prostorije. Da bi smo

proračunali ovakve i slične uredjaje koji koriste vodu kao radnu materiju moramo da imamo

informacije o njenim termičkim i kaloričnim jednačinama kada je u tečnom i gasovitom stanju

(vodena para).

2.1 TERMODINAMIČKE POVRŠINE

Ove jednačine stanja su daleko komplikovanije nego jednačine stanja idealnog gasa. Tako

se termička jednačina stanja u opštem slučaju za vodu kao i za bilo koju supstancu (kao što su

freoni koji su radna materija kod frižidera i klimatizera, CO2, itd. ) može predstaviti da je u

opštem slučaju neka funkcija od p, v, i T ili matematički kao

F(p,v,T) = 0 . (2.1)

Ova jednačina prostorno predstavlja površinu u koordinatnom sistemu OpvT i naziva se

termodinamičkom površinom. Na sl. 2.1.a i sl.2.1.b skicirane su dve termodinamicke

povrsine.Termodinamicka povrsina sa sl. 2.1.a je karakteristicna za supstance koje se pri

zamrzavanju skupljaju, a termodinamička povrsina sa sl. 2.1.b za supstance koje se pri

zamrzavanju šire (voda). Svaka tačka ovih površina predstavlja skup vrednosti veličina p,v,T za

neko od mogućih ravnotežnih stanja.

Bilo koja supstanca može postojati ili kao tečna ili kao gasovita ili kao čvrsta faza ili

istovremeno u obliku nekoliko faza. Kada imamo supstancu u obliku jedne faze tada je ta

supstanca jednofazna. Kada se veći broj faza neke supstance nalazi istovremeno u ravnoteži

(npr.zajedno čvrsta i tečna faza-slučaj leda koji pliva u vodi) tada je ta supstanca višefazna. Na

termodinamičkim površinama (sl. 2.1.a i sl.2.1.b), redje osenčene površine predstavljaju stanja

jednofaznih supstanci (površine „5 K 6 7 8 9 10 5“ i „12341“), a gusće osenčene stanja

višefaznih supstanci (površine „5 6 K 5“, „2 5 10 3 2“, „2 6 7 1 2“).

Page 5: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Reñe osenčena povrsina „5 K 6 7 8 9 10 5“ predstavlja stanja gde je jednofazna supstanca

može biti u obliku ili tečne ili gasovite faze. Ovde je tečna faza oznacena sa F, a gasovita faza sa

G. Vidi se da ne postoji jasno definisana granica izmedju ove dve faze tj. na ovoj povrsini postoje

takva jednofazna stanja gde se ne moze sa sigurnoscu reći da li je ta supstanca gasovita ili tečina.

U stvari da li je neka supstanca dobila naziv tecnost ili gas to zavisi [EV] koliko je tu supstancu

moguce sabiti i da li ta supstanca ima slobodnu povrsinu. Gas će pri sabijanju daleko vise

promeniti svoju zapreminu nego tecnost, a osim toga tečnost uvek ima svoju slobodnu povrsinu

dok je gas nema. Inace je uobičajeno da se i tecnost i gas nazivaju fluidima tako da će se dalje o

podrucju 5 K 6 7 8 9 10 5 govoriti kao o području fluda. Medjutim, kada je specififina zapremina

gasa dovoljno velika i apsolutni pritisak dovoljno nizak tada se stanje toga gasa moze dovoljno

tacno opisati jednacinama stanja idealnog gasa. Gasovi koji se upotrebljavaju u termotehnčikim

procesima nikada nisu idealni, vec su realni. Veličine stanja u podrucju fluida označavaće se bez

indeksa (s,v,h).

Si. 2.1 Termodinamičke površine za supstance (a) koje se pri zamrzavanju skupljaju i (b) koje se pri zamrzavanju šire

Redje osenčena površina „1 2 3 4 1“ je ovde oznacena sa Č tj. materija je u jednoj od

svojih čvrstih faza.

Page 6: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Gušće osenčena površina „5 6 K 5“ je ovde označena sa F+G, i nazvana oblašću

mokre pare. U toj oblasti tečna (F) i gasovita (G) faza supstance su u medjusobnoj ravnotezi.

Kod vode tu se ključala tečnost i zasićena para nalaze u medjusobnoj ravnoteži. U ovoj oblasti,

velicine stanja se oznacavaju sa indeksom x (vx ,hx ,sx ).

Kriva K-6 jeste gornja granična kriva koja odvaja oblast fluida sa gasnom fazom (G)

od oblasti mokre pare (F+G). Ova kriva predstavlja stanja gde je supstanca u gasnom stanju i taj

gas se naziva zasićenom parom ili suvozasićenom parom ili suvom parom, a gas u oblasti fluida

iznad ove krive pregrejanom parom. Veličine stanja na ovoj (gornjoj graničnoj) krivi označavaju

se gornjim indeksom sekundum (v",h",s").

Kriva K-5 je donja granična kriva koja deli oblast fluida gde je materija u tečnoj fazi (F)

od oblasti mokre pare (F+G). Ova kriva predstavlja stanja gde je supstanca u tečnom stanju koju

nazivamo zasićena tečnost (ako je to voda onda se ona naziva ili ključalom vodom ili vrelom

vodom). Veličine stanja na ovoj (donjoj graničnoj) krivi označiće se sa gornjim indeksom prim

(v', h', s').

Tacka K je kritična tačka koja predstavlja kritično stanje gasa. Materija je u kritičnom

stanju okarakterisana sa kritičnim pritiskom pk, kriticnom specifičnom zapreminom vk i

kritičnom temperaturom Tk. Svakako da razlicite supstance imaju razlicito pk, vk, Tk što se i vidi

iz tabele P.I.

Gusto osenčena povrsina „2 5 10 3 2“ označena je sa (Č+F). Ta povrsina predstavlja

stanja u kojima su u medjusobnoj ravnotezi čvrsta i tečna faza.

Gusto osenčena površina „2 6 7 1 2“ je označena sa (Č+G). Ta površina predstavlja stanja

u kojima su u medjusobnoj ravnoteži čvrsta i gasovita faza.

Linije „2 5 6“ sa sl. 2.1.a i „5 2 6“ sa sl. 2.1.b jesu trojne linije. Te linije predstavljaju

stanja sa trofaznom supstancom tj. Na njima su zajedno gasovita, tečna i čvrsta faza (Č+G+F).

Linije(označene kao T1, TK, T2, T3) predstavljaju izoterme koje su po definiciji

kvazistatilki procesi. Naime, kako supstance, pri kvazistatičkim procesima u kojima ucestvuju,

prolaze kroz niz ravnotežnih stanja, to će linija koja povezuje njihovo početno i krajnje stanje

(tačku) ležati celom svojom dužinom na termodinamičikoj površini. Izoterma Tk naziva se

kriticnom izotermom.

Linije (označene kao p1, pK, p2, p3) predstavljaju izobare koje su po definiciji kvazistatički

procesi. Na njima je ucrtano nekoliko izotermi i nekoliko izobara. Izobare predstavljaju po

definiciji kvazistatičke procese. Izobara pK naziva se kritičnom izobarom.

2.2 RAVANSKI DIJAGRAMI STANJA

Page 7: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Na sl. 2.2, 2.3 i 2.4 prikazani su redom pv, Ts i hs - dijagrami stanja neke proizvoljne

supstance. Svakako da se pv-dijagram moze dobiti projekcijom termodinamičkih površina sa sl.

2.1.a i sl. 2.1.b na koordinatnu ravan Opv. Inače, na svim ovim dijagramima prikazana su

dvofazna stanja supstance u oblasti mokre pare (F+G) i njena jednofazna stanja u fluidnoj

oblasti. Takodje na ovim dijagramima ucrtane su gornja granična kriva K-ž i donja graničina

kriva K-d koje odvajaju dvofaznu oblast mokre pare (F+G) od jednofazne oblasti označene ili sa

F ili sa G. Inace oblast F u hs - dijagramu je ograničena na izuzetno malu povrsinu, gotovo uz

donju graničinu krivu. Tako ovaj dijagram nije pogodan za rad u ovoj oblasti. Ipak hs-dijagram je

najčešće u praktičinoj upotrebi. Na sl. 2.5 prikazan je hs-dijagram stanja vodene pare koji sluzi

za razne praktične proračune.

(a) (b)

Sl. 2.2 Razne promene stanja u pv- dijagramu stanja: a) p=const., T=const. i x=const., b)

v=const. i s=const.

Page 8: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Sl. 2.3 Izobarska promena stanja: a) voda u sudu; b) promena u Ts-dijagramu stanja

Sl. 2.3 Razne promene stanja u Ts- dijagramu stanja: a) p=const., T=const. i x=const., b)

v=const. i s=const.

T

s

Page 9: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Sl. 2.4 Razne promene stanja u hs

2.2 PROMENE STANJA NA RAV

Na ravanskim dijagramima stanja (na sl.

stepena suvoće, izoterme, izobare, izohore i izentrope.

Linije konstantnog stepena suvo

zasićenom tešnošću i zasićenom parom) na ovim dijagramima date su i linije konstantnog

stepena suvoće x=const. Stepen suvo

ukupne mase dvofazne supstance

pa je

x = m"/mx ili 1- x= m’/mx Ovde je m' masa tečne faze dvofazne supstance (zasi

graničnoj krivi nemaju zasićenu paru to je m"

materija je u obliku zasićene pare pa je m"

ovoj dvofaznoj oblasti tada se moze re

(1-x) kg zasicene tecnosti. U oblasti mokre pare p

tacke K. Ovde je x1 > x2.

Izoterme T1>TK. Ako se neki proces vodi po izotermi T

supstanca je uvek jednofazna (gasovita)

Razne promene stanja u hs-dijagramu

PROMENE STANJA NA RAV ANSKIM DIJAGRAMIMA STANJA

Na ravanskim dijagramima stanja (na sl. 2.2, 2.3 i 2.4) prikazane su samo linije konstantnog

e, izoterme, izobare, izohore i izentrope.

Linije konstantnog stepena suvoće. U oblasti mokre pare F+G koja je dvofazna obl

enom parom) na ovim dijagramima date su i linije konstantnog

Stepen suvoće (x) je po definiciji odnos mase zasić

supstance (mx = m" + m') tj. zbira masa zasićene tečnosti

ne faze dvofazne supstance (zasićene tečnosti). Inače kako stanja na donjoj

enu paru to je m" = 0 to je x = 0. Na gornjoj graničnoj k

ene pare pa je m" = mx i x = 1. Kada se zna x stanja Mdg

ovoj dvofaznoj oblasti tada se moze reći da 1 kg mokre pare tog stanja sadrzi x kg zasicene pare i

U oblasti mokre pare prikazane su i linije x=const. koje sve polaze iz

Ako se neki proces vodi po izotermi T1 (vidi Sl. 2.1-4) pri cemu je T

supstanca je uvek jednofazna (gasovita). Iskustvo pokazuje da za T1 ≥ TK nema tog priti

prikazane su samo linije konstantnog

koja je dvofazna oblast (sa

enom parom) na ovim dijagramima date su i linije konstantnog

(x) je po definiciji odnos mase zasićene pare (m") i

nosti i zasićene pare)

(2.1)

e kako stanja na donjoj

čnoj krivi sva

dg (sl. 2.1.a) u

kg mokre pare tog stanja sadrzi x kg zasicene pare i

rikazane su i linije x=const. koje sve polaze iz

4) pri cemu je T1>TK,

nema tog pritiska koji

Page 10: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

bi gas preveo u tečno stanje. U pv dijagramu, na višim temperaturama u ovom području,

izoterme dobijaju oblik hiperbole idealnog gasa. Medjutim, u Ts-dijagramu izoterme su u svim

oblastima prave paralelne sa s-osom. U gasnom području u hs-dijagramu vidi se da se za niske

pritiske ove izoterme gotovo poklapaju sa izentalpama pri cemu se uvecavanjem pritisaka, ove

izoterme zakrivljuju. Kod idealnog gasa izotermske promene stanja su istovremeno i

izentalpske.

Izobare p1>pK. U pv-dijagramu stanja izobare su prave linije paralelne osi v. Izobare u Ts-

dijagramu stanja su krive linije koje u podrucju G blizu kriticne tacke K imaju infleksiju. Za nize

pritiske u gasnoj fazi (iznad tačke K) izobare prelaze u izobare idealnog gasa. Za kvazistatički

proces vazi jednačina (diferencijalna jednačina prvog zakona termodinamike za otvorene

sisteme)

Tds = dh - vdp (2.2)

i kako je za izobarski proces dp = 0 to je:

(∂h/∂s)p = T (2.3)

Odavde sledi da je vrednost nagiba izobara podrucja G u hs-dijagramu veća na višim

temperaturama.

Kriti čne izoterme i izobare. Kriti čna izoterma u kritičnoj tački u pv-dijagramu ima za tangentu

izobaru pa joj je u tacki K nagib nula. Osim toga za kritičinu izotermu tacka K je i prevojna tacka

pa važe relacije:

(∂p/∂v)Tk = 0 , (∂2p/∂v2) Tk = 0 (2.5)

Ova kriticna izoterma u Ts-dijagramu je prava paralelna osi s, dok je u hs-dijagramu tacka K

njena tacka infleksije.

Izobara p je u pv-dijagramu paralelna osi v kao uostalom i sve izobare u ovom

dijagramu. U Ts-dijagramu u tacki K njen nagib je nula a ima i svoju prevojnu tacku:

(∂T/∂s) pk = 0, (∂2T/∂s2)pk = 0 (2.6)

Page 11: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Inace u hs-dijagramu kriticna izobara ima nagib TK jer je prema (2.4) u tacki K (∂h/∂s)pK = TK.

Izoterme T2<TK. Izobare p2<pK. Kondenzacija. Isparavanje.

Ukoliko se gas sabija pri procesu sa konstantnom temperaturom npr. T2, koja je manja od

kritične, tada pri nekom tacno odredjenom pritisku otpočinje njegov prelazak u tecnost

(kondenzacija). Slicno se desava kada se tecnost pri ovoj temperaturi širi tj. ona pri nekom

pritisku pocinje da prelazi u gas (isparavanje).

Ako se gas hladi pri nekom konstantnom pritisku p2 koji se odrzava konstantnim i koji je

manji do kriticnog, tada dolazi do pocetka kondenzacije pare, a kada se tečnost zagreva pri istom

torn pritisku dolazi do njenog isparavanja.

Kondenzacija pare jeste naziv za prelazak gasovite u tecnu fazu, a isparavanje za proces

u suprotnom smeru.

Inace treba napomenuti da u podrucju tecnosti F u Ts i hs-dijagramima stanja izobare se

gotovo poklapaju sa donjom graničnom krivom.

Sa svih ovih dijagrama i prethodno prikazanih termodinamičkih povrsina vidi se da je

svaki izotermski proces sa visefaznom supstancom istovremeno i izobarski. Pri jednom od

izotermsko-izobarskih procesa, odredjenoj temperaturi tog procesa odgovara tačno odredjena

vrednost pritiska. Zato se izotermske i izobarske linije na ovim dijagramima stanja u visefaznim

područjima medjusobno preklapaju dok se van njih razilaze. Tako npr. u dvofaznoj oblasti mokre

pare (F+G) od 2' do 2", kada je temperatura T2 = const. i p2 = const. (vidi Sl.2.1-3), zasicena

tečnost stanja 2' prelazi pri konstantnom pritisku i konstantnoj temperaturi u zasićeni gas stanja

2". Moguce je voditi proces i od 2" do 2' kada su istovremeno T2 = const. i p2 = const.

Inace vidi se, da su u pv-dijagramu stanja u oblasti F+G, ove izotermsko-izobarske

promene stanja paralelne osi v, u Ts-dija-gramu stanja osi s. U hs-dijagramu stanja ove promene

stanja su prave linije pod nekim nagibom u odnosu na osu s, a koji zavisi od vrednosti

temperature ovog procesa. To sledi iz jednacine (2.3).

Sublimacija, desublimacija. Proces č3-3", koji je prikazan samo na sl. 2.1.a i sl. 2.1.b, se odvija

u dvofaznoj dblasti (Č+G). pri p3 = const. i T3 = const. Pri tome dolazi do prelaska cvrste faze

stanja č3 u gasovitu stanja 3". Ovaj proces se može odvijati u suprotnom smeru. Prelazak cvrste

faze u gasovitu naziva se sublimacijom, a gasovite u cvrstu desublimacijom.

Mrznjenje, topljenje. Pri procesu č2 –f2, koji je prikazan samo na sl. 2.1.a kada je T2 = const. i

p21 = const. cvrsta faza stanja č2, prelazi u tečnu stanja f2. I ovaj proces može se odvijati u

suprotnom smeru. Prelazak tečne u čvrstu fazu naziva se mrznjenjem i čvrste u tečnu topljenjem.

Page 12: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Prelazak iz jedne u druge faze na trojnim linijama. Trojne linije sa sl. 2.1.a i sl. 2.1.b takodje

predstavljaju istovremeno izoterme i izobare. Na njima dolazi do prelaska iz jedne faze (npr.

gasne) u druge dve (čvrstu i tečnu fazu).

Izohorske promene stanja. Izohorske promene stanja u pv-dijagramu su paralelne osi p dok su

u Ts i hs-dijagramima to krive linije koje su strmije od izobara pri cemu je v1v > vK > v2v .

Izentropske promene stanja. Izentropske promene stanja takodje su prikazane na ovim

dijagramima. U Ts-dijagramu stanja to su prave linije paralelne osi T. u hs-dijagramu stanja to

su takodje prave linije.paralelne osi h. Medjutim u pv-dijagramu to su krive koje su nesto strmije

od izotermi. U svim ovim dijagramima je s1s >sK >s2s.

2.3 VELlClNE STANJA U JEDNOFAZNOM PODRUČJU U podrucju fluida supstanca je jednofazna i moze se nalaziti kao tecnost ili kao gas.

Izotermski procesi u ovom podrucju nisu jednovremeno i izobarski kao u slucaju visefazne

supstance. Poznavanje jedne od intenzivnih velicina stanja je nedovoljno da se stanje supstance u

ovom podrucju jednoznacno odredi. Tako, ako se zna da temperatura nekog stanja Mg , koje je

prikazano na termodinamickoj povrsini na sl. 2.1.a, ima vrednost T1 sigurno je da bezbroj stanja

mogu da imaju tu temperaturu tj. sva ona koja u ovom podrucju leže na izotermi T1. Medjutim,

kada se zna i pritisak supstance u tom stanju, koji je p2, tada se može to stanje, tj. tačku M , na

ovim povrsinama i dijagramima odrediti u preseku izobare p2 i izoterme T1. Tako je na ovaj

nacin ovo stanje jednoznacno odredjeno. Prema tome, da bi stanje supstance u ovom

jednofaznom podrucju bilo jednoznacno odredjeno ,tj. sve intenzivne velicine tog stanja poznate,

potrebno je poznavati vrednosti dve od njegovih intenzivnih veličina stanja. To isto vazi i za

jednofazno podrucje Č.

Tablica P.2 u prilogu sadrzi podatke o vrednostima velicina stanja v,h,s pregrejane

vodene pare u funkciji pritiska u opsegu od 1 bar do 500 bar, i temperature u opsegu od 0 0C

do 700 0C.

Page 13: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

2.4 RAVNOTEZA FAZA

Kod dvofazne supstance obe njene faze moraju da budu u medjusobnoj ravnotezi. Svaka faza je i

sama jednofazna supstanca. Stanje neke dvofazne supstance na termodinamičkim površinama i

dijagramima stanja predstavljeno je nekom od tačaka unutar njihovih dvofaznih oblasti, a tačke

na grančnim krivama ovih oblasti predstavljaju stanje svake od faza (zasićenih jednofaznih

supstanci) ove dvofazne supstance. Tako, tačka Mdg na sl. 2.1.a predstavlja stanje dvofazne

supstance koja se sastoji iz tecne i gasovite faze koje su u medjusobnoj ravnotezi. Stanje ove

tecne faze (zasićene tecnosti) je dato nekom od tačaka na donjoj graničnoj krivi, a stanje gasne

faze (zasicene pare) nekom od tačaka na gornjoj granicnoj krivi. Uslovi medjusobne ravnoteze

faza jednoznacno odredjuju stanja tecne i gasovite faze ove dvofazne supstance tj. polozaj tacaka

na donjoj i gornjoj granicnoj krivi. Bilo koja tacka na trojnoj liniji npr. sa sl. 2.1.a predstavlja

stanje trofazne supstance koja se sastoji od čvrste, tečne i gasovite faze koje su takodje u

medjusobnoj ravnotezi. I ovde uslovi ove termodinamicke ravnoteze jednoznačno odredjuju

stanja ovih faza na graničnim krivama.

Da bi faze visefazne supstance bile u ravnotezi mora da postoji njihova mehanicka,

termicka i hemijska ravnoteza. Kod mehanicke ravnoteze pritisci ovih faza moraju da su jednaki,

a da bi se ispunila termicka ravnoteza treba da su jednake i njihove temperature. Kod hemijske

ravnoteze potrebna je jednakost hemijskih potencijala tih faza.

U prethodno pomenutoj tački Mdg, u oblasti mokre pare neka su pritisak, temperatura i

hemijski potencijal redom p2,T2, i g2. Da bi obe faze ove dvofazne supstance bile u ravnotezi

potrebno je da obe faze i celokupna dvofazna supstanca imaju isti pritisak, temperaturu i hemijski

potencijal tj. vazi:

P2 = P2 “= P2’ T2 = T2”= T2’, g2= g2”= g2‘ (2.7)

Ovi uslovi jednakosti pritiska i temperature jednoznacno odredjuju stanja faza na donjoj i gornjoj

granicnoj krivi termodinamicke povrsine. Presek izobarsko-izotermske linije koja prolazi kroz

Page 14: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

tacku Mdg sa gornjom i donjom granicnom krivom daje redom tacke 2“ i 2' koje predstavljaju

stanja gasovite i tecne faze ove dvofazne supstance .

Slično se moze reći i za dvofaznu supstancu cije stanje je predstavljeno tackom Mčg. Ona

se takodje sastoji iz dve faze i to jedne čvrste zasićene stanja č3 i druge gasovite zasićene stanja

3". Ova stanja se na granicnim krivama 1-2 i 6-7 dobijaju na gotovo identican način kao sto je to

ucinjeno za dvofaznu supstancu u oblasti mokre pare. Obe faze sa stanjima č3 i 3" i njihova

dvofazna supstanca imaju isti pritisak, temperaturu i hemijski potencijal. Takodje kod dvofazne

supstance stanja Mčf, njena cvrsta faza stanja č2, i zasicena tecna faza stanja f2 su na istom

pritisku i temperaturi i imaju isti hemijski potencijal. Tako, u opstem slucaju za dvofaznu sup-

stancu i njene faze a i b vazi:

pa= pb= p, Ta= Tb= T, ga= gb= g (2.8)

Na trojnoj liniji sve tri faze, a zato i sama supstanca bice na istom pritisku i temperaturi i imace

isti hemijski potencijal. Zato ce ove tri faze biti predstavljene tackama na samoj trojnoj liniji i to:

tacka 2 (cvrsta faza), 5 (tecna faza) i 6 (gasovita faza). Mogu se napisati jednakosti:

p256= p2= p5= p6 (2.9)

T256= T2= T5= T6 (2.10)

g256= g2= g5= g6 (2.11)

2.5 VELIČINE STANJA POJEDINAČNIH FAZA

Ako se zna da je temperatura nekog stanja na gornjoj graničnoj krivi (kriva K-6 sa sl.

2.1.a i sl. 2.1.b) T2, tada je to stanje jedndnoznačno odredjeno u preseku ove granicne krive i

izoterme T2. To je tačka 2" na tim slikama. Prema tome, intenzivne velicine stanja na gornjoj

graničnoj krivi su jednoznacno odredjene ukoliko se poznaje samo jedna od intezivmh veličina

stanja. Isto se moze zak-ljučiti i za donju granicnu krivu K-5.

Kako su temperatura i pritisak obe faze dvofazne supstance iste to ukoliko se poznaje

jedna intenzivna veličina stanja, jedne od faza ove supstance tada su jednoznačno odredjene sve

intenzivne. veličine stanja obe faze..

Page 15: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Posmatrajmo ponovo dvofaznu supstancu koja se npr. sastoji iz gasne i tecne faze. Neka

je temperatura gasne faze T2. U tom slucaju presek izoterme T2 sa gornjom granicnom krivom

jednoznacno odredjuje tacku 2", a presek iste izoterme sa donjom granicnom krivom jednozna-

cno odredjuje tačku 2'. Tako su jednoznacno odredjena stanja 2" i 2' i moguce je jednoznacno

dobiti njihove velicine stanja npr. p2', v2', s2', h2', p2', v2', s2', h2' i druge.

Često su na raspolaganju i tabele termodinamickih osobina faza dvofaznih supstanci. Ove

tabele su date u ovom udzbeniku samo za dvofaznu vodu koja se sastoji iz tečine i gasovite faze.

Tako, tabela P.3 daje velicine stanja kljucaie vode i suve pare u zavisnosti od temperature t u

njenom intervalu od 0°C do 374,15°C. Tabela P.4 daje velicine stanja ključale vode i suve pare u

zavisnosti od p i to u opsegu od 0,01 bar do 220 bar. Velicine stanja koje su date u ovim

tabelama su v’, v", h', h", s', s". Iz ovih tabela se vidi da su razlika vrednosti za v' i v" i za h' i h",

i za s' i s" sve manje ukoliko su temperature i pritisci tecne i gasovite faze visi. Tako za neku

temperaturu (u ovim tabelama za vodu to je 374,15°C)-kriticnu temperaturu ova razlika i ne

postoji. U stvari u kriticnoj tacki nemamo dvofaznu supstancu vec jednofaznu.

Za slucaj trojne linije, za odredjivanje intenzivnih velicina stanja sve tri faze trofazne

supstance na ovoj liniji nije potvebno znati niti jednu od njenih intenzivnih veličina stanja. U

stvari, pritisak i temperatura i ostale intenzivne velicine stanja ovakve supstance odredjene su

samo njenom prirodom. Za neke od razlicitih supstanci pritisak i temperatura trojne linije dati su

u tabeli P.5.

2.6 VELICINE STANJA MOKRE PARE

Kao sto smo videli dvofazna supstanca u oblasti mokre pare (oblast F+G) sastoji se iz

zasićene tecnosti i zasicene pare pri cemu su za tu paru i tecnost isti p,T i g. U zavisnosti od toga

koliko je x tj. koliko je para mokra, ostale velicine stanja dvofazne mesavine razlikovace se u

odnosu na ostale velicine stanja faza koje ucestvuju u toj mesavini.

Zapremina ove dvofazne supstance je zbir zapremina koje zauzimaju zasićena tecnost i

zasicena para:

Vx =m'v' + m"v" (2.12)

Ova zapremina kao i sve velicine stanja u ovoj oblasti oznacena je sa indeksom x.

Page 16: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Ako se ova relacija podeli sa masom dvofazne supstance tada se dobija:

vx = Vx/mx = m'v'/mx + m"v"/mx (2.13)

Kako je 1-x = m'/mx i x = m"/mx to je

vx = (1-x) v' + xv"

tj. konacno

vx= v' + x(v"-v’) (2.14) Analogno ovome izrazu za bilo koju veličinu stanja "y" moguće je napisati:

yx = y' + x(y"-y') (2.15)

Tako u podrucju mokre pare za specificnu entropiju vazi relacija:

sx = s' + x(s"-s’) (2.16)

i za specificnu entalpiju relacija:

hx = h' + x(h"-h') (2.17)

2.7 VELIČINE PROMENA STANJA

2.7.1 Specificna kolicina toplote, specificni rad sirenja i specificni tehnicki rad

Formule za izracunavanje velicina reverzibilnih promena stanja i to velicina promene stanja q,l,lt.

pri nekoj od promena stanja date su ranije. One vaze za kompresibilnu materiju u opstem smislu.

Tako je te jednacine mogude priroeniti za sve izohorske, izobarske, izotemske i izentropske

procese supstance koji su prikazani na sl. 2.1 do 2.4. Takodje postoji mogudnost da se specificni

rad sirenja l i specificni tehnicki rad l t odrede graficki iz pv-dijagrama stanja, a specificna

kolicina toplote q iz Ts-dijagrama stanja. Na sl. 1.1 prikazano je kako se ove velicine odredjuju

graficki. Osim toga hs-dijagram je vrlo pogodan za odredjivanje razmenjene kolicine toplote

pri izcbarskom procesu jer je npr. za jedan izobarski. proces od stanja 1 do stanja 2:

q12 = h1 -h2

(2.18)

Page 17: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Tako je u ovom dijagramu q12 predstavljeno pomocu duzi. Za izentropski proces od 1 do 2 vazi:

l t12 = h1 -h2 (2.19)

pa je u ovom dijagramu lt12 za izentropski proces takodje predstavljeno pomocu duzi. 2.7.3 Latentna toplota

Kod dvofaznih supstanci najznacajnije je poznavanje latentne (skrivene) toplote koja je takodje

veličina (izotermsko-izobarske) promene stanja od jedne zasićene do druge zasićene faze. Pri

ovim izotermsko-izobarskim procesima u zavisnosti od njihovog pravca dovodi se ili odvodi

toplota. Ona kolicina toplote koja se pri procesu potpunog pvetvaranja jedne faze jedinične

količine materije u drugu fazu,kada su p = const. i. T = const. dovodi toj istoj kotičini materije

naziva se latentnom tj. skrivenom toplotom. Latentna toplota koja se dovodi pri potpunom

isparavanju kg zasićene tecnosti jeste latentna toltota isparavanja koja se oznacava sa r. Po

apsolutnoj vrednosti je jednaka onoj količini toplote koju treba odvesti od kg zasićene pare da bi

se ona u potpunosti kondenzovala. Latentna toplota potrebna za potpunu sublimaciju 1 kg

cvrstog tela osnacava se sa rs i naziva latentnom toptotom sublimacije. Svakako da se ista

kolicina toplote odvede po kg zasićenog gasa pri istom p i T kao i pri sublimaciji kada gas prelazi

ceo u cvrsto telo. Latentna toptota topljenja označava se sa rt i odnosi se na prelazak čvrste u

tecnu fazu.

Razmenjena kolicina toplote po kg materije pri potpunom prelasku faze "a" u fazu

"b" - latentna toplota - data je izrazom:

rab=qab=T(sb-sa) = hb-ha (2.20) Jednakost rab=qab=T(sb-sa) dobija se iz uslova da se ta toplota razmenjuje pri izotermskom procesu kod koga je δq=T ds, a jednakost rab=qab= hb-ha dobija se iz uslova da se ta razmena odvija i pri izobarskom procesu kada važi da je δq=dh. Za mokru paru b = " i a = ‘ pa vazi:.

r = T(s"-s') = h"-h' (2.21)

Zato se (2.16) moze napisati u obliku: sx = s' + rx/T (2.22)

a (2.17) kao

hx = h' + rx. (2.23)

Page 18: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

TABELA P.5 PODACI 0 PRITISKU I TEMPERATURI TROJNE LINIJE ZA NEKE SUPSTANCE [VF]

Supstanca Temperatura, °C

Pritisak, kPa

Vodonik - 259 7,194

Kiseonik - 219 0,15 Azot - 210 12,53 giva - 39 0,00000013 Voda 0,01 0,6113 Cink 419 5,066 Srebro 961 0,01 Bakar 1083 0,000079

Page 19: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

TABELA P.2 VELlČlNE STANJA PREGREJANE VODENE PARE [ST]

v[m3/kg], h[kJ/kg] i s[kJ/kgK]

t, 0C 1,0 bar

5,0 bar

c v h s v h s

0 0,0010002 0,1 0,0000 0,0010000 0.5 0,0001

20 0,0010016 83,9 0,2963 0,0010015 84,3 0,2962 40 0,0010078 167,4 0,5718 0,0010076 167,8 0,5716 60 0,0010172 251,0 0,8304 0,0010170 251,3 0,8302 80 0,0010293 334,8 1,0746 0,0010291 335,1 1,0744 100 1,695 2674,7 7,3567 0,0010436 419,2 1,3060 120 1,794 2717,4 7,4683 0,0010606 503,7 1,5268 140 1,890 2757,1 7,5669 0,0010802 589,0 1,7382 160 1,984 2796,4 7,6596 0,3838 2768,2 6,8660 180 2,078 2835,6 7,7481 0,4048 2814,2 6,9697 200 2,172 2874,9 7,8329 0,4250 2856,8 7,0617 220 2,266 2914,3 7,9145 0,4449 2898,4 7,1479 240 2,359 2593,8 7,9931 0,4644 2939,7 7,2301 260 2,452 2993,5 8,0690 0,4838 2980,9 7,3088 280 2,545 3033,4 8,1425 0,5031 3022,1 7,3846 300 2,638 3073,5 8,2137 0,5223 3063,3 7,4577 320 2,731 3113,8 8,2828 0,5414 3104,5 7,5285 340 2,824 3154,3 8,3500 0,5604 3145,9 7,5971 360 2,917 3195,1 8,4154 0,5793 3187.4 7,6636 380 3,010 3236,1 8,4791 0,5982 3229,0 7,7284 400 3,102 3277,3 8,5413 0,6170 3270,8 7,7914 420 3,195 3318,8 8,6020 0,6358 3312,8 7,8528 440 3,287 3360,5 8,6613 0,6546 3354,9 7,9128 460 3,380 3402,5 8,7194 0,6733 3397,3 7,9715 480 3,473 3444,7 8,7762 0,6920 3439,9 8,0288 500 3,565 3487,2 8,8319 0,7107 3482,8 8,0849 520 3,658 3530,0 8,8865 0,7294 3525,9 8,1399 540 3,750 3573,0 8,9401 0,7480 3569,2 8,1939 560 3,843 3616,4 8,9928 0,76C6 3612,7 8,2468 580 3,935 3660,0 0,9445 0,7853 3656,6 8,2088 600 4,027 3703,8 9,0953 0,8039 3700,6 8,3499 620 4,120 3748,0 9,1453 0,8225 3745,0 8,4001 640 4,212 3792,4 9,1945 0,8410 3789,6 8,4495 660 4,305 3837,1 9,2429 0,8596 3834,5 8,4981 680 4,397 3882,1 9,2907 0,8782 3879,6 8,5459 700 4,489 3927,4 9,3377 0,8967 3925,0 8,5931

Page 20: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Veliчine stanja

2.1. Struktura sistema

Mogu se prouчavati razne vrste agregatnih stanja termodinamiчkih sistema: gasovito, teчno i чvrsto. Takoñe su razliчite fiziчke i hemijske osobine чestica koje чine sistem.

1 Nm3

V=1 m

p=101325 Pa

t=0 C

3

0

1 nm3

V=1 m

p=98066,5 Pa

t=10 C

3

0

1 kmol

6,023 10 molekula26

2.2. Koliчina materije

Elementarna чestica termodinamiчkog sistema je 1 molekul. Meñutim, broj molekula je vrlo veliki чak i u najmanjem termodinamiчkom sistemu. Zato se molekul ne upotrebqava kao jedinica koliчine materije, već skup od 6,023 1026 molekula. Ovaj broj molekula naziva se kilomol. U ovom sluчaju, mera koliчine materije u termodinamiчkom sistemu je broj kolomolova N. Ova veliчina može se dobiti iz jednaчine:

[ ]N

n

nkmol=

0 (3.1) gde je n - ukupan broj molekula u sistemu, a n0=6,023 1026 molekula/kmol-u - Loschmidtov ili Avogadrov broj. Kao jedna od jedinica koliчine materije van SI sistema jedinica, чija upotreba nije dozvoqena (ovde je data jer se upotrebqava u starijoj literaturi) je i "veliki normalni kubni metar" Nm3 . To je koliчina materije koja zauzima

zapreminu od 1 3m na p=101325 Pa i t=0°C. Oчigledno je da pri razliчitim uslovima (temperaturama i pritiscima) 1Nm3 zauzima razliчite zapremine. Veza izmeñu koliчine materije NN izražene u velikim normalnim kubnim metrima i broja kilomolova je:

[ ]N N NmN = ⋅22 41 3, (3.2)

Jedan mali normalni kubni metar nm3 je koliчina materije koja zauzima zapreminu od 1 m3 na pritisku od 98066,5 Pa i temperaturi od 10 °C. Pri razliчitim uslvima (pritiscima i temperaturama) 1nm3 zauzima razliчite zapremine. Veza

Page 21: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

izmeñu koliчine materije Nn u malim normalnim kubnim metrima i broja kilomolova je:

Nn N nm= 24 3, . Kao mera koliчine materije može se uzeti njena masa m. Važi da je: m=M N, kg. Ovde je M, kg/kmol, relativna molekulska masa чija je vrednost razliчita za razliчite supstance.

2.3. Zapremina

Jedinica za zapreminu V termodinamiчkog sistema je m3 . Odnos mase i zapremine je gustina: m/V [kg/m3], dok je odnos zapremine i mase specifiчna zapremina: v=V/m [m3/kg]. Specifiчna molarna zapremina je vn = V/N, m3/ kmol.

2.4. Temperatura

Pri radu sa temperaturom u termodinamiчkim jednaчinama uvek će se upotrebqavati apsolutna temperatura T. To je veliчina stanja koja je proporcionalna srednjoj kinetiчkoj energiji velikog broja molekula. Apsolutna temperatura je uvek pozitivna. Njena vrednost se u SI sistemu jedinica dobija koriшćenjem Kelvinove apsolutne temperaturske skale, koja je pokazana na sl. 3.1. Na ovoj skali, jedinica temperature je stepen Kelvina, koji se oznaчava sa K (jedinica SI sistema). Vrednost temperature može se iskazati i pomoću relativnih temperaturskih skala: Celzijusa, Reomira i Farenhajta. Na celzijusovoj temperaturskoj skali kao jedinica temperature upotrebqava se °C. Ovo nije jedinica meñunarodnog sistema jedinica, ali je dozvoqena njena upotreba jer se postiže boqa preglednost numeriчkih vrednosti temperatura. Stepeni Reomira °R Reomirove temperaturske skale i Farenhajta °F Farenhajtove temperaturske skale su jedinice temperature van meñunarodnog sistema jedinica i njihova upotreba nije dozvoqena. Na sl. 3.1 prikazane su zajedno apsolutna temperaturska skala Kelvina i relativne temperaturske skale Celzijusa, Reomira i Farenhajta. Vidi se da temperatura leda i vode pri njihovoj ravnoteži na pritisku od 101325 Pa iznosi 273,16 K, 0 °C, 0 °R i 32 °F. Temperatura vode i vodene pare u ravnoteži na pritisku od 101325 Pa je 373,16 K, 100 °C, 80 °R i 211 °F. Apsolutna nula temperature odgovara temperaturama od 0 K, -273,16 °C, -218 °R, -459 °F. Razlika temperatura leda i vode i vode i vodene pare u ravnoteži na 101325 Ra je 100K, 100 °C, 80 °R i 180 °F. Vidi se sa sl. 3.1 da važe relacije izmeñu jediniчnih stepeni temperaturskih skala: (376,16-273,16)K=100 °C=80 °R=(212-32)°F

Page 22: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

100 K=100 °C=80 °R=180 °F, tj. 1 K=1 °C=4/5 °R=9/5 °F 1 R=5/4 K= 5/4 °C=4/9 °F. Formule za pretvaranje vrednosti temperature neke od temperaturskih skala u vrednosti neke od drugih temperaturskih skala su: T=273,16+t t=5/4 tR=5/9 (tF - 32) tR=4/5 t =4/9 (tF -32) tF=9/5 t +32 = 9/4 tR+32

gde su t - temperatura u °C, tR temperatura u °R, tF temperatura u °F i T apsolutna temperatura u K.

2.5. Pritisak

Jedinica za pritisak u meñunarodnom sistemu jedinica je paskal Pa N m= 2

.

Takoñe je u upotrebi 1 105bar Pa= . Ovo je jedinica van SI sistema чija je upotreba dozvoqena, jer se njom postiže boqa preglednost numeriчkih vrednosti pritiska. Jedinice van SI sistema jedinica чija upotreba sada nije dozvoqena, a koje su ranije koriшćene su: 1 atm - fiziчka atmosfera,

1 at = 12kp cm - tehniчka atmosfera,

1 mmH2O = 12kp mm i

1 mmHg = 1 tor. Važe relacije: 1 atm = 101325 Pa, 1 at = 98066 Pa, 1 mmH2O = 9,81 Pa, 1 mmHg = 133,32 Pa. U termodinamiчkim jednaчinama primenjuje se apsolutni pritisak p. On predstavqa zbir svih normalnih sila usled udara molekula gasa u zid suda u kome se ovaj gas nalazi u ravnoteži i pri чemu je taj zbir sveden na jedinicu povrшine zida. Ako je u zatvorenom sudu pritisak nekog gasa veći od pritiska okoline pb (barometarskog pritiska), razlika pm izmeñu apsolutnog pritiska gasa i pritiska okoline naziva se nadpritisak (vidi sl. 3.2.): pm=p - pb. Nadpritisak se meri manometrima i чesto se naziva manometerskim pritiskom. Moguće je da je u zatvorenom sudu pritisak nekog gasa manji od pritiska okoline. Tada se razlika pritiska okoline i apsolutnog pritiska gasa naziva podpritisak (vidi sl. 3.2.): pv=pb - p.

Page 23: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Podpritisak se meri vakumetrima. чesto se izražava u procentima u odnosu na barometarski pritisak: pv=(pb - p)/pb 100, %. 2.6. Unutraшnja energija (U[J], u = U/m [ J/kg], un = U/N [ J/kmol]) Jedinica za ovu veliчinu stanja koja se oznaчava sa U je 1J. Specifiчna unutraшnja energija je u = U/m [ J/kg] Molarna specifiчna unutraшnja energija je un = U/N [ J/kmol]

Veli~ine stawa

Intezivne

U, V

Ekstenzivne

v, u, p, Tv , u n n

2.7 Veliчine stanja-definicija Veliчine stanja su parametri koji definiшu stanje termodinamiчkog sistema. Promena bilo koje veliчine stanja zavisi samo od poчetnog i krajnjeg stanja termodinamiчkog sistema, a ne od naчina vrшenja promene stanja.

2.8 Ekstenzivne i intenzivne veliчine stanja Veliчine stanja se dele u dve velike grupe: ekstenzivne (aditivne) i intenzivne. Ekstenzivne veliчine stanja zavise od koliчine materije i obeležavaju se velikim slovima: U, S, V, itd. Intenzivne, pak, ne zavise od koliчine materije u sistemu i obeležavaju se malim slovima u, s, v i dodatno p, T.

100 K 100 C 80 R 180 F

373,16 K 100 C 80 R 212 F

273,16 K 0 C 0 R 32 F

0 K -273,16 C -218 R -459,4 F

Voda i para

u ravnote`i na

p=101325 Pa

Led i voda

u ravnote`i na

p=101325 Pa

Apsolutna nula

temperature

p

pv

p=

pb

pb

- pv

p=0 Pa

p pm

p= pb

+ pm

Page 24: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Termodinamiчka svojstva Termodinamiчka svojstva su parcijalni izvodi nekih veliчina stanja po drugim veliчinama stanja. Termodinamiчka svojstva dele se na termiчka i kaloriчna svojstva 4.1 Termiчka svojstva Jedno od termiчkih svojstava je koeficijenat termiчkog шirenja

pT

V

V

=∂∂α

0

1 (4.1)

Page 25: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

gde je V0 poчetna zapremina radne materije. Ukoliko je α = const. tada je zapremina na kraju nekog procesa koji se izvodi pri konstantnom pritisku: ( )TVV ∆⋅+= α10 (4.2) Kada se uzme reciproчna vrednost veliчina ove jednaчine i pomno`i sa masom dobija se: m

V

m

V T

T

=+

=+

0

0

1

1

( )

( )

α

ρ ρα

(4.3) (4.4)

Slede}e termiчko svojstvo radne materije je koeficijenat termiчkih napona

VT

p

p

=∂∂β

0

1 (4.5)

ovde je p0 poчetni pritisak radne materije. Ukoliko je β = const.tada je pritisak na kraju nekog procesa pri konstantnoj zapremini ( )Tpp ∆⋅+= β10 (4.6) . Zadnje termiчko svojstvo koje }e ovom prilikom biti pomenuto je koeficijent stiшljivosti

Tp

V

V

−=

∂∂γ

0

1 (4.7)

Relacija koja povezuje termiчka svojstva Polazi se od termiчke jednaчine stanja: ( )TpVV ,= Ako se diferenccira ova funkcionalna zavisnost dobija se:

dTT

Vdp

p

VdV

pT

+

=

∂∂

∂∂

Ako je V const= . tada je dV = 0 pa je

pVTT

V

T

p

p

V

−=

∂∂

∂∂

∂∂

Page 26: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Kada se zamene izrazi za pVT

T

V

T

p

p

V

∂∂

∂∂

∂∂

,, iz jednaчina ( ) dobija se

( ) ( )000 )( VpV αβγ −=⋅− tj. Konaчno α βγ= p0 Tako se merenjem dva termiчka svojstva mo`e izraчunati tre}e termiчko svojstvo. Kaloriчna svojstva Kaloriчna svojstva su specifiчna toplota pri konstantnoj zapremini i pri konstantnom pritisku. Definicija specifiчne toplote Specifiчna toplota je po definiciji koliчina topote potrebna da promeni, pod izvesnim uslovima, temperaturu jedinice mase radne materije za jedan stepen.

Razlikujemo masenu

kgK

Jc i molarnu specifiчnu toplotu

kmolK

Jcn . Veza

izme|u njih je Mccn = .

Matematiчki masena specifiчna toplota data je jednaчinom:

dTm

Q

TT

Q

mc

QTT

δ=−

=→→

12012

lim1

ili dTcqdTcmQ == δδ , .

Ukupna koliчina toplote koja se prenosi ka radnoj materiji ili od radne materije ka okolini kada se temperatura promeni od T1 na T2 data je pomo}u jednaчine:

∫=2

1

12

T

T

dTcmQ .

Srednja specifiчna toplota data je relacijom:

121212

12

1

0

2

0

2

1

)( TT

dTcdTc

TT

dTc

TTm

Qc

T

T

T

T

T

T

−=

−=

−=

∫∫∫

Ovde se чesto uzima da je T C0

00= i gornji integrali mogu se naći u tablicama.

Page 27: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Specifiчna toplota pri konstantnoj zapremini kao jedno od kaloriчnih svojstava data je jednaчinom

vv T

uc

=∂∂

kgK

J

Sa druge strane va`i relacija: du Tds pdv= − . Kada se ova relacija podeli sa dT dobija se: du

dTT

ds

dTp

dv

dT= − .

Za v const= . odnosno 0=vd dobija se:

vv T

sT

T

u

=

∂∂

∂∂

pa kako va`i relacija () dobija se:

vv T

sTc

=∂∂

------------------------------------------------------------------------ Specifiчna toplota pri konstantnom pritisku To je joш jedno od kaloriчnih svojstava pri чemu je ona definisana izrazom

pp T

hc

=∂∂

kgK

J

Ako se jednaчina dh Tds vdp= + podeli sa dT dobija se dh

dTT

ds

dTv

dp

dT= +

Kada je p const= . tj. dp= 0 tada je

.pp

p T

sT

T

hc

=

=∂∂

∂∂

Veza izme|u kaloriчnih svojstava

Kada se diferencira kaloriчna jednaчina stanja u opшtem obliku u uTv= ( , ) tada se dobija:

dvV

udT

T

udu

Tv

+

=∂∂

∂∂ .

Ako se ova jednaчina podeli sa dT i reшi na odgovaraju}i naчin dobija se:

dT

dv

v

u

dT

du

T

uc

Tvv

−=

=∂∂

∂∂ .

Kako va`i relacija du Tds pdv= − to je

Page 28: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

dT

dv

v

u

dT

pdv

dT

Tdsc

Tv

−−=∂∂ .

Za p const= . va`i

pTpv T

v

v

up

T

sTc

+−

=∂∂

∂∂

∂∂

pa je

pTvp T

v

v

upcc

+=−∂∂

∂∂ .

Specifiчna toplota i idealni gas Za jednoatomne idelane gasove specifiчne toplote su date kao c R

c Rv

p

==

1 5

2 5

,

,

Za viшeatomne idealne gasove c cv p, su funkcije od temperature a ne i od pritiska. ---------------------------------------------------------------------------------- Traži se relacija izmedju specifiчnih toplota za sluчaj idealnog gasa. Polazi se

od opшte izvedene relacije pT

vp T

v

v

upcc

+=−∂∂

∂∂ . Za sluчaj idealnog gasa:

kaloriчna jednaчina stanja u u T= ( ) i termiчka jednaчina stanja v RT

p=

pa je

0=

Tv

u

∂∂ i

p

R

T

v

p

=

∂∂

Zamenom ovih relacija u jednaчinu () dobija se Majerova relacija c c Rp v− = koja va`i samo za idealne gasove. ^esto se koristi i odnos kapa

κ =c

cp

v

.

Ovaj odnos ima razne vrednosti zavisno od broja molekula gasa. Broj molekula 1 1,667 2 1,4 3 1,333

Page 29: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

G L A V A 5

DESNOKRETNI PARNI CIKLUSI

Ovi ciklusi se upotrebijavaju u elektranama i energanama gde je najčesce radni

medijum vodena para tj. voda jer je vrlo jeftina i u stoji nam u najvecim količinama na

raspolaganju. Medjutim, da bi se podigao termodinamicki stepen korisnosti ponekad se

primenjuju i drugi radni medijumi npr. u binarnim procesima,.

5.2 RANKINE-OV CIKLUS

Energane sa parnim turbinama obicno rade po Rankine-ovom ciklusu. U ovom ciklusu imamo kompletnu kondenzaciju pare umesto njene nekompletne kondenzacije u Carnot-ovom ciklusu. Tako u ovom ciklusu vise nemamo nisko efikasan kompresor već napojnu pumpu koja je mala i vrlo efikasna. Idealan Rankine-ov ciklus prikazan je u Ts- dijagramu na sl. 5.2.a. Na ovoj slici tačka 3 predstavlja stanje ključale vode u kotlu na pritisku p3. Linija 3-4 predstavlja proces isparavanja vode u kotlu. Tako dobijena para se susi u pregrejaču-proces 4-5. Proces 5-6 predstavlja proces pregrevanja suve pare u pregrejacu pare na pritisku p6 = p4 = p5 = p3. Voda isparava u kotlu i suši

Page 30: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

se na račun toplote dobijene sagorevanjem ili uglja ili prirodnog gasa u njemu.Tako generirana pregrejana para ekspandira izentropski u parnoj turbini do pritiska i temperature kondenzatora (tacka 7) koji su redom p7 i T7. Prilikom ove ekspanzije turbina pogoni generator elektro energije i dobija se kvalitetna električna energija. Pri procesu 7-1 ova para se pri konstantnom pritisku i temperaturi potpuno kondenzuje do ključale tecnosti (tačka 1) pri čemu se u kondenzatoru osldbadja toplota hladnoj vodi kondenzatora. Voda koja hladi kondenzatore uzima se iz reke ili mora ili jezera i kao zagrejana se vraća odakle je uzeta. Zagrejana voda može da se odvede u kulu za hladjenje gde se hladi pomoću vazduha. Proces sabijanja odvija se u pumpi. Pumpa se pokreće pomoću turbine jer se obično nalazi na istom vratilu. Taj proces 1-2 je izentropski pri cemu se zanemarljivo uvećava temperatura vode. Zatim se ta voda zagreva pri p6 = const. do temperature njenog ključanja.

5.3 UTICAJ RAZLIČTIH PARAMETARA NA TERMODINAMIČKI STEPEN KORISNOSTI

RANKINE-OVOG CIKLUSA

5.3.1 Uticaj vrednosti pritiska pare na ulazu u turbinu

Sa uvecanjem pritiska pare na ulazu u turbinu, pri cemu se na ulazu u turbinu odrzava ista

temperatura a u kondezatoru isti pritisak, znatno se uvecava termodinamicki stepen korisnosti

Rankine-ovoq ciklu-sa. Tako (vidi sl. 5.3) se uvecanjem pritiska p3 ovog ciklusa na pritisak p3’

dobija ciklus 1 2' 3' 4' 1. Vidi se da se kod ovog novog ciklusa uvecava srednja temperatura pri

kojoj se dovodi toplota. Kako se ovom prilikom srednja temperatura radne materije pri kojoj se

odvodi toplota nije promenila, to se uvecavanjem pritiska na ulazu u turbinu uvecava i

termodinamicki stepen korisnosti Rankine-ovog ciklusa. Danas se cesto u energanama koje rade

na vodenu paru upotrebljavaju pritisci vodene pare i do 300 bara.

5.3.2 Uticaj vrednosti temperature pare na ulazu u turbinu

Pri uvec'avanju vrednosti temperature pare na uiazu u turbinu sa T3 na T3’ (vidi sl. 5.4)

srednja temperatura dovodjenja toplote je veca, pa kako temperatura odvodjenja toplote

ostaje ista, to se termodinamicki stepen korisnosti Rankine-ovog ciklusa uvecava. Normalno,

ovde je pritisak pare na ulazu u turbinu i u jednom i u drugom siucaju isti. Danas turbine

najcesce rade sa vodenom parom temperature do 565°C. Dalje uvecavanje temperature

pregrevanja vodene pare ograniceno je mogucnostima metala od kojih su napravljene cevi da

izdrzi visoke pritiske pri visokim temperaturama.

Page 31: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

5.3.3 Uticaj vrednosti pritiska u kondenzatoru

Umanjenje pritiska u kondenzatoru je najefektivniji nacin uvecanja termodinamickog stepena

korisnosti Rankine-ovog ciklusa. Jasno je na sl. 5.5 da se sa smanjenjem pritiska u kondenzatoru

smanjuje temperatura odvodjenja toplote pri ovom ciklusu i zato povećava njegov

Sl. 5.3 Uticaj vrednosti pritiska pare na ulazu u turbinu

Sl. 5.4 Uticaj vrednosti temperature pare na ulazu u turbinu

terrnodinamicki stepen korisnosti. Medjutim izbor ovog pritiska je odredjen temperaturom vode za hladjenje koju imamo na raspolaganju za odvodjenje toplote iz kondenzatora.

Sl. 5.5 Uticaj vrednosti pritiska u kondenzatoru

5.4 NAKNADNO PREGREVANJE PARE

Videli smo u prethodnom odeljku da uvecanje pritiska na ulazu u turbinu i umanjenje pritiska u

kondenzatoru vodi ka višem termodinamičkom stepenu korisnosti Rankine-ovog ciklusa,

Page 32: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

medjutim, to takodje vodi ka umanjenju stepena suvoce pare što nepovoljno utiče na rad turbine

tj. Dovodi do većih gubitaka energije na njoj.

Jedan od nacina uvecanja stepena suvoce pare na izlazu iz turbine je naknadno pregrevanje pare. Ovaj ciklus prikazan je u Ts- dijagramu na sl. 5.6.a, a postrojenje koje radi po ovoni ciklusu na sl. 5.6.b. Tu para ekspanira u turbini I na neki medjupritissk p4 pa se ponovo zagreva u kotlu do temperature t5 posle čega ekspandira u turbini II do pritiska kondenzacije 6.

Sl. 5.6 Ideaini ciklus sa naknadnim pregrevanjem pare: a) Ts- dijagram ciklusa, b)

postrojenje koje radi po tom ciklusu

Srednja temperatura dovodjenja toplote kod ovog procesa nesto je veca nego kod obicnog

Rankine-ovog ciklusa pa i njegov termodinamicki stepen korisnosti takodje veći. Inače je

termodinamički stepen korisnosti ovog ciklusa dat formulom:

4523

6543 )(

hhhh

hhhh

qd

kt −+−

−+−== lη (5.6)

Pri izracunavanju η ovde je zanemaren rad potreban za pogon pumpe.

5.7 ISTOVREMENO GENERISANJE ELEKTRIČNE ENERGIJE I TOPLOTE-

KOGENERACIJA

Moze se videti da u najpovoljnijim usiovima η Rankine-ovog ciklusa nije veće od 50%, a ako se

uzmu u obzir razni toplotni gubici tada η elektrane na vodenu paru nece preći 30 do 35%.

Najveci toplotni gubitak je u kondenzatoru gde izradjena vodena para sa turbine tkom svoje

kondenzacije predaje toplotu vodi. Medjutim, ta vodena para je pritisku nižem od atmosferskog i

ima nisku temperaturu (oko 300C) tako da se njena toplota predata vodi dalje ne moze koristiti

Page 33: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

već se izbacije ili u vodotokove ili u atmosferu. Ta izgubljena toplota je predstavljena na sl.

5.12.a srafiranom površinom “15761”. Ali ako se krajnji pritisak pare p5 uveca do 2 bara tada se

temperatura te izradjene vodene pare uveća do oko 1400C i ona se moze koristiti za grejanje

zgrada, njihovo snabdevanje toplom vodom ili za tehnoloske potrebe u nekoj fabrici. U tom

slučaju je korisno da se proces u nekom postrojenju preuredi da se istovremeno proizvodi i

elektricna energija i toplota.

a) b) Sl. 5.12 Postrojenje koje istovremeno proizvodi elektricnu energiju i toplotu: a) proces

postrojenja u TS- di-jagramu, b) shema postrojenja

Shema jednog ovakvog postrojenja je data na sl. 5.12.b. Ono se sastoji iz parnog kotla I,

pregrejaca II, parne turbine III, kondenzatora toplotnih potrosaca IV i pumpe V. U kotlu I,

toplota Qd1 se predaje vodi koja tada isparava. U pregrejaču II, toplota Qd2 se dalje predaje

vodenoj pari koja se pregreva. Ukupna količina toplote koja se predaje vodi je Qd1+Qd2 =Qd. U

parnoj turbini III, pregrejana vodena para ekspandira pri čemu se deo toplote Qd pretvara u rad Lk

(elektricnu energiju). Zatim se u kondenzatoru toplotnih potrošača IV, vodena para kondenzuje

pri čemu se toplota qo predaje toplotnim potrosačima.

Veličina pritiska na koji vodena para ekspandira u toplotnoj turbini odredjena je zahtevima

potrosača za temperaturom grejanog medijuma. Što se zahteva veća temperatura, tako što je taj

pritisak veći, količina toplote Qo koju se koristi za grejanje je veća, dok je proizvedena električna

energija Lk na turbini manja.

Stepen sveukupnog iskorišcenja energije u ovom postrojenju:

ηkD =(Lk +|Qo|)/Qd

(5.11)

može da dostigne 85% je daleko veći nego kod Rankinevog ciklusa koji nije kogenerativni.

Medjutim količina proizvedene električne energije lk je manja nego kod Rankine-ovog ciklusa

koji nije kogenerativni i η ovog ciklusa iznosi

Page 34: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

η=(qd-|qo|)/qd= lk/qd (5.10)

Da bi se kontinualno proizvodila električna energija lk u ovom procesu, mora da se tokom cele godine obezbedi kondenzacija izradjene vodene pare iz turbine i odvodjenje tako dobijene toplote qo. Radi najvećeg stepena iskorišćenja toplote prilikom proizvodnje električne energije u ovom procesu, mora da se tokom cele godine ta toplota (qo) koristi korisno naprimer kroz grejanje sanitarne vode ili njenom upotrebom u industriji. Medjutim ukoliko ova toplota (qo) služi samo zimi za grejanje stambenog prostora dok se ona leti izbacuje u reku ili atmosferu tada je sveukupno iskorišćenje ηkD toplotne energije u ovom postrojenju na godišnjem nivou znatno manje, ali još uvek veće nego u slučaju kada se ta toplota (qo) tokom cele godine izbacuje ili u vodotokove ili u atmosferu.

TERMODINAMIЧKI PROCESI

(PROMENE STANJA)

Pod temodinamičkim procesom ili promenom stanja termodinamičkog sistema podrazumeva se prelazak posmatranog termodinamičkog sistema iz nekog početnog stanja u nako drugo stanje pri čemu se menja ili jedna ili više veličina stanja tog sistema. Ukoliko se tokom termodinamičkog procesa menja sastav sistema (struktura i/ili količina mase u jednoj ili više njegovih faza) onda je to hemijski proces. Ukoliko nema promena u sastavu niti jedne od faza tada se radi o fizičkom procesu. Kako je termodinamika u stanju da definiše samo stanja sistema u termodinamičkoj ravnote`i, odnosno veoma bliska njoj, to je potrebno da bi se termodinamičkim metodama mogla definisati promena stanja, da se proces odvija veoma sporo kako bi u svakom momentu sistem bio veoma blizu termodinamičke ravnote`e. Ovakav proces naziva se kvazistatičkim . Kvazistatički proces odvija se veoma sporo i sistem pri prelazku iz jednog stanja u drugo prelazi kroz niz ravnote`nih stanja. Ovakvi procesi se nemogu na}i u prirodi i oni predstavqaju teorijsku idealizaciju stvarnih procesa. U temodinamici se proučavaju kavzistatički procesi jer su stvarni procesi nepogodni za izučavanje. Kada je u pitanju kavzistatiočki proces tada se tačno zna kojim se putem proces odvija od početnog stanja 1 do krajnjeg stanja 2 zato je ovaj proces na slici 5.1 prikazan punom linijom. Stvarni procesi nisu kvazistatički i nazivaju se nekvazistatičkim . Nekvazistatiočki procesi odvijaju se

veoma brzo. Pri takvim procesima sistem prolazi kroz niz neuravnote`enih stanja. Primera radi jedan gas je u neravnote`nom (neuravnote`enom) stanju ako po čitavoj svojoj zapremini nema isti pritisak i temperaturu.

1

2

1

2

p

v

p

v

a) b)

Sl.5.1 Promene stawa termodinami~kog sistema: a)kvazistati~ka, b)nekvzistati~ka

Page 35: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

1

2

p

v

a)

Sl.5.1 Promene stawa termodinami~kog sistema:

dv

l = pdv1

2

12

δ l=pdv

a) kvazistati~ka, b)nekvazistati~ka

p

v

1

2

l =-vdp

l =- vdp

tδδδδ t

dp

v

1

2

s

1

2

T

T

q=Tdsδ

q = Tds12

ds

1

2

JEDNAČINE KVAZISTATIČKE PROMENE STANJA Pri razmatranju Prvog zakona termodinamike pokazano je da za kvazistatičke promene stanja va`e jednačine: δ δδ δδ δ

L pdV l pdv

L Vdp l vdp

Q TdS q Tdst t

= == − = −= =

,

,

,

Za pročes koji se odvija od nekog početnog stanja 1 do krajnjeg stanja 2 integraqenjem se dobija

Page 36: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

∫∫

∫∫

∫ ∫

==

−=−=

==

2

1

12

2

1

12

2

1

12

2

1

12

2

1

2

1

1212

,

,

,

TdsqTdSQ

vdplVdpL

pdvlpdVL

tt

Površina ispod krive

p(v) u p-v dijagramu na sl.2a je specifični apsolutni rad l12; površina ispod krive v(p) u p-v dijagramu na sl. 2b jeste specifični tehnički rad i površina ispod krive T(s) u T-s dijagramu na Sl.2c jeste specifična količina toplote. Velične l12, lt12 i q12 mogu}e je odrediti na ovakav način samo u slučaju kavzistatičkih promena stanja. Kako za kvazistatičke promene stanja kojoj pripadaju i politropske promene stanja va`i da je δl pdv= Kako je uvek p>0 tada ako se pri promeni stanja pove}ava specifična zapremina dv>0 tada je dl>0 tj. sistem vrši bruto rad nad okolinom. Ako se pri promeni stanja smanjuje specifična zapremina, dv<o tada je dl<0 tj. okolina obavqa bruto rad nad sistemom.

Page 37: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Za kvazistatičke promene stanja tako|e va`i da je δl vdpt = − Kako je uvek v>0 tada ako se pri ovoj promeni stanja pove}ava pritisak, dp>0 u tom slučaju je dlt<0 tj. okolina }e obaviti koristan rad nad sistemom. U suprotnom slučaju ako se pri promeni stanja smanjuje pritisak dp<0 dobija se dlt>0 pa }e sistem obavqati koristan rad nad okolinom. Kako va`i da je δq Tds= pri čemu je T uvek pozitivno onda ukoliko raste entropija ds>0 tada je dq>0 pa se radnoj materiji dovodi toplota, a ukoliko pri procesu opada entropija ds<0 tada se od radne materije odvodi toplota tj dq<0.

SPECIFIČNA TOPLOTA KVAZISTATIČKE PROMENE STANJA

Potraži se totalni diferencijal funkcije u=u(T,v)i iskoristi diferencijalni oblik izraza za prvi zakon termodinamike za zatvorene sisteme i kbazistatičke promene stanja

pdvqdvv

udT

T

udu

Tv

−=

+

= δ∂∂

∂∂

Po definiciji je

.v

v T

uc

≡∂∂

Ukoliko je pri kvazistatičkom procesu v=const. u tom slučaju se dobija:

( ) ( )vvv dTcq =δ

pa je specifična toplota pri konstantnoj zapremini data i izrazom:

vv dT

qc

= δ

Sličnim postupkom koriste}i totalni diferencijal izraza h=h(T,p) i diferencijalni oblik prvog zakona termodinamikeotvorenih sistema za kvazistatičke promen satnja uz uslov da je p=const. dobija se i specifična toplota pri konstantnom pritisku da je:

pp T

qc

=δδ

.

Mo`e se re}i da u opštem slučaju specifična toplota za proizvoqnu kvazistatičku promenu stanja je data kao:

nnn T

Q

mT

qc

=

=δδ

δδ 1

• Ovde je n karakteristika promene stanja o kojoj je reč. Obično označava veličinu koja je konstantna pri datoj kvazistatičkoj promei stanja.

Page 38: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

ENERGIJA Jedinica = 1 Џуl

U SI sistemu jedinica za merenje svih vrsta energije je 1J (dжul). Osnovna podela energije je na postojanu i nepostojanu energiju. Za postojane energije moжemo reћi da ih sistem poseduje, шto nije sluчaj za nepostojane energije. POSTOJANE ENERGIJE Postojane energije su: 1. Kinetiчka energija, 2. Potencijalna i 3. Unutraшnja. KINETIЧKU ENERGIJU ima radno telo kao celina koja se kreћe. Razlikuje se 1. Kinetiчka energija translaije Ekt , 2. Kinetiчka energija obrtnog kretanja Ekw , 3. Kinetiчka energija vibracije Ekv . POTENIJALNU ENERGIJU ima radno telo (sistem) kao celina. To je moguћnost da se obavi neki rad ili u opшtem sluчaju oslobodi energija. Potencijalna energija se ne koristi ukoliko se ne otkloni prepreka tom koriшћenju. Vrste ove energije su: 1. Potencijalna energija gravitacije Epg. Ukoliko se voda nalazi visoko iznad turbina ona se mo`e iskoristiti ukoliko se otkloni prepreka njenom koriшћenju i omoguћi da ona sa visine padne na lopatice turbina. Tada se njena potencijalna energija koja postoji na toj visini moжe iskoristiti da se izvrшi mehaniчki rad na turbini i da se dobije elektriчna energija. Da bi se na taj naчin dobila elektriчna energija prave se brane na rekama. 2. Potencijalna energija hemijske veze Eph PRIMER: Hemijska potencijalna energija sirove nafte, preradjene nafte, benzina i uglja. Ona ne prestavlja niшta dok se ne iskoristi sagorevanjem i od nje dobije toplota. Ta energija se moжe koristiti kada se otkloni prepreka njenom koriшћenju tj. obezbedi dovoljna temperatura i kiseonik za proces sagorevanja. 3. Potencijalna energija nuklearne veze Epn . Ova potencijalna energija se moжe iskoristiti u procesima fizije (nuklearne reakcije -proizvodnja elektriчne energije u nuklearnim reaktorima cepanjem atoma) ili u procesima fuzije (sjedinjavanjem atoma). Жivot na zemlji treba da zahvali svoje postojanje procesu fuzije koji se odigrava na suncu. U svetu se ulaжu ogromni napori da se kontrolisana fuzija ostvari na zemlji pri чemu se veruje da bi to reшilo energetske probleme naшe i buduћih generacija.

Page 39: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

UNUTRAШNJA ENERGIJA U je zbir energija ε j svakog od molekula

radne materije:U jj

n

==∑ε

1

Energija svakog molekula radne materije moжe biti kinetiчka (translacije, rotacije, kao i vibracije) i potencijalna medjumolekularne veze. TOTALNI DIFERENCIJAL. Matematiчki je moguћe napisati male vrednosti ovih energija kao totalne diferencijale: dU dE dEpg kt, , . . Pri promeni stanja radne materije od poчetnog stanja (stanje 1) do krajnjeg stanja (stanje 2) vaжi npr:

∫ −=2

1

12 UUdU .

Veliчina U1 predstavlja unutraшnju energiju radne materije u poчetnom stanju, a veliчina U2 je unutraшnja energija radne materije krajnjeg stanja. Promena unutraшnje energije ne zavisi od naчina prelaska sistema iz poчetnog u krajnje stanje.

NEPOSTOJANE ENERGIJE

Nepostojane energije predstavljaju one vrste energija koje traju samo onoliko koliko i proces energetske razmene izmedju sistema i okoline. Kada se pri ovoj razmeni energije graniчna povrшina izmedju sistema i okoline pomera (dolazi i do promene zapremine radne materije) energija koja se razmenjuje naziva se mehaniчkim radom L . Kada nema pomeranja te graniчne povrшine tada se razmenjuje toplota Q. DIFERENCIJALI Diferncijali toplote odnosno rada oznaчavaju se sa δ δQ L, da bi se skrenula paжnja da ni rad ni koliчina toplote nisu veliчine stanja ni potpuni diferencijali, jer zavise od naчina obavljanja procesa I njihove razmene izmedju sistema i okoline. Ne vaжi

∫ −≠2

1

12 QQQδ

jer Q1 i Q2 ne postoje pa je

U Q L

U U Q Q Q L L L U

Page 40: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

∫=2

1

12 QQ δ .

Ne vaжi δL L L≠ −∫ 2 1

1

2

jer L1 i L2 ne postoje pa je L L12

1

2

= ∫ δ .

ELEMENTARNI RAD ШIRENJA δL

Ako se u nekom cilindru nalazi gas pod pritiskom p onda on deluje na klip silom F pA= . Kada se klip pomeri za udaljenje dh

p

dh

F

sila F ћe izvrшiti neki elementarni rad (elementarni rad шirenja):

dVpdhpAdhFL ⋅=⋅=⋅=δ Шto je veћi pritisak to je veћa moguћnost obavljanja rada gasa unutar ovoga cilindra. Koliчina obavljenog rada zavisi od veilчine promene zapremine.

ELEMENTARNI HEMIJSKI RAD Elementarni hemijski rad je δ µL dN= gde je µ hemijski potencijal, a dN promena broja kilomolova meterije. Analogija sa dVpL ⋅=δ . TOPLOTA U prethodno prikazanom cilindru ukoliko je veћa temperatura u odnosu na spoljaшnju temperaturu to veћa je i moguћnost prenosa toplote na okolinu. Zato se i za elementarnu toplotu uvodi sliчan izraz kao i za elementarni rad шirenja δq TdS= . Veliчina S[ ]J K naziva se entropijom. Od nje zavisi koliчina razmenjene toplote. DOGOVORI O ZNAKU Pri radu sa ovim vrstama energije moramo odrediti njihov znak. Za to postoje odredjeni dogovori.

Page 41: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Toplota je pozitivna ukoliko prelazi iz okoline u sistem dok je suprotno ona negativna. Ukoliko sistem obavlja rad na okolinom taj rad je pozitivan (odnosno taj rad se odvodi od sistema i dovodi okolini). Ukoliko okolina obavlja rad nad termodinamiчkim sistemom taj rad je negativan (odnosno taj rad se odvodi iz okoline i dovodi sistemu)

Q>0 L>0

Q<0L<0

5. PRVI ZAKON TERMODINAMIKE

Kada je reч o energiji treba podsetiti na jednostavnu definicciju da je energija sposobnost radne materije da obavi rad. Ne sme se zaboraviti da je energija zapravo samo jedan od oblika kretanja materije odnosno da je ona osobina materije jer je svakom radnom telu kretanje svojstveno. Opшti fiziчki princip koji vaжi je da ukupna koliчina energije ostaje nepromenjena bez obzira kakvi se procesi dogadjaju.

Page 42: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

5.1 Zatvoreni sistemi

Unutraшnja energija zatvorenih sistema koji kao celina miruju moжe se menjati kada se izmedju sistema i okoline razmenjuje rad i toplota:

dU Q L= −δ δ . (5.1) Ovaj izraz je matematiчka formulacija prvog zakona termodinamike. Integracija ovog izraza daje:

. (5.2) Ukoliko se ove relacije podele sa masom dobijaju se relacije

(5.3) Kada se zamene relacije () i () za koliчinu toplote i apsolutni rad dobija se da je

. (5.4) Ako se sistemi kao celina kreћu tada pored unutraшnje energije poseduju joш i kinetiчku i potencijalnu energiju. Ukupna energija zatvorenog sistema je

Za ove sisteme vaжi da je E E Q L2 1 12 12− = − .

5.2 Otvoreni sistemi ∆H H H Q L

h q lt

t

= − = −= −

2 1 12 12

δ δ δ

U praksi najчeшћe ћe se izuчavati termodinamika otvorenih sistema. U naш otvoreni sistem koji ћemo ovde nazvati maшinom dolazi fluid stanja1 , a napuшta je u stanju 2 .

U maшini dolazi do razmene energije. Fluid u maшini pored unutraшnje poseduje joш i kinetiчku i potencijalnu energiju. Ako su brzine strujanja male i strujanje ekvipotencijalno mogu se kinetiчka i potencijalna energija zanemariti u odnosu na koliчinu ostale rezmenjene energije u procesu. Na slici je шematski je predstavljena masina sa delovima odvodnog i dovodnog voda za fluide. Zamislimo dva klipa A i V u vremenskom trenutku i posmatrajmo шta se

U U Q L2 1 12 12− = − du Tds pdv= −

U U Q L2 1 12 12− = −

du q l

u u q l

= −− = −

δ δ

2 1 12 12

du Tdspdv= −

E U E Ek p= + +

dh Tds vdp

l vdpt

= += −δ

( , )p T1 1 ( ),p T2 2

Page 43: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

dogadja ako se ova dva klipa kreћu sa brzinama w1 i w2. Za vreme klip

A doшao je u poloжaj A+ i klip V u

poloжaj V+. Pri tome su pomeranja

Ako su povrшine klipova A i V tada su pri svojim pomeranjima klipovi A je izvrшio rad

Klip V je primio rad od fluida

U maшini fluid je primio koliчinu toplote , a izvrшio rad pa je razmenjeni rad

zatvorenog sistema izmedju dva zamiшqena klipa i okoline dat kao: L L pV p Vt12 12 1 1 2 2= − + Daqe je prema prvom zakonu termodinamike za zatvorene sisteme

U U Q L pV pVt2 1 12 12 1 1 2 2− = − + −

Kako je to je: ∆H H H Q L

h q lt

t

= − = −= −

2 1 12 12

δ δ δ

pri чemu je ovo prvi zakon termodinamike u integralnom obliku za otvorene sisteme i za bilo koju promenu stanja. Veliчina naziva se tehniчkim radom. To je rad koji se moжe iskoristiti. On se dobija kada se apsolutnom radu doda rad potreban za potiskivanje radne materije u sistem i oduzme rad potreban za njeno istiskivanje iz sistema po zavrшenom procesu. Taj rad je dat jednaчinom

. Kada se izraz za specifiчnu entalpiju h H m u pv= = + diferencira dobija se

dh du pdv vdp= + + Kako je Tds du pdv= + to je dh Tds vdp

l vdpt

= += −δ

AA w

BB w+

+

==

1

2

∆∆

ττ

F F1 2,

pFw pV1 1 1 1 1∆τ=

− p V2 2

Q12 Lt12

H U pV= +

lt12

L L pV pVt12 12 1 1 2 2= + −

Ma{ina

A A+ V V+

Q Lt1212

1(p1,T1) 2(p2,T2)

w1 w2

Page 44: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

6. LEVOKRETNI CIKLUSI-NESPONTANO PREBACIVANJE TOPLO TE SA MEDIJUMA NIŽE TEMPERATURE NA MEDIJUM VIŠE TEMPERATU RE Levokretni ciklusi se koriste kod rashladnih uredjaja i toplotnih pumpi. Prvi uredjaji služe da održe nisku tempearturu u prostoru koji se hladi dok drugi uredjaji služe da održe visoku temperaturu u prostoru koji se greje.

6.1 KOMPRESORSKI PARNI RASHLADNI CIKLUS (RASHLADNI UREDJAJI)

Termodinamičke mašine (rashladni uredjaji) kod kojih je potrebno u njihovoj

unutrašnjosti ostvariti nižu temperaturu nego van njih su frižider, zamrzivač ili rashladna

komora. Kroz zidove tih mašina ulazi toplota spontano tj. ona se prebacuje sa okolnog vazduha

u vazduh i prostor koji je na nižoj tempearaturi. Da bi se temperatura prostora ne bi povisila

onda je potrebno istu količinu toplote „nespontano“ prebaciti iz unutrašnjosti frižidera (u ovom

slučaju toplotni izvor) koja je na nižoj temperaturi u vazduh koji se nalazi u okolini frižidera (u

ovom slučaju toplotni ponor) koji je na višoj temperaturi. To se odigrava uz pomoć radnog

medijuma koji se izlaže nekom od levokretnih ciklusa pri čemu se troši kvalitetna energija

(mehanički rad u obliku električne energije). Ovde će se opisati rad kompresorskog rashladnog

ciklusa.

Kao radni medijumi instalacija za hladjenje u kompresorskom rashladnom ciklusu

koriste se amonijak i freon. Razlog je taj sto ove supstance u tecnom stanju kljucaju na

pritiscima koji su bliski atmosferskom. U praksi, te materije najcesce se koriste u instalacijama

koje hlade neki prostor do temperature od -20 0C.

Ovakva instalacija je shematski prikazana na sl. 6.5.a a proces u njoj u Ts- dijagramu

stanja na sl. 6.5.b. Ta instalacija sadrzi kompresor, kondenzator, prigusni ventil i isparivac.

Isparivač se nalazi u unutrašnjosti frižidera dok se kondenzator nalazi izvan frižidera.

Prigusni

ventil

isparivac

kondenzator

qd

qo

1

2

5

4

T

s

1

2

3

4

6 5

h

ds=o

p ,T

p ,T

p

kompresor

Sl... 6.5 Kompresorski parni rashladni ciklus:

Proces se odvija na sledeci nacin. Zasicena para stanja 1 se uvodi u kompresor gde se

sabija duz izentrope 1-2 do stanja pregrejane pare u tacki 2. Za to sabijanje (pomoću

kompresora) se troši mehanički rad u vidu kvalitetne električne energije. Para ovog stanja se

uvodi u kondenzator (koji se nalazi izvan frižidera) gde se u potpunosti kondenzuje u tečnost

Page 45: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

stanja 4 tako sto joj se toplota spontano odvodi u okolinu (toplotni ponor) pri konstantnom

pritisku (proces 2-3-4)... Tom prilikom temperatura pare koja se kondenzuje je viša od

temperature okolnog vazduha. Iz kondenzatora tecnost se uvodi u prigusni ventil gde se pri

izentalpskom procesu prigusuje od 4 do 5 sto dovodi do pada temperature i pritiska kao i

delimicnog isparavanja ove tecnosti. Kako je ovaj proces nepovratan, on se predstavlja na

dijagramu sa sl. 6.5.b isprekidanom linijom. Zatim se radna materija uvodi u isparivac (koji se

nalazi unutar frižidera) gde isparava od stanja 5 do stanja 1. Duz procesa 5-1 radnoj materiji se

u isparivacu dovodi spontano toplota iz prostora koji se hladi (toplotni izvor)... Tu je

temperatura tečnosti niža od temperature prostora koji se hladi. Zatim se tako dobijena zasicena

para ponovo uvodi u kompresor i dalje se proces nastavlja na prethodno objasnjenji nacin.

Vidi se da u ovom ciklusu nema turbine kao u ciklusu 1 2 4 6 1 na prethodno pomenutoj

slici gde je proces na turbini 4-6, vec umesto nje se upotrebljava prigusni ventil kroz koji se

radni medijum prigusuje gde je proces na tom prigušnom ventilu 4-5. Ova zamena turbine sa

prigusnim ventilom smanjuje efikasnost jednog ovakvog ciklusa, medjutim, instalacija za

hladjenje se u ovom slučaju znatno pojednostavljuje. Inace sa sl. 6.5.b jasno je da se toplota

koja se dovodi iz prostora za hladjenje pri izobarskom procesu radne materije moze izracunati

iz izraza (ovde ce se uzeti u obzir i da za izentalpu 4-5 vazi da je h4=h5):

qd= h1-h5 = h1-h4 (6.10)

a rad koji se utrosi na izentropskoj kompresiji ove pare je:

l k= h1-h2 (6.11)

pa je: εh=qd/| l k|= (h1-h4) /(h2-h1) (6.12)

Ovakve kompresorske masine za hiadjenje imaju velike prednosti u odnosu na gasne masine za

hladjenje zato sto su jeftinije,gabaritno manje i imaju vecu vrednost faktora hladjenja.

6.6 KOMPRESORSI PARNI GREJNI CIKLUS (TOPLOTNE PUMPE)

Toplotne pumpe služe da održe višu temperaturu u prostorima koje one zagrevaju. Zato se

koristi uredjaj koji radi pomoću levokretnog ciklusa i koji se sastoji od isparivača,

kondenzatora, kompresora i prigušnog ventila (kao kod rashladnih uredjaja). Top1otne

pumpama se upotrebljavaju za nespontano prebacivanje toplote sa materije koja ima nizu

temperaturu (od spolja) na materiju sa visom temperaturom (u prostoriju). Pri tom

prebacivanju toplote trosi se na kompresoru izvesna količina najkvalitetnije energije (elektro

Page 46: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

energije). Tako, u kompresorskom parnom ciklusu toplotne pumpe pri pogonu njenog

kompresora dolazi do utroska mehanickog rada (energije)... Inace, toplotne pumpe

upotrebljavaju se u procesima grejanja najčešće prostora u zgradama tamo gde postoje velike

kolicine materija (vodenih tokova blago zagrejanih, zemlja itd.) sa niskim temperaturama (oko

temperature okoline) kao i tamo gde nam stoje na raspolaganju velike kolicine jeftine energije

(to je slucaj kod zemalja gde se elektricna energija dobija uglavnom iz hidrocentrala)...

Posmatrajmo rad toplotne pumpe koja radi sa kompresijom pare pomocu kompresora. Njen

princip rada je identican sa principom rada kompresorskog parnog rashladnog postrojenja. Zato

je i shema postrojenja ove toplotne pumpe identicna shemi postrojenja kompresorskog parnog

rashladnog ciklusa sa sl. 6.5.a. Zato se i proces koji se odvija u toplotnoj pumpi ove vrste moze

skicirati na identican nacin u Ts-dijagramu stanja kao sto je skiciran proces koji se odvija u ko-

mpresorskom parnom postrojenju (vidi sl. 6.5.b). Inace, radni medijum koji kljuca na niskoj

temperaturi (amonijak, freoni) isparava u isparivacu (koji se nalazi van prostora koji se greje)

na racun spontanog dobijanja toplote iz spoljašnje sredine (npr. nisko-temperaturskog toplotnog

izvora). U ovom slučaju radni medijum je na nižoj temperaturi od temperature medijuma u

spoljašnjoj sredini. Ovako dobijena para ulazi u kompresor u kome temperatura radnog

medijuma raste sa temperature T1 na temperaturu T2. Kompresor radi na račun najkvalitetnije

električne energije. Para ove temperature se kondenzuje u kondenzatoru koji se nalazi u

prostoriji koja se greje i spontano prenosi toplotu na tecnost ili vazduh unutar grejanog sistema.

Radi spontanog prenosa toplote, tempeartura radne meterije je veća od temperature zagrevane

tečnosti ili zagrevanog vazduha. Formirani kondenzat se prigusuje u prigusnom ventilu od

pritiska p4 do pritiska p5... Zatim, ovako dobijena vlazna para ponovo isparava u isparivacu koji

se nalazi u okolnoj sredini...

Page 47: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Prigusni

ventil

isparivac

kondenzator

qd

qo

1

2

5

4

T

s

1

2

3

4

6 5

h

ds=o

p ,T

p ,T

p

kompresor

Sl... 6.5 Kompresorski parni ciklus toplotnih pumpi: a) shema postrojenja b) proces ovog

ciklusa u Ts- dijagramu stanja

Posmatranjem sl. 6.5.b vidi se da vazi

|qO| = h2-h4 |l k|= h2-h1 (6.14)

pa kako je iz (1.39) εg=|qo| / | l k|to je:

εg= (h2-h4) /(h2-h1) (6.15)

Ako toptotna pumpa radi, po levokvetnom Carnot-ovom ciklusu tada se

koeficijent grejanja moze dobiti iz izraza:

εgC = T4/(T4 - T1) (6...16)

Tako, npr... kada se zgrada zagreva zimi ako je temperatura recne vode T1 =

280K, a temperatura radnog medijuma u sistemu za grejanje T4= 355K tada se dobija da je εgC

= 4,73. Ovaj koeficijent grejanja pokazuje, da ako ulozimo npr. 1 MJ elektricne energije tada se

toplota od 4,73 MJ prenosi sistemu za grejanje tj. 4,73 puta vise toplote se dobija nego pri

grejanju zgrade samo pomocu elektricne energije. Zato je nesumljivo upotreba toplotnih pumpi

veoma korisna.

Page 48: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

8.2 KONVEKCIJA Pri konvekciji toplota se prostire kretanjem samog fluida (tečnosti ili gasa) 1) kroz fluid ili 2)sa fluida na čvrstu površinu ili 3)sa čvrste površine na fluid. Prostiranje toplote se odvija tako što deo fluida prelazi iz sredine sa jednom temperaturom u sredinu sa drugom temperaturom i tu se meša sa fluidom na toj drugoj temperaturi. Prilikom mešanja razmenjuje se toplota mase fluida koja je na višoj temperature sa toplotom mase fluida koja je na nižoj temperaturi. Tada se masi fluida koja je na višoj temperaturi smanjuje temperatura, dok se masi tela koja je na nižoj temperaturi uvećava temperatura. Toplota se prenosi kroz fluid (tečnost ili gas) takodje kao i kroz čvrsto telo sa molekula na molekul tj. kondukcijom, medjutim, takav način prostiranja toplote kroz fluid se može zanemariti u odnosu na prostiranje toplote konvekcijom.

8.2.1 Toplotna prelaznost-koeficijent prelaza toplote Najčesce nas interesuje ona kolicina toplote koja prelazi sa nekog fluida na neku čvrstu

površinu (ili obrnuto). Izrazom (vidi sl. 8.2.1),

)(

.

TThA

Q

A

Qz −===

&

τϕ (8.2.1)

Ovde je T temperatura fluida, a Tz temperatura zida, dok je h [W/(m2 K)] toplotnu prelaznost (koeficijent prelaza toplote) koju je definisao Newton. Često je oznaka za ovaj koeficijent α. Ovaj koeficijent najvećim delom obuhvata prostiranje toplote u fluidu prostiranjem toplote konvekcijom (kretanjem delića materije). Medjutim kako se toplota i prostire u fluidu provodjenjem (molekularno) veoma malim intezitetom to h obuhvata i to. Molekularno prostiranje zavisi od temperaturskog polja, a prostiranje toplote kretanjem delica materije od brzinskog i temperaturskog polja. 1. Prijenos toplote konvekcijom i samim tim h zavisi od sledećih faktora: vrste fluida, oblika i stanja površine na kojoj se razmjenjuje toplota, uslova i brzine strujanja i temperaturske razlike. Karakteristični slučajevi konvektivne razmene toplote dešavaju se na: površinama ravnih zidova različitog položaja, površinama zidova cevi, kugli i ostalih oblika uredjaja u tehnici Toplotnu prelaznost (koeficijent prelaza toplote) h[W/(m2 K)] u opštem slučaju je teško izračunati za sve slučajeve u tehnici, pa se stoga u većini slučajeva odreñuje eksperimentalno. Tipične vrijednosti za ovaj koeficijent su za 1. Prirodno strujanje vazduha 5 do 25 W/(m2 K) 2. Prinudno strujanje vazduha 10 do 200 W/(m2 K) 3. Prinudno strujanje vode 20 do 100 W/(m2 K) 4. Prinudno strujanje vode 50 do 10.000 W/(m2 K)

Kod konvekcije u neposrednoj blizini zida dolazi do nagle promjene temperature fluida, jer prilikom provodjenja toplote kroz granični laminarni sloj fluida toplota se više provodi molekularno nego kretanjem kretanjem delića materije. Ako se granični laminarni sloj smanji prijenos toplote je veći i obrnuto (hrapave površine imaju bolji prijenos toplote konvekcijom).

Page 49: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Sl. 8.2.1 Prelaz toplote sa fluida na neku čivrstu površinu

8.2.2 Utjicaj brzine strujanja na koeficijent prelaza toplote

Utjicaj brzine strujanja na α procenjuje se sa obzirom na vrstu strujanja, koje može biti: 1. Laminarno (kod strujanja u cevima Re<2.300), 2. Prijelaz iz laminarnog u turbulentno (kod strujanja u cevima Re=2.300 do 10.000) 3. Turbulentno (kod strujanja u cevima je Re>10.000). Re predstavlja bezdimenzionalni Reynolds-ov broj Re=c dh / ν. (8.2.2) Ovaj broj uzima u obzir: vrstu strujanja (kroz c[m/s]=brzina strujanja), vrstu fluida (kroz ν[m2/s]=kinematska viskoznost fluida) i dimenzije strujnog kanala ili prostora (kroz dh=hidraulički prečnik). Hidraulički prečnik (dh [m]) zavisi od poprečnog preseka strujanja (A [m2]) i od obima poprečnog preseka strujanja (o [m]). dh je dat sledećim izrazom dh=4A/o. (8.2.2) Kod cevi; dh=4A/o=4(d2π/4)/dπ=d pri čemu je ovde d unutrašnji prečnik cevi. kod cevi u cevi; dh=4A/o=4[(D2π/4)-(d2π/4)]/(D+d)π=D-d pri čemu su ovde D i d redom unutrašnji prečnik veće cevi i spoljašnji prečnik manje cevi. 8.2.3. Uticaj vrste fluida na koeficijent prelaza toplote Ovaj uticaj na α se ocenjuje na osnovu Prandtl-ovog broja fluida (Pr): Pr=ηcp/λ=ν/a (8.2.3) Ovde je η[kg /m s] dinamička viskoznost fluida, cp[J/kgK] specifična toplota fluida kada je p=const., λ[W/mK] koeficijent provodjenja toplote fluida (dat kao k u prethodnom odeljku), ρ[kg/m3]gustina fluida, a[m2/s]temperaturska provodljivost fluida Uzima se da je Pr=0,71 za vazduh na okolnom pritisku i temperaturi (1 bar; 20 0C) Pr=10.400 za ulje za podmazivanje na okolnom pritisku i temperaturi (1 bar; 20 0C) Pr=7,0 za vodu pri okolnom pritisku i temperaturi (1 bar; 20 0C) Temperaturska provodljivost fluida je data izrazom a= λ/(ρcp) (8.2.4) 8.2.3. Uticaj sile uzgona fluida usled razlika temperatura na koeficijent prelaza toplote Ovaj uticaj na α se ocenjuje na osnovu Grashoff-ovog broja (Gr):

Page 50: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

2

3

νβ hdgT

Gr∆

= (8.2.5)

Ovde su β=1/273.15[1/K] koeficijent termickih napona, dh[m] hidraulički prečnik, ∆T[K] temperaturska razlika, g=9,81 [m2/s] koeficijent ubrzanja zemljine teze i ν[m2/s] kinematska viskoznost fluida,

8.2.4 Uticaj oblika i stanja površine i vrste fluida na koeficijent prelaza toplote Ovaj uticaj na α[W/m2 K] uzima se u obzir pomoću Nusselt-ovog broja fluida (Nu): Nu=αdh/λ (8.2.4) Ovde su dh[m] hidraulički prečnik i λ[W/mK] koeficijent provodjenja toplote fluida (dat kao k u prethodnom odeljku). Postoji niz formula za izračunavanje Nu-broja koje su dobijene eksperimentalno, koje imaju sledeći oblik:

Pr),(Re,GrNuNu = (8.2.5)

Prema teoriji, ako smo za neku odredjenu čvrstu povrsinu eksperimentalno odredili Nu broj, to

cemo za sve geometrijski slične površine za koje imamo iste Re, Gr i Pr brojeve dobiti isti Nu-

broj. Ovu funkciju su do sada u mnogobrojnim eksperimentima odredjivali razni istrazivači za

različite geometrijske oblike i razne Re, Pr i Gr, tako da postoje izrazi za Nu-broj za niz čvrstih

površina koje se sreću u tehnici. Razlikuju se dva slučaja: slučaj prinudne i prirodne konvekcije

8.2.8 Prinudna konvekcija

U ovom slučaju prirodne konvekcije kod koje se strujanje fluida ostvaruje ili pomoću pumpi ili

ventilatora obično možemo zanemariti. sile uzgona, tj. uticaj Gr broja bice neznatan, osim u

slučaju laminarnog strujanja u pravoj cevi. Opšti izraz za srednji Nu broj pri prinudnoj kon-

vekciji može se napisati u obliku: 25.0)Pr(Pr/PrRe z

rmn GrCNu = (8.2.42)

Ovdje se daju najčešće korišćene formule za veći broj slučaja. Uz svaku formulu za Nu-broj

mora se naznače temeperature za koje se odreñuju fizičke veličine fluida naprimjer: ukoliko se

one odredjuju za temperaturu fluida to je indeks f, ukoliko se odredjuju za srednju temperaturu

fluida i zida to je indeks f,s ili ukoliko se odredjuju za temperaturu zida to je indeks s.

Koeficijenti C, n, m i r koji važe za pojedine vrste strujanja i odredjene oblike i položaje čvrste površine (vidi sl. 8.2.3-7), pri ovoj vrsti prenosa toplote dati su u tabeli 1. Tako pod rednim brojevima 1 i 2 u ovoj tabeli imamo.ove koeficijente za strujanje duž ravnog zida ili ploče, pod rednim brojevima 3, 4 i 5 za strujanje u pravoj cevi, pod rednim brojevima 6 i 7 za poprečino opstrujavanje cevi (cilindra) i pod rednim brojevima 8 i 9 za poprečno opstrujavanje snopa cevi.

Page 51: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Inače kod strujanja u pravoj cevi C je funkcija od εL, i K0 čije su vrednosti date u tabelama 3, 4 i 5. Kod poprečnog

opstrujavanja cevi (cilindra i snopa cevi) parametar C je funkcija od εΦ čije su vrednosti date u tabelama 6 i 7.

8.2.9 Prirodna konvekcij

a U slučaju

prirodne

konvekcij

Sika 8.2.3 Strujanje u pravoj cevi Sika 8.2.4. Poprečno opstrujavanje

cilindra

Sika 8.2.5 Nastrujavanje cevi u

šahovskom rasporedu Sika 8.2.6 Nastrujavanje cevi u

koridornom rasporedu

Sika 8.2.7 Nastrujavanje na ravnu ploču

Page 52: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

e, tj. kada

strujanje

nastaje

samo

usled

razlika u

gustinam

a, brzine

su tako

male da

se sile

trenja

mogu

zanemarit

i. U tom

slučaju

otpada

zavisnost

od Re-

broja i

ostaje:

Pr),(GrNuNu =

(8.2.43)

Eksperi

mento

m je

utvrdje

no da je

obično

Pr)(GrNuNu = (8.5.44)

Opšti izraz za srednji Nu-broj pri prirodnoj konvekciji je:

25.0, )Pr(Pr/Pr)(,

znGrCNu = (8.2.45)

Page 53: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Vrednosti koeficijenta C' i n' za horizontalnu cev i vertikalnu površinu date su u tabeli 8.

8.3 KONDENZACIJA I KLJU ČANJE

Zajednička karakteristika procesa kondenzacije i procesa kljucanja jeste u tome sto je

pri konstantnom pritisku tenperatura konstantna sve dok proces traje. Osim toga na granici

izmedju faza pojavljuju se diskontinuiteti koje treba uzeti u obzir pri razmatranju problema

prostiranja toplote pri ovim procesima.

8.3.1 Kondenzacija Dok je temperatura zida viša od temperature kondenzacije vodene pare za dati pritisak, para se

neće u dodiru sa zidom kondezovati već će prelaz toplote teći kao kod običnog suvog gasa. Tek

kada je temperatura zida niža od temperature kondenzacije, pojavljuje se kondenzacija bez

obzira na to da li je para dalje od zida zasićena ili pregrejana. Kod kondenzata koji dobro kvasi

zid nastaće film kondenzata pa govorimo o filmskoj kondenzaciji (sl. 8.3.1.a). U tom filmu

tečnost teče naniže ili je oduvava parna struja, a istovremeno se stalno kondenzuje nova vodena

para. Kod lošeg kvasenja zida kondenzat se trenutno sakuplja u sitne kapljice, stvara se rosa.

Takve kapljice naglo rastu dok ne poteknu ili dok ih struja pare ne oduva. Izmedju kapljica je

stalno goli zid na koji nadiru molekuli pare. Ovde govorimo o kapljičastoj kondenzacijii (sl.

8.3.1.b). Nadjeno je da je vrednost prelaznosti toplote pri kapljičastoj kondenzaciji i reda veličine

40000 W/(m2K) i više prema nekih 6000 W/(m2K) kod filmske kondenzacije.

Za postizanje kapljičaste kondenzacije kao i prednosti koje ona pruža potrebni su specijalni

uslovi koji se u praksi teško odstvaruju, pa se kaplji časta kondenzacija može smatrati u

termotehnici dosta retkom i kratkotrajnom pojavom.

Srednji Nu- broj pri filmskoj kodnenzaciji, dat je opštim izrazom:

Tu KArCN ε25.01 )Pr(ˆ = (8.3.1)

Velifiine Ar, Pr, K i εT su definisane u tabeli 9. U toj tabeli, koja se odnosi na filmsku

kondenzaciju čiste suvozasićene i nepokretne pare na čvrstoj nepokretnoj izotermnoj površini,

date su vrednosti koeficijenta C1 za tri nacina oticanja kondenzata: strogo laminarno-vertikalna

površina; 2. strogo laininarno-horizontalna cev i 3. laminarno valovito-vertikalna površina.

Page 54: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

Sl. 8.3.1 Kondenzacija: a) filmska; b) kapljicasta

8.3.2 Ključanje

Relativno mali toplotni protoci mogu se predati tečnosti (vodi) i bez ključanja,

prirodnom konvekcijom, pri čemu se isparavanje odigrava na samoj slobodnoj površini tečnosti.

Kada prirodna konvekcija nije u stanju da održava grejnu površinu na temperaturi ispod

tačke ključanja na pojedinim mestima ove površine javiće se mehurići i nastupiće mehurasto

ključanje. Pri tome se prirodna konvekcija ispoljava kao glavni uzročnik i pokretač cirkulacije.

Ovaj slučaj je predstavljen na sl. 8.3.2 delom krive h = h(Tz-Tf), izmedju tacaka A i B.

Ovde su Tz i Tf, redom temperature grejne površine i fluida neposredno do nje. Ukoliko se

intenzitet dovodjenja toplote uveća tj. poraste razlika temperature zida i tečnosti, dolazi do jačeg

komešanja mehurića pare sto izaziva jaku cirkulaciju tečnosti - burnu cirkulaciju. Sada je

mehanizam prenošenja toplote kroz tečnost prinudna konvekcija. Po dostizanju maksimalne

vrednosti za h u tacki C (na sl. 8.3.2), sa daljim uvećavanjem razlike temperatura grejne površine

i tečnosti, ovaj koeficijent opada. Razlog tome je narasto film pare usled toga što centri

obrazovanja mehurića postaju tako brojni da se medjusobno stapaju - filmsko ključanje.

Mehurasto i filmsko ključanje su shematski prikazani na sl. 8.3.3. Za eksperimente sa vodom i

mehurasto ključanje u velikoj zapremini, sl. 3,daje se vrednost prelaznosti toplote u funkciji

toplotnog fluksa po jedinici površine (velicina φ)sa koje se vrsi prelaz toplote i pritisak p koji

vlada u vodi.

Page 55: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

55

Sl. 8.3.2 Zavisnost prelaznosti toplote pri ključanju vode od razlike temperature zida i vode

Sl. 8.3.3 Mehurasto ključanje i filmsko ključanje

h

∆T=T -Tz f

Page 56: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

56

8.4 ZRAČENJE TOPLOTE

8.4.1 Osnovne informacije

Zračenje toplote jeste još jedan način prostiranja toplote pored provodjenja i konvekcije. Sva tela sa

svojih površina zrače toplotu elektromagnetnim talasima čija de talasna dužina kreće od 0,8 do 400 µm (radi

uporodjenja svjetlosni zraci imaju talasnu dužinu od 0,4 do 0,8 µm) na druge površine. Čvrsta tela i tečnosti

emituju toplotu punim spektrom, tj. u talasnim dužinama od ultravioletnih (kada je talasna dužina zračenja

reda veličina blizu 0,8 µm) do infracrvenih (kada je talasna dužina zračenja reda veličine blizu 400 µm).

Gasovi emituju i apsorbuju energiju samo odreñenih talasnih intervala - setektivno zračenje.

Uopšteno se može reći da vazduh potpuno propušta zračenje.

Količina toplote koja se prenosi zračenjem zavisi od: temperatura površina izmedju kojih se toplota

prenosi zračenjem, veličina površina i stepena crnoće površine(sivoća površine) dok ne zavisi od: razmaka

površina, a ponekad i od fluida izmeñu njih i temperature fluida izmeñu njih.

8.4.2 Sjaj površine-ukupna energija koju zrači m2 neke površine

Ukupna energija koju zrači 1 m2 neke površine u jedinici vremena naziva se sjaj površine φs . U

njoj može biti sadržano:

1. Zračenje koje je nastalo u samom telu, tzv. emitovano zračenje, 2. Zračenje koje je nastalo u nekom drugom telu, dozračeno je na posmatrano telo pa se sa njegove

površine reflektuje tzv. reflektovano zračenje,

3. Zračenje dozračeno sa drugog tela i prolazi kroz posmatrano telo, tzv. prolazno zračenje.

8.4.2 Energija snopa zraka koja nailazi na neko telo - Refleksija, apsorpcija i dijatermija

Energija snopa zraka Q [W] koja naiñe na drugo telo delom se odbije (reflektuje) od površine tela Qr

[W], delom apsorbuje Qa [W]i delom "d" prolazi kroz telo Qd[W] pa je

Q=Qr+Qa+Qd[W]

Kada se prethodni izraz podeli sa Q tada se dobija

1= (Qr/Q)+(Qa/Q)+(Qd/Q)=r+a+d

Sledi da je: r + a + d = 1 (8.4.1) gde su

r-koeficijent refleksije (za crno tijelo r=0, za sjajnu površinu/ogledalo/ r=1)

a-koeficijent apsorcije (za crno tijelo a=1, ε=1)

d-koeficijent dijatermije (prozirnosti) (za kruto telo d=0)

Page 57: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

57

Odnos toplote zračenja običnog tela i toplote zračenja crnog tela je koeficijent emisije ε;

Koeficijent emisije jednak koeficijentu apsorpcije tj. a = ε. Vrednost koeficijenta emisije iznosi od 0 za

apsolutno belo telo, pa do 1 za apsolutno crno telo. To znači da neko telo jako emituje toplotno zračenje

ako ga jako i apsorbuje.

Vrednosti ovih koeficijenata zavise od prirodnih osobina tela. Osim toga, tela na različite načine reaguju u odnosu na količinu energije zračenja i njihove talasne dužine. Tako npr. čvrsta tela već sa nekoliko µm debljine apsorbuju sve toplotne zrake. Tečnosti mogu biti prolazne za svetlosne zrake, ali su uvek neprolazne za toplotno zračenje. Beli papir dobro reflektuje svetlosne zrake ali apsorbuje infracrvene. Prozorsko staklo je prolazno za svetlost, ali neprolazno za toplotne, infracrvene i ultravloletne zrake. Zavisno od vrednosti pojedinih koeficijenata javljaju se i osnovne osobine površina, sl. 8.4.1. Kod glatke površine, sl. 8.4.1.c, nastaje delimična refleksija i apsorpcija, pa vredi da je r + a = 1. Bela površina, sl. 8.1.4.d, uglavnom reflektuje zrake, ali ih i rasipa. Sa hrapave površine sl. 8.1.4.e, nastaje apsorpcija i refleksija, ali i rasipanje zraka. Već debljina zida od nekoliko µm kod čvrstih tela može ih načiniti neprolaznim pa se za čvrsta tela (površine) obično može smatrati da je d=0.

Sl. 8.4.1 Primeri zračenja površine tela (a) ogledalo, (b) crno telo, (c) glatka površina, (d) bela

površina, (d) hrapava površina.

8.4.3 Stefan-Boltzman-ov zakon-emitovano zračenje (zračenje koje nastaje u samom telu) Boltzman je pomoću

kinetičke teorije

dokazao Stefan-ov

empirijski zakon

prema kojem je

količina energije

(koja nastaje u

samom telu) u W/m2

koju zrači m2 crne

površine temperature

Page 58: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

58

T u jedinici

vremena:

4Tzc σϕ =

(8.4.7)

gde je: σ = 5,76 10-8 W/(m2 K4) - konstanta zračenja crnog tela. Proizilazi da se Stefan-Boltzman-ovim

zakonom dokazalo, da je zračenje crnog tela proporcionalno četvrtom stepenu njegove apsolutne tempe-

rature. Za praktičnu primenu pogodnije je pisati za emitovano zračenje koje nastaje u samom crnom telu:

4)100

(T

CCzc =ϕ (8.4.8)

gde je: CC =1004 σ

5,76 W/(m2 K4)- koeficijent zračenja crnog tela. Za siva tela - površinu važi-

εϕϕ =

zc

z , to

jednačina za emitovano zračenje koje nastaje u sivom telu (površini):

4)100

(T

CCz εϕ = (8.4.9)

Izraz CCC ε= naziva se koeficijentom zračenja sivog tela. Koeficijent emisije (ε) za neke materijale iznosi:

ε= 0,052 aluminijum

ε= 0,037 bakar slabo oksidiran

ε= 0,610 gvoždje slabo zarñalo

ε= 0,940 staklo

ε= 0,950 guma, malter, krovna pokrivač

8.4.7 Razmena toplote zračenjem izmedju dve paralelne površine sa malim medjusobnim odstojanjem u

poredjenju sa nihovim dimenzijama

Do razmene toplote zračenjem meñu čvrstim telima dolazi ako je meñuprostor popunjen neapsorbujućom

sredinom (vakuum, vazduh) . Apsorpcija toplote zračenjem kod čvrstih tela odvija se u tankom površinskom

sloju, pa zato praktično ne postoji razmena toplote zračenjem unutar tela. Razmatraju se procesi kod kojih

su temperatura tela i fluks zračenja toplote u vremenu nepromenljivi, tj. stacionarno zračenje. Takoñe, u

svim tačkama površine jednog tela iste su temperature, isti koeficijent apsorpcije, isti koeficijent emisije i

iste koeficijent refleksije. Primerima koji se dalje navode obuhvaćeni su neki jednostavniji slučajevi.

Razmena toplote zračenjem izmedju dve paralelne površine 1 i 2 sa malim medjusobnim odstojanjem u poredjenju sa nihovim dimenzijama (sl. 8.4.5) jednaka je razlici energija zračenja koju emituje površina 1 (φS1) i energije zračenja koju emituje površina 2 (φS2); sve u W/m2

Page 59: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

59

2112 SS ϕϕϕ −= . (8.4.17)

Sl. 8.4.5 Zračenje izmeñu dve paralelne površine

Kako površine nisu crne to će odreñena energija koja pada na površinu 1 biti delom apsorbovana a1 i delom

reflektovana na drugu površinu r1 = 1 – a1 = 1 – ε1. Na površini 2 se opet energija koja pada na površinu 2

delom apsorbuje a2 i delom reflektuje (odbija od te površine) natrag r2 = 1 – a2 = 1 - ε2. Ta razmena traje sve

dok se ne apsorbuje ukupna posmatrana količina energije. Sabiranjem svih tih apsorbovanih delova energije

može se dobiti celokupna energija.

Energija zračenja površine 1 (φS1) se naziva sjaj površine 1 i predstavlja zbir energije zračenja

koja nastaje u samom telu 1 (φz1) i energije zračenja koja se dozračuje sa površine 2 i odbija od površine 1 (

21)1( Sϕε− ) pa je

2111 )1( SzS ϕεϕϕ −+= . (8.4.18)

Energija zračenja površine 2 (φS2) se naziva sjaj površine 2 i predstavlja zbir energije zračenja

koja nastaje u samom telu 2 (φz2) i energije zračenja koja se dozračuje sa površine 1 na površinu 2 i odbija

od površine 2 ( 12)1( Sϕε− ) pa je

1222 )1( SzS ϕεϕϕ −+= . (8.4.19)

Površine 1 i 2 imaju temperature T1 i T2 i koeficijente emisije ε1 i ε2, tj. koeficijente zračenja C1= ε1Cc

i C2 = ε2Cc. Prema Stefan-Boltzman-ovom zakonu, energija koja nastaje po m2 u samom telu 1 a koja se zrači preko površine 1 (prema površini 2) data je izrazom

4111 )

100(

TCCz εϕ = . (8.4.16)

Takodje prema Stefan-Boltzman-ovom zakonu energija koja po m2 nastaje u samom telu 2 i koju zrači površina 2 (prema površini 1) data je izrazima

4222 )

100(

TCCz εϕ = . (8.4.16)

Zamenom vrednosti za φS1 i φS2, u jednačini (8.4.17) dobija se:

2112

211212 εεεε

ϕεϕεϕ−+

−= zz (8.4.20)

a unošenjem vrednosti za φz1 i φz2 dobija se jednačina za količinu izmenjene toplote:

Page 60: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

60

−=

−−+

= 424112

4241

21

12 )100

()100

()100

()100

(1

11TT

CTTCC

εε

ϕ (8.4.21)

gde je:

C

C

CCC

CC

1111

111

2121

12

−+=

−+=

εε

(8.4.22)

Iz jednačine za konstantu zračenja C12 se vidi da je njena vrednost manja od svake pojedinačne vrednosti

konstante C1 i C2.

8.4.9 Razmena toplote zračenjem izmedju dve površine od kojih je jedna sa svih strana obuhvacena

drugom povrsinom

Neka se izmedju površina tela 1 i tela 2 prikazanih na sl. 8.4.7 razmenjuje toplota zračenjem. Kako

površina tela 2 sa svih strana obuhvata površinu tela 1 to je površina tela 1 manja od površine tela 2. Primer

za to je jedna cev u prostranom kanalu. U ovom slučaju jedan deo energije koju emituje (zrači) površina 2

promiče pored povrsine 1 i pada na drugi deo površine 2. Površina 1 je uvek konveksna (ispupčena), pa

zraci sa bilo koje tacke A površine 1 stižu na površinu 2. Za površinu 2 postavlja se uslov da se iz bilo koje

njene tacke B vidi bilo koji obris tela 1, a to znači na njoj ne sme biti većih udubljenja ni izbočina. Neka je

veličina površine 1 označena kao A1 dok je veličina površine 2 označena kao A2. Uzimajući ovo u obzir

može se napisati (analogno slučaju paralelnih površina) da je toplotni fluks zračenja sa površine 1 (na

površinu 2)

2

.

1111

.

)1( SzS QaAQ −+= δϕ . (8.4.34)

Kod ove jednačine, prvi sabirak desne strane predstavlja toplotni fluks zračenja koje emituje samo telo 1, a

drugi sabiarak predstavlja toplotni fluks zračenja sa površine 2 koje se odbija (reflektuje) od površine 1.

Ovde je δ deo zračenja koje sa tela 2 pada na telo 1.

Toplotni fluks zračenja sa površine 2 (na površinu 1) je

2

.

21

.

2222

.

)1)(1()1( SSzS QaQaAQ δϕ −−+−+= . (8.4.35)

Iz ove jednačine vidi se da je 2

.

SQ jednak zbiru toplotnog fluksa zračenja koje emituje samo telo 2 (sabirak 1

desne strane jednačine), toplotnog fluksa zračenja sa površine 1 koje se odbija (reflektuje) od površine 2

(sabirak 2) i toplotnog fluksa zračenja sa površine 2 koje se odbija od površine 1 i zatim odbija (reflektuje)

od površine 2 (sabirak 3).

Page 61: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

61

Sl. 8.4.7 Zracenje izmedju dva tela pri čemu je telo 1 obuhvaćeno telom 2

Rešavanjem ove dve jednačine po 2

.

1

.

SS QiQ dobija se:

δδ

δϕϕδϕ1212

2211121121

. )1()1(aaaa

AaAaAaQ zzz

S −+−+−+= (8.4.36)

δδϕϕ

1212

112222

. )1(aaaa

AaAQ zz

S −+−+= (8.4.37)

Faktor δ zavisi samo od geometrijskih odnosa, a ne od temperatura T1 i T2.

Za slucaj da je T1 > T2 razmenjena energija zračenjem je:

2

.

1

.

12

.

SS QQQ −=

Posle zamene

vrednosti za sjaj

površine 1 i 2

(8.4.36) i (8.4.37)

dobija se:

δδ

δϕϕ1212

22111212

.

aaaa

AaAaQ zz

−+−= (8.4.38)

a sa vrednostima za 1zϕ i 2zϕ ova jednačina postaje:

Page 62: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

62

−−+

= 422

411

1212

2112

.

)100

()100

(T

AT

Aaaaa

aaCQ C δ

δδ (8.4.39)

Kada se uzme da je 12

.

Q = 0 tada je T1 = T2 = T, δ = 2

1

A

A

pa jednacina (8.4.39) dobija oblik:

−= 4241112

.

)100

()100

(TT

CAQ (8.4.40)

gde je: C - konstanta zračenja nekog tela sa svih strana obuhvaćenog nekim drugim telom. Vrednost

konstante C je:

)1

1(

1)1

1(

1

2122

1

1

−+=

−+=

CC

C

CA

A

C

CC CC

δ (8.4.41)

Jednačina (8.4.40) pokazuje da je izmena toplote zavisna od δ (preko konstante C) i da je tim manja što se δ

približava vrednosti 1. U konkretnom slučaju gubici toplote nekog izolovanog rezervoara spoljašnje

površine A1 su tim manji što je rezervoar smešten u manju prostoriju A2.

Iz jednacine (8.4.41) sledi da pri odnosu A1« A2 može biti δ≅ 0, pa je C≅ C1 CC . To znači da su za razmenu toplote važne samo karakteristike zračenja tela 1, tj. obuhvaćenog tela, npr. termometra u sobi.

8.4.12 Ekran

Često je u termotehničkoj praksi potrebno smanjivati emitovanje energije zračenja sa nekih površina. To se

postiže kada se primene toplotne zavese - koje se drugačije nazivaju ekranima.

Analiziraće se slučaj kada se izmedju dve ravne paralelne površine 1 i 2 postavi ekran koji je takodje ravan i

paralelan njima (sl. 8.4.8). Temperature površina 1 i 2 biće T1 i T2 a temperatura ekrana Te . Takodje, uzima

se da su koeficijenti zračenja i koeficijenti apsorpcije svih površina jednaki, pa je moguće primeniti

jednačinu (8.4.21):

−=

−= 424441 )100

()100

()100

()100

(TT

CTT

C eezeϕ (8.4.44)

Page 63: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

63

Sl. 8.4.8 Ekran-toplotna zavesa

Odavde je

T1

Te

T2

Page 64: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

64

CTT

CTT

Zee

Zee /)

100()

100(;/)

100()

100( 424441 ϕϕ =−=−

Sabiranjem ove dve jednačine dobija se:

124241

21

)100

()100

(21 ϕϕ =

−= TTze (8.4.45)

Ovde je φ12 energija koja se razmenjuje zračenjem izmedju dveju paralelnih površina kada

izmedju njih ne postoji ekran. Može se izvući zaključak da se u ovom slučaju primenom jednog

ekrana izmedju dveju paralelnih površina razmena toplote zračenjem smanjuje na polovinu.

Može se pokazati da se primenom j ekrana kod kojih je C1=C2 =…..=Cj dobija:

121

1 ϕϕ+

=jZe (8.4.46)

8.4.12 Prelaznost toplote zračenjem-koeficijent prelaza toplote zračenjem

Potrebno je prilagoditi proračun prenosa toplote zračenjem proračunu prenosa toplote konvekcijom i kondukcijom. Zato se uvodi prelaynost toplote zračenjem (koeficijent prelaza toplote zračenjem) hz. Za dva susedna zida moguće je napisati relaciju:

−=−= 4241122112

.

)100

()100

()(TT

ACTTAhQ z (8.4.47)

gde je

21

4241

12

)100

()100

(

TT

TT

Chz −

−= . (8.4.48)

Page 65: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

65

8.5 PROLAZ TOPLOTE

Kada neka količina toplote Q prelazi sa nekog fluida kroz neki čvrsti zid na neki dpugi fluid to

je tzv. prolaz toplote. U tom slucaju se istovremeno koriste svi nacini prostiranja toplote:

kondukcija, konvekcija i zracenje.

8.5.1 Ravan zid U stacionarnom stanju za jednoslojan ravan zid mogu se postaviti tri jednakosti (vidi

sl. 8.5.1).

τ)( '111 TTAhQ −= (8.5.1)

τδ

)()( '2

'1 TT

kAQ −= (8.5.2)

τ)( 2'

22 TTAhQ −= (8.5.3)

Page 66: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

66

Sl.8.5.1 Prolaz toplote kroz jednoslojan raven zid

Sl, 8.5.2 Prolaz toplote kroz dvoslojan raven zid

Ovde su T1 temperatura fluida 1, '1T temperatura površine zida u fluidu 1, T2 temperatura fluida

2, i '2T temperatura površine zida u fluidu 2. Prva jednakost predstavlja izraz za količinu toplote

(u J) koja prelazi konvekcijom (i eventualno zračenjem) sa fluida 1 na površinu 1 ravnog zida.

Druga jednakost predstavlja izraz za toplotu koja se provodi kroz ravni zid debljine δ i

koeficijenta provodjenja toplote k. Treća jednakost predstavlja izraz za prelaženje toplote

konvekcijom sa zida 2 u fluidu 2 na fluid 2. Ovde se smatra da su obe površine zida i to prema

fluidu 1 i 2 jednake i imaju vrednost A.

Iz ovih jednačina eliminisanjem temperatura pomenutih površina zidova T1' i T'2 dobija se:

21

21 111

)(

hkh

TTAQ++

−= δ (8.5.4)

Toplotna otpornost se definiše u K /W izrazom:

AhkhKAR

1)

11(

1

21

++== δ (8.5.5)

Ovde se K [ ])/( 2KmW naziva toplotnom prohodnošću (koeficijenat prolaza toplote). Konačno je:

()( 211 TAKTTRQ =−= − τ

(8.5.6)

Za višestruki ravan zid važi (prolaz toplote kroz dvoslojan ravan zid prikazan je na sl. 8.5.2):

112

1

1 )/( −−

=

− ++= ∑ hkhKn

iiiδ (8.5.7)

gde je n broj zidova.

8.5.2 Cilindričan zid Ako imamo cilindričnu površinu kao što je cev, prolaz toplote kroz jednu takvu cev

moguće je u stacionarnom stanju opisati sa tri jednačine (za upotrebljene oznake vidi sl. 8.5.3):

Page 67: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

67

τπ )( '1111 TTLhdQ −= (8.5.8)

τπ )()/ln(

2 '2

'1

12

TTdd

kLQ −= (8.5.9)

τπ )( 2'

222 TTLhdQ −= (8.5.10) Prva jednakost predstavlja toplotu koja se prelazi konvekcijom sa fluida u cevi na unutrašnju površinu cevi. Druga jednakost predstavlja toplotu koja se prenosi kondukcijom kroz cev i treća jednakost predstavlja toplotu koja se prelazi konvekcijom sa spoljašnje površine cevi na fluid 2.

Sl. 8.5.3 Prolaz toplote kroz jednoslojan cilindričan zid

Normalno, L je duzina cevi tj. cilindričnog zida. Eliminacijom temperatura površina

ove cevi T'1 i T'2 iz ovih jednačina dobija se:

1

22

12

1121

1

2

)/ln(1)(

++−=

hdk

dd

hdTTLQ

πππτ (8.5.11)

Obično se stavlja da je:

[ ] LhdddkhdLKR C /)()/ln()2/1()()( 1

22121

111 −−− ++== πππ (8.5.12)

Može se napisati za višestruki cililndričan zid (ovde je n ponovo broj slojeva u zidu) da je:

Page 68: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

68

Марко Витаковић 39/2003

LhdddkhdLKR nii

n

iiC /)()/ln()2/1()()( 1

2211

111

1

++== −++

=

−− ∑ πππ (8.5.13)

Ovde je:

LTTKR

TTQ C )( 21

21.

−=−= . (8.5.14)

Page 69: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

69

Марко Витаковић 39/2003

10.0. Meшavine idealnih gasova

10.1. Opшte osobine

U prirodi, gasovi se nalaze izmeшani. Svaki gas koji ulazi u sastav meшavine naziva se komponentom. Da bi se problem pojednostavio, analiziraju se jednaчine stanja meшavina sastavljenih od idealnih gasova. Pri tom prouчavanju smatra se da je meшavina homogena шto znaчi da se u svakom deliћu meшavine nalaze molekuli ravnomerno rasporeђeni i izmeшani.

10.2. Sastav materije meшavine Broj molekula meшavine n jednak je zbiru broja molekula pojedinaчnih komponenata:

==+++=

nk

kknk nnnnn

121 ...

(10.1) Ovde je nk ukupan broj razliчitih komponenata u meшavini. Koliчina materije meшavine u kilomolovima N jednaka je zbiru koliчina materije pojedinaчnih komponenata u kilomolovima:

==+++=

nk

kknk NNNNN

121 ...

(10.2) Masa meшavine m jednaka je zbiru masa pojedinaчnih komponenata mk

==+++=

nk

kknk mmmmm

121 ...

(10.3) Definiшe se molarni udeo komponente u meшavini kao

νk

kN

N=

(10.4) pri чemu je skup vrednosti νk za k=1,..., nk (10.5) molarni sastav meшavine. Kada se (10.2) podeli sa N dobija se:

νk

k

m

==∑ 1

1 (10.6) Maseni udeo komponente u meшavini definiшe se kao:

g

m

mkk=

(10.7) pri чemu skup vrednosti gk za k=1,..., nk (10.8) je maseni sastav meшavine. Kada se (10.3) podeli sa m dobija se:

gk

k

m

==∑ 1

1 (10.9)

Page 70: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

70

Марко Витаковић 39/2003

10.3. Parcijalni pritisak komponente

Definisaћemo parcijalni pritisak pojedinaчne komponente pk kao pritisak koji bi imala neka komponenta kada bi se nalazila sama u zapremini u kojoj je meшavina. Za meшavinu važi jednaчina stanja idealnog gasa u obliku: pV=NRuT. (10.10) Ovde je p - ukupni totalni pritisak meшavine. Za ukupno nk komponenata moguћe je napisati ukupno nk jednaчina stanja: pkV=NkRuT. k=1,...,nk (10.11) ili Vp k=RuTNk. Kada se ove jednaчine stanja saberu dobija se:

V p R T N NR Tk u k u

k

nk

k

nk

= ===∑∑

11 (10.12) Koriшћenjem jednaчine (10.10) dobija se konaчno:

pV V pk

k

nk

==∑

1 odnosno

p pk

k

nk

==∑

1 шto predstavlja Daltonov zakon: pritisak meшavine idealnih gasova jednak je zbiru parcijalnih pritisaka komponenata.

10.4. Zapreminski sastav meшavine Definisaћemo redukovanu zapreminu Vk. To je zapremina koju bi pojedinaчna komponenta zauzimala kada bi imala ukupni totalni pritisak meшavine. Napravite jedan msaoni ekspriment. Naprimer u ovoj prostoriji zamislimo da smo izbacili sav azot iz prostorije. U tom sluчaju pritisak preostalog vazduha-kiseonika bio bi približno 0,21bar (neka je apsolutni pritisak u prostoriji pre tog izbacivanja azota bio 1bar). Zamislite da se jedan od zidova moze kretati I da pokretanjem toga zida smanjujemo zapreminu nase uчionice, tada se uveћava prtisak koseonika u uчionici. Možemo da smanjimo tu zapreminu dok ne dobijemo da je apsolutni pritisak u uчionici 1 bar. Ta zapremina koja se tako dobije zove se redukovana zapremina koseonika.Isto se može uчiniti i za azot-ista priчa. Za ukupno nk komponenata u tom sluчaju moguћe je postaviti nk jednaчina stanja oblika: pVk=NkRuT gde je k=1,2,...,nk (10.14) Kada se ove jednaчine stanja saberu, dobija se:

p V R T N NR Tk u k u

k

nk

k

nk

= ===∑∑

11 =pV (10.15) Koriшћenjem (10.10) i (10.15) dobija se:

pV p Vk

k

nk

==∑

1

Page 71: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

71

Марко Витаковић 39/2003

odnosno: V Vk

k

nk

==∑

1 (10.16) Ukupna zapremina meшavine je jednaka zbiru redukovanih zapremina komponenata. Zapreminski udeo komponente u meшavini je:

r

V

Vkk= (10.17)

a zapreminski sastav meшavine je skup vrednosti rk k=1,2,...,nk (10.18) Sabiranjem (10.17) dobija se

rk

k

nk

==∑ 1

1 . (10.19) Poreђenjem jednaчina stanja komponenata (10.11) i (10.14) dobija se pkV=pVk=NkRuT tj.

r

V

V

p

pkk k= =

(10.20) Zakljuчuje se da odnos parcijalnog pritiska komponente sa ukupnim totalnim pritiskom

meшavine daje zapreminski udeo komponente u meшavini.

10.5. Veza izmeђu razliчitih sastava meшavine

Ukoliko se podele meђusobno jednaчine (10.11) i (10.10) dobija se:

r

p

p

N

Nkk k

k= = = ν (10.21)

pa je: rk=νk k=1,2,...,nk (10.22) tj. zapreminski sastav jednak je molarnom sastavu. Veza izmedju zapreminskog i masenog sastava preko specijalnih gasnih konstanti dobija se na sledeћi naчin. Prvo se postavi termiчka jednaчina stanja za komponentu: pkV=mkRkT (10.21) gde je Rk specijalna gasna konstanta komponente. Zatim se postavi termiчka jednaчina stanja za meшavinu: pV=mRMT (10.22) gde je ovde RM - specijalna gasna konstanta meшavine idealnih gasova. Konaчno, medjusobno delimo ove dve jednaчine:

r

p

p

m

m

R

Rg

R

Rkk k k

Mk

k

M

= = = (10.23)

tj.

Page 72: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

72

Марко Витаковић 39/2003

r g

R

Rk kk

M

= k=1,2,...,nk (10.24)

Ova jednaчina daje vezu izmeђu zapreminskog i masenog sastava meшavine. Veza izmedju zapreminskog i masenog sastava preko relativnih molekulskih masa dobija se na sledeћi naчin. Za komponente važi da je:

k

uk M

RR =

gde je k=1,2,...,nk (10.25) i da je:

R

R

MMu

M

= (10.26)

gde je MM relativna molekulska masa meшavine dok je Mk relativna molekulska masa komponente. Uzimajuћi to u obzir, dobija se:

r g

R M

R Mg

M

Mk ku k

u Mk

M

k

= =

tj.

r g

M

Mk kM

k

=. (10.27)

10.6. Relativna molekulska masa meшavine

Za komponente je moguћe napisati: mk=NkMk gde je k=1,2,...,nk (10.28) a za meшavinu m=NMM (10.29) Ovde je MM relativna molekulska masa. Ako se sumiraju jednaчine (10.28)

m N Mk k k

k

nk

k

nk

===∑∑

11 (10.30) Koristeћi relacije (10.3), (10.29) i (10.30) dobija se

m m NM N Mk M k k

k

nk

k

nk

= = ===∑∑

11 (10.31) Kada se ova jednaчina (10.31) podeli sa N dobija se:

M M r MM k k k k

k

nk

k

nk

= ===∑∑ ν

11 (10.32) ----------------------------------------------------------------------------------------------- Može se napisati za komponente da je:

N

m

Mkk

k

= gde je: k=1,2,...,nk (10.33)

odnosno za meшavinu

Page 73: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

73

Марко Витаковић 39/2003

N

m

M M

=. (10.34)

Ako se saberu jednaчine (10.33) dobija se:

N N

m

M

m

MkM

k

kk

nk

k

nk

= = ===∑∑

11 (10.35) Deljenje ove jednaчine sa m daje:

1 1

11M

m

m M

g

MM

k

k

k

kk

nk

k

nk

= ===∑∑

(10.36) pa je:

MgM

Mk

kk

nk=

=∑

1

1 (10.37) 10.7. Gasna konstanta meшavine

Za komponente važi:

p

T

Vm Rk k k=

gde je: k=1,2,...,nk (10.38) a za meшavinu:

p

T

VmRM=

(10.39) Sumiranjem jednaчina (10.38) uzimajuћi u obzir relaciju (10.39) i Daltonov zakon, dobija se:

p p

T

VmR

T

Vm Rk M k k

k

nk

k

nk

= = ===∑∑

11 (10.40) Deljenjem jednaчine (10.40) sa m dobija se:

R g RM k k

k

nk

==∑

1 (10.41) ------------------------------------------------------------------------------------------------ Važi da je:

R

R

MMu

M

= (10.42)

Zamena jednaчine (10.32) u ovu jednaчinu daje:

RR

r Mr MR

rR

Mu

k kk

nkk k

uk

nkk

kk

nk= = =

= = =∑ ∑ ∑

1 1 1

1 1

(10.43) tj.

RrR

Mk

kk

nk=

=∑

1

1 (10.44) 10.8. Specifiчne toplote meшavina

Page 74: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

74

Марко Витаковић 39/2003

Unutraшnja energija meшavine je:

U UM k

k

nk

==∑

1 (10.45) Molarna specifiчna toplota pri konstantnoj zapremini meшavine [J/(kmolK)] je po definiciji:

c

u

TvnMnM

v

=

∂∂ (10.46)

Kako je unM=UM/N to je:

c

N

U

TvnMM

V

=

1 ∂∂ (10.47)

tj.

Nc

U

TvnMM

V

=

∂∂ . (10.48)

Molarna specifiчna toplota pri konstantnoj zapremini komponenata je:

c

N

U

Tvnkk

k

V

=

1 ∂∂

tj.

N c

U

Tk vnkk

V

=

∂∂ gde je: k=1,2,...,nk (10.49)

Ako se saberu ove jednaчine, dobija se:

Nc

U

TN c

U

TvnMM

Vk vnk

k

Vk

nk

k

nk

=

= =

==∑∑

∂∂

∂∂11

Deljenjem gornje jednaчine sa N dobija se:

c

N

Nc r cvnM

kvnk

k

nk

k vnkk

nk

= == =∑ ∑

1 1 tj.

c r cvnM k vnk

k

nk

==∑

1 (10.50) ---------------------------------------------------------------------------------------------- Može se izvesti da je molarna specifiчna toplota pri konstantnom pritisku

c r cpnM k pnk

k

nk

==∑

1 (10.51) a takoђe važi Majerova relacija:

c c RpnM vnM u− = (10.52) -----------------------------------------------------------------------------------------------

Page 75: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

75

Марко Витаковић 39/2003

Specifiчna toplota (masena) pri konstantnoj zapremini meшavine [J/(kgK)] data je relacijom za meшavinu:

c

u

T m

U

TvMM

v

M

V

=

=

∂∂

∂∂

1

(10.53) Specifiчne toplote pri konstantnoj zapremini komponenata date su relacijama:

c

m

U

Tvkk

k

V

=

1 ∂∂

i

m c

U

Tk vkk

V

=

∂∂ gde je k=1,2,...,nk. (10.54)

Kada se sumiraju ove jednaчine, dobije se:

c g cvM k vk

k

nk

==∑

1 . (10.55) Može se pokazati da je specifiчna toplota pri konstantnom pritisku meшavina:

c g cpM k pk

k

nk

==∑

1 . (10.56) Važi i relacija:

c c RpM vM M− = . (10.57)

Page 76: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

76

Марко Витаковић 39/2003

12.4. Opшta jednaчina kvazistatiчke promene staњa

Reшavaњem jednaчine (12.9) po δq i koriшћeњem jednaчine (12.10) dobija se:

δ ∂

∂q c dT c dT p

u

vdvn v

T

= = + +

(12.11) Odavde je:

c c p

u

v

dv

dTn vT

− = +

∂∂ (12.12)

Kako je v=v(T, p) to je:

dv

dT

v

p

dp

dT

v

TT p

=

+

∂∂

∂∂ (12.13)

Ako je r = const tada je

dv

dT

v

Tp p

=

∂∂ (12.14)

Za r = const izraz (12.12) mo`e se transformisati zahvaljujuћi relaciji (12.14) u oblik:

c c p

u

v

v

Tp vT p

− = +

∂∂

∂∂ (12.15)

Ako se ova jednaчina reшi po p

u

v T

+

∂∂ i zameni u (12.12) dobija se:

dT

c c

c c

T

vdvp v

n v p

=−−

∂∂ (12.16)

Kako je T=T(p, v) to va`i:

dT

T

pdp

T

vdv

v p

=

+

∂∂

∂∂ (12.17)

Izjednaчavaњem ove dve zadњe jednaчine i sre|ivaњem dobija se:

dp

p

T

T

v

c c

c cdv

v p

p v

n v

+

−−

=∂

∂∂∂

1 0 (12.18)

Kako je p=p(v, T) to je:

dp

p

vdv

p

TdT

T v

=

+

∂∂

∂∂ (12.19)

Zamenom jednaчine (12.17) u ovoj jednaчini dobija se:

dp

p

vdv

p

T

T

pdp

T

vdv

T v v p

=

+

+

∂∂

∂∂

∂∂

∂∂

(12.20) Ovu jednaчinu moguћe je napisati u obliku:

1−

=

+

∂∂

∂∂

∂∂

∂∂

∂∂

T

p

p

Tdp

p

T

T

v

p

vdv

v v v p T (12.21)

Page 77: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

77

Марко Витаковић 39/2003

Za sluчaj da je dp=0, a dv ≠ 0 sledi:

∂∂

∂∂

∂∂

p

T

T

v

p

vv p T

= −

. (12.22) Zamenom ove relacije u (12.18) dobija se opшta jednaчina kvazistatiчke promene staњa u obliku:

dp

p

v

c c

c cdv

T

n p

n v

−−

=∂

∂0

(12.23)

12.5. Politropska promena staњa

Ukoliko je:

−−

= =v

p

p

v

c c

c cconst n

T

n p

n v

∂∂ (12.24)

ta kvazistatiчka promena staњa naziva se politropskom. Zamenom ove jednaчine u (12.23) i zatim sre|ivaњem promenljivih, dobija se:

dp

pn

dv

v+ = 0

(12.25) Posle integraljeњa ove jednaчine dolazi se do jednaчine politropske promene staњa u obliku:

pv p v constn n= =1 1 (12.26) Ova jednaчina predstavlja hiperbolu u p-v dijagramu i naziva se politropom. Izlo`itelj n naziva se eksponentom politrope. Ova jednaчina naziva se i zakonom politrope u p-v koordinatnom sistemu.

12.6. Politropska promena staњa idealnog gasa 12.6.1. Eksponent politropske promene staњa

Kada se parcijalno diferencira termiчka jednaчina staњa idealnog gasa

p

RT

v=

po specifiчnoj zapremini pri konstantnoj temperaturi dobija se:

∂∂p

v

RT

v

p

vT

= − = −2

(12.27) Zamenom ovog izraza u (12.24) dobija se

vn

pn

vn

pn

T cc

cc

v

p

p

v

cc

cc

v

p

p

vn

−−

−−=−−

−=∂∂

dobija se eksponent politrope idealnog gasa kao

n

c c

c cconstn p

n v

=−−

=

12.6.2. Specifiчna toplota politropske promene staњa

Page 78: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

78

Марко Витаковић 39/2003

Reшavaњem prethodne jednaчine po cn dobija se (znajuћi da je cp=κcv):

c

nc c

n

nc c

nc

n

nnv p v v

v=−−

= −−

= −−1 1 1

κ κ

tj. konaчno:

const

n

ncc vn =

−−=

(12.29)

12.6.3. Zakoni politrope

Postoji tri zakona politrope. pv constn = , constpT n

n

=−1, constTvn =−1

,

s s cT

Tn− =11

ln.

Jedan od zakona politrope

pv constn = veћ je ranije bio izveden - jednaчina (12.26). Ukoliko se termiчka jednaчina staњa reшi po v:

v

RT

p=

i zameni u gorњoj jednaчini, dobija se:

pv p

R T

pp T R constn

n n

nn n n= = =−1

Deljeњem ove jednaчine sa Rn i daljim њenim stepenovaњem sa 1/(1-n) dobija se:

( )p T

const

Rconst pTn n n

n

nnn1

1

1

1

11− −

−−=

= =

tj. konaчno:

pT p T constn

nn

n11 1

1− −= = (12.30) шto je joш jedan od zakona politropske promene staњa.

Koristeћi termiчku jednaчinu staњa u obliku p

RT

v=

i jednaчinu (12.26) dobija se:

Tv T v constn n− −= =11 1

1

(12.31) Ova dva zakona promene staњa va`e samo za sluчaj idealnog gasa, jer su izvedeni koriшћeњem termiчke jednaчine staњa idealnog gasa. Kako su, prema jednaчinama (12.3) i (12.10) δlj=Tds i δlj=cndT

to je: Tds=cndT odnosno ds=cndT/T

Page 79: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

79

Марко Витаковић 39/2003

Integraljeњem ove relacije (cn=const za politropsku promenu staњa)

dobija se:

s s c

T

Tn− =11

ln (12.32)

шto je zakon politrope u T-s koordinatnom sistemu. Kako su pri izvo|eњu ove jednaчine upotrebljene jednaчine kvazistatiчke politropske promene staњa to i one va`e za jednu takvu promenu i to ne samo sa idealnim gasom.

Page 80: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

80

Марко Витаковић 39/2003

12.6.4. Specifiчni rad

Rad za politropsku promenu staњa od poчetnog staњa 1 do krajњeg staњa 2 kada se zakon kvazistatiчke promene staњa reшen po pritisku

p p v vn n= −1 1

zameni u izraz za rad pri kvazistatiчkoj promeni staњa

l pdv p v v dv p v

v

nn n n

n

12

1

2

1 1 1 1

1

1

2

1

2

1= = =

− +=∫ ∫

−− +

( )=

−− =

− −− −

p v

nv v

p v v

n

v

v

nn n

n n n

1 121

11 1 1 1

12

1

1

1 11

−=

−=

−−n

nn

p

p

n

RT

v

v

n

RTl

1

1

21

1

1

2112 1

11

1 (12.33)

Moguћe je i izvesti (dokazati)

( ) ( )l

R

nT T c

nT Tv12 1 2 1 21

1

1=

−− = −

−−κ

(12.34)

12.6.5. Specifiчni tehniчki rad

Totalnim diferenciraњem jednaчine pv constn = dobija se:

v dp npv dvn n+ =−1 0 Reшavaњe ove jednaчine po dp daje:

dp npv dv= − −1

Zamenom ovog izraza u izraz za lt12 dobija se:

l vdp vnpv dv n pdv nlt12

1

21

12

1

2

1

2

= − = = =∫ ∫∫−

pa je:

l nlt12 12= (12.35)

Page 81: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

81

Марко Витаковић 39/2003

12.6.6. Specifiчna koliчina razmeњene toplote

Koristeћi jednaчinu (12.10) q c dTn12

1

2

= ∫ znajuћi da je za politropsku

promenu staњa idealnog gasa c c

n

nconstn v= −

−=κ

1 dobija se:

q c

n

nT Tv12 2 11

= −−

−κ( )

(12.36)

12.6.7. Odnos q12 i l12

Me|usobnim deljeњem jednaчina (12.34) i (12.35) dobija se:

( )

( )l

q

cn

T T

cnn

T T n

v

v

12

12

1 2

2 1

11

1

1=

−−

−−

−= −

κ

κκκ

pa je konaчno:

l

q n12

12

1= −−

κκ (12.37)

12.6.8. Izobarska promena staњa

Kod izobarske promene staњa cn=cp. Zato je iz (12.28)

n

c c

c c

c c

c cn p

n v

p p

n v

=−−

=−−

= 0 tj.

n=0 (12.38) Kriva kojom se grafiчki predstavlja ova promena staњa naziva se izobarom. Jednaчina izobare u p-v (i p-T) dijagramu je

pv pv p constn = = =0

(vidi sl. 12.3.a) p=const (12.39) u T-v dijagramu

Tv Tv constn− −= =1 1 tj.

Tv const− =1 (12.40) i u s-T dijagramu (12.32) (vidi sl. 12.3.b)

s s c

T

Tp− =11

ln.

Upotreba izraza za prvi zakon termodinamike za zatvorene sisteme daje:

δ δl du q c dT c dT c c dTv p p v= − + = − + = −( ) Kako je Mayer - ova relacija cp-cv=R i za kvazistatiчki proces δl pdv= to je:

δl RdT pdv= =

Page 82: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

82

Марко Витаковић 39/2003

Integraljeњem ovih jednaчina dobija se:

( )l R T T p v v12 2 1 2 1= − = −( ) (12.42) Isti rezultat se dobija koriшћeњem jednaчina (12.33) i (12.34). Kako je dp=0 dobija se:

l vdpt12

1

2

0= − =∫ (12.43)

Isto se dobija koriшћeњem jednaчine (12.37). Iz jednaчine (11.19) dobija se:

δq c dT di vdp dip= = − = Integraljeњe ove relacije daje:

q q i i c T Tp12 2 1 2 1

1

2

= = − = −∫ δ ( ) (12.44)

Isti rezultat se dobija koriшћeњem relacije (12.35)

12.6.9. Izohorska promena staњa

Za izohorsku promenu staњa cn=cv. Eksponent politrope pri

izohorskoj promeni staњa idealnog gasa dobija se kao:

n

c c

c c

c c

c cn p

n v

v p

v v

=−−

=−−

= ±∞

tj: n = ±∞ (12.45) Va`i da je:

( ) ( )pv const p v p v vn n n n1 1 1 1

= = = =±∞

tj.: v=const (12.46) Tako je izohora u p-v dijagramu predstavljena pravom linijom (sl. 12.3.a). U p-T dijagramu je:

pT pT pT constn

n n1

11

11−

− −= = = odnosno:

pT const− =1

. (12.47) U T-v dijagramu dobija se: v=const (12.48) i u T-s dijagramu (sl. 12.3. b)

s s c

T

Tv− =11

ln (12.49)

Za kvazistatiчku promenu staњa δl pdv= . Kako je dv=0, to je δl = 0, pa je:

l12 0= . (12.50)

Page 83: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

83

Марко Витаковић 39/2003

Koriшћeњem jednaчine za prvi zakon termodinamike za otvorene sisteme, dobija se:

( ) ( )l vdp v p p RdT R T Tt12 1 2

1

2

1 2

1

2

= − = + − = − = −∫∫

tj. konaчno:

( )l v p p R T Tt12 1 2 1 2= − = −( ) (12.51) Pomoћu jednaчine prvog zakona termodinamike za zatvorene sisteme, dobija se:

δ δq c dT du l duv= = + = jer je δl = 0 . Integraljeњe ove relacije daje:

( )q u u c T Tv12 2 1 2 1= − = − (12.52)

12.6.10. Izotermska promena staњa

Kod izotermske promene staњa cn=∞. Kao koeficijent n dobija se:

nc c

c c

c

ccc

c

cn p

n v

p

n

v

n

p

v

=−−

=−

−=

−∞

−∞

=1

1

1

11

, tj.: n=1 (12.53) U p-v dijagramu dobija se: pv=const . (12.54) To je ravnokraka hiperbola, koja se naziva izotermom (sl. 12.3.a). Jednaчina izoterme u p-T, T-v, T-s koordinatnim sistemima je: T=const (12.55) Na sl. 12.3.6. izoterma je predstavljena u T-s dijagramu. Rad se dobija koriшћeњem termiчke jednaчine staњa idealnog gasa u

obliku p

RT

v=

i izraza za elementarni rad pri kvazistatiчkoj promeni staњa.

δl pdv RT

dv

v= =

Integraljeњem gorњe relacije dobija se:

l RT

dv

vRT

v

v122

11

2

= =∫ ln

pa je konaчno:

l RT

v

vRT

p

p122

1

1

2

= =ln ln (12.56)

Promene unutraшњe energije i entalpije su: du=cvdT=0 i di=cpdT=0, jer je dT=0.

Elementarna koliчina toplote data je izrazom:

Page 84: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

84

Марко Витаковић 39/2003

δq c dTn= . Kako je cn=∞, a dT=0 to je to neodre|en izraz.

Koriшћeњem prvog zakona termodinamike za zatvorene sisteme dobija se:

δ δ δq du l l= + = odnosno prvog zakona termodinamike za otvorene sisteme:

δ δ δq di l lt t= + = dobija se konaчno da je:

l l qt12 12 12= = (12.57)

12.6.11. Izoentropska promena staњa

Entropija je konstantna. Specifiчna toplota pri izoentropskoj promeni staњa je cn=0. Mo`e se dobiti:

n

c c

c c

c

cn p

n v

p

v

=−−

=−−

= κ, tj.

n=κ (12.58) Jednaчine izoentrope su:

pv constκ = (12.59)

constpT =−κκ

1 (12.60)

Tv constκ− =1

(12.61) s const= (12.62) Zadњa jednaчina izoentrope je glavna karakteristika ove promene staњa. Na osnovu jednaчina (12.33) i (12.34) za specifiчni rad moguћe je dobiti:

lRT v

v

RT p

p121 2

1

1

1 2

1

1

11

11=

−−

=−

− −

κ κ

κ κκ

( ) ( )l

RT T c T Tv12 1 2 1 21

=−

− = −κ

Izraz za specifiчni toplotni rad dobija se na osnovu jednaчine (12.35)

l lt12 12= κ Iz izraza (12.36) dobija se za specifiчnu koliчinu toplote:

q12 0= .

12.6.12. Ostale politropske promene staњa

Na sl. 12.3.a i 12.3.b prikazane su ostale moguћe promene staњa u p-v i T-s dijagramima. Kod њih su:

Page 85: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

85

Марко Витаковић 39/2003

( )κ > > −∞ < <n cn1 0 ,

( )1 0> > ∞ > >n c cn p ,

( )n c c cp n v< > >0 i

( )∞ > > > >n c cv nκ 0 . Ako promena staњa u p-v dijagramu ide ka unutraшњosti шrafiranog podruчja, tada pri promeni staњa dolazi do porasta vrednosti entalpije. U suprotnom sluчaju opada entalpija.

Proces const. 1 Izohora v ±∞

vc 2 −∞ < <n 0 c c cv n p< < 3 Izobara p −∞ < <n 0

pc

4 −∞ < <n 0 c c cv n p< <

5 Izoterma T 1 ∞

6 −∞ < <n 0 c c cv n p< <

7 Izentropa S κ 0

8 −∞ < <n 0 c c cv n p< <

p

v

1

2

3

4

5678

Page 86: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

86

Марко Витаковић 39/2003

T

s

1 2 3 4

5

6

7

8

Page 87: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

87

Марко Витаковић 39/2003

13.0. 13.0. 13.0. 13.0. DrugiDrugiDrugiDrugi zakonzakonzakonzakon termodinamiketermodinamiketermodinamiketermodinamike

13.1 Toplotni rezervoari

Toplotni rezervoar predstavlja skladiшte unutraшnje energije velike mase koje sadrжi beskonaчno veliku koliчinu unutraшnje energije. Toplotni rezervoar moжe da se ponaшa ili kao toplotni izvor kada se toplota dovodi iz toplotnog rezervoara ili kao toplotni ponor kada mu se toplota dovodi. Kada se razmenjuje toplota sa toplotnim rezervoarom tada se njegova temperatura praktiчno ne menja jer mu je velika masa. Primeri toplotnih rezervoara su atmosfera i okeani. Ako je masa okeana 1010 kg (10 miliona tona) i njena specifiчna toplota c = 4,184 kJ/kg K, tada dodata toplota od 106 kJ okeanu ћe dovesti do porasta njegove temperature samo od 2,4 10-5 K (= 106 /(4,184 1010)), tj., temperatura okeana se praktiчno ne menja. Promena unutraшnje energije dU razliчita je od nule, poшto, чak iako je promena temperature zanemarljivo mala, celokupan siatem (okeani) je veoma masivan. Stoga, dU = mcdT = 1010 4,184 2,4 10-5 = 106 kJ шto je jednako prenetoj toploti.

13.2. Kruжni procesi (ciklusi)

Procese o kojima smo govorili moжemo ponoviti samo tako da radno telo vratimo iz krajnjeg u isto poчetno stanje. Tom prilikom radno telo obavlja kruжni proces ili drugaчije reчeno ciklus. Tako npr. proces od 1-2 sa sl. 13.1. moжemo ponoviti ako radno telo preko stanja 3 ponovo vratimo u stanje 1. Suшtina poznavanja termodinamike je da se objasne uslovi za generisanje rada (elektroenergije) ili za prenos toplote sa tela niжe na telo viшe temperature. Prenos toplote sa tela viшe na telo niжe temperature odvija se spontano. Obavljanje ciklusa je neophodno da bi smo mogli stalno da generiшemo rad ili prenosimo toplotu.

Sl. 13.1 Neki od kruжnih procesa (ciklusa) Moguћe su dve vrste termodinamiчkih ciklusa : desnokretni i levokretni. Desnokretni ciklus sluжi da se dobije (proizvede) koristan (tehniчki) rad.

p

v

1

2

3

Page 88: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

88

Марко Витаковић 39/2003

Ovaj ciklus koriste naprimer uredjaji koji se zovu motori i toplotne turbine. Levokretni ciklus sluжi da se njime prenese toplota sa materije na niжoj temperaturi na materiju na viшoj temperaturi. Da bi se to ostvarilo radna materija troшi rad. Ovaj ciklus pri svom radu koriste uredjaji koji se zovu toplotne pumpe i friжideri.

13.3 Desnokretni ciklusi-ciklusi za dobijanje rada. Ciklus u smeru kretanja kazaljke na satu naziva se desnokretnim. Prikazan je na sl. 13.2. Ovaj ciklus sluжi da se dobije (proizvede) koristan (tehniчki) rad, a izmedju ostalih koriste ga uredjaji koji se zovu motori i toplotne turbine.

Sl. 13.2 Desnokretni kruжni proces Ako se prvi zakon termodinamike za zatvoreni i otvoreni sistem primeni na jedan kruжni proces, tada je:

odk QQQdIQL −==−= ∫ ∫δ

Odavde je konaчno:

odk QQL −= (13.1) Pri ovom kruжnom procesu, iz okoline (toplotnog izvora) se dovodi radnom telu koliчina toplote Qd pa se deo ove toplote se pretvara u rad

(npr. elektriчnu energiju) dok se ostatak Qo izbacuje u toplotni ponor.

Gornja jednaчina potroшnje pokazuje i kako se moжe izraчunati Lk ako se poznaju Qd i Qo. U ovom sluчaju, dobijeni mehaniчki rad je pozitivan jer

radna materija obavlja rad nad okolinom na raчun dovedene koliчine toplote Qd iz toplotnog izvora. On je jednak povrшini unutar p-v dijagrama

na sl. 13.2. Kod ovakvih ciklusa, treba teжiti da je odnos dobijenog mehaniчkog rada i dovedene koliчine toplote шto je moguћe veћi. Taj odnos naziva se termodinamitermodinamitermodinamitermodinamiчkim stepenom korisnostikim stepenom korisnostikim stepenom korisnostikim stepenom korisnosti:

η = =−

= −L

Q

Q Q

Q

Q

Qd

d o

d

o

d

1 (13.2)

p

v

1

2

TI

qd

qo

TPTP

TI

s1

s2

Lk

Lk

Page 89: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

89

Марко Витаковић 39/2003

Razmotrimo primer automobila. Jedan galon benzina (3,785 litara) oslobadja 120 MJ toplote. Ukoliko je rad koji se prenese na toчkove kola samo 40 MJ tada je ostalo 80 MJ energije. Dalje pretpostavi da je toplota koja se gubi preko hladnjaka motora 40 MJ id a se preko izduvnih gasova izbacuje 40 MJ toplote. Odnos izmedju rada i toplote dobijene gorivom je (η=40/120=0,333) termodinamiчki stepen korisnosti. Ne postoji motor u kome se sva toplota iz goriva pretvara u rad i uvek je η veћe od 1 . 13.4 Levokretni ciklusi-ciklusi za prenos toplote sa materije na niжoj temperaturi na materiju na viшoj temperaturi. Ciklus u smeru suprotnom od smera kretanja kazaljke na satu naziva se levokretnim. Ovaj ciklus koriste pri svom radu uredjaji koji se zovu toplotne pumpe i friжideri. Prikazan je na sl. 13.3. Ovaj ciklus sluжi da se njime prenese toplota sa materijalnog objekta na niжoj temperature na materijalni objekat na viшoj temperaturi. Da bi se to ostvarilo radno telo troшi rad tj. potrebno je da joj se dovede rad Lk tj. razmenjeni mehaniчki rad izmedju radnog tela i okoline je negativan, tj. okolina vrшi rad nad radnim telom. Dovedeni rad je jednak apsolutnoj vrednosti povrшine unutar krive linije na sl. 13.3. Dovedeni rad omoguћava da se radnom telu dovodi toplota Qd sa hladnog materijalnog objekta (koji je u ovom sluчaju toplotni izvor).

Tom prilikom se sa radne materije odvodi toplota Qo (Qo je negativno) u toplotni ponor koji je na viшoj temperaturi od temperature toplotnog izvora. Vaжi da je |Qo|=Qd+|Lk|.

Sl. 13.3 Levokretni kruжni proces

Pomoћu ovih ciklusa rade rashladne maшine (friжideri) kada se utroшkom rada Lk odvodi toplota iz friжidera Qd radnoj materiji pri чemu se odrжava

potrebna niska temperatura u hladjenom prostoru friжidera. Zatim se ta

p

v

1

2

s2

Lk

qo

d

TP

TI

q

s1

Lk

Page 90: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

90

Марко Витаковић 39/2003

toplota iz radne materije izbacuje u okolinu Qo. U stacionarnom sluчaju koliчina toplote koja se odvodi iz hladjenog prostora friжidera na ovaj naчin jednaka je koliчini toplote koja uDe u friжider preko njegovih zidova pa se na taj naчin u friжideru odrжava temperature koja je niжa od temperature okoline. Za ocenu jednog takvog ciklusa kod rashladnih maшina upotrebljava se koeficijent hladjenja koji je odnos koliчine toplote Qd

koja se dovodi radnoj materiji iz friжidera i rada Lk (elektriчne energije) koju je potrebno utroшiti na kompresoru friжidera da se to ostvari

k

dh L

Q=ε

Takodje pomoћu ove vrste ciklusa rade i toplotne pumpe. Toplota Qd

se oduzima iz toplotnog ponora koji je na niжoj temperaturi od temperature vazduha u prostoriji koja se greje i prebacuje u prostor koji se greje Qo (toplotni ponor) i tako odrжava potrebna (viшa) temperatura tog prostora. Za ocenu levokretnog ciklusa kod grejanja, upotrebljava se grejni koeficijent koji prestavlja odnos koliчine toplote Qo koja se dovodi prostoriji koja se greje i rada Lk (elektriчne energije) koju je potrebno utroшiti na kompresoru topltone pumpe da se to ostvari

k

oh L

Q=ε

. 13.5. Drugi zakon termodinamike

Drugi zakon termodinamike glasi da je promena entropije izolovanog promena entropije izolovanog promena entropije izolovanog promena entropije izolovanog sistema uvek ili vesistema uvek ili vesistema uvek ili vesistema uvek ili veћa ili jednaka nuli:a ili jednaka nuli:a ili jednaka nuli:a ili jednaka nuli: dSS ≥ 0 Izolovan sistem je sistem kod koga ne postoji nikakva razmena energije sa okolinom. Promena entropije izolovanog sistema ni u kom Promena entropije izolovanog sistema ni u kom Promena entropije izolovanog sistema ni u kom Promena entropije izolovanog sistema ni u kom slusluslusluчaju ne moaju ne moaju ne moaju ne moжe biti manja od nulee biti manja od nulee biti manja od nulee biti manja od nule. Izolovani sistem sastoji se iz radne materije i toplIzolovani sistem sastoji se iz radne materije i toplIzolovani sistem sastoji se iz radne materije i toplIzolovani sistem sastoji se iz radne materije i toplotnih rezervoara otnih rezervoara otnih rezervoara otnih rezervoara (toplotnih izvora i toplotnih ponora)(toplotnih izvora i toplotnih ponora)(toplotnih izvora i toplotnih ponora)(toplotnih izvora i toplotnih ponora) pa se drugi zakon termodinamike moжe napisati u obliku: ∆ ∆ ∆ ∆S S S SS RM TP TI= + + ≥ 0 Ovde RM oznaчava radnu materiju, TP - toplotni ponor i TI - toplotni izvor. Svaki od ovih sabiraka moжe biti manji od nule, meDutim svi oni zajedno moraju da su veћi od nule.

13.6. Nepovratni procesi

Ma kakve promene da se odigravaju u prirodi, entropija izolovanog sistema u kojem se promene odigravaju raste ∆Ss>0

Poшto se nikakva promena ne odvija u suprotnom smeru, to su sve promene koje se deшavaju u prirodi nepovratne (ireverzibilne). Шto je veћa

Page 91: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

91

Марко Витаковић 39/2003

razlika izmedju entropija prvobitnog i postignutog stanja, time je brzina kojom se promena odvija veћa. Oni koji sudeluju u jednoj ovakvoj promeni stanja ne mogu se vratiti u prvobitno stanje ako se ne izvrшe neke trajne promene u okolini. Tako, na primer, svaki proces sa pojavom trenja uvek prati stvaranje toplote. Prema iskustvu sa toplotom, nije moguћe je vratiti natrag telu bez nekakvih trajnih, pomoћnih i propratnih pojava. Jedan drugi nepovratni proces je izmena toplote meDu telima sa konaчnom razlikom u temperaturama. Toplota prelazi u smeru niжe temperature, a prema iskustvu sa toplotom, nije je moguћe vratiti na viшu temperaturu takodje bez nekih trajnih, pomoћnih i primetnih promena.

Tako nije moguћe uvek svuda uspostaviti ista stanja koja su bila pre prelaza toplote.

13.7. Povratni procesi

U limesu moжemo zamisliti promene kod kojih je razlika entropije izmedju dva stanja beskonaчno mala - teжi ka nuli. Takve promene ћe se odvijati beskonaчno malom brzinom. Ako je razlika entropije izmedju dva stanja ravna nuli to ta dva stanja imaju istu termodinnamiчku verovatnoћu, oba stanja su jednako verovatna pa prema tome promena je moguћa u oba smera. Takve su promene povratne. Vaжi da je dSs=0

Jasno da su oba stanja ravnoteжna. Kako se takve promene odvijaju beskonaчno malom brzinom, te promene su i kvazistatiчke. Medjutim, sve kvazistatiчke promene stanja nisu povratne. Povratni procesi drugaчije nazivaju i reverzibilnim procesima. Potpuno povratni procesi u prirodi ne postoje. Svuda i uvek ћe se pojaviti makar i slabo trenje, a za svaku razmenu toplote, potrebne su makar i neznatne razlike temperatura. Ipak, nepovratni procesi su vrlo korisni graniчni sluчajevi kojima bi se mogli po volji pribliжiti da procese izvodimo sa dovoljno paжnje, dovoljno polako i шto bliжe lokalnim ravnoteжama i sa шto manje trenja. Чinjenica da se radni gas u kruжnom procesu uvek vraћa u prvobitno stanje nije nikakav znak za povratnost tog procesa, pa se moraju razlikovati pojmovi povratnosti i nepovratnosti od pojma kruжnog procesa jer postoje povratni i nepovratni kruжni procesi kao шto postoje procesi koji su povratni i nepovratni a koji nisu kruжni.

13.8. Razmena toplote izmeDu tela sa konaчnom razlikom temperatura

Neka su dva tela medjusobno spojena putem dijatermiчnog zida, tj. nema razmene rada izmedju njih, veћ samo toplote. Osim toga, ova dva tela su izolovana od njihove okoline. Telo 1 neka ima temperaturu T1 a telo 2

Page 92: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

92

Марко Витаковић 39/2003

temperaturu T2. Ova dva tela чine zajedno jedan izolovani sistem.

Temperatura T1>T2. Ukupna promena entropije izolovanog sistema je dSS ≥ 0

prema drugom zakonu Termodinamike. Inaчe, kada su ova dva tela u kontaktu, moguћ je samo proces razmene toplote, i promena entropije pri toj razmeni je jednaka zbiru promene entropije tela 1 dSI i promene entropije tela 2 dSII pa je

dS dS dSI II= + Ovde je:

dSQ

TI = −δ

1 dS

Q

TII =δ

2 pa je:

dS

Q

T

Q

T T TQ= − + = −

δ δδ

1 2 2 1

1 1

Kako je T1>T2 to je i dS>0 шto znaчi da entropija sistema od dva tela

sa konaчnim temperaturskim razlikama izmedju kojih postoji razmena toplote, mora porasti, tj. proces mora da je nepovratan. Taj porast entropije je uslovno veћi odnosno nepovratnost procesa veћa ukoliko je razlika temperatura veћa. Potpuno povratnu razmenu toplote imali bismo u graniчnom sluчaju kada bi bilo T1 = T2 tj. kada bi ova tela doшla u

medjusobnu toplotnu ravnoteжu. Tada je dS=0. Tada praktiчno sva razmena toplote prestaje.

13.9. Povratna izotermska ekspanzija odnosno kompresija gasa

Takodje izotermska ekspanzija odnosno kompresija mogu biti povratne i to samo u sluчaju ako se temperatura radne materije razlikuje neznatno za dT od temperature toplotnog rezervoara iz radna materija dobija toplotu ili kome radna materija dovodi toplotu. Kod izotermske ekspanzije toplota iz toplotnog izvora se dovodi radnoj materiji (vidi Sl.4.5). Kada se toplota dovodi radnoj materiji tada se njena entropija poveћava tj. promena njene entropije je pozitivna i data izrazom ∆SRM=Q12/T1. Tada se istovremeno toplota odvodi iz toplotnog izvora kome entropija smanjuje tj. promena entropije toplotnog izvora je negativna i data izrazom ∆STI=-Q12/TTI. Ukupna promena entropije izolovanog sistema koji чine radna materija i toplotni izvor data je u ovom sluчaju kao ∆S=∆SRM+∆STI= Q12/T1-Q12/TTI= Q12 (1/T1-1/TTI)>0 Kako je TTI>T1 to je 1/T1>1/TTI tj. (1/T1-1/TTI)>0 pa je ovaj izotermalni process nepovratan. Ovaj process je povratan samo u graniчnom sluчaju kada je temperature toplonog izvora gotovo jednaka temperature radne materije

Page 93: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

93

Марко Витаковић 39/2003

TTI=T1 to je 1/T1=1/TTI tj. (1/T1-1/TTI)=0. Tada je ∆S= 0 шto je uslov povratnosti ovog procesa.

Sl.4.5 Izotermska ekspanzija gasa (a) nepovratna promena, (b) povratna promena. Kod izotermske kompresije toplota iz radne materije se odvodi toplotnom izvoru koji je na niжoj temperaturi od temperature radne materije (vidi Sl.4.6). Kada se toplota odvodi od radne materije tada se njena entropija smanjuje tj. promena njene entropije je negativna i data izrazom ∆SRM=-Q12/T1. Tada se istovremeno toplota dovodi toplotnom ponoru kome se entropija uveћava tj. promena entropije toplotnog ponora je pozitivna i data izrazom ∆STP=Q12/TTP. Ukupna promena entropije izolovanog sistema koji чine radna materija i toplotni ponor data je u ovom sluчaju kao ∆S=∆SRM+∆STP= -Q12/T1+Q12/TTP= Q12 (-1/T1+1/TTP)>0 Kako je T1>TTP to je 1/TTP>1/T1 tj. (-1/T1+1/TTP)>0 pa je ovaj izotermalni process nepovratan. Ovaj process je povratan samo u graniчnom sluчaju kada je temperatura toplonog ponora gotovo jednaka temperaturi radne materije TTP=T1 to je 1/T1=1/TTP tj. (-1/T1+1/TTP)=0. Tada je ∆S= 0 шto je uslov povratnosti ovog procesa.

∆S =RM ∆STI

1 2

T

s

TOPLOTA DOVODISA TOPLOTNOG IZVORA

U RADNU MATERIJU

povratno

T =Temperatura toplotnog

p

izvora

T =T1 2

T je neznatno T2 manje od p

T je neznatno T1 p manje od

Qdovedeno

1 2

T

s

TOPLOTA SE DOVODI IZ TOPLOTNOG IZVORA

U RADNU MATERIJU

nepovratno

T =Temperatura toplotnog

p

izvora

T =T1 2

T je znatno T2 manje od p

T je znatno T1 p manje od

Qdovedeno

∆STI

∆SRM

Page 94: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

94

Марко Витаковић 39/2003

Sl.13.4 Izotermska kompresija gasa (a) nepovratna promena, (b) povratna promena.

13.10. Povratna adijabatska promena stanja = izentropska promena stanja

Ukoliko pri jednom procesu nema razmene toplote izmedju radne materije i okoline taj proces je adijabatski. Zato kod njih smatramo da ne postoji niti toplotni izvor niti toplotni ponor pa je ∆STI = ∆STP =0. Ti

procesi mogu biti i povratni i nepovratni. Чetiri takva procesi su prikazana na Sl.13.5 i to dva procesa adijabatske ekspanzije 1-2 i 1-2’ na Sl.13.5a i dva procesa adijabatske kompresije 1-2 i 1-2’ na Sl.13.5.b.

Povratni procesi su procesi 1-2 na Sl.13.5a i 13.5b i to su redom izoentropska ekspanzija i izoentropska kompresija gasa. Kod njih nema trenja, pa je ∆SRM = 0.

U sluчaju pojave trenja pri ovim procesima, oni su nepovratni i ∆SRM

>0. Ti procesi su procesi 1-2’ prikazani na Sl.13.5a i 13.5b redom za adijabatsku ekspanziju i kompresiju. T

s∆ sRM

1

2'

2

s

p2

T

s∆ sRM

s

p2

1

2

2'

(a) (b) Sl. 13.5 (a)Adijabatska ekspanzija, (b) Adijabatska kompresija

12

T

s

TOPLOTA ODVODI SA RADNE MATERIJE U TOPLOTNI PONOR

povratno

T =Temperatura toplotnog ponora

p

T =T1 2

T je neznatno ve T1 p će od

Qodvedendo

T je neznatno ve T2 će od p

∆ ∆S = SRM TP

12

T

s

TOPLOTA SE SA RADNE MATERIJE

U TOPLOTNI PONOR

nepovratno ODVODI

T =Temperatura toplotnog ponora

p

T =T1 2

T je znatno ve T2 će od p

T je znatno ve T1 p će od

Qodvedeno1 2

∆SRMP

∆STP

Page 95: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

95

Марко Витаковић 39/2003

13.11. Carnot - ov kruжni proces

Carnot - ov kruжni proces sastavljen je iz dve izoterme i dve izoentrope. On je prikazan na sl. 4.7 u p-v i T-s koordinatnim sistemima.

To

ss

1

2

34 δQ= 0

p

v

T

s

T 1 2

34

δδδδQ= 0δδδδQ=0

To = const.

T= const.

Sl. 4.7 Povratni Karno-ov kruжni process Jedna izoterma je na viшoj temperaturi T i na tom delu ciklusa od 1 do 2 dovodi se toplota radnom telu iz nekog toplotnog izvora, vrшi ekspanzija radnog tela i radno telo vrшi rad nad okolinom. Zatim radno telo ekspandira od 2 do 3 po izoentropi i vrшi rad nad okolinom pri чemu nema razmene toplote sa okolinom. Posle toga, na niжoj temperaturi To od 3 do 4

toplota prelazi sa radnog tela u toplotni ponor, a okolina sabija radno telo, tj. vrшi rad nad njim, i najzad od 4 do 1 radno telo se komprimuje po izoentropi, tj. okolina vrшi rad nad radnim telom bez medjusobne razmene toplote izmedju okoline i radnog tela. Termodinamiчki stepen iskoriшћenja Carnot - ovog ciklusa dobija se iz formule:

ηC

odv

d

Q

Q= −1

gde su (na bazi povrшina na T-s dijagramu)

( )Q T S Sd = −2 1

( )Q T S Sodv O= −4 3

( )Q T S Sodv O= −3 4 pa je

( )( )ηC

OT S S

T S S= −

−−

1 3 4

2 1 Kako je S1=S4 i S3=S2 to je i S2-S1=S3-S4 pa je konaчno:

ηC

OT

T= −1

Prema tome, stepen iskoriшћenja Carnot - ovog ciklusa zavisi samo od krajnjih temperatura procesa, a ne i od svojstava radnog tela. Od svih termodinamiчkih ciklusa izmedju ovih temperatura toplotnog ponora i toplotnog izvora, Carnot - ov ciklus ima najveћi stepen iskoriшћenja.

Page 96: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

96

Марко Витаковић 39/2003

Jedan ciklus moжe se aproksimirati veћim brojem Carnot - ovih ciklusa, kao шto je prikazano na sl. 13.5. Najviшi stepen iskoriшћenja imaћe ciklus 4, jer on radi sa najveћim odnosom Tmax/Tmin a svi ostali Carnot - ovi ciklusi imaћe manji stepen iskoriшћenja. Na taj naчin, naш ciklus imaћe manji stepen iskoriшћenja od ciklusa 4 pa se moжe zakljuчiti da ћe svaki ciklus kod koga se temperatura menja, imati manji stepen iskoriшћenja od Carnot - ovog ciklusa izmedju minimalne i maksimalne temperature procesa.

Sl.4.6 Izotermska kompresija gasa (a) nepovratna promena, (b) povratna promena.

13.12. Povratni Carnot - ov ciklus

Jedini ciklus koji moжe da bude povratan jeste Carnot - ov ako je sastavljen iz izentropa (koje su uvek povratne) i povratnih izotermi (koje mogu da budu nepovratne)

14 Eksergija

Dobijanje rada iz dovedene toplote.Dobijanje rada iz dovedene toplote.Dobijanje rada iz dovedene toplote.Dobijanje rada iz dovedene toplote. Neka je na raspolaganju neka energija Qd koja se u vidu topote stalno dovodi termodinamiчkoj maшini u kojoj (kroz prelazak radne materije kroz cikluse) se stalno pretvara u mehaniчki rad. Taj rad omoguћava stalno obrtanje razliчitih osovinskih uredjaja (npr. toчkova automobila, generatora za dobijanje elektroenergije). Ukoliko se u termodinamiчkoj maшini koriste neki od povratnih ciklusa (шto je najpovoljnije) tada se najveћi deo od toplote Qd moжe pretvoriti u mehaniчki rad koji se tada oznaчava sa Ex i naziva eksergijom. Deo toplote

1 2 3 4 5 6 7

T

s

Tmax

Tmin

iT

oiT

Page 97: 1.1. Termodinami чki sistem O - …markovitakovic.synthasite.com/resources/TERMODINAMIKA.pdfStatisti чka termodinamika koristi nedeterministi чku logiku u smislu da ako do|e do

МФКГ ТЕРМОДИНАМИКА

97

Марко Витаковић 39/2003

koji se tom prilikom ne pretvara u mehaniчki rad se naziva anergijom i oznaчava sa B (vidi sl. 14.2.a). Ta toplota se prenosi u toplotni ponor (npr. atmosferu). Zato vaжi relacija: Qd = Ex + B (14.30) Termodinamiчki stepen korisnosti ciklusa je ranije definisan kao

1<=

d

kt Q

Termodinamiчki ciklus se ocenjuje i pomoћu eksergetskog stepena iskoriшћenja:

1≤=

x

ke E

Lξ (14.31)

Za povratan proces Ex = Lk pa je ξe = 1, a kod nepovratnog procesa Lk = Lnp pa je (vidi sl. 14.1.b): Qd = B + Bnp + Lnp (14.32) gde je: Ex = Bnp + Lnp (14.33) Ovde je Bnp gubitak eksergije u maшini usled nepovratnosti koja se pretvara u toplotu i predaje toplotnom ponoru. Vaжi da je:

11 <−=

−==

x

np

x

npx

x

npe E

B

E

BE

E

(14.34)

Sl. Dovedena toplota Qd , eksergija Ex i anergija B kod povratnog desnokretnog ciklusa.

Qd

B

Ex

MAŠINA(PROIZVODNJA RADA

IZ DOVEDENE TOPLOTE)