1.1 curso de hydrus 1d

Upload: gavisita123

Post on 26-Feb-2018

236 views

Category:

Documents


3 download

TRANSCRIPT

  • 7/25/2019 1.1 Curso de Hydrus 1D

    1/213

    Table of Contents

    Lecture 1: Vadose zone flow and transport modeling: An overview. 3

    Lecture 2: The HYDRUS-1D software for simulating one-dimensional variably-

    saturated water flow and solute transport. 33Computer Session 1: HYDRUS-1D: Infiltration of water into a one-dimensional soil

    profile. 37

    Lecture 3: On the characterization and measurement of the hydraulic properties ofunsaturated porous media. 43

    Lecture 4: Application of the finite element method to variably-saturated water flow and

    solute transport. 59

    Computer Session 2: HYDRUS-1D: Water flow and solute transport in a layered soil

    profile. 65

    Lecture 5: Inverse modeling. 77Computer Session 3: HYDRUS-1D: One- or multi-step outflow experiment. 89

    Lecture 6a: Application of the finite element method to 2D variably-saturated water flow

    and solute transport. 95

    Lecture 6b: HYDRUS (2D/3D) software for simulating two- and three-dimensional

    variably-saturated water flow and solute transport. 99

    Computer Session 4: HYDRUS (2D/3D): Subsurface line source. 109

    Computer Session 5: HYDRUS (2D/3D): Furrow infiltration with a solute pulse. 119

    Computer Session 6: HYDRUS (2D/3D): Flow and transport in a transect to a stream.125

    Computer Session 7: HYDRUS (2D/3D): Three-Dimensional Water Flow and Solute

    Transport. 135

    Lecture 7: Preferential and Nonequilibrium Flow and Transport. 143Computer Session 8: HYDRUS-1D: Nonequilibrium Flow and Transport. 155

    Lecture 8: Coupled movement of water, vapor, and energy. 161Computer Session 9: HYDRUS-1D: Coupled movement of water, vapor, and energy.167

    Lecture 9: Multicomponent biogeochemical transport modeling using the HYDRUS

    computer software packages;Introduction to the HP1 code, which was obtained

    by coupling HYDRUS-1D with the PHREEQC biogechemical code. 173Computer Session 10: Application of HP1 to a simple solute transport problem

    involving cation exchange. 187

    Lecture 10: Other applications and future plans in HYDRUS development. 195

    References 207

    1

  • 7/25/2019 1.1 Curso de Hydrus 1D

    2/213

    2

  • 7/25/2019 1.1 Curso de Hydrus 1D

    3/213

  • 7/25/2019 1.1 Curso de Hydrus 1D

    4/213

    Contents-1

    VadoseZoneFlowandTransportModeling:AnOverview

    IntroductiontoHY

    DRUS-1D,itsFunctionsandWindows

    ComputerSession1:Infiltrationinto1DSoilProfile

    UnsaturatedSoilH

    ydraulicProperties,RETCandRosett

    a

    NumericalSolution

    sfor1DVariably-SaturatedFlowand

    SoluteTransport

    ComputerSession2:TransientWaterFlowandSolute

    TransportinaLayeredSoilProfile

    ParameterEstimationandInverseModeling

    ComputerSession3:InversemodelingOne-orMulti-step-

    OutflowMethod

    Contents-2

    2D/3DNumericsforVariably-SaturatedFlowan

    dTransport

    IntroductiontoHYDRUS(2D/3D),itsStructure

    and

    Windows

    Computer

    Session4:InfiltrationfromSubsurfaceSource

    Computer

    Session5:FurrowIrrigationwithaSolutePulse

    Computer

    Session6a:WaterFlowtoaStream

    Computer

    Session6b:SolutePlumeMigratingtoaStream

    Computer

    Session7:3DWaterFlowandSolute

    Transport

    OtherTop

    ics,OpenSession

    Contents-3

    PreferentialandN

    onequilibriumFlowandTransport

    ComputerSession

    8:NonequilibriumFlowandTransport

    CoupledMovementofWater,VaporandEnergy

    ComputerSession

    9:CoupledWater,VaporandEnergy

    Transport

    BiogeochemicalTransport-IntroductiontoHP1(couple

    d

    HYDRUS-1Dand

    PHREEQC)andUNSATCHEM

    ComputerSession

    10:ApplicationofHP1toCation

    Exchange

    OtherApplication

    s,FuturePlans

    OpenSession

    VadoseZoneFlowandTransport

    Modeling

    AnOverview

    Jirk

    aimnek1andRienvanGenuch

    ten2

    1DepartmentofEnvironmentalSciences

    UniversityofCalifornia,Riverside,CA

    2DepartmentofMechanicalEngineerin

    g,

    FederalUniversityofRiodeJaneiro,Br

    azil

    4

  • 7/25/2019 1.1 Curso de Hydrus 1D

    5/213

    Agricultural

    Applications

    Precipitation

    Irrigation

    Runoff

    Evaporation

    Transpiration

    RootWaterUptake

    CapillaryRise

    DeepDrainage

    Fertigation

    Pesticides

    Fumigants

    Colloids

    Pathogens

    Industria

    landEnvironmentalApp

    lications

    Control

    Planes

    SourceZone

    Observationwells

    IndustrialP

    ollution

    MunicipalP

    ollution

    LandfillCovers

    WasteRepo

    sitories

    Radioactive

    Waste

    DisposalSit

    es

    Remediation

    BrineRelea

    ses

    Contaminant

    Plumes

    Seepageof

    Wastewater

    from

    LandTreatment

    Systems

    Environmental

    Applications H

    illel(2003

    )

    EcologicalApps

    CarbonStorageand

    Fluxes

    HeatExchangeand

    Fluxes

    NutrientTransport

    SoilRespiration

    Microbiological

    Processes

    EffectsofClimate

    Change

    RiparianSystems

    Stream-Aquifer

    Interactions

    GoverningEquations

    Variably-S

    aturatedWaterFlow(Richards

    Equation)

    h

    Kh

    Kh

    S

    t

    z

    z

    ()

    ()

    =

    HeatMov

    ement

    SoluteTr

    ansport(Convection-DispersionEquation)

    p

    w

    w

    C

    T

    T

    qT

    C

    CST

    t

    z

    z

    z

    ()

    ()

    =

    s

    c

    cD

    qc

    t

    t

    z

    z

    (

    )

    (

    )

    =

    5

  • 7/25/2019 1.1 Curso de Hydrus 1D

    6/213

    HYDRUSGraphical

    Interface

    HYDRUSGraphical

    Interface

    Input,Output,Meshgen

    HYDRUSM

    odularStructure

    HYDRUS

    HYDRUSMainModule

    MainModule

    WaterFlow

    SoluteTransport

    HeatTransport

    InverseOptimization

    EquationSolvers

    SoilHydraulicProperties

    PedotransferFunctions

    RootUptake

    HYDRU

    SSoftwarePackages

    WaterFlow

    :

    WaterFlow

    :

    Richardse

    quationforvariably-saturatedwaterflow

    Variousmodelsofsoilhydraulicproperties

    Hysteresis

    Sinktermtoaccountforwateruptakebyplantroots

    HeatTransport:

    HeatTransport:

    Conductionandconvectionwithflowingwater

    SoluteTran

    sport:

    SoluteTran

    sport:

    Convective

    -dispersivetransportintheliquidphase,diffu

    sioninthe

    gaseousph

    ase

    Nonlinearnonequilibriumreactionsbetweenthesolidan

    dliquidphases

    Linearequ

    ilibriumreactionsbetweentheliquidandgaseousphases

    Zero-orderproduction

    First-orderdegradationreactions

    Physicalnonequilibriumsolutetransport

    HYDRUS-R

    eferences

    imnek,J.,M.ejna,H.

    Saito,M.Sakai,andM.Th.vanGenuchten,T

    he

    HYDRUS

    HYDRUS--1D1DSoftwarePackageforSimulatingtheOne

    One--Dimensional

    Dimensional

    MovementofWater,Heat,andMultipleSolutesinVariably-SaturatedMedia,

    Version4.0,HYDRUSSoftwareSeries1,DepartmentofEnvironmental

    Sciences,UniversityofCa

    liforniaRiverside,Riverside,CA,pp.315,200

    8.

    imnek,J.,M.Th.vanG

    enuchten,andM.ejna,TheHYDRUS

    HYDRUSSoftw

    are

    PackageforSimulatingTwo

    Two--andThree

    andThree--Dimensional

    DimensionalMovementofWater,

    Heat,andMultipleSolute

    sinVariably-SaturatedMedia,TechnicalManual

    TechnicalManual,

    Version1.0,PCProgress,

    Prague,CzechRepublic,pp.241,2007.

    imnek,J.,M.ejna,andM.Th.vanGenuchten,TheHYDRUSSoftw

    are

    PackageforSimulatingTwo

    Two--andThree

    andThree--Dimensional

    DimensionalMovementofWater,

    Heat,andMultipleSolute

    sinVariably-SaturatedMedia,UserManual

    UserManual,

    Version1.0,PCProgress,

    Prague,CzechRepublic,pp.161,2007.

    http://www.pc-pro

    gress.com/en/Default.aspx

    HYDRU

    S-HistoryofDevelopm

    ent

    Israel:Neuman[1972]-UNSAT

    U.ofArizona:D

    avisandNeuman[1983]

    Princeton

    U.:

    vanGenu

    chten[1978]

    Agr.Univ.inWageningen:

    Feddesetal.[1978]

    Vogel[1987]-SWMII

    MIT:Celia

    etal.[1990]

    US

    SL-SWMS-2D

    im

    neketal.[1992]

    USSL-HYDRUS-2D(1.0)

    imneketal.[1996]

    USSL-CHAIN-2D

    imnekandvan

    Genuchten[1994]

    IGWMC-HYD

    RUS

    HYD

    RUS--2D2D(2.0)

    imneketal.[1999]

    UCR,PC-ProgressHYDR

    US(2D/3D)

    HYDR

    US(2D/3D)

    imneketal.[2007]

    USSL-SWMS-3D

    imneketal.[1995]

    6

  • 7/25/2019 1.1 Curso de Hydrus 1D

    7/213

  • 7/25/2019 1.1 Curso de Hydrus 1D

    8/213

    CapillaryRise

    Whenasmallcylindric

    alglasscapillarytubeisinsertedinawater

    reservoiropentoatmosphere,waterwillriseupwardinthetube.

    Lap

    lace

    Lap

    lace

    Equa

    tion:

    Equa

    tion:

    2

    cos

    H

    gR

    =

    surfacetension

    contactangle

    bulkdensityof

    water

    ggravitationalacceleration

    Rcapillaryradiu

    s

    Hcapillaryrise

    Retention

    Curve

    Soil-waterch

    aracteristiccurve

    -characterizestheenergystatusofthesoilwater

    RetentionCu

    rve

    Soil-watercharacteristiccurve

    Characterizestheenergy

    statusofthesoilwater

    0100

    200

    300

    400

    500

    0

    0

    .1

    0.2

    0.3

    0.4

    0.5

    WaterContent[-]

    |Pressurehead|[cm]

    Loam

    Sand

    Clay

    WaterF

    lowinSoils

    Groundwaterflow(DarcysLaw)

    (

    )

    s

    s

    P

    z

    dH

    q

    K

    K

    L

    dz

    +

    =

    =

    Unsaturatedwaterflow(Darcy-Buckingh

    amLaw)

    (

    )

    ()

    ()

    h

    z

    dH

    q

    Kh

    Kh

    L

    dz

    +

    =

    =

    H-sumofthematric(h)andgravitational(z)head

    8

  • 7/25/2019 1.1 Curso de Hydrus 1D

    9/213

    WaterFlow-

    RichardsEquation

    Thegoverningflowequationforone-dimensionalisothermal

    Darcianflowinavaria

    bly-saturatedisotropicrigidporous

    medium:

    -volumetricwatercontent[L3L-3]

    h

    -pressurehead[L]

    K

    -unsaturatedhydraulicconductivity[LT-1]

    z

    -vertical

    coordinatepositiveupward[L]

    t

    -time[T]

    S

    -rootwateruptake[T-1]

    ()

    ()

    ()

    ()

    h

    h

    =

    Kh

    +Kh

    Sh

    t

    z

    z

    ()

    ()

    h

    q

    =

    Sh

    t

    z

    WaterF

    low-RichardsEquation

    ()

    ()

    ()

    A

    A

    ij

    iz

    i

    j

    h

    h

    =

    Kh

    K

    +K

    Sh

    t

    x

    x

    Thegovernin

    gflowequationfortwo-dimensionalis

    othermal

    Darcianflow

    inavariably-saturatedisotropicrigid

    porous

    medium:

    -volumetricwatercontent[L3L-3]

    h

    -pressurehead[L]

    K

    -unsaturatedhydraulicconductivity[LT-1]

    KijA-componentsofaanisotropytensor[-]

    xi

    -spatialcoordinates[L]

    z

    -verticalcoordinatepositiveupward[L]

    t

    -time[T]

    S

    -rootwateruptake[T-1]

    RetentionCu

    rve,

    (h)

    Soil-watercharacteristiccurve

    Characterizestheenergy

    statusofthesoilwater

    0100

    200

    300

    400

    500

    0

    0

    .1

    0.2

    0.3

    0.4

    0.5

    WaterContent[-]

    |Pressurehead|[cm]

    Loam

    Sand

    Clay

    Hydrau

    licConductivity,K()

    -characteriz

    esresistanceofporousmediatowater

    flow

    -10-8-6-4-2024

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    WaterContent[-]

    log(HydraulicConductivity)[cm/d]

    Loam

    Sand

    Clay

    9

  • 7/25/2019 1.1 Curso de Hydrus 1D

    10/213

    HydraulicConductivity,K()

    Unsa

    tura

    tedhy

    drau

    liccon

    duc

    tiv

    ity

    decreasesasvo

    lume

    tricwa

    terconten

    t

    decreases:

    Cross-sec

    tiona

    lareaof

    wa

    ter

    flow

    decreases

    Tortuos

    ity

    increases

    Drag

    forces

    increase

    Thus,

    theunsa

    tura

    tedhyd

    rau

    liccon

    duc

    tiv

    ity

    isanon

    linear

    func

    tionof

    an

    dh

    .

    Hydrau

    licConductivity,K(h)

    -characteriz

    esresistanceofporousmediatowater

    flow

    -10-8-6-4-2024

    0

    1

    2

    3

    4

    5

    log(|PressureHead|[cm])

    log(HydraulicConductivity[cm/d])

    Loam

    Sand

    Clay

    RetentionCurve

    BrooksandCorey[1964]:

    vanGenuchten[1980]:

    Kosugi[1996]:

    s-saturatedwatercontent[-]

    r-residualwaterconten

    t[-]

    n,h0,-empiricalpar

    ameters[L-1],[-],[L],[-]

    Se-effectivewatercontent[-]

    11/

    1

    (1

    )

    e

    n

    n

    S

    h

    =

    +

    -

    -1/

    |

    |1

    -1/

    n

    e

    h

    h

    S

    h

    q=?

    Tiledrains

    Tiledrains

    Bounda

    ryConditions(System-Dependent)

    Imperm

    eablelayer

    Soilsurface

    Tiledrain

    Groun

    dwatertable

    1DsoilprofileE

    P

    Drain

    age

    TheHYDRU

    SSoftwarePackages

    Variably-SaturatedFlow(RichardsEq.)

    RootWaterUptake(waterandsalinitystress)

    RootWaterUptake(waterandsalinitystress)

    SolutesTransp

    ort(decaychains,ADE)

    -NonlinearS

    orption

    -ChemicalN

    onequilibrium

    -PhysicalNo

    nequilibrium

    HeatTranspor

    t

    PedotransferF

    unctions(hydraulicproperties)

    ParameterEstimation

    InteractiveGraphics-BasedInterface

    HYDRUS(2D/3D)andAdditionalModules

    RootW

    aterUptake

    Feddesetal.[

    1978]

    01

    Tp

    =1mmd

    -1

    PressureHead,h

    [L]

    h1

    h2

    h3high

    h3low

    h4

    Tp

    =5mmd

    -1

    StressResponseFunction,[-]

    01

    Tp

    =1mmd

    -1

    PressureHead,h

    [L]

    h1

    h2

    h3high

    h3low

    h4

    Tp

    =5mmd

    -1

    StressResponseFunction,[-]

    (

    )

    ()

    (

    )

    ()

    (

    )

    (

    )()

    p

    p

    p

    p

    S

    z,t=bzT

    Sz,t=

    hS

    z,t

    h

    bzT

    =

    b

    normalizedwateruptakedistribution[L-1]

    Sp

    potentialrootwateruptake[T-1]

    S

    actualrootwateruptake[T-1]

    Tp

    potentialtranspiration[LT-1]

    stressresponsefunction[-]

    x

    z

    R

    S

    Ta

    Lt

    b(x,z

    )

    x

    z

    R

    S

    Ta

    Lt

    b(x,z

    )

    13

  • 7/25/2019 1.1 Curso de Hydrus 1D

    14/213

    StressResponseFunctions

    Waterandsolutestr

    ess:

    1

    2

    50

    50

    50

    1

    (,)

    1 1

    1

    (,

    )

    1

    1

    p

    p

    p

    hh

    h

    hh

    hh

    h

    h h

    h

    =

    +

    +

    =

    +

    +

    stressresponsefunction[-]

    h

    pressurehead[L

    ]

    hf

    osmotichead[L]

    h50

    pressureheadat

    whichwaterextractionrateisreducedby50%

    [L]

    h50

    dittoforosmotic

    head[L]

    p1,p2

    experimentalcon

    stants[-](=3)

    Transp

    irationRates

    (,)

    (,)

    (,)()

    R

    R

    R

    p

    p

    L

    a

    p

    L

    L

    T

    S

    hzdz

    T

    Shzdz

    T

    ahzbzdz

    =

    =

    =

    b

    normalizedwateruptakedistribution[L-1]

    stressresponsefunction[-]

    Sppotentialrootwateruptake[T-1]

    S

    actualrootwateruptake[T-1]

    Tp

    potentialtranspiration[LT-1]

    Ta

    actualtranspiration[LT-1]

    SpatialRootD

    istributionFunction

    (

    )

    *

    *

    ,

    1

    1

    z

    r

    m

    m

    m

    m

    p

    p

    z

    z

    x

    x

    Z

    X

    z

    x

    bxz

    Z

    X

    e

    +

    =

    (

    )

    *

    *

    *

    ,,

    1

    1

    1

    y

    x

    z

    m

    m

    m

    p

    p

    p

    x

    x

    y

    y

    z

    z

    X

    Y

    Z

    m

    m

    m

    x

    y

    z

    bxyz

    e

    X

    Y

    Z

    +

    +

    =

    (Vrugtetal.,2001)

    RootG

    rowth

    0

    0

    0

    ()

    ()

    ()

    (

    )

    R

    m

    rt

    m

    L

    t

    Lft

    L

    ft

    L

    L

    Le

    =

    =

    +

    LR

    rootingdepth[L]

    L0

    initialrootingdepth[L]

    Lm

    maxim

    umrootingdepth[L]

    f

    rootgr

    owthcoefficient(Verhulst-Pearllogist

    icfunction)

    r

    growth

    rate[T-1]

    14

  • 7/25/2019 1.1 Curso de Hydrus 1D

    15/213

    TheHYDRU

    SSoftwarePackages

    Variably-Satur

    atedFlow(RichardsEq.)

    RootWaterUptake(waterandsalinitystress)

    SolutesTransport(decaychains,ADE)

    SolutesTransp

    ort(decaychains,ADE)

    --NonlinearS

    orption

    NonlinearS

    orption

    --ChemicalN

    onequilibrium

    ChemicalN

    onequilibrium

    --PhysicalNo

    nequilibrium

    PhysicalNo

    nequilibrium

    HeatTransport

    PedotransferF

    unctions(hydraulicproperties)

    ParameterEst

    imation

    InteractiveGraphics-BasedInterface

    HYDRUS(2D/3D)andAdditionalModules

    SoluteT

    ransport-Convection-Dispersio

    nEquation

    One-dimensionalchemicaltransportduringtransientwater

    flowinavariablysaturatedrigidporousmedium

    c

    -solutionconcentration[ML-3]

    s

    -adsorbedconcentration[MM-1]

    -watercontent[L3L-3]

    -soilbulkdensity[ML-3]

    D

    -dispersioncoefficient[L2T-1]

    q

    -volumetricflux[LT-1]

    -rateconstantrepresentingreactions[ML-3T-1]

    ()

    (

    )

    c

    s

    cD

    qc

    t

    t

    z

    z

    =

    GeneralStructureoftheSystemofSolutes

    HYDRU

    SSoluteTransport

    Radion

    uclides:238Pu->234U->230Th->226Ra

    Nitroge

    n:(NH2)2CO->NH4+->NO2-->NO3-

    Pesticid

    es:aldicarb(oxime)->sulfone(sulfoneoxime)->sulfoxide(sulfoxide

    oxime)

    Chlorin

    atedHydrocarbons:PCE->TCE->c-DCE->VC

    ->ethylene

    Pharmaceuticals,hormones:Estrogen(17bEstradiol->Estrone->Estriol),

    Testosterone

    Explosives:TNT(->4HADNT->4ADNT->TAT),RDXH

    MX

    Transportofsingleions

    Transportofmultipleions(sequentialfirst-orde

    rdecay)

    15

  • 7/25/2019 1.1 Curso de Hydrus 1D

    16/213

    GoverningSo

    luteTransportEquatio

    ns

    (

    )

    (

    )

    c

    s

    cD

    qc

    t

    t

    z

    z

    =

    '

    '

    '

    '

    ,

    ,

    ,

    ,

    ,

    ,

    1

    1

    '

    '

    1

    1

    1

    1

    ,

    ,

    ,

    ,

    (

    )

    (

    )

    (

    )

    (2,)

    w

    g

    k

    k

    k

    k

    k

    k

    k

    k

    wk

    wk

    k

    sk

    sk

    k

    gk

    gk

    k

    w,k

    k

    s,k

    k

    g,k

    k

    wk

    sk

    gk

    rk

    s

    c

    s

    ag

    c

    g

    qc

    +

    +

    =

    D

    +

    aD

    -

    -

    t

    t

    t

    z

    z

    z

    z

    z

    -

    +

    c-

    +

    s-

    +

    ag+

    c

    +

    s

    -

    ag

    +

    +

    +

    a

    Sc

    k

    n

    w,s,g

    subscriptscorrespondingwiththeliquid,solidand

    gaseousphases,respectively

    c,s,g

    concentratio

    ninliquid,solid,andgaseousphase,

    respectively

    GoverningSoluteTransportEq

    uations

    qi

    volumetricflux[LT-1]

    soilbulkdensity[ML-3]

    a

    aircontent[L3L-3]

    S

    sinkterminthewaterflowequation[T-1]

    cr

    concentrationofthesinkterm[ML-3]

    Dw,D

    g

    dispersioncoefficientsfortheliquidandgaseousph

    ase[L2T-1],

    respectively

    k

    subscriptrepresentingthekthchainnumber

    w,s,

    g

    first-orderrateconstantsforsolutesintheliquid,solid,and

    gaseousphases[T-1],respectively

    w,s,

    g

    zero-orderrateconstantsfortheliquid[ML-3T-1],solid[T-1],and

    gaseousphases[ML-3T-1],respectively

    w',

    s',

    g'first-orderrateconstantsforsolutesintheliquid,so

    lidand

    gaseousphases[T-1],respectively;theserateconstantsprovide

    connectionsbetweentheindividualchainspecies.

    ns

    numberofsolutesinvolvedinthechainreaction

    SoluteTrans

    port-BoundaryConditions

    First

    First--type

    type(orDirichlettype)boundaryconditions

    Third

    Third--type

    type(Cauchytype)boundaryconditions

    Second

    Second--type

    type(N

    eumanntype)boundaryconditions

    0

    for(

    )

    ij

    i

    N

    jc

    D

    n=

    x,z

    x

    0

    for(

    )

    ij

    i

    ii

    ii

    C

    jc

    -D

    n

    +qnc=qnc

    x,z

    x

    0

    (

    )

    (

    )

    for(

    )

    D

    cx,z,t=

    cx,z,t

    x,z

    SoluteTransportDispersionCo

    efficient

    Bear

    Bear[1972]:

    [1972]:

    7/3 2 s

    =

    d

    D=

    |q|+D

    Dd

    -ionicormoleculardiffusio

    ncoefficient

    infreewater[L2T-1]

    -tortuosityfactor[-]

    -longitudinaldispersivity[L]

    -watercontent[L3L-3]

    q

    -Darcysflux[LT-1]

    MillingtonandQuirk[1961]:

    s

    -saturatedwatercontent[-]

    16

  • 7/25/2019 1.1 Curso de Hydrus 1D

    17/213

    SoluteTrans

    port-DispersionCoefficien

    t

    Bear

    Bear[1972]:

    [1972]:

    (

    )ji

    ij

    T

    ij

    L

    T

    d

    ij

    qq

    D=D|

    q|

    +D-D

    +

    D

    |q|

    Dd

    -ionicormoleculardiffusioncoefficientinfreewater[L2T-1]

    -tortuosityfactor

    [-]

    ij

    -Kroneckerdelta

    function(ij=1ifi=j,and

    ij=0otherwise)

    DL,DT-longitudinal

    andtransversedispersivities[L]

    2

    2

    2

    2

    (

    )

    x

    z

    xx

    L

    T

    d

    z

    x

    zz

    L

    T

    d

    x

    z

    xz

    L

    T

    q

    q

    D

    =D

    +D

    +

    D

    |q|

    |q|

    q

    q

    D

    =D

    +D

    +

    D

    |q|

    |q| q

    q

    D

    =D-D

    |q|

    Disper

    sivityasaFunctionofScale

    Gelharetal.(1985)

    TheHYDRUSSoftwarePackages

    Variably-SaturatedFlow(RichardsEq.)

    RootWaterUptake(waterandsalinitystress)

    SolutesTransport(decaychains,ADE)

    -NonlinearSorption

    -ChemicalN

    onequilibrium

    -PhysicalNonequilibrium

    HeatTransport

    PedotransferFunctions(hydraulicproperties)

    ParameterEstimation

    InteractiveGr

    aphics-BasedInterface

    HYDRUS(2D/3D)andAdditionalModules

    Convec

    tion-DispersionEquation

    Linea

    rAdsorption

    1

    d

    d

    K

    s

    Kc

    R

    =

    =

    +

    ij

    i

    i

    j

    Rc

    c

    D

    qc

    t

    x

    x

    =

    +

    Kd

    -distributioncoefficient[L3M-1]

    R

    -retardationfactor[-]

    s

    -solidphaseconcentration[MM-1]

    c

    -liquidphaseconcentration[ML-3]

    17

  • 7/25/2019 1.1 Curso de Hydrus 1D

    18/213

    Convection-DispersionEquation

    TransientTr

    ansport(2D)

    Steady-State

    Transport(1D)

    ij

    i

    i

    j

    Rc

    c

    D

    qc

    t

    x

    x

    =

    +

    22

    22

    R

    R

    c

    c

    c

    R

    D

    v

    t

    z

    z

    c

    c

    c

    D

    v

    t

    z

    z

    =

    =

    DR

    -retarded

    dispersioncoefficient[L2T-1]

    vR-retarded

    velocity[LT-1]

    Nonline

    arEquilibriumAdsorp

    tion

    Equation

    Model

    Reference

    s=kc+k

    1

    2

    Linear

    LapidusandAmundson[195

    2]

    Lindstrometal.[1967]

    2

    1

    k

    s=

    kc

    Freundlich

    Freundlich[1909]

    12

    1kc

    s=

    +

    k

    c

    Langmuir

    Langmuir[1918]

    3

    3

    12

    1

    k

    k

    kc

    s=

    +

    k

    c

    Freundlich-Langmuir

    Sips[1950]

    1

    3

    2

    4

    1

    1

    kc

    k

    c

    s=

    +

    +kc

    +kc

    DoubleLangmuir

    ShapiroandFried[1959]

    2

    3

    1

    k

    /k

    c

    s=

    kc

    ExtendedFreundlich

    Sibbesen[1981]

    1

    2

    3

    1

    kc

    s=

    +kc+k

    c

    Gunary

    Gunary[191970]

    2

    1

    3

    k

    s=k

    -k

    c

    Fitter-Sutton

    FitterandSutton[1975]

    4

    3

    1

    2

    {1[1

    ]}k

    k

    s=k

    -

    +k

    c

    Barry

    Barry[1992]

    2

    1

    ln(

    )

    RT

    s=

    kc

    k

    Temkin

    BacheandWilliams[1971]

    1

    2

    exp(2

    )

    s=kc

    -ks

    Lindstrometal.[1971]

    vanGenuchtenetal.[1974]

    s s

    c

    c

    k

    c

    c

    k

    c

    c

    T

    T

    T

    =

    +

    [

    (

    )exp{

    (

    )}]

    1

    2

    2

    modifiedKielland

    LaiandJurinak[1971]

    NonlinearEquilibriumAdsorption

    HYDRUSassumesnonequilibriuminteractionsbetween

    the

    solution(c)andad

    sorbed(s)concentrations,andequilibrium

    interactionbetwee

    nthesolution(c)andgaseous(g)

    concentrationsofthesoluteinthesoilsystem.

    Liquid-Solid:

    ageneralizednonlinear

    nonlinear

    (Freundlich-Langmuir)empiricalequation

    ks,,empirica

    lconstants

    1skc

    s=

    +c

    TheHY

    DRUSSoftwarePackages

    Variab

    ly-SaturatedFlow(RichardsEq.)

    RootW

    aterUptake(waterandsalinity

    stress)

    SolutesTransport(decaychains,ADE)

    -Non

    linearSorption

    -Che

    micalNonequilibrium

    -Phy

    sicalNonequilibrium

    HeatT

    ransport

    PedotransferFunctions(hydraulicprop

    erties)

    ParameterEstimation

    InteractiveGraphics-BasedInterface

    HYDR

    US(2D/3D)andAdditionalModules

    18

  • 7/25/2019 1.1 Curso de Hydrus 1D

    19/213

    Non-EquilibriumAdsorptionEquations

    Equation

    Model

    Reference

    1

    2

    (

    )

    s=

    kc+

    k

    -s

    t

    Linear

    LapidusandAmundson[1952]

    Oddsonetal.[1970]

    2

    1

    (

    )

    k

    s=

    k

    -s

    c

    t

    Fr

    eundlich

    HornsbyandDavidson[1973]

    vanGenuchtenetal.[1974]

    12

    1

    s

    kc

    =

    -s

    t

    +kc

    La

    ngmuir

    Hendricks[1972]

    3

    3

    12

    1

    k

    k

    s

    kc

    =

    -s

    t

    +kc

    Fr

    eundlich-

    La

    ngmuir

    imunekandvanGenuchten[1994]

    1

    (

    )sinh

    T

    T

    T

    i

    s

    s

    s

    =

    s

    -s

    k

    t

    s

    s

    FavaandEyring[42]

    2

    1

    2

    exp(

    ){

    exp(2

    )

    }

    s=

    ks

    kc

    -ks

    -s

    t

    Lindstrometal.[1971]

    1

    2

    k

    k

    s=

    c

    s

    t

    LeenheerandAhlrichs[1971]

    Enfieldetal.[1976]

    NonequilibriumTwo-SiteAdsorptionModel

    se

    Ty

    pe-1siteswithinstantaneoussorption

    sk

    Ty

    pe-2siteswithkineticsorption

    f

    fra

    ctionofexchangesitesassumedtobeat

    equilibrium

    e

    k

    s=s+s

    (1

    )

    (1

    )

    1

    k

    s

    k

    ks

    s

    s

    kc

    =

    -

    -

    -

    +

    -f

    f

    s

    s

    t

    +

    c

    es

    s

    =f

    t

    t

    Two-SiteChemicalNonequilibriumTranspo

    rt

    ,

    [(1

    )

    ]

    k

    k

    k

    d

    sk

    s=

    -fKc-s-

    s

    t

    (

    )

    (

    )

    [(1

    )

    ]

    d

    k

    d

    d

    l

    s,e

    c

    +fK

    c=

    D

    -qc-

    t

    z

    z

    -fK

    c-s-

    c-fK

    c

    Linearsorption:

    Mo

    bile

    Co

    llo

    ids,

    Cc

    Stra

    ine

    dCo

    llo

    ids,

    Sc

    str

    Attac

    he

    dC

    ollo

    ids,

    Sc

    att

    Air-Wa

    ter

    Interface

    Co

    llo

    ids,

    c

    kac

    kdc

    kstrk

    aca

    kdca

    aca

    s

    str

    s

    Air

    Wa

    ter

    So

    lid

    Colloid,Virus,andBacteriaTransport

    19

  • 7/25/2019 1.1 Curso de Hydrus 1D

    20/213

    Colloid,Virus,andBacteriaTransport

    2

    1

    2

    2

    s

    s

    c

    c

    c

    D

    v

    t

    t

    t

    x

    x

    +

    +

    =

    1

    1

    a

    t

    d

    s

    k

    c

    ks

    t

    =

    max m

    ax

    max

    1

    t

    s

    s

    s

    s

    s

    =

    =

    kstr

    -straining[T-1]

    ka

    -deposition(attachment)coefficient[T-1]

    kd

    -entrainment(detachment)coefficient[T-1]

    -reductionofattachmentcoefficientduetoblockageofsorptionsites

    2

    str

    str

    s

    k

    c

    t

    =

    0

    c

    str

    c

    d

    x

    x

    d

    +

    =

    Attachment/Detach

    ment

    Attachment/Detach

    ment

    Straining

    Straining

    TheHY

    DRUSSoftwarePacka

    ges

    Variably-SaturatedFlow(RichardsEq.)

    RootW

    aterUptake(waterandsalinitystress)

    Solutes

    Transport(decaychains,ADE)

    -NonlinearSorption

    -ChemicalNonequilibrium

    -PhysicalNonequilibrium

    HeatTransport

    PedotransferFunctions(hydraulicproperties)

    ParameterEstimation

    Interac

    tiveGraphics-BasedInterface

    HYDRUS(2D/3D)andAdditionalModu

    les

    Two-RegionPhy

    sicalNonequilibriumTransp

    ort

    (

    )

    ,

    ,

    (

    )(

    )

    m

    m

    d

    m

    m

    m

    m

    m

    im

    m

    wm

    d

    ms

    m

    c

    +fk

    c=

    D

    -qc

    -

    c-c

    -

    +fk

    c

    t

    z

    z

    ,

    ,

    [

    (1

    )

    ]

    (

    )[

    (

    )

    ]

    im

    im

    d

    m

    im

    im

    wim

    d

    simim

    c

    +

    -f

    k

    =

    c-c

    -

    +1-f

    k

    c

    t

    Two-RegionPhysicalNonequilibriumTransport

    20

  • 7/25/2019 1.1 Curso de Hydrus 1D

    21/213

    Interaction

    AmongPhases

    Liquid-Gas:

    alinear

    linearrelation(HenrysLa

    w)

    kg

    emp

    iricalconstantequalto(KHRTA)-1

    KH

    Hen

    ry'sLawconstant

    R

    universalgasconstant

    TA

    absolutetemperature

    g

    g=kc

    Volatilization

    (

    )

    (

    )

    (

    )

    w

    a

    w

    a

    ij

    ij

    i

    i

    i

    j

    j

    s

    c

    ag

    c

    g

    +

    +

    =

    D

    +aD

    -qc-qg+

    t

    t

    t

    x

    x

    x

    g

    g

    kc

    =

    Steady-State(anewretardationfactorandeffectiv

    ediffusion

    coefficient):

    2

    2

    1

    w

    a

    g

    i

    i

    g

    w

    a

    d

    ij

    ij

    g

    i

    j

    i

    E

    E

    ij

    i

    i

    j

    i

    a

    k

    q

    qk

    K

    c

    a

    c

    c

    +

    =

    D

    D

    k

    -

    t

    xx

    x

    c

    c

    c

    R

    =D

    -q

    t

    xx

    x

    +

    +

    +

    TemperatureDependenceofTransportand

    ReactionCoefficients

    ar,aT

    coefficientvaluesatareferenceabsolutetemperatu

    re,

    TrA,andabsolutetemperature,T

    A,respectively

    E

    activationen

    ergyofthereactionorprocess

    (

    )

    exp

    A

    A r

    T

    r

    A

    A r

    ET

    -T

    a=a

    RTT

    Mostofthediffusion

    (Dw,Dg),distribution(ks,

    kg),andreaction

    rate(w,s,g,w

    ',s',

    g',w,s,and

    g)coefficientsare

    stronglytemperature

    dependent.HYDRUSassumesthatth

    is

    dependencycanbeexpressedbyanArrheniusequation

    [StummandMorgan

    ,1981].

    TheHYDRUSSoftwarePackages

    Variably-SaturatedFlow(RichardsEq.)

    RootW

    aterUptake(waterandsalinitys

    tress)

    Solutes

    Transport(decaychains,ADE)

    -NonlinearSorption

    -ChemicalNonequilibrium

    -Phys

    icalNonequilibrium

    HeatTr

    ansport

    Pedotra

    nsferFunctions(hydraulicproperties)

    Parame

    terEstimation

    InteractiveGraphics-BasedInterface

    HYDRU

    S(2D/3D)andAdditionalModu

    les

    21

  • 7/25/2019 1.1 Curso de Hydrus 1D

    22/213

    GoverningH

    eatTransportEquation

    Sophocleous[197

    9]:

    ij()

    apparentther

    malconductivityofthesoil

    C(),C

    w

    volumetriche

    atcapacitiesoftheporousmediumandthe

    liquidphase,respectively

    deVries[1963]:

    volumetricfraction

    n,o,g,wsubscriptsrep

    resentingsolidphase,organicmatter,gaseous

    phase,andliq

    uidphase,respectively.

    ()

    n

    n

    o

    o

    w

    g

    C

    =C

    +C

    +C

    +Ca

    ()

    ()

    ij

    w

    i

    i

    j

    i

    T

    T

    T

    C

    =

    -Cq

    t

    x

    x

    x

    Therma

    lConductivity

    0(

    )thermalconductivityoftheporousmedium(solid

    plu

    swater)intheabsenceofflow

    L,T

    longitudinalandtransversethermaldispe

    rsivities,

    respectively

    ChungandHorton[1987]

    b1,b2,b3

    empiricalparameters

    0

    ()

    (

    )

    (

    )

    i

    j

    ij

    T

    w

    ij

    L

    T

    w

    ij

    qq

    =

    C|q|

    +

    -

    C

    +

    |q|

    0.5

    0

    1

    2

    3

    ()

    w

    w

    =b+b

    +b

    TheHYDRUS

    SoftwarePackages

    Variably-SaturatedFlow(RichardsEq.)

    RootWaterUp

    take(waterandsalinitystress)

    SolutesTransport(decaychains,ADE)

    -NonlinearSorption

    -ChemicalNonequilibrium

    -PhysicalNonequilibrium

    HeatTransport

    PedotransferFunctions(hydraulicproperties)

    ParameterEstimation

    InteractiveGra

    phics-BasedInterface

    HYDRUS(2D/3D)andAdditionalModules

    PTFsbyCarselandParrish(1

    988)

    Averagevalues

    ofselectedsoilwaterretentionparametersfor12major

    soiltexturalgroups

    22

  • 7/25/2019 1.1 Curso de Hydrus 1D

    23/213

    Pedotransfer

    Functions:Rosetta

    Schaapetal.(2001)

    Model

    InputData

    TXT

    TexturalClass

    SSC

    Sand,Silt,Clay%

    SSCBD

    Same+BulkDensity

    SSCBD+

    33

    SSCBD+

    at33kPa

    SSCBD+

    33+

    1500

    Same+

    at1500kPa

    Pedotra

    nsferFunctions:Rosetta

    TexturalCla

    ssAverages:Rosetta

    Texturalclass

    r

    s

    n

    Ks

    [L3L-3]

    [L3L-3]

    [cm-1]

    [-]

    [cmd-1]

    Sand

    0.053

    0.375

    0.035

    3.18

    643.

    LoamySand

    0.049

    0.390

    0.035

    1.75

    105.

    SandyLoam

    0.039

    0.387

    0.027

    1.45

    38.2

    Loam

    0.061

    0.399

    0.011

    1.47

    12.0

    Silt

    0.050

    0.489

    0.007

    1.68

    43.7

    SiltyLoam

    0.065

    0.439

    0.005

    1.66

    18.3

    SandyClayLoam

    0.063

    0.384

    0.021

    1.33

    13.2

    ClayLoam

    0.079

    0.442

    0.016

    1.41

    8.18

    SiltyClayLoam

    0.090

    0.482

    0.008

    1.52

    11.1

    SandyClay

    0.117

    0.385

    0.033

    1.21

    11.4

    SiltyClay

    0.111

    0.481

    0.016

    1.32

    9.61

    Clay

    0.098

    0.459

    0.015

    1.25

    14.8

    SoilhydraulicparametersfortheanalyticalfunctionsofvanGenuchten(1980)forthe

    twelvetexturalclassesofthe

    USDAtexturaltriangleobtainedwiththeRosettaligh

    t

    program(Schaapetal.,2001

    ).

    TheHY

    DRUSSoftwarePacka

    ges

    Variably-SaturatedFlow(RichardsEq.)

    RootW

    aterUptake(waterstress)

    Solutes

    Transport(decaychains,ADE)

    -NonlinearSorption

    -ChemicalNonequilibrium

    -PhysicalNonequilibrium

    HeatTransport

    PedotransferFunctions(hydraulicproperties)

    ParameterEstimation

    Interac

    tiveGraphics-BasedInterface

    HYDRUS(2D/3D)andAdditionalModu

    les

    23

  • 7/25/2019 1.1 Curso de Hydrus 1D

    24/213

    ParameterEstimationwithHYDRUS

    ParameterEst

    imation:

    ParameterEst

    imation:

    -Soilhydraulicparameters

    -Solute

    transportandreactionparameters

    -Heatt

    ransportparameters

    Sequence:

    Sequence:-Independently

    -Simultaneously

    -Sequentially

    Method:

    Method: -Marquardt-Levenbergoptimization

    Objective

    FunctionforInversePro

    blems

    2

    *

    ,

    1

    1

    2

    *

    1

    1

    2

    *

    1

    (,,

    )

    [

    (,)-

    (,,)]

    [

    ()-

    (,)]

    [

    -

    ]

    q

    qj

    q

    pj

    b

    m

    n

    j

    ij

    j

    i

    j

    i

    j

    i

    m

    nj

    ij

    j

    i

    j

    i

    j

    i

    n

    j

    j

    j

    j

    bqp

    v

    w

    gxt

    gxtb

    v

    w

    p

    p

    b

    b

    b

    v

    =

    =

    =

    =

    =

    =

    1stterm:

    1stterm:

    de

    viationsbetweenmeasuredandcalculatedspa

    ce-time

    va

    riables

    2ndterm:

    2ndterm:

    differencesbetweenindependentlymeasured,pj*,andpredicted,

    pj,soilhydraulicproperties

    3rdterm:

    3rdterm:

    pe

    naltyfunctionfordeviationsbetweenpriorkn

    owledgeofthe

    soilhydraulicparameters,bj*,andtheirfinalestimates,bj.

    Formulation

    oftheInverseProblem

    Theproblemcanbesimplifiedinto

    theWeightedLeast

    theWeightedLeast--SquaresProblem

    SquaresProblem

    wi-weightofapar

    ticularmeasuredpoint

    2

    *

    1

    ()

    n

    i

    i

    i

    i

    w

    q

    q

    =

    =

    TheHY

    DRUSSoftwarePacka

    ges

    Variably-SaturatedFlow(RichardsEq.)

    RootW

    aterUptake(waterstress)

    Solutes

    Transport(decaychains,ADE)

    -NonlinearSorption

    -ChemicalNonequilibrium

    -PhysicalNonequilibrium

    HeatTransport

    PedotransferFunctions(hydraulicproperties)

    ParameterEstimation

    Interac

    tiveGraphics-BasedInterface

    HYDRUS(2D/3D)andAdditionalModu

    les

    24

  • 7/25/2019 1.1 Curso de Hydrus 1D

    25/213

  • 7/25/2019 1.1 Curso de Hydrus 1D

    26/213

    Cut-offWall

    FiniteElementMesh

    Cut-offWall

    SolutePlume

    PlumeMovementin

    a

    TransectwithStream

    26

  • 7/25/2019 1.1 Curso de Hydrus 1D

    27/213

    TheHYDRU

    SSoftwarePackages

    Variably-SaturatedFlow(RichardsEq.)

    RootWaterU

    ptake(waterstress)

    SolutesTransport(decaychains,ADE)

    -NonlinearSorption

    -ChemicalN

    onequilibrium

    -PhysicalNonequilibrium

    HeatTransport

    PedotransferFunctions(hydraulicproperties)

    ParameterEstimation

    InteractiveGr

    aphics-BasedInterface

    HYDRUS(2D

    /3D)andAdditionalModules

    HYDRU

    S(2D/3D)NewFeatu

    res

    Waterflowinadual-porositysystemallowingforpreferentialflow

    infractures

    ormacroporeswhilestoringwaterinthematrix.

    Rootwateruptakewithcompensation.

    Spatialroot

    distributionfunctionsofVrugtetal.(2002

    ).

    SoilhydraulicpropertymodelsofKosugi(1995)andD

    urner(1994).

    Transportofviruses,colloids,and/orbacteriausingan

    attachment/detachmentmodel,straining,filtrationtheory,and

    blockingfun

    ctions.

    Aconstructedwetlandmodule(onlyin2D).

    ThehysteresismodelofLenhardetal.(1991)toelimin

    atepumping

    bykeepingt

    rackofhistoricalreversalpoints.

    Newprintm

    anagementoptions.

    Dynamic,sy

    stem-dependentboundaryconditions.

    Flowingpar

    ticlesintwo-dimensionalapplications.

    27

  • 7/25/2019 1.1 Curso de Hydrus 1D

    28/213

    HYDRUS(2D

    /3D)NewFeatures

    CompletelynewGUI

    basedonHi-End3Dgraphicslibraries.

    MDIarchitecturem

    ultipleprojectsandmultipleviews.

    Neworganizationofg

    eometricobjects.

    Navigatorwindowwithanobjectexplorer.

    Manynewfunctionsimprovingtheuser-friendliness,suchasdrag-

    and-dropandcontextsensitivepop-upmenus.

    Improvedinteractive

    toolsforgraphicalinput.

    SavingCross-SectionsandMesh-Linesforchartswithinagiven

    project.

    DisplayOptionsall

    colors,linestyles,fontsandotherparameters

    ofgraphicalobjectscanbecustomized.

    Extendedprintoptions.

    Extendedinformation

    intheProjectManager(includingproject

    preview).

    Manyadditionalimprovements.

    Geochem

    icalModeling

    HYDRUS

    HYDRUS--1D1D(imneketal.,1998)

    -variablysatura

    tedwaterflow

    -heattransport

    -rootwateruptake

    -solutetranspor

    t

    UNSATCHE

    M

    UNSATCHE

    M(imneketal.,1996)

    -carbondioxide

    transport

    -majorionchem

    istry

    -cationexcha

    nge

    -precipitation-dissolution(instantaneousandkinetic)

    -complexatio

    n

    HYDRUS-1D

    +UNSATCHEM

    HYDRU

    S-1D+UNSATCHEM

    H4SiO4,

    H3SiO4-,H2SiO42

    -

    3

    Silicaspecies

    6

    PCO2,

    H2CO3

    *,

    CO3

    2-,HCO

    3-,H+,

    OH-,

    H2O

    7

    CO2-H2O

    species

    5

    Ca,

    Mg,

    Na,

    K

    4

    Sorbeds

    pecies

    (exchangeable)

    4

    CaCO3,

    CaSO4

    2H2O,

    Mg

    CO3

    3H2O,

    Mg5(CO3)4(OH)2

    4H2O,

    Mg2Si3O7.5

    (OH)

    3H2O,CaMg(CO3)2

    6

    Precipita

    ted

    species

    3

    CaCO3o,

    CaHCO3+,

    CaSO4o,

    MgCO3o,

    MgHCO3+,

    MgSO4o,

    NaCO

    3-,NaHCO3o,

    NaSO4-,KSO4-

    10

    Complex

    ed

    species

    2

    Ca2+,

    Mg2+,

    Na+,

    K+,

    SO4

    2-,Cl-,

    NO3-

    7

    Aqueous

    components

    1Kineticreactio

    ns:calciteprecipitation/dissolution,dolomitedissolution

    Activitycoefficients:extendedDebye-Hckelequations,Pitzerexpressions

    28

  • 7/25/2019 1.1 Curso de Hydrus 1D

    29/213

    LysimeterStu

    dy

    Gonalvesetal.(2006)

    HYDRUS

    HYDRUS

    --1D1D[[imimnekneketal.,1998]:

    etal.,1998]:

    VariablySaturatedWaterFlow

    SoluteTransport

    Heattransport

    Rootwateruptake

    PHREEQ

    C

    PHREEQ

    C[ParkhurstandAppelo,1999]:

    [ParkhurstandAppelo,1999]:

    Availablechemicalreactions:

    Aqueouscom

    plexation

    Redoxreactions

    Ionexchange(Gains-Thomas)

    Surfacecom

    plexationdiffusedouble-layermodelandnon-

    electrostatic

    surfacecomplexationmodel

    Precipitation/dissolution

    Chemicalkinetics

    Biologicalre

    actions

    HP1-CoupledHYDRUS-1DandPHREEQC

    HYDRUS-1D

    GUIforHP1

    HP1examples

    Transportofheavymetals(Zn2+,Pb2+,andCd

    2+)

    subjecttomultiplecationexchange

    Transportwithmineraldissolutionofamorph

    ousSiO2

    andgibbsite(Al(OH)3)

    Heavym

    etaltransportinamediumwithapH

    -

    dependentcationexchangecomplex

    Infiltrationofahyperalkalinesolutioninacla

    ysample

    (thisexampleconsiderskineticprecipitation-d

    issolution

    ofkaolinite,illite,quartz,calcite,dolomite,gypsum,

    hydrota

    lcite,andsepiolite)

    Long-te

    rmtransientflowandtransportofmajor

    cations(Na+,K

    +,Ca2+,andMg2+)andheavym

    etals

    (Cd2+,Z

    n2+,andPb2+)inasoilprofile.

    Kinetic

    biodegradationofNTA(biomass,coba

    lt)

    29

  • 7/25/2019 1.1 Curso de Hydrus 1D

    30/213

  • 7/25/2019 1.1 Curso de Hydrus 1D

    31/213

    Mathematica

    lVerification

    Question:Whena

    llnonlinear,coupled,and/ortransient

    processesareintro

    ducedintothemodel,howdoweknow

    thatthecomputer

    codegivesaccuratenumericalresults?

    ApproximateTests:

    Massbalanceerrors

    Self-consistency

    (differentgridsandtimesteps)

    Comparisonwithothercodes

    Mathem

    aticalVerification

    Doestheco

    mputercode(model)provideanaccurate

    solutionofthegovernmentPDEsfordifferen

    tinitialand

    boundaryc

    onditionswithintherangeofpossiblemodel

    parametervalues?

    Verificationofpartsofthecode:

    Comparewithanalyticalsolutions(steady-stateflow)

    Comparewithlinearizedsolutions(simplifiedconstitutiverelationships)

    Steady-state

    solutions

    Homogeneou

    smedia

    Simplifiedin

    itialandboundaryconditions

    ModelValidation

    Doesthemodel(i.e.,theequationsembeddedinthe

    code)correctly

    representtheactualprocesses?

    Amodelisasimplified

    representationoftherealsystemorproc

    ess

    Approximationsarise

    becauseof

    Incorporationofa

    limitednumberofprocesses

    Limitedunderstandingoftheactualprocess

    Inabilitytotranslateobservedprocessesintousablemathematics

    (howtoquantifythings?)

    Inconsistencyofsm

    all-scaleheterogeneitieswithnumericalg

    rid

    (effectiveparameters)

    31

  • 7/25/2019 1.1 Curso de Hydrus 1D

    32/213

    32

  • 7/25/2019 1.1 Curso de Hydrus 1D

    33/213

    TheHYDRUS

    -1DSoftwareforSimulating

    One-Dimen

    sionalVariably-Saturated

    WaterFlowandSoluteTransport

    Jirkaim

    nek,RienvanGenuchten,

    andMiroslavejna

    DepartmentofEnv

    ironmentalSciences,UniversityofCalifornia

    Riverside,CA

    FederalUniversityofRiodeJaneiro,RiodeJaneiro,Brazil

    PC-Prog

    ress,Ltd.,Prague,CzechRepublic

    HYDR

    US-1D-Functions

    D

    ataandProjectManagement

    D

    ataPre-Processing

    -Inputparameter

    -Transportdomaindesign

    -Finiteelementgridgenerator

    -Initialandboundarycondition

    s

    C

    omputations

    D

    ataPost-Processing

    -Graphicaloutput

    -ASCIIoutput

    HYDRUS-1D

    -ModelStructure

    HYDRUS1D

    HYDRUS1D

    -majormodule

    POSITION

    POSITION

    -projectmanager

    PROFILE

    PROFILE

    -flowdomaindesign

    -finiteelementgenerator

    -initialconditionsanddomain

    properties

    HYDRUS

    HYDRUS

    -waterflowandsolutetransport

    calculations

    HYDRU

    S-1D-FortranApplic

    ation

    Water,Solute,andHeatMovement

    Water,Solute,andHeatMovement:

    -one-dim

    ensionalporousmedia

    RichardsE

    quation

    RichardsE

    quation-saturated-unsaturatedwaterflow

    -porousmedia:

    -unsaturated

    -partiallysaturated

    -fullysaturated

    -sinkterm-wateruptakebyplantroots

    -waterstress

    -salinitystress

    SoilHydra

    ulicProperties

    SoilHydra

    ulicProperties

    -vanGen

    uchten[1980]

    -Brooksa

    ndCorey[1964]

    -modifiedvanGenuchtentypefunctions[VogelandCislerov

    a,1989]

    -dual-porositymodelofDurner[1994]

    Hysteresis

    Hysteresis

    -Scottetal.[1983],

    KoolandParker[1988]

    RootGrow

    th

    RootGrow

    th-logisticgrowthfunction

    33

  • 7/25/2019 1.1 Curso de Hydrus 1D

    34/213

    HYDRUS-1D

    -FortranApplication

    SoluteTransport

    SoluteTransport-convection-dispersionequation

    -liquid,solid,andgaseousphase

    -nonlinearadso

    rption[Freundlich-Langmuirequations]

    -nonequilibirum

    [two-sitesorptionmodel,mobile-immobilewater]

    -HenrysLaw

    -convectionand

    dispersioninliquidphase,diffusioningaseousphase

    -zero-orderpro

    ductioninallthreephases

    -first-orderdeg

    radationinallthreephases

    -chainreactions

    HeatTransport

    HeatTransport-co

    nvection-dispersionequation

    -heatconductio

    n

    -convection

    NonuniformSoils

    Scaling

    ScalingProcedurefo

    rHeterogeneousSoils

    HYDRUS-1D-FortranApplication

    ThreeStabilizingOptions

    StabilizingOptionstoavoidoscillationinthen

    umerical

    solutionof

    thesolutetransportequation:

    -upstreamweighting

    -artificialdispersion

    -performanceindex

    WaterFlowBoundaryConditions:

    WaterFlowBoundaryConditions:

    -prescribedheadandflux

    -atmosph

    ericconditions

    -seepageface

    -freedrainage

    -deepdrainage

    -horizont

    aldrains

    Flowand

    Transport:

    Flowand

    Transport:

    -verticaldirection

    -horizontaldirection

    -generallyinclineddirection

    HYDRUS-1D

    MajorModule

    HYDRU

    S-1D-MajorModule

    Mainprog

    ramunit

    Mainprog

    ramunitofthesystem

    Controlse

    xecutionoftheprogram

    Determines

    whichotheroptionalmodulesarenecessaryforap

    articular

    application

    PrePre--processingunit

    processingunit

    -specificationofallparametersneededtosuccessfullyru

    nHYDRUS

    -smallcatalogofsoilhydraulicproperties

    -Rose

    ttapedotransferfunctionsbasedonNeuralNetworks

    Post

    Post--processingunit

    proce

    ssingunit

    -simp

    lex-ygraphsforgraphicalpresentationofsoilhydraulicproperties

    andotheroutputresults

    34

  • 7/25/2019 1.1 Curso de Hydrus 1D

    35/213

    HYDRUS-1D

    -MajorModule

    Pre-processing

    Post-processing

    HYDRU

    S-1D-Preprocessing

    WaterFlo

    wModels

    SoluteTransp

    ortModels

    HYDRUS-1D

    Post-processing

    ProfileInformation

    ObservationNodes

    POSITION-ProjectManager

    Manages

    dataof

    existingp

    rojects

    Locates

    Opens

    Copies

    Deletes

    Renames

    --desiredprojectsor

    selectedinpu

    tand/or

    outputdata

    35

  • 7/25/2019 1.1 Curso de Hydrus 1D

    36/213

    PROFILE-Dom

    ainDesign,Mesh

    Generator,DomainProperties

    Discretization

    Discretization

    ofthesoilprofileintofiniteelements

    InitialConditions

    InitialConditionsforpressureheads,water

    contents,temp

    eratures,andconcentrations

    RootUptakeD

    istribution

    RootUptakeD

    istribution

    MaterialLaye

    rs

    MaterialLaye

    rs-parameterswhichdescribethe

    propertiesoft

    heflowdomain

    -material

    distribution

    -scalingfactors

    ObservationN

    odes

    ObservationN

    odes

    PROFILE

    -DomainDesign,MeshGenerator,

    DomainPr

    operties

    HYDRUS-1D

    -3000

    -2500

    -2000

    -1500

    -1000

    -5000

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    WaterContents[-]

    -40

    -200

    20

    40

    60

    50

    100

    150

    200

    250

    300

    Time[days]

    potTop

    potRoot

    actTop

    actRoot

    actBot

    CumulativeFluxes

    -2.0

    -1.5

    -1.0

    -0.5

    0.0

    0.5

    1.0

    50

    100

    1

    50

    200

    250

    300

    T

    ime[days]

    AllFluxes

    -300

    -200

    -1000

    100

    200

    50

    100

    150

    200

    250

    300

    Time[days]

    ObservationNodes

    36

  • 7/25/2019 1.1 Curso de Hydrus 1D

    37/213

    Computer Session 1

    Computer Session 1

    The purpose of Computer Sessions 1, 2, and 3 is to give users hands-on experience

    with the HYDRUS-1D software package (version 3.0). Three examples are given

    to familiarize users with the major parts and modules of HYDRUS-1D (e.g., the

    project manager, Profile and Graphics modules), and with the main concepts and

    procedures of pre- and post-processing (e.g., domain design, finite element

    discretization, initial and boundary conditions specification, and graphical display

    of results).

    The following three examples are considered in Computer Sessions 1, 2, and 3,

    respectively:

    I. Direct Problem: Infiltration into a one-dimensional soil profile (ComputerSession 1)

    A. Water flow

    B. Solute transport

    C. Possible additional modifications

    II. Direct Problem: Water flow and solute transport in a multilayered soil profile

    (Computer Session 2)

    III. Inverse Problem: One-step outflow method (Computer Session 3)

    The first example represents the direct problem of infiltration into a 1-meter deep

    loamy soil profile. The one-dimensional profile is discretized using 101 nodes.

    Infiltration is run for one day. Ponded infiltration is initiated with a 1-cm constant

    pressure head at the soil surface, while free drainage is used at the bottom of the

    soil profile. The example is divided into three parts: (A) first, only water flow is

    considered, after which (B) solute transport is added. Several other modifications

    are suggested in part (C). These include (1) a longer simulation time, (2)

    accounting for solute retardation, (3) using a two-layered soil profile, and (4)

    implementing an alternative spatial discretization. Users in this example becomefamiliar with most dialog windows of the main module, and get an introduction

    into using the external graphical Profile module with which one specifies initial

    conditions, selects observation nodes, and so on.

    37

  • 7/25/2019 1.1 Curso de Hydrus 1D

    38/213

    Computer Session 1

    A. Infiltration of Water into a One-Dimensional SoilProfile

    Project ManagerButton "New"

    Name: Infiltr1

    Description: Infiltration of water into soil profile

    Button "OK"

    Main ProcessesHeading: Infiltration of water into soil profile

    Button "Next"

    Geometry InformationButton "Next"

    Time InformationFinal Time: 1

    Initial Time Step: 0.0001

    Minimum Time Step: 0.000001

    Button "Next"

    Print InformationNumber of Print Times: 12

    Button "Select Print Times"

    Button "Next"

    Water Flow - Iteration CriteriaButton "Next"

    Water Flow - Soil Hydraulic ModelButton "Next"

    Water Flow - Soil Hydraulic ParametersCatalog of Soil Hydraulic Properties: Loam

    Button "Next"

    38

  • 7/25/2019 1.1 Curso de Hydrus 1D

    39/213

    Computer Session 1

    Water Flow - Boundary ConditionsUpper Boundary Condition: Constant Pressure Head

    Lower Boundary Condition: Free Drainage

    Button "Next"

    Soil Profile - Graphical EditorMenu: Conditions->Initial Conditions->Pressure Head

    or Toolbar: red arrow

    Button "Edit condition", select withMouse the first node and specify 1

    cm pressure head.

    Menu: Conditions->Observation Points

    Button "Insert", Insert nodes at 20, 40, 60, 80, and 100 cm

    Menu: File->Save Data

    Menu: File->Exit

    Soil Profile - SummaryButton "Next"

    Execute HYDRUS

    OUTPUT:Observation Points

    Profile InformationWater Flow - Boundary Fluxes and Heads

    Soil Hydraulic Properties

    Run Time Information

    Mass Balance Information

    -100

    -80

    -60

    -40

    -20

    0

    20

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    Time [days]

    N1

    N2

    N3

    N4

    N5

    Observation Nodes: Pressure Heads

    -100

    -80

    -60

    -40

    -20

    0

    -100 -80 -60 -40 -20 0 20

    h [cm]

    Profi le Info rmatio n: Pressure Head

    Close Project

    39

  • 7/25/2019 1.1 Curso de Hydrus 1D

    40/213

    Computer Session 1

    B. Infiltration of Water and Solute into

    a One-Dimensional Soil Profile

    Project ManagerClick on Infiltr1Button "Copy"

    New Name: Infiltr2

    Description: Infiltration of Water and Solute into Soil Profile

    Button "OK", "Open"

    Main ProcessesCheck "Solute Transport"

    Button "OK"

    Solute Transport - General InformationButton "Next"

    Solute Transport - Transport ParametersDisp. = 1 cm

    Button "Next"

    Solute Transport - Reaction ParametersButton "Next"

    Solute Transport - Boundary ConditionsUpper Boundary Condition: 1

    Lower Boundary Condition: Zero Gradient

    Button "Next"

    Execute HYDRUS

    OUTPUT:Observation Points

    Profile Information

    Solute Transport - Boundary Actual and Cumulative Fluxes

    40

  • 7/25/2019 1.1 Curso de Hydrus 1D

    41/213

    Computer Session 1

    C. Possible Modifications

    1. Longer simulation time:

    Project ManagerClick on Infiltr2

    Button "Copy"

    New Name: Infiltr3

    Button "OK", "Open"

    Time Information:Final Time: 2.5 d

    Print Information

    Button "Select Print Times"Button "Default"

    Button "Next"

    2. Retardation:Solute Transport - Reaction ParametersKd = 0.5

    3. Two Soil Horizons:Geometry Information

    Number of Soil Materials: 2

    Water Flow - Soil Hydraulic Parameters1. line - Silt

    Solute Transport - Reaction ParametersKd= 0

    Soil Profile - Graphical EditorButton "Edit condition", select withMouse the lower 50 cm and specify

    Material 2.

    Menu: File->Save Data

    Menu: File->Exit

    41

  • 7/25/2019 1.1 Curso de Hydrus 1D

    42/213

    Computer Session 1

    4. Different Spatial Discretization:

    Soil Profile - Graphical EditorMenu: Conditions->Profile Discretization

    or Toolbar: ladderButton "Insert Fixed", at 50 cm

    Button "Density", at 50 cm 0.5, at the soil surface 0.3

    Menu: Conditions->Initial Conditions->Pressure Head

    or Toolbar: red arrow

    Button "Edit condition", select withMouse the first node and specify 1

    cm pressure head.

    Menu: Conditions->Observation Points

    Button "Insert", Insert nodes at 20, 40, 60, 80, and 100 cm

    Menu: File->Save DataMenu: File->Exit

    -100

    -80

    -60

    -40

    -20

    0

    -100 -80 -60 -40 -20 0 20

    h [cm]

    Prof i l e Infor mation : Pressure Head

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0.0 0.5 1.0 1.5 2.0 2.5

    Time [days]

    N1

    N2

    N3

    N4

    N5

    Observation Nodes: Water Content

    42

  • 7/25/2019 1.1 Curso de Hydrus 1D

    43/213

    OntheCharac

    terizationandMeasurement

    oftheH

    ydraulicPropertiesof

    Unsatu

    ratedPorousMedia

    RienvanG

    enuchten1andJirkaimnek

    2

    1Departm

    entofMechanicalEngineering

    FederalUniversityofRiodeJaneiro,Brazil

    2Departm

    entofEnvironmentalSciences

    UniversityofCalifornia,Riverside,CA

    RichardsE

    quationforVariably-Satura

    tedFlow

    ()

    ()

    ()

    h

    h

    =

    K

    +K

    t

    z

    z

    SoilW

    aterRetentionCurve,(h)

    Hydr

    aulicConductivityFunction,K(h)orK

    ()

    -

    volumetricwatercontent[L3L-3]

    h-

    pressurehead[L]

    K-

    unsaturatedhydraulicconductivity[LT-1]

    z-

    verticalcoordinatepositiveupward[L]

    t-

    time[T]

    S-

    rootwateruptake[T-1]

    SoilWaterR

    etentionCurve,

    (h)

    HydraulicConductivityFuncti

    on,K()

    43

  • 7/25/2019 1.1 Curso de Hydrus 1D

    44/213

    SoilWaterH

    ysteresis

    Outlin

    e

    DirectMeasurementsofHydraulicProperties

    StatisticalPore-SizeDistributionModels

    Pedot

    ransferFunctions

    TheR

    osettaPTFcode

    TheU

    NSODADatabase

    StructuredMedia

    Ongoing/FutureResearch

    Unsaturated

    HydraulicConductivity

    Steady

    Steady--StateMethods

    StateMethods

    UsingDarcysla

    w:q=-K(h)(dh/dz-1)

    Long-ColumnM

    ethod

    CentrifugeMeth

    ods

    DirectTransientMethods

    DirectTransientMethods

    HorizontalInfiltration(BruceandKlute,1956)

    SorptivityMethods(Dirksen,1975)

    One-Step/Multi-StepOutflowMethod(Passioura,1975)

    Hot-AirMethod

    (Aryaetal.,1975)

    EvaporationMe

    thod(Boelsetal.,1978)

    ParameterOptimizationMethods

    ParameterOptimizationMethods

    (Kooletal.,1985;imnekandvanGenuchten,1996)

    LaboratoryMetho

    ds

    Tempe

    PressureCell

    44

  • 7/25/2019 1.1 Curso de Hydrus 1D

    45/213

    PeteShouses

    TempeCellSetupatUSSalinityLaboratory

    UnsaturatedHydraulicCondu

    ctivity

    DirectMethods

    DirectMethods

    InstantaneousProfileMethods(Watson,1966)

    Unit-GradientMethods(Sissonetal.,1980)

    Plane

    -of-Zero-FluxMethod

    Sorpt

    ivityMethods(ClothierandWhite,1981)

    ConstantHeadPermeameters(Reynoldsetal.,1983)

    Tensi

    onInfiltrometers(WhiteandPerroux,1988)

    Param

    eterOptimizationMethods

    Param

    eterOptimizationMethods

    Russo

    etal.(1991)

    Abba

    spouretal.(1996)

    imneketal.(1998,2000)

    ...

    FieldMeth

    ods

    Schematicof

    TensionInfiltrometer

    Thesupply

    pressurehead

    hwet=h2-h1

    =

    =

    22/

    (

    )e

    s

    e

    K

    S

    =K

    S

    +

    +

    Se

    -effectivewaterconten

    t

    r,

    s

    -residualandsaturatedwatercontents

    ,n,m(=1-1/n),land

    -emp

    iricalparameters

    Ks

    -saturatedhydraulicconductivity

    50

  • 7/25/2019 1.1 Curso de Hydrus 1D

    51/213

    LognormalDistributionModel(Kosugi,1996):

    (

    )

    0

    ln

    /

    ()

    1

    ()

    2

    2

    r

    e

    s

    r

    hh

    h

    S

    h

    erfc

    =

    =

    (

    )

    2

    0

    ln

    /

    1

    ()

    2

    2

    l

    s

    e

    hh

    Kh

    KS

    erfc

    =

    +

    Se

    -effectivewatercontent

    r,

    s

    -residualan

    dsaturatedwatercontents

    h0,,andl-empiricalp

    arameters

    Ks

    -saturatedh

    ydraulicconductivity

    SoilHydraulicPropertyModels

    10-2

    10-1

    100

    101

    102

    103

    10

    So

    ilWa

    ter

    Pressure

    Hea

    d(-mm

    )

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-

    HydraulicConductivity(mm/sec)

    Observed

    BimodalHydraulicConductivity

    Durner(1994):

    Se

    -effectivewatercontent

    r,s

    -residualand

    saturatedwatercontents,respectively

    k

    -numberofoverlappingsubregions

    wi

    -weightingfactorsforthesub-curves

    i,ni,mi(=1-1/ni),andl-empiricalparametersofthesub-curves.

    1

    ()

    1

    ()

    (1

    )i

    i

    k

    r

    e

    i

    m

    n

    i

    s

    r

    i

    h-

    S

    h=

    =

    w

    -

    +

    h

    =

    2

    1/

    1

    2

    1

    11-(1-

    )

    ()

    i

    i

    i

    i

    k

    m

    me

    i

    i

    k

    i

    l

    s

    e

    i

    k

    i

    i

    i

    i

    w

    S

    K

    =

    wS

    K

    w

    =

    =

    =

    Thehydrauliccharacteristics

    contain4+2kunknownparameters:

    r,

    s,i,ni,

    l,andK

    s.

    Ofthese,

    r,

    s,andK

    shavea

    clearphysicalmeaning,whereasi,niandlareessentially

    empiricalparametersdetermi

    ningtheshapeoftheretentionandhydraulicconductivity

    functions[vanGenuchten,19

    80].

    SoilHydraulicPropertyModels

    00

    .10

    .20

    .30

    .40

    .50

    .6-1

    0

    1

    2

    3

    4

    5

    Log

    (|PressureHead[cm]|)

    WaterContent[-]

    Total

    Matrix

    Fracture

    -10-8-6-4-20

    -1

    0

    1

    2

    3

    4

    5

    Log(|Pressu

    reHead[cm]|)

    Log(Conductivity[cm/days])

    Total

    Matrix

    Fracture

    Exampleofcom

    positeretention(left)andhydraulicconductivity(right)

    functions(r=0.00,

    s=0.50,1=0.01cm-1,n1=1.50,l=0.5,Ks=1cmd-1,w1=0.975,

    w2=0.025,

    2=1.00cm-1,n2=5.00).

    Durner(19

    94):

    SoilHyd

    raulicPropertyModels

    51

  • 7/25/2019 1.1 Curso de Hydrus 1D

    52/213

    PedotransferFunctions

    Predictthehydraulicpropertiesfrom

    moreeasily

    measureddata:

    SoilTexture(classorparticle-sizedistribution)

    BulkDensity

    Porosity

    OrganicMatterContent

    SoilStructure

    ClayMineralogy

    ChemicalProper

    ties(EC,pH,SAR,)

    TwoApproaches:

    TwoApproaches:

    -Predictspecificr

    etentionvalues

    -Predictsoilhydr

    aulicparameters

    PTFsbyCarselandParrish(1

    988)

    PTFsbyCarselandParrish(1988)

    PTFsbyCarselandParrish(1

    988)

    Averagevalues

    ofselectedsoilwaterretentionparametersfor12major

    soiltexturalgroups

    52

  • 7/25/2019 1.1 Curso de Hydrus 1D

    53/213

    HierarchicalNeural-NetworkBootstrapApproach

    Hierarchy:tryto

    matchvariouslevelsofdataavailability

    Neuralnetworks:toprovidethemostaccurate

    predictions

    Bootstrap:gener

    ateconfidenceintervalsofthe

    predictions

    Predictionof:wa

    terretention,Ks,andtheunsaturated

    hydraulicconductivity

    Rosetta(Schaapetal.,2001)

    Rosetta(Schaapetal.,2001)

    Pedotra

    nsferFunctions:Rosetta

    Schaapetal.(2001)

    Model

    InputData

    TXT

    TexturalClass

    SSC

    Sand,Silt,Clay

    %

    SSCB

    D

    Same+BulkDensity

    SSCB

    D+

    33

    SSCBD+

    at3

    3kPa

    SSCB

    D+

    33+

    1500

    Same+

    at1500kPa

    Predicted

    parameters+

    uncertainties

    Hierarchica

    lModels

    Inputdata

    Pedotransfer

    Functions:Rosetta

    53

  • 7/25/2019 1.1 Curso de Hydrus 1D

    54/213

    Pedotransfer

    Functions:Rosetta

    0

    100

    0

    20

    80

    20

    40

    60

    40

    60

    40

    60

    80

    20

    80

    100

    0

    100

    Clay

    [%]

    Silt[%]

    San

    d[%]

    LL

    0

    100

    0

    20

    80

    20

    40

    60

    40

    60

    40

    60

    80

    20

    80

    100

    0

    100

    Clay

    [%]

    Silt[%]

    San

    d[%

    ]

    SlS

    sL

    L

    siL

    Si

    sc

    L

    cL

    sicL

    siC

    sC

    C

    RosettasCalibrationData

    R

    etention

    (N=2134)

    UnsaturatedCo

    nductivity

    (N=235

    )

    Waterretention

    SaturatedConductivity

    R2

    RMSEw

    R2

    RMSEs

    Model

    Input

    r

    s

    Log

    Logn

    cm3/cm3 LogKs

    (-)

    H1

    TexturalClass

    0.06

    6

    0.1

    43

    0.2

    03

    0.4

    52

    0.0

    72

    0.4

    27

    0.7

    39

    H2

    SSC

    0.08

    6

    0.1

    78

    0.2

    38

    0.4

    73

    0.0

    70

    0.4

    61

    0.7

    17

    H3

    SSCBD

    0.09

    4

    0.5

    81

    0.2

    65

    0.4

    95

    0.0

    60

    0.5

    35

    0.6

    66

    H4

    SSCBD

    33

    0.12

    1

    0.6

    05

    0.4

    17

    0.5

    99

    0.0

    41

    0.6

    40

    0.5

    86

    H5

    SSCBD

    33

    1500

    0.38

    7

    0.6

    00

    0.5

    77

    0.7

    60

    0.0

    39

    0.6

    47

    0.5

    81

    Directfittodata

    -

    -

    -

    -

    0.0

    12

    -

    -

    RosettasP

    erformance

    SSC:

    Sand,silt,

    claypercentages

    BD:

    Bulkdensity

    33,1500

    Watercon

    tentat33and1500kPa

    RosettasClass-AveragePTFs

    54

  • 7/25/2019 1.1 Curso de Hydrus 1D

    55/213

    Pore-ConnectivityParameterL

    (

    )

    2

    1/

    1

    1

    m

    L

    m

    s

    e

    e

    K

    KS

    S

    =

    UNSODA2UnsaturatedSoilHydraulicDatabase

    http://www.ussl.ars.usda.gov/models.htm

    MS-ACCESS

    FlexibleQu

    eries

    Graphicssu

    pport

    Downloadable

    DripIrrigation(Skaggsetal.,2004)

    DripIrrigation(Skaggsetal.,2004)

    55

  • 7/25/2019 1.1 Curso de Hydrus 1D

    56/213

    HYDRUS

    -0.93

    1.3

    1.4

    0.023

    0.33

    0.021

    l

    Ks(cmhr-1)

    n

    s

    r

    Hydraulicproperties

    Hydraulicproperties

    estimatedusingRo

    setta

    estimatedusingRo

    setta

    pedotransferfunction

    pedotransferfunction

    (sand,silt,andclay

    ,bulk

    (sand,silt,andclay

    ,bulk

    density,1/3and15

    bar

    density,1/3and15

    bar

    watercontent)

    watercontent)

    0

    10

    20

    30

    40

    50

    60

    DISTANCE(cm)

    0

    10

    20

    30

    40

    50

    60

    DISTANCE(cm)

    -70

    -60

    -50

    -40

    -30

    -20

    -100

    DEPTH(cm)

    Observed

    Predicted

    0.1

    0.1

    2

    0.1

    4

    0.1

    6

    0.1

    8

    0.2

    0.2

    2

    0.2

    4

    0.2

    60.2

    8

    0.3

    Vo

    lume

    tricWa

    ter

    Con

    ten

    t

    Trial1:5hourirrigation,20L/mappliedwater

    Time=5.5h

    r

    0.1

    0.1

    2

    0.1

    4

    0.1

    6

    0.1

    8

    0.2

    0.2

    2

    0.2

    4

    0.2

    60.2

    8

    0.3

    Vo

    lume

    tricWa

    ter

    Con

    ten

    t

    0

    10

    20

    30

    40

    50

    60

    DISTANC

    E(cm)

    -70

    -60

    -50

    -40

    -30

    -20

    -100

    DEPTH(cm)

    0

    10

    20

    30

    40

    50

    60

    DISTANCE(cm)

    Observed

    Predicted

    Trial1:5hourirrigation,20L/mappliedwater

    Time=28hr

    0.1

    0.1

    2

    0.1

    4

    0.1

    6

    0.1

    8

    0.2

    0.2

    2

    0.2

    4

    0.2

    60.2

    8

    0.3

    Vo

    lume

    tricWa

    ter

    Con

    ten

    t

    0

    10

    20

    30

    40

    5

    0

    60

    DISTANCE(cm)

    0

    1

    0

    20

    30

    40

    50

    60

    DISTANCE(cm)

    -70

    -60

    -50

    -40

    -30

    -20

    -100

    DEPTH(m)

    Observed

    Predicted

    Trial2:10

    hourirrigation,40L/mappliedwater

    Time=10.7

    5hr

    56

  • 7/25/2019 1.1 Curso de Hydrus 1D

    57/213

    0.1

    0.1

    2

    0.1

    4

    0.1

    6

    0.1

    8

    0.2

    0.2

    2

    0.2

    4

    0.2

    60.2

    8

    0.3

    V

    olume

    tricWa

    ter

    Con

    ten

    t

    0

    10

    20

    30

    40

    50

    60

    DISTANCE(cm)

    0

    10

    20

    30

    40

    50

    60

    DISTANCE

    (cm)

    -70

    -60

    -50

    -40

    -30

    -20

    -100

    DEPTH(cm)

    Predicted

    Obse

    rved

    Trial2:10hourirrigation,40L/mappliedwater

    Time=31hr

    0.1

    0.1

    2

    0.1

    4

    0.1

    6

    0.1

    8

    0.2

    0.2

    2

    0.2

    4

    0.2

    60.2

    8

    0.3

    Vo

    lume

    tricWa

    ter

    Con

    ten

    t

    0

    10

    20

    30

    40

    50

    60

    DISTANCE(cm)

    0

    10

    20

    30

    40

    50

    60

    DISTANCE(cm)

    -70

    -60

    -50

    -40

    -30

    -20

    -100

    DEPTH(m)

    Observed

    Predicted

    Trial3:15

    hourirrigation,60L/mappliedwater

    Time=16h

    r

    0.1

    0.1

    2

    0.1

    4

    0.1

    6

    0.1

    8

    0.2

    0.2

    2

    0.2

    4

    0.2

    60.2

    8

    0.3

    Vo

    lume

    tricWa

    ter

    Con

    ten

    t

    0

    10

    20

    30

    40

    50

    60

    DISTANCE(cm)

    0

    10

    20

    30

    40

    50

    60

    DISTANC

    E(cm)

    -70

    -60

    -50

    -40

    -30

    -20

    -100

    DEPTH(cm)

    Predicted

    Observed

    Trial3:15hourirrigation,60L/mappliedwater

    Time=39hr

    0

    -10

    -20

    -30

    -40

    -50

    DEPTH

    (cm)

    00.10.20.3

    WATERCONTENT

    DISTANCE=

    0

    0

    -10

    -20

    -30

    -40

    -50

    DEPTH

    (cm)

    00.10.20.3

    WATERCONTENT

    DISTANCE=

    10

    0

    10

    20

    30

    40

    DISTANCE(cm)

    00

    .10

    .20

    .3

    DEPTH=-1

    0

    0

    10

    20

    30

    40

    DISTANCE(cm)

    00

    .10

    .20

    .3

    DEPTH=-2

    0

    Trial1:5h

    ourirrigation,20L/mappliedwater

    Time=5.5hr

    57

  • 7/25/2019 1.1 Curso de Hydrus 1D

    58/213

    0

    -10

    -20

    -30

    -40

    -50

    DEP

    TH

    (cm)

    00

    .10

    .20

    .3

    WATERCONTENT

    DISTANCE

    =0

    0

    -10

    -20

    -30

    -40

    -50

    DEP

    TH

    (cm)

    00

    .10

    .20

    .3

    WATERCONTENT

    DISTANCE

    =10

    0

    10

    20

    30

    40

    DISTANCE(cm)

    00

    .10

    .20

    .3

    DEPTH=-1

    0

    0

    10

    20

    30

    40

    DISTANCE(cm)

    00

    .10

    .20

    .3

    DEPTH=-2

    0

    Trial1:5hourirrig

    ation,20L/mappliedwater

    Time=28hr

    Genericversussite-specificPTFs

    Effectsofsoilstructure

    Effectsofchemistryandclaymineralogy

    -NRCSsoilcharacterizationdatabase

    Lab

    oratoryversusfielddata

    Continuedatamining(UNSODA)

    Future

    PlansRosetta

    HydraulicPr

    operties-Challenges

    Hysteresis

    Dryendeffects;residualsaturation,r

    Dynamiceffec

    ts;non-equilibriumflow

    Airentrapment(sversusporosity)

    Swellingsoils;

    effectsofchemistry

    Descriptionnearsaturation

    Secondordercontinuityin(h)(n

    1.0)

    Structuredmedia;preferentialflow

    ScaleIssues(u

    pscaling;effectiveproperties)

    RequiredAccuracy(fluxvsprofilecontrolledinf.)

    ...

    58

  • 7/25/2019 1.1 Curso de Hydrus 1D

    59/213

    ApplicationofFiniteElementMethodto

    1DVariably-SaturatedWaterFlow

    andS

    oluteTransport

    Jirkaimnek

    1andRienvanGenuchten2

    1DepartmentofEnvironmentalSciences

    Universityo

    fCalifornia,Riverside,CA

    2DepartmentofMechanicalEngineering

    FederalUnive

    rsityofRiodeJaneiro,Brazil

    ApplicationofFiniteElementMethod

    to1DVariably-SaturatedFlow

    RichardsEquation:

    cos

    h

    q

    =

    K

    +

    -S

    -S

    t

    x

    x

    x

    =

    Finalfinite

    differencescheme:

    1,

    1

    1

    1

    1/2

    1/2

    -

    -

    j

    k

    j

    j

    j

    j

    i

    i

    i

    i

    i

    q

    q

    =

    S

    t

    x

    +

    +

    +

    +

    +

    12/1

    1

    11

    12/

    1

    12/1

    ++

    +

    ++

    + +

    + +

    =

    =

    j i

    i

    j i

    j i

    j i

    j i

    K

    xh

    h

    K

    q

    K

    xh

    K

    q

    xi+1

    xi

    xi-1

    ti

    ti+1

    x

    xi

    xi-1

    j ih1

    j ih

    1j ih

    +

    1j ih+

    11j ih+

    11j ih+

    +

    t

    ApplicationofFiniteElementMethod

    to1DVariably-SaturatedFlow

    RichardsEquation:

    cos

    h

    q

    =

    K

    +

    -S

    -S

    t

    x

    x

    x

    =

    Finalfinitedifferencescheme:

    1,

    1

    1,

    1

    1,

    1,

    +1,

    +1

    1,

    1

    1,

    1

    1

    -1

    1/2

    -1/2

    1,

    1,

    1/2

    -1/2

    1

    -

    1

    -

    -

    -

    +

    -

    j

    k

    j

    k

    j

    k

    jk

    j

    k

    j

    j

    k

    j

    k

    i

    i

    i

    i

    i

    i

    i

    i

    j

    k

    j

    k

    ji

    i

    i

    i

    i

    h

    h

    h

    h

    K

    K

    =

    S

    K

    K

    t

    x

    x

    x

    x

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    +

    where:

    +1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1/2

    1/2

    -

    =

    =

    2

    2

    j

    j

    i

    i

    i

    i

    i

    i

    i

    i

    j

    ,k

    j

    ,k

    j

    ,k

    j

    ,k

    i

    i

    i

    i-

    j+

    ,k

    j

    ,k

    i+

    i-

    t=

    t

    t

    x-

    x

    x=

    x

    x

    -x

    x

    x-x

    2

    +

    +

    K

    K

    K

    K

    =

    =

    K

    K

    +

    +

    +

    +

    +

    +

    +

    +

    ApplicationofFiniteElementMethodto

    1DV

    ariably-SaturatedFlow

    MatrixForm:

    Thesymmetrical

    tridiagonalmatrix[Pw

    ]

    hastheform:

    +1,

    +1

    +1,k

    [

    {

    ={

    }

    }

    ]

    j

    k

    j

    w

    w

    P

    h

    F

    d

    e

    e

    d

    e

    e

    d

    e

    .

    .

    .

    .

    .

    .

    e

    d

    e

    e

    d

    e

    e

    d

    =

    P

    N

    N

    N

    N

    N

    N

    N

    N

    w

    1

    1

    1

    2

    2

    2

    3

    3

    3

    2

    2

    2

    1

    1

    1

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    0

    ]

    [

    ApplicationofFiniteElementMethodto1D

    Variably-SaturatedFlow

    59

  • 7/25/2019 1.1 Curso de Hydrus 1D

    60/213

    Themass

    Themass--conservativemethod

    conservativemeth

    odproposedbyCeliaetal.[1990],inwhich

    j+1,k+1isexpandedinatrun

    catedTaylorserieswithrespecttohabou

    t

    theexpansionpointhj+1,k,is

    usedinthetimedifferencescheme:

    +1,

    +1

    +1,

    +1

    +1,

    +1,

    +1,

    +1

    +1,

    +1,

    +1,

    1

    1

    1

    +1,

    -

    -

    - -

    -

    +

    t

    j

    k

    j

    j

    k

    j

    k

    j

    k

    j

    j

    k

    j

    k

    j

    k

    j

    i

    i

    i

    i

    i

    i

    i

    i

    i

    i

    j

    k

    j

    j+

    ,k

    j+

    ,k

    i

    i

    j

    k

    i

    i

    i

    =

    =

    =

    t

    t

    t

    t

    h

    h

    C

    t

    +

    +

    +

    =

    ApplicationofFiniteElementMethod

    to1DVariably-SaturatedFlow

    Thediagonal

    entriesdiandabove-diagonalentrieseiofthematrix[Pw

    ],

    andtheentrie

    sfiofvector{Fw

    },aregivenby:

    1

    11

    1

    1

    11

    k,1+

    2

    +

    2

    +

    +

    +

    +

    +

    i

    ,k

    ji-

    ,k

    ji

    i

    ,k

    ji

    ,k

    ji+

    ji

    i

    xK

    +

    K

    xK

    +

    K

    Ctx

    =d

    i

    ,k

    ji+

    ,k

    ji

    i

    xK

    K-

    =e

    2

    +

    11

    1

    +

    +

    x

    S

    K

    K+

    tx

    h

    Ctx

    =f

    ji

    ,k

    ji

    ,k

    ji+

    j i

    k

    j i

    ,k

    ji

    k

    ji

    i

    -

    2-

    )

    -

    (

    -

    11

    11

    ,1+

    1

    ,1+

    +

    +

    ApplicationofFiniteElementMethod

    to1DVariably-SaturatedFlow

    ImplementationoftheUpperFluxBoundaryCondition:

    ImplementationoftheUpperFluxBoundaryCondition:

    q

    =-

    -S

    t

    x

    ThemassbalanceequationinsteadofDarcy'slaw

    isdiscretized.

    Discretizationgives:

    Expandingthetimederivativeonthelefthand[Celiaetal.,1990],an

    d

    usingthediscretizedformo

    fDarcy'slawforqN-1/2leadsto:

    S

    x

    q

    q(

    -=

    t

    jN

    N

    ,k

    j N-

    j N

    j N

    k

    j N

    -)

    -

    2

    -

    1

    12/1

    1+

    1+,

    1+

    +

    1

    11

    1

    ,1+

    1

    2

    +

    +

    N

    ,k

    jN-

    ,k

    +jN

    k

    jN

    N

    N

    x

    K

    +

    K

    Ct

    2

    x=

    d

    q

    -

    S

    x

    K

    K

    -)

    tx

    h

    C

    t

    2x

    =f

    +j N

    jN

    N

    ,k

    jN-

    k

    jN

    j i

    k

    j N

    ,k

    jN

    k

    jN

    N

    N

    1

    1

    11

    ,

    1+

    ,1+

    1

    ,1+

    1

    2

    -

    2+

    -

    (

    2

    -

    +

    +

    qNistheprescribedsoilsurfaceboundaryflux

    ApplicationofFiniteElementMethod

    to1DVariably-SaturatedFlow

    ComputationofNodalFluxes:

    Computatio

    nofNodalFluxes:

    S

    +

    t

    x

    -

    +

    x

    h-

    h

    K-=

    q

    x

    +

    x

    x

    +

    xh

    -

    h

    K-

    x

    +

    xh

    -

    h

    K-

    =

    q

    +

    xh

    -

    h

    K-

    =

    q

    jN

    jN

    +jN

    N

    N

    +j-N

    +jN

    +j-N

    +j N

    i

    i

    i

    -i

    +j -i

    +ji

    +j -i

    -i

    i

    +ji

    +j+i

    +j+i

    +j i

    i

    +j

    +j

    +j+

    +j

    -

    2

    1

    1

    1

    11

    1

    1

    11

    1

    12/1

    1

    1

    1

    11

    1

    12/1

    1

    1

    11

    12/1

    1

    1

    1

    12

    12/11

    1

    1

    ApplicationofFiniteElementMethod

    to1DVariably-SaturatedFlow

    60

  • 7/25/2019 1.1 Curso de Hydrus 1D

    61/213

    IterativeProcess:

    IterativeProcess:Picard

    Picardlinearization

    linearization

    j-timestep

    k-iteration

    1)Firsttimestep:hj+1,1=hinit,j=1,k=1

    2)Derivationofthesystemoflinearizedalgebraicequations

    usinghj+1,k,q

    j+1,k,K

    j+1,k,C

    j+1,k

    3)Gaussianelimination-hj+1,k+1,q

    j+1,k+1

    4)ToleranceCriteria:

    abs(hj+1,k+1-hj+1,k)Grid - Height: 0.05

    Menu: Condition->Profile Discretization

    Button"Number": 50

    Button"Insert Fixed" at 3.95 cm

    Button"Density": deselect "Use upper", upper density =0.1 at 3.95 cm

    Menu: Condition->Initial Condition->Pressure Head

    Button"Edit condition"

    Select entire profile: Top value=-2, Bottom value=2.52

    Deselect "Use top value for both"

    Lowest node = -1000 cm

    Menu: Condition->Material Distribution

    Button"Edit condition"

    Select the ceramic plate and specify "Material Index"=2

    Ditto for "subregions"Observation Points?

    Soil Profile - Summary

    Execute HYDRUS

    OUTPUT:Water Flow - Boundary Fluxes and Heads

    Cumulative Bottom FluxSoil Hydraulic Properties

    Inverse Solution Information

    -0.7

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0.0

    0.001 0.01 0.1 1 10 100

    Time [hours]

    92

  • 7/25/2019 1.1 Curso de Hydrus 1D

    93/213

    Computer Session 3

    Exercises:

    Multistep Outflow Experiments (SGP97 project):

    Height of the soil sample:5.9 cm

    Thickness of the ceramic: 0.5 cm

    Conductivity of the ceramic, boundary conditions, and output data

    depend on the sample (see the Excel file).

    -0.8

    -0.7

    -0.6

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0.0

    0 500000 1e+006 1.5e+006

    Time [sec]

    Cum. Bottom Flux

    -600

    -500

    -400

    -300

    -200

    -100

    0

    0 500000 1e+006 1.5e+006

    Time [sec]

    Bottom Pressure Head

    93

  • 7/25/2019 1.1 Curso de Hydrus 1D

    94/213

    94

  • 7/25/2019 1.1 Curso de Hydrus 1D

    95/213

    Application

    ofFiniteElementMethod

    to2DVariably-SaturatedWaterFlow

    and

    SoluteTransport

    Jirka

    imn

    ek1andRienvanGenuchten

    2

    1Departm

    entofEnvironmentalSciences

    Universit

    yofCalifornia,Riverside,CA

    2DepartmentofMechanicalEngineering

    FederalUniversityofRiodeJaneiro,Brazil

    DiscretizationUsingFiniteEle

    ments

    Examplesofthe

    unstructuredtriangularfiniteelementgridsforreg

    ular(left)and

    irregular(right)

    two-dimensionaltransportdomains.

    ApplicationofFiniteElementMethodto

    2DVariably-SaturatedFlow

    TheTheGalerkin

    Galerkinmethod:

    method:

    ApplyingGreen'sfirstidentityandreplacinghbyh0

    A

    A

    ij

    iz

    n

    i

    jh

    -

    K

    K

    +K

    +S

    d

    =

    t

    x

    x

    (

    )

    '

    e

    e

    e

    A

    n

    n

    ij

    e

    j

    i

    A

    A

    ij

    iz

    i

    n

    j

    e

    A

    n

    iz

    n

    e

    i

    h

    +KK

    d

    =

    t

    x

    x

    h

    K

    K

    +

    K

    n

    d

    +

    x

    -KK

    -S

    d

    x

    e

    representsthedomainoccupiedbyelemente

    e

    isaboundarysegmentofelemente

    Inmatrixfor

    m:

    }

    {

    }

    {

    }

    {

    }

    ]{

    [

    }{

    ]

    [

    D-

    B-

    Q

    =h

    A

    +

    dt

    d F

    [

    (

    )

    ]

    4

    e

    n

    m

    A

    l

    nm

    l

    ij

    e

    i

    j

    A

    A

    A

    xx

    m

    n

    xz