1 slac klystron lectures lecture 9 march 31, 2004 other microwave amplifiers twt, cfa,...

31
1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, [email protected] Glenn Scheitrum, [email protected] Stanford Linear Accelerator Center

Upload: philippa-carson

Post on 23-Dec-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

1

SLAC KLYSTRON LECTURES

Lecture 9

March 31, 2004

Other Microwave Amplifiers

TWT, CFA, Gyro-amplifier, SSA

Robert Phillips, [email protected] Glenn Scheitrum, [email protected]

Stanford Linear Accelerator Center

Page 2: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

2

Suggested Resources:

Movie viewer: Quicktime, RealPlayer, etc.

References:

Traveling Wave Tubes, J. Pierce,

Principles of Traveling Wave Tubes, A.S. Gilmour, 1994

The electron cyclotron maser, K.R. Chu, Review of Modern Physics, 2004

Microwave Power Engineering, Vol. 1, E. Okress editor, Academic Press, 1968

Microwave Magnetrons, Collins, MIT Radiation Laboratory Series, V6, 1947

Page 3: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

3

TWT – THE OTHER LINEAR BEAM TUBE

•Brief History – Development and application

•How TWT’s differ from klystrons

•Why TWT’s, not klystrons

•Characteristics of two basic types:Transmission line circuitWaveguide circuit

•Operating principles and characteristics summarized

Page 4: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

4

Pioneers

1933 Haeff TW deflection devices

1940 Lundenblad TW amplifier

1943 Kompfner Early amplifiers

1946 Pierce Early work at Bell Labs. Published complete theory. “Traveling Wave Tubes,” 1950.

Page 5: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

5

TWT vs. Klystron

Similarities:

• Beam formation, focusing and collection are the same• Input and output rf coupling are similar• TWT uses a traveling wave version of the discreet cavity interaction of

the klystron• Large overlays in beam voltage, current and rf power output

Differences:

• Bandwidth• Klystron ≈ 1%• Waveguide TWT ≈ 10%• Transmission Line (Helix) TWT ≈ 1 - 3 octaves

• Form factor more amenable to low-cost, light-weight PPM focusing

Market Impact of Difference

• A single ECM TWT tube type produced by Varian for ECM produced in greater numbers than all of the klystron amplifier tubes ever built.

Page 6: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

6

Basic Helix TWT

If this were a coax line in TEM mode (not coiled), vp/c = 1, independent of frequency, with unlimited bandwidth and no axial E.

By coiling the conductor, axial velocity is reduced by the amount of the increase in path length, a substantial Ez is created, and vz remains largely independent of frequency. Gain is obtained by synchronizing the beam velocity with the axial wave velocity

(from Principles of Traveling Wave Tubes, A. S. Gilmour)

Page 7: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

7

ω-β diagram showing -1 space harmonic

(from Principles of Traveling Wave Tubes by A. S. Gilmour)

Page 8: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

8

Helix and contra-wound helix derived circuits

Page 9: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

9Photograph of ring-loop circuits, L-band through Ku-band

9”

Page 10: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

10

ω-β diagram for connected ring circuit showing -1 space harmonic suppressed

Page 11: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

11

ω-β diagram for TE10 waveguide (from A. S. Gilmour)

Page 12: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

12

ω-β diagram for periodically-loaded waveguide (from A. S. Gilmour)

Page 13: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

13

Folded waveguide (from A. S. Gilmour)

Page 14: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

14

Coupled-cavity circuit – a practical embodiment of a folded waveguide

Page 15: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

15

Cloverleaf fundamental forward wave circuit produced 5 MW peak power at 10% BW

Page 16: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

16

Gyro-amplifiers•Gyro-TWT – medium power, high gain, moderate bandwidth, 15%-30% efficiency

•Gyro-klystron – high power, high gain, low bandwidth, 20%-40% efficiency

Page 17: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

17

Gyro-amplifiers – electron cyclotron maser interaction devices

Basic interaction physics:

In a magnetic field, electrons orbit flux lines at the cyclotron frequency

0

0c

eB

m 0 0

2 2

2

11 1

5110001

V V

v mcc e

where e is the electron mass, m0 is the electron mass and B0 is the magnetic field in Tesla

If an RF electric field is applied in the orbit plane, the momentum of the orbiting electrons will be modulated.

Negative mass effect: Electrons which gain energy have increased mass, larger orbit radius, and reduced angular velocity.

Page 18: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

18

Page 19: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

19

Available beam power is proportional to beam area.

Compare beam area of helix, coupled cavity (similar to klystron), and cutoff overmoded waveguide of gyro-amplifier.

Tunnel size in TWTs and klystrons limited by a, gyro-amplifiers use overmoded waveguide sections. For a gyroklystron, rb is limited by need to have drift tubes cut off to operating mode

Page 20: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

20

Page 21: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

21

Gyrodevices interact with the transverse momentum of the beam

Parameter = v / v║ is the ratio of transverse to parallel velocity

Normal range of is 1 – 2 making the rotational energy 50% to 80% of

total beam energy

At an of 1, a total efficiency of 30% implies a rotational efficiency of 60%

It is important to minimize energy spread in the beam as the efficiency

drops dramatically with increased axial velocity spread.

This is especially important in gyro-amplifiers where axial velocity spread

smears the bunch longitudinally as it drifts between cavities.

Page 22: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

22

Page 23: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

23

Page 24: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

24

CPI-Northrop-NRL

94 GHz Gyroklystron

100 kW peak power

10 kW average power

0.7% bandwidth

Page 25: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

25

Crossed field amplifiers

• High peak and average power, high efficiency, 10% bandwidth devices

• Low gain ~10 dB, needs multi-device amplifier chain

• Noise due to cycloidal electron trajectories

• Current produced by secondary emission, no heater required

Page 26: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

26

Page 27: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

27

Equations of motion for an electron in crossed electrostatic and magnetostatic fields

Non relativistic Lorentz force equation F = ma = q ( E + v x B )

For planar magnetron this separates into three orthogonal components

2

2 x z y

d x e dy dzE B B

d t m dt dt

2

2 y x z

d y e dz dxE B B

d t m dt dt

2

2 z y x

d z e dx dyE B B

d t m dt dt

z

x

Ez By

Assume constant Ez

and By

Ex=Ey=Bx=Bz=0

2

2 y

d x e dzB

d t m dt

2

2 z y

d z e dxE B

d t m dt

Integrating d2x/dt2, defining initial conditions and substituting into d2z/dt2 yields

22

2 z

d z eB ez E

d t m m

Solving for z (and x) gives

21 coszEm eB

z te B m

2

sinzEm eB eBx t t

e B m m

Page 28: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

28

Solid stateDriver 10 W

Block diagram of CFA amplifier chain at 11 GHz for multi-megawatt system

TWT or klystronIntermediate amp

30 dB 10 kW

CFA+10 dB100 kW

CFA+10 dB1 MW

CFA+10 dB10 MW

Page 29: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

29

Solid State Amplifiers (SSAs)•Broad bandwidth, low power, moderate gain, low noise, low efficiency devices

•Small size, low cost manufacturing process

•Ideal for use as drivers for high power sources

•Two basic transistor types BJTs and FETs

•Both are used at 3 GHz for power amplifiers but FETs dominate at higher frequencies

•Both are limited in frequency by transit time effects that are similar to those encountered by vacuum triodes

•New materials GaAs and GaN produce higher mobility carriers and higher breakdown voltage to extend the performance envelop of solid state amplifiers

Page 30: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

30

Page 31: 1 SLAC KLYSTRON LECTURES Lecture 9 March 31, 2004 Other Microwave Amplifiers TWT, CFA, Gyro-amplifier, SSA Robert Phillips, rphil@slac.stanford.edu rphil@slac.stanford.edu

31

Summary

The discussion has covered solid state amplifiers, traveling wave tubes, crossed field amplifiers, and gyro-amplifiers.

Obviously solid state amplifiers and traveling wave tubes do not produce the high peak power required for accelerator sources. They function well as drivers and as low power, wide bandwidth sources.

CFA’s and gyroklystrons can produce the required power but each has significant handicaps in comparison to a high power klystron.

The CFA can produce efficiencies in excess of 70% but has very low gain and requires a multi device amplifier chain to drive the final output CFA.

The gyroklystron has a problem with device efficiency, increasing to minimize the energy in axial velocity causes increased axial velocity spread in the beam.

Gyro-amplifiers use overmoded RF circuits and therefore have a heat transfer advantage as the frequency increases.