1 mb ch b-pm renal-uz-combined slides-11-3-15

259
04/07/15 1 RENAL PHYSIOLOGY RENAL PHYSIOLOGY LECTURE 1&2: LECTURE 1&2: Kidney Structure, Functional Relationship Kidney Structure, Functional Relationship & Glomerular filtration & Glomerular filtration By DR. P MURAMBIWA

Upload: derny7

Post on 16-Jul-2015

25 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 1

RENAL PHYSIOLOGYRENAL PHYSIOLOGY

LECTURE 1&2:LECTURE 1&2:

Kidney Structure, Functional RelationshipKidney Structure, Functional Relationship& Glomerular filtration& Glomerular filtration

By

DR. P MURAMBIWA

Page 2: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 2

 

“Kidneys  are master  chemists with main  roles 

of protecting us from pleasures of eating and 

drinking,  and  thus  their  dysfunction  speeds 

our early death." 

Page 3: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 3

Page 4: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 4

OBJECTIVES 1:OBJECTIVES 1:

• Outline how body fluids are distributed.•  Summarize the ionic composition of intra-    and extracellular fluids.• Identify the main regions of the kidney. •  Draw a labelled diagram of a nephron.•  Summarize the ultrastructural features of different parts of the nephron.

•  Draw a labelled diagram of the blood supply of the nephron.

Page 5: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 5

Page 6: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 6

  

Plasma,  the  extracellular  fluid  within  the vascular system

 Interstitial,  the extracellular fluid outside the fluid  vascular  system  and  separated 

by the capillary endothelium

Transcellular  the extracellular fluid separated fluids,  from  the  plasma  by  an  epithelial 

layer  and  the  capillary  endothelium e.g.,  synovial  fluid,  fluids  in  the urinary  tracts,  aqueous  &  vitreous humour  in  the  eye  and cerebrospinal fluid.

Page 7: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 7

Page 8: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Renal Cortex

Renal Medulla

Minorcalyx

Renal PelvisRenal Artery

RenalPyramid

Renal Vein

Ureter

Page 9: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 9

         Two distinct regions;  

    The cortex, darker outer region                     Medulla a pale inner region 

 

The medulla further subdivides into conicalareas called pyramids.  

Page 10: 1 mb ch b-pm renal-uz-combined slides-11-3-15

RenalCortex

RenalMedulla

CorticalNephron

JuxtamedullaryNephron

osmotic gradient formation

Page 11: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 11

           

Page 12: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 12

Page 13: 1 mb ch b-pm renal-uz-combined slides-11-3-15

EfferentArteriole

Peritubularcapillaries(cortical nephrons)

VasaRecta(juxtamedullarynephrons)

collectingduct

Loop ofHenle

• The vasa recta plays a critical role in urine formation.

Blood Supplyto the Nephrons

Page 14: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 15: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 16: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 17: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Characteristics of the renal blood flow:

1.High blood flow.

1200 ml/min, or 20-21 % of the cardiac output. 94% to the cortex

2. Two capillary beds

High hydrostatic pressure in glomerular capillary (about 60 mmHg) and low hydrostatic pressure in peritubular capillaries (about 13 mmHg)Vesa Recta

Page 18: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 18

Why such a high blood flow?  

To sustain a high rate of filtration of plasma in      

    the glomeruli

Blood flow is not distributed uniformly within      

       

    the kidney.  

Total renal blood flow is decreased in most                    

    stressful situations

A number of substances also affect renal blood                    

    flow

Page 19: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 19

FUNCTIONS OF THE KIDNEYSFUNCTIONS OF THE KIDNEYS ♦ Regulation  of  the  osmotic  pressure  of 

the  plasma  and  other  extracellular fluids 

♦ Regulation  of  the  excretion  of  sodium and water and hence the volume of the     extracellular fluid

♦  Regulation of  individual  concentrations 

of    many  electrolytes  in  the  extracellular fluid

 

Page 20: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 20

Regulation  of  plasma  [bicarbonate]  and therefore the hydrogen ion concentration           

   The  kidneys  eliminate  metabolic  waste 

products such as urea. 

They also  eliminate many  foreign compoundsfrom  the  body,  including  drugs  such  as penicillin. The  kidneys  produce  erythropoietin,  renin, 

kallikrein,  that  leads  to  the  formation  of  kinins and various prostaglandins 

Page 21: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 21

 ♦ Kidneys have several special metabolic functions. 

They are responsible for converting the inactive form of vitamin D to its active form, 1,25-dihydroxy-

vitamin D3. 

The kidneys synthesize ammonia from amino acids.  

The kidneys can synthesize glucose from      non-carbohydrate sources. 

Kidneys are sites for degradation of several polypeptide hormones, including insulin, glucagon, 

and parathyroid hormone. 

Page 22: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 22

OBJECTIVES 2:OBJECTIVES 2:  

Define the basic processes of GFR •   State  the  sites  in  the  glomerulus  for  restriction  of macromolecules

 •  State the determinants of GFR.  •   Why is renal auto-regulation important?

Page 23: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Summary-Processes occurring in the Nephron

Filtration

Reabsorption Secretion

Excretion

Page 24: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 24

GLOMERULAR FILTRATIONGLOMERULAR FILTRATION

• Filtration  =  the  bulk  flow  of  a  solvent             through  a  filter  carrying  with  it 

            substances  small  enough  to        pass through the filter. 

• Kidney      =  separation  of  compounds  into 

    glomerular filtrate.

Page 25: 1 mb ch b-pm renal-uz-combined slides-11-3-15

The Renal CorpuscleComposed of Glomerulus and Bowman’s capsule

Page 26: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 26

Page 27: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 28: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 28

FILTRATION IN THE KIDNEYFILTRATION IN THE KIDNEY

    Ultrafiltration 

      At  the  glomerulus  and  the  Bowman’s  capsule  = separation  of  plasma  water  and  its  non-protein constituents that enter the Bowman's space. 

    Every minute = 125 ml of plasma is forced through the glomerular  membrane  into  the  tubule  by  hydrostatic pressure within the glomerulus.

Page 29: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Glomerular filtration barrier

Page 30: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 30

Page 31: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 31

RENAL PHYSIOLOGYRENAL PHYSIOLOGY

LECTURE 1 & 2 CONT’D:LECTURE 1 & 2 CONT’D:

Kidney Structure, Functional RelationshipKidney Structure, Functional Relationship& Glomerular filtration Rate& Glomerular filtration Rate

By

DR. P MURAMBIWA

Page 32: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Glomerular Filtration barrier

Page 33: 1 mb ch b-pm renal-uz-combined slides-11-3-15

GLOMERULAR FILTRATION RATE

• It is a bulk flow process in which water and all low molecular weight substances including small peptides move together from the glomerular capillaries into the bowman”s capsule

Page 34: 1 mb ch b-pm renal-uz-combined slides-11-3-15

WHAT SUBSTANCES ARE FILTERED?

• All plasma constituents except for

• 1) high molecular weight substances such as plasma proteins like albumins and globulins i.e. those whose RMM is higher than 68 000

• 2) substances that are protein bound such as calcium and fatty acids

Page 35: 1 mb ch b-pm renal-uz-combined slides-11-3-15

CONTD

• Large molecules with a net negative charge because the glomerular surface is negatively charged hence repulsion occurs i.e. proteins

• NB THE FILTRATE CONTAINS THE SAME AMOUNTS OF SUBSTANCES AS THERE ARE IN PLASMA EXCEPT FOR PROTEINS AND PROTEIN BOUND SUBSTANCES.

Page 36: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 37: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Forces governing GFR and RBF

Page 38: 1 mb ch b-pm renal-uz-combined slides-11-3-15

FORCES INVOLVED IN GLOMERULAR FILTRATION

• Glomerular capillary pressure =60mmHg

• Fluid pressure in the bowman” s space =15mmHg

• Osmotic force due to protein in plasma =29mmHg

Page 39: 1 mb ch b-pm renal-uz-combined slides-11-3-15

FORCES FAVOURING FILTRATION

• Glomerular capillary pressure

Page 40: 1 mb ch b-pm renal-uz-combined slides-11-3-15

FORCES OPPOSING FILTRATION

• Fluid pressure in bowman space

• Osmotic force due to protein in plasma

NET FILTRATION PRESSURE IS POSITIVE-FAVOURS FILTRATION

Page 41: 1 mb ch b-pm renal-uz-combined slides-11-3-15

CONTD

• Osmotic force due to protein higher than in all other arterioles because of loss of large quantities of water by glomerular filtration process

Page 42: 1 mb ch b-pm renal-uz-combined slides-11-3-15

GLOMERULAR FILTRATION RATE

• It refers to VOLUME of fluid filtered from the glomerulus into bowman space PER UNIT TIME.

Page 43: 1 mb ch b-pm renal-uz-combined slides-11-3-15

FACTORS AFFECTING GFR

• Changes in renal blood flow

• changes in glomerular capillary hydrostatic pressure due to

1) changes in systemic blood pressure2) afferent or efferent arteriolar

constriction

Page 44: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 45: 1 mb ch b-pm renal-uz-combined slides-11-3-15

CONTD• Changes of hydrostatic pressure in Bowman”s

capsule due to 1) ureteral obstruction 2) edema of kidney inside tight renal capsule• changes in concentration of plasma proteins

due to 1) dehydration 2) hypoproteinaemia- however, these are minor

factors

Page 46: 1 mb ch b-pm renal-uz-combined slides-11-3-15

SUMMARY OF FACTORS AFFECTING GFR

• Net filtration pressure.

• Permeability of corpuscular membrane

• Surface area available for filtration to occur

Page 47: 1 mb ch b-pm renal-uz-combined slides-11-3-15

PHYSIOLOGICAL REGULATION OF GFR

• It is not fixed but regulated by1) hormones2) neural input to the 2 arterioles3) neural and hormonal input to

mesangial cells

Page 48: 1 mb ch b-pm renal-uz-combined slides-11-3-15

GFR DECREASED BY

Constriction of AADilatation of EAContraction of mesangial cells that

surround the glomerular capillaries thereby reducing the surface area of capillaries available for filtration, hence at any given net filtration pressure GFR will be reduced

Page 49: 1 mb ch b-pm renal-uz-combined slides-11-3-15

AGENTS CAUSING CONTRACTION OF MESANGIAL

CELLSAngiotensin IIVasopressinNor-epinephrineHistamine

Page 50: 1 mb ch b-pm renal-uz-combined slides-11-3-15

AGENTS CAUSING RELAXATION OF MESANGIAL CELLS

ANPDopaminecAMP

Page 51: 1 mb ch b-pm renal-uz-combined slides-11-3-15

GFR IS INCREASED BY

• Constriction of EA

• Dilatation of AA

• NB SIMULTANEOUS DILATATION AND RELAXATION OF THE 2 ARTERIOLES HAS NO NET EFFECT ON GFR

Page 52: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 52

        CONCEPT OF CLEARANCECONCEPT OF CLEARANCE RBF and GFR can be measured by clearance methods.

   Clearance of a substance is the volume of blood cleared of the substance in unit time. 

        The units of clearance are usually volume/time, (ml/min).

Page 53: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Renal handling of different substances

Page 54: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 54

To calculate the clearance of a substance three values must be measured.

[Substance]  in  plasma

=

Px

   

[Substance]  in  urine

=

Ux

   

Urine  flow  rate 

=

V

 

Amt  excreted/  min

=

Ux     V

           Clearance

           

 = C= UxV ml/ time

                                               

                                 Px 

Page 55: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 55

Clearance of Na+ when given the following: PNa+ 

=     142 mmol/lUNa+ 

=      71 mmol/lV

=        1 ml/min Clearance  of  Na+

=       71   1                                         

            142                                                         

                

=    0.5 ml/min

Glomerular filtration rate (GFR) measured byclearance methods.

Page 56: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 56

GFR MEASUREMENTGFR MEASUREMENT

GFR = amount of  filtrate  that  flows out of the  renal  corpuscles  of  both  kidneys every minute. 

How do we measure GFR?

Substance  used  must  have  the  following  properties:

freely  filtered, small and must not bind  to plasma protein.

Page 57: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 57

♣  

must  not  be  secreted  or  reabsorbed  (  actively  or 

passively )                   

 

must not be toxic.                   

 

must not be metabolized. 

 

The substance must be present in the filtrate at 

the same concentration as in plasma. 

 

When  99%  of  the  filtrate  is  reabsorbed  the 

substance  will  remain  in  the  tubule  and  excreted 

in  the  urine.

 

 

Therefore,  concentration  of  substance  in  the 

filtrate  =  concentration  of  substance  in  the 

plasma.

Page 58: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 58

MEASUREMENTMEASUREMENT  WITH INULINWITH INULIN   Inulin is not a normal constituent of the body.

     Inulin (MW 5500) is freely transferred  across the glomerular membrane in the  same way as  small molecules such as urea or Cl-. 

    Molecular weights have shown that molecular weight of 10,000 pass freely

Page 59: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 59

 

We need to know the following:     

  Urine    [inulin] 

(  UIn  )        =

60 mg/ml     

Urine  flow  rate

(V  )

    =

1.1 ml/min        

Plasma  [inulin]

(PIn  )          =

0.5 mg/ml         

GFR  =

UIn   V  =  60 x 1.1 = 132 ml/min 

                                       

      PIn        0.5

    

Page 60: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 60

  Normal GFR is 125 ml/min (180 litres/day) in a normal man.     Varies with body size; therefore the value is normally  given  as  125 ml/min/1.73 m2  body  surface  in young  man,  the  body  surface  area  is  10%  less  in females.    GFR is low in infants and decreases in old age.  

Page 61: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Creatinine is:

End product of muscle creatine metabolism

Used in clinical setting to measure GFR but less accurate than inulin method

Small amount secreted from the tubule

Creatinine used clinically to measure GFR

Page 62: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 62

   

  MEASUREMENT OF RENAL BLOOD FLOW (RBF)MEASUREMENT OF RENAL BLOOD FLOW (RBF)

Using indirect methods.  

substance should meet the following criteria:

 

totally cleared by filtration.

 

not reabsorbed.  

not metabolized.

 

not toxic.  

[substance]  should  not  exceed  the  transport maximum 

(Tm).  

  

Page 63: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 63

Para-amminohippuric acid (PAH) is widely used to    estimate RBF.  [PAH]  should  not  exceed  the  Tm  since  the  substance  is 

eliminated from the kidney by both filtration and secretion 

The amount of PAH excreted =  amount of PAH filtered + the amount that is being secreted.   

Page 64: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 64

AUTOREGULATION OF GFRAUTOREGULATION OF GFR

• Changes  in  blood  pressure  have  little  effect  on RBF and GFR. 

 • In  haemorrhage,  there  are  increases  in sympathetic  nervous  activity  to  the  kidney causing vasoconstriction. 

• Renal  vasoconstriction  is  attenuated  by prostaglandins. 

Page 65: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 65

The  most  widely  accepted  explanation  is  that  of  the myogenic theory.  

This states that " Increase in wall distension of afferent arterioles  brought 

about  by  an 

increase  in  perfusion  pressure  causes  automatic contraction of the smooth muscle fibres in vessel walls thereby  increasing  resistance  to  flow  so  keeping  the flow  constant  despite  the  increase  in  perfusion pressure."         

  

Page 66: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Mechanisms of glomerulotubular balance and tubuloglomerular feedback-Intra-renal mechanism

Page 67: 1 mb ch b-pm renal-uz-combined slides-11-3-15

2934

Tubuloglomerular feedback

Page 68: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Myogenic mechanism of the autoregulation

Page 69: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 69

Page 70: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 70

Page 71: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 71

CONCEPT OF FILTRATION FRACTIONCONCEPT OF FILTRATION FRACTION

Filtration fraction= CI = 125ml/min

CPAH 600ml/min

~ 20% in normal man

Page 72: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 72

RENAL PHYSIOLOGYRENAL PHYSIOLOGY

LECTURE 3 & 4:

TRANSPORT PROCESSES IN THE PROXIMAL TRANSPORT PROCESSES IN THE PROXIMAL TUBULETUBULE

By

DR. P MURAMBIWA 

Page 73: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 73

OBJECTIVES:OBJECTIVES:

1. State major characteristics of proximal-tubular system for reabsorption and secretion of electrolytes. 2. What are the pathways for sodium reabsorption across the proximal tubule epithelium? 3. Describe the renal handling of various organic and inorganic substances.

Page 74: 1 mb ch b-pm renal-uz-combined slides-11-3-15

74

INTRODUCTIONINTRODUCTION

The proximal tubule = a major site where many

substances are reabsorbed such as :

Na+

Cl-

H2O

HCO3-

Glucose

Amino acids

Urea

Page 75: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 76: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 76

REABSORPTION AND SECRETIONREABSORPTION AND SECRETION

• Indicate the direction of movement of substances

• Reabsorption = transfer out of the tubular fluid and returned to peritubular capillaries that surround tubules.

• Reabsorption is a selective process, and the sites of the nephron handle the filtrate in tubules differently.

• Secretion = movement of substances across the tubule epithelium

Page 77: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Renal handling of different substances

Page 78: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Summary-Processes occurring in the Nephron

Filtration

Reabsorption Secretion

Excretion

Page 79: 1 mb ch b-pm renal-uz-combined slides-11-3-15

PROXIMAL CONVOLUTED TUBULE (PCT)

Found in cortex15 mm long and 55µm in diametersingle layer of cellsluminal edges with brush borderconvolution increases length hence

increase contact between tubular cells and luminal fluid thereby facilitating reclamation

04/07/15 79

Page 80: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 80

SODIUM AND WATER REABSORPTION

Page 81: 1 mb ch b-pm renal-uz-combined slides-11-3-15

REABSORPTION OF SODIUM

04/07/15 81

% NaCl Reabsorbed

♦Proximal Tubule 67% Loop of Henle (Ascending) 25%

Distal Tubule 5%Collecting Duct 2% Excreted in Urine % Variable

Page 82: 1 mb ch b-pm renal-uz-combined slides-11-3-15

82

Daily sodium intake = daily sodium loss =10.50g

Sodium gain in the body occurs via:Food intake

Sodium loss in the body can occur via:

menstrual flow in females

feces especially diarrhea

urine

at times GIT loses by vomiting

sweat

hemorrhage where salt and water may be quite high

Daily Sodium Balance

Page 83: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 84: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Two pathways of the absorption

Lumen

Plasma

CellsTranscellular

Pathway

Paracellular

transport

Page 85: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 85

Page 86: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Passive Transport

Diffusion

Page 87: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 87

NaNa++ HANDLING HANDLING

Reabsorption of 60 - 70% Na+ is by active process. The Na+ reabsorption is associated with Cl- and

HCO3- and H2O.

The reabsorption of Na+ is primary and active and is shown by many arguments.

Page 88: 1 mb ch b-pm renal-uz-combined slides-11-3-15

88

The net gain and loss of sodium and water are regulated by the kidney over a wide range

BOTH SODIUM AND WATER ARE:

small

circulate free in plasma

not secreted

reabsorbed above 99% hence their absorption is

linked i.e water reabsorption is dependant on

sodium reabsorption.

Page 89: 1 mb ch b-pm renal-uz-combined slides-11-3-15

COUPLING OF WATER TO SODIUM REABSORPTION IN PCT

Page 90: 1 mb ch b-pm renal-uz-combined slides-11-3-15

COUPLING OF WATER TO SODIUM

REABSORPTION IN PCT

Page 91: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Na+ reabsorption in PCT

Page 92: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Primary Active Transport

Page 93: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Secondary Active Transport

Na+

glucose

Na+

H+

out in out in

co-transport counter-transport (symport) (antiport)

Co-transporters will move one moiety, e.g. glucose, in the same direction as the Na+.

Counter-transporters will move one moiety, e.g. H+, in the opposite direction to the Na+.

Tubular

lumen

Tubular CellInterstitial

Fluid

Tubular

lumen

Tubular CellInterstitial

Fluid

Page 94: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 94

Transport is abolished by cooling.

Replacement of sodium by any other cation (Lithium) greatly reduces reabsorption of H2O and other solutes.

Page 95: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 95

Reabsorption continues at almost normal rates after substitution of Cl- by various other anions, nitrate and perchlorate.

Replacement of Na+ with HCO3- reduces

Na+reabsorption, but by less than half

Mannitol in the lumen, reduces [NaCl]

Inhibition of Na+ - K+ ATPase by oubain.

Page 96: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 96

Page 97: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 97

Na+ EXTRUSION Cl- REABSORPTION

H2O REABSORPTION

UPTAKE OF NaCl AND H2O

The uptake of Na+, Cl- and H2O from lateral intercellular spaces into peritubular capillaries

Page 98: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 98

Na+

Cl-

Na+

Cl-

H2O πLI

πcap

πLIS

CapillaryLumen

- πcap = capillary hydrostatic pressure - πLIS = oncotic pressure in the lateral spaces + πLIS = oncotic pressure in the capillary + πcap = hydrostatic pressure in lateral

spaces UPTAKE α (πcap + πLIS) – (πLIS + πcap)

H2OπLIS

πcap

Page 99: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 99

RENAL PHYSIOLOGYRENAL PHYSIOLOGY

LECTURE 3 & 4: CONT’D

TRANSPORT PROCESSES IN THE PROXIMAL TRANSPORT PROCESSES IN THE PROXIMAL TUBULETUBULE

By

DR. P MURAMBIWA 

Page 100: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 100

GLUCOSE AND AMINO ACID REABSORPTION

Page 101: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Glucose & amino acidsCo-transported with sodium

Page 102: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 102

Transport processes for amino acid transport (Tm limited).

for basic amino acids and cysteine

for glutamic and aspartic acids

for neutral acids

imino acids

for glycine

Page 103: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Glucose / Amino acid Co-Transport-PCT

Na+

Glucose or Amino acid

Na+

H+

out in out in

co-transport counter-transport (symport) (antiport)

Co-transporters will move one moiety, e.g. glucose, in the same direction as the Na+.

Counter-transporters will move one moiety, e.g. H+, in the opposite direction to the Na+.

Tubular

lumen

Tubular CellInterstitial

Fluid

Tubular

lumen

Tubular CellInterstitial

Fluid

Page 104: 1 mb ch b-pm renal-uz-combined slides-11-3-15

CONCEPT OF TRANSPORT MAXIMUM (Tm)

Refers to limit to the amount of substance that the

renal tubule can transport per unit time.

Under normal circumstances Tm is not exceeded but

due to excess ingestion or disease the plasma

concentration of a substance increases and exceed Tm

hence substance appear in urine such as

glycosuria

aminoaciduria

Page 105: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 105

GLUCOSE TRANSPORT & CONCEPT OF TRANSPORT MAXIMUM

Page 106: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 106

HYDROGEN ION SECRETION AND HYDROGEN ION SECRETION AND BICARBONATE REABSORPTIONBICARBONATE REABSORPTION

Page 107: 1 mb ch b-pm renal-uz-combined slides-11-3-15

BICARBONATE HANDLING

BICARBONATE IS FREELY FILTRABLE

• it undergoes reabsorption in the • 1)PCT• 2)ASCENDING LOOP OF HENLE

• 3)CORTICAL COLLECTING DUCTS• bicarbonate reabsorption is an ACTIVE

PROCESS VIA:

Page 108: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 108

• Processes in the kidney that consume most of the hydrogen ions secreted by the tubular epithelium.

• Processes in the kidney that lead to generation of new bicarbonate to replace depleted plasma

bicarbonate reserves.

Page 109: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 110: 1 mb ch b-pm renal-uz-combined slides-11-3-15

BICARBONATE REABSORPTION

Page 111: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 111

BICARBONATE REABSORPTION

Page 112: 1 mb ch b-pm renal-uz-combined slides-11-3-15

bicarbonate reabsorption is an ACTIVE

PROCESS VIA:

HYDROGEN ION ATPase pumps

HYDROGEN ION/POTTASIUM ION ATPase pumps

SODIUM ION/HYDROGEN ION COUNTER-

TRANSPORTERS

BICARBONATE ION EXCRETION = BICARBONATE

FILTERED + BICARBONATE SECRETED-BICARBONATE

REABSORBED

Page 113: 1 mb ch b-pm renal-uz-combined slides-11-3-15

BICARBONATE REABSORPTION STARTS IN THE CELL

carbon dioxide + water = carbonic acid

carbonic acid dissociates to form bicarbonate ion and hydrogen ion

bicarbonate ion is transported to the interstitial fluid then to

plasma while hydrogen ion is actively transported into the

lumen to combine with filtered bicarbonate to form water

and carbon dioxide which diffuse back to the cell for use in

the next cycle of bicarbonate reabsorption

Page 114: 1 mb ch b-pm renal-uz-combined slides-11-3-15

ADDITION OF NEW BICARBONATE TO PLASMA

COMBINATION OF SECRETED

BICARBONATE WITH NON

BICARBONATE BUFFERS

RENAL PRODUCTION AND

SECRETION OF AMMONIUM occurring

in the PCT

Page 115: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 116: 1 mb ch b-pm renal-uz-combined slides-11-3-15

RENAL METABOLISM OF GLUTAMINE AND EXCRETION OF AMMONIM ION

• Glutamine (amino acid) can be co transported with sodium or can be from the interstitial fluid where it is metabolized by the cell to form ammonium ion and bicarbonate ion

• the ammonium ion is then secreted in counter transport with sodium to be excreted in urine- this leads to a net gain of bicarbonate ion

Page 117: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Usually about 25 times bicarbonate is filtered

more than any other buffer hence all secreted

hydrogen combine with bicarbonate in lumen

until all has been used up before combining with

other buffers of which hydrogen phosphate is the

most vital

there is a net gain of bicarbonate in this case vital as a

way of compensating acidosis

Page 118: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 118

ACID PHOSPHATE EXCRETIONACID PHOSPHATE EXCRETION

Page 119: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 120: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 120

Page 121: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 121

REABSORPTION OF UREAREABSORPTION OF UREA

Page 122: 1 mb ch b-pm renal-uz-combined slides-11-3-15

• 50%-reabsorbed by simple

diffusion in the PCT.

• 30% is reabsorbed in the DISTAL

CONVOLUTED TUBULE

• 50% reabsorbed by FACILITATED DIFUSSION

VIA UREA TRANSPORTERS IN THE THIN

ASCENDING LIMBS OF THE LOOP OF HENLE.

Page 123: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 124: 1 mb ch b-pm renal-uz-combined slides-11-3-15

124

SUMMARYSUMMARY This Lecture identified and described the

following: Pathways for sodium reabsorption across

the proximal tubule epithelium

How Na+ and water reabsorption occur in the proximal convoluted tubule.

How substances like glucose, aminoacids,

Bicarbonate, urea are reabsorbed

Page 125: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 125

RENAL PHYSIOLOGYRENAL PHYSIOLOGY

LECTURE 5&6: LECTURE 5&6:

COUNTER-CURRENT MULTIPLIER AND EXCHANGE SYSTEMS COUNTER-CURRENT MULTIPLIER AND EXCHANGE SYSTEMS

By

DR. P MURAMBIWA

Page 126: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 126

CORTEX

MEDULLA

Early diluting segment

Cortical collecting tubule

Outer medullary collecting duct

Inner medullary collecting duct

Thin ascending limb

Thick ascending limb

Thin descending limb

Proximal straight tubule

Proximal convoluted tubule

Bowman’s capsule

Macula densa

Late diluting segment

Page 127: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 127

INTRODUCTIONINTRODUCTION

The fluid entering the loop of Henle is isotonic toplasma

Animals such as birds and mammals, those with longloops of Henle, urine produced may be moreconcentrated than plasma (hypertonic).

This suggests that some processes that influence movement of water or perhaps some electrolytes.

The loops of Henle are considered to be Counter-currentMultiplier Systems.

Page 128: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 128

OBJECTIVES:OBJECTIVES:

What is the difference between Counter-current Multiplication and Counter-current Exchange Systems? Describe the role played by: a) loops of Henle, b) vasa recta, c) collecting ducts, d) ADH, and e) urea in the production of an osmotically concentrated urine.

Page 129: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 129

COUNTER-CURRENT MULTIPLICATION MECHANISMCOUNTER-CURRENT MULTIPLICATION MECHANISM Hypothesis: Proposes that the loop of Henle can produce a small osmotic gradient between the ascending and descending limbs that can be multiplied into a large longitudinal gradient by the countercurrent arrangement in the two limbs.

Wirz, Hargitay & Kuhn (1951)

Page 130: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 130

Page 131: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 132: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 133: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Operation of the loop of Henle as a countercurrent multiplier system

Page 134: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 134

Page 135: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 135

 

Page 136: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 137: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 138: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 138

ASCENDING LIMBASCENDING LIMB 

  Actively extrudes NaCl into the medullary          interstitium, but is impermeable to water.   Process uses a Na+ - K+ ATPase   Cl- is actively transported.     Stoichiometry of 1Na+, 2Cl- and lK+  

     

Page 139: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 139

Much of the K+ leaks back into the tubular      lumen so that it is predominantly NaCl that    accumulates in the medullary interstitium.  Osmolality in the medullary interstitium is    increased and that of the fluid in the   ascending limb is decreased.

Page 140: 1 mb ch b-pm renal-uz-combined slides-11-3-15

NaCl transport in the thick ascending limb of the loop of Henle

Page 141: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Na+ reabsorption in thick ascending loop of Henle

Page 142: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 142

THE DESCENDING LIMBTHE DESCENDING LIMBHighly permeable to H2O and to a lesser extent to  NaCl Urea  is  added  to  the  medullary  interstitium  from  the collecting  duct by diffusion down a concentrationgradient  Collecting  duct  tubules  urea  concentration  rises       because of water reabsorption.  The medullary collecting tubule is permeable to urea in the presence of antidiuretic hormone (ADH). 

Page 143: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 143

THE OSMOTIC GRADIENTTHE OSMOTIC GRADIENT

• Only juxtamedullary nephrons contribute

• NaCl is added to the medullary interstitium.

• Ascending limb is highly impermeable to H2O.

• H2O extraction from the descending limb

increases the [NaCl]

Page 144: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 144

• In the cortical collecting duct system, in the presence of ADH, the osmolality increases to become iso-osmotic with plasma.

• High [urea] in the medullary interstitium provides an osmolality additional to that of NaCl.

Page 145: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Na+ Reabsorption-Cortical Collecting Duct

Page 146: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 146

  UREA AND COUNTER-CURRENTUREA AND COUNTER-CURRENT  MULTIPLICATIONMULTIPLICATION ♦Urea is delivered to the distal tubule and hence the    collecting ducts.  ♦ In the presence of ADH water is reabsorbed.  ♦ In the medullary collecting ducts ADH causes the   urea and water reabsorption.  ♦The high interstitial urea concentration leads to the   diffusion of some urea into the loop of Henle, to   return to the collecting duct.

Page 147: 1 mb ch b-pm renal-uz-combined slides-11-3-15

ADH/Arginine vasopressin

Page 148: 1 mb ch b-pm renal-uz-combined slides-11-3-15

UREA DISTRIBUTION 50%-reabsorbed by simple diffusion in the PCT.

30% is reabsorbed in the DISTAL CONVOLUTED TUBULE

50% reabsorbed by FACILITATED DIFUSSION VIA UREA TRANSPORTERS IN THE THIN ASCENDING LIMBS OF THE LOOP OF HENLE.

15% LOST IN URINE DAILY.

Page 149: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 150: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 150

                    

Page 151: 1 mb ch b-pm renal-uz-combined slides-11-3-15

SUMMARY OF THE FEATURES THAT PROMOTE COUNTERCURRENT MULTIPLIER

 COUNTERCURRENT MULTIPLIER -basically  depends on the ability of the loops of henle to create and maintain a hyper-osmotioc medullary interstitium.

Features making this possible are:apposition of the thin descending and thin ascending loops of Henle (hairpin turn of the loops of henle)

Page 152: 1 mb ch b-pm renal-uz-combined slides-11-3-15

apposition of the vasa recti (vessels originating from the efferent arteriole-hairpin turn of the vasa recti)

the thin descending limb is impermeable to sodium chloride but permeable to water

the thin ascending limb is impermeable to both sodium chloride and  water and has no active transport mechanism for sodium chloride

Page 153: 1 mb ch b-pm renal-uz-combined slides-11-3-15

The thick ascending limb is impermeable to both water and sodium chloride but has active transport for sodium chloride

the distal tubule has active transport for sodium chloride but is impermeable to water

the cortical collecting duct is permeable to water, & has active transport for sodium chloride

Page 154: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Both medullarly and cortical  collecting ducts are controlled by vasopressin. 

urea, a freely permeable and highly filtrable substance also helps in the maintenance of a hyper osmotic intestitium in the medulla.

Page 155: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Countercurrent exchanger system- Vasa recta

Page 156: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 156

COUNTERCURRENT EXCHANGE SYSTEMCOUNTERCURRENT EXCHANGE SYSTEM

Vasa recta = capillaries from efferent arterioles of the juxtamedullary nephrons

Blood flow = 50 - 100 ml/min of which perhaps 5 ml/min reaches the papillae.

The vasa recta have a hairpin arrangement and dip down into the medulla.

This arrangement ensures close contact between ascending and descending vasa recta and between ascending and descending loops of Henle.

Page 157: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 157

The vasa recta, like capillaries, elsewhere are permeable to water and solutes.

In the ascending vasa recta the plasma  regains the water and solutes.  

O2 and CO2 also undergo a countercurrent exchange in 

  the vasa recta. As the descending vasa recta enter the increasingly  

hypertonic  medullary  interstitium,  water  is osmotically abstracted from the blood vessel, so that  the  osmolality  of  the  blood  (and  its  viscosity)  are increased.

Page 158: 1 mb ch b-pm renal-uz-combined slides-11-3-15

IN SUMMARY THE COUNTERCURRENT

EXCHANGER-OCCURS IN THE VASA RECTI BY

SIMPLE DIFFUSION OF SODIUM CHLORIDE

INTO, AND WATER OUT OF THE DISCENDING

LIMB WHILE IN THE ASCENDING LIMB THERE IS

DIFFUSION OF SALT OUT, AND WATER INTO THE

LIMB HENCE MEDULLARLY SALT WASHOUT IS

PREVENTED.

Page 159: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 159

Page 160: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 160

  LECTURE SUMMARY

The  Counter-current  mechanism  permits  the  kidney  to excrete urine with varying osmolalities. The  primary  event  in  this  process  is  active  NaCl transport  out  the  thick  ascending  limb  of  the  loop  of Henle into the medullary interstitium.

Page 161: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 161

ACTIVITY 4ACTIVITY 4 

 

 

1.  How do processes for sodium and water     reabsorption in the collecting ducts and       proximal  convoluted tubules differ? 

 2.  Describe the role of counter-current 

multiplier system in  urine concentration. 

3.  State how changes in medullary blood flow or loop flow rates may impede concentration of 

      urine. 

4.  State the action of ADH and the nephron sites      on which it  acts. 

        

Page 162: 1 mb ch b-pm renal-uz-combined slides-11-3-15

RENAL PHYSIOLOGYRENAL PHYSIOLOGY

LECTURE 7 & 8:

THE RENAL CONTROL OF SODIUM AND POTASSIUM EXCRETION

&RENAL ACID BASE BALANCE

By

DR. P MURAMBIWA

Page 163: 1 mb ch b-pm renal-uz-combined slides-11-3-15

OBJECTIVESOBJECTIVES:

1a. Explain renal sodium and potassium handling and factors that control their handling.

1b. What determines the effectiveness of a pH buffer?

2. List chemical buffers present in:

(a)   extracellular fluid (b) intracellular fluid (c) bone (d) urine

   

3. What  leads  to  the  generation  of  new  bicarbonate  in  the kidney to replace depleted plasma bicarbonate reserves?

 

4. Which  process  in  the  kidney  consumes  most  of  the hydrogen ions secreted by the tubular epithelium? 

Page 164: 1 mb ch b-pm renal-uz-combined slides-11-3-15

THE RENAL CONTROL OF SODIUM AND POTASSIUM EXCRETION

Page 165: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 165

 • In several types of disease, Na+ balance becomes deranged by the failure of the kidneys to excrete Na+ normally. 

• The processes involved in renal Na+ handling are discussed  in  this  Lecture  to  enable  you  to understand  underlying  factors  that  may  be associated with impairment in kidney function.

 

Page 166: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 166

• Conditions associated with  NaConditions associated with  Na++ Deficiency. Deficiency. ♠ Disorder Manifestation                               

• Severe diarrhoea hyponatremia   especially 

infants                                                                          • Diuresis  hyponatremia• Severe sweating hyponatremia• Adrenal insufficiency hyponatremia •  SIADH  (  Inappropriate hyponatremia

ADH secretion).                      

                

Page 167: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 167

• Diseases associated with KDiseases associated with K++ deficiency. deficiency.♥ Disorder Manifestation.

  • Laxatives   hypokalaemia • Vomiting  hypokalaemia• Diarrhoea hypokalaemia• Gastrointestinal hypokalaemia• Surgical drainage loss hypokalaemia• Metabolic alkalosis hypokalaemia• Metabolic acidosis hyperkalaemia 

 

Page 168: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 168

    TUBULAR NaTUBULAR Na++ REABSORPTION REABSORPTION

 • Controlled by both humoral factors and   physical factors. 

 • Sites = proximal tubule, ascending loop of        Henle,  distal  tubule  and  the  collecting duct or a combination of these sites.

 

 An alteration in GFR changes the filtered 

 Na+ load 

Page 169: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 169

Na+ EXCRETION

•   GFR can be altered is by changing 

   glomerular capillary pressure.

 

•   Hydrostatic  and  plasma  oncotic  pressures  can also influence tubular handling of Na+.

 

• Hydrostatic  and  plasma  oncotic  pressures  in the peritubular.  

 

Page 170: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 170

•  Increases in blood pressure (30-60mmHg) above control  values  (105  -  130  mm  Hg)  in 

anaesthetised  rats  have  been  seen  to  cause natriuresis.   

             Suggested  that    arterial  blood  pressure  wash 

out  an osmotic gradient  to decrease not only  in Na+  reabsorption,  but  also  in  the  ability  of 

vasopressin to concentrate urine.

 ♣ Renal  vasodilation  in  anaesthetised  dogsinduced by either Ach or prostaglandin has                     

been noted to increase Na+ excretion and urine           flow without changes in GFR.

Page 171: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 171

PHYSICAL FACTORSPHYSICAL FACTORS  

  •  Changes  in  the blood perfusing  the kidneys

 • Expansion of  the ECF volume  leads 

to increased blood volume and 

increased  systemic  arterial pressure. 

 

• Increased  fluid  pressure  decreases proximal   tubular Na+ reabsorption.

Page 172: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 172

• Increased  blood  volume  also  causes  a  dilution  of plasma  proteins  by  that  lowering  plasma  oncotic (colloid osmotic) pressure. 

 

Physical  factors,  HOWEVER,  play  only  a      subsidiary role in regulating sodium  excretion.

 

 

 

Page 173: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 173

NEURAL CONTROLNEURAL CONTROL

 ☻Claude  Bernad  (1859)  showed  that  section  of  the greater  splanchnic  nerve  (interruption  of  a  major part  of  the  sympathetic  supply  to  the  kidney) increased urine flow in the anaesthetised dog.

 

• Interruption  of  a  major  part  of  the  sympathetic supply to the kidney increases urine flow.  

 

Page 174: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 174

♥ Sympathetic fibres from the splanchnic nerves enter the kidney as a nerve plexus along the walls of the renal artery.

 

• Sympathetic  fibres  from  the  splanchnic  nerves innervate three distinct structures             

♥ the  renal  vasculature,  particularly  along    the arteries and arterioles;

♥ the juxtaglomerular apparatus;

♥ the proximal tubule and other parts of

the nephron.

Page 175: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 175

– The nerve-mediated Na+ reabsorption involves an initial activation of ∝ 1

adrenoceptors.

 

Page 176: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 176

♦ HORMONAL REGULATION 

Condition  Na+

mmol/l K+

mmol/l Cl- mmol/l 

HCO3-

mmol/l

Normal

Adrenal insufficiency (Addison’s disease)

Primary Aldosteronism 

142 

120 

148 

4.5     

 6.7 

 2.4 

105     85 

 96 

25   

25 

41

Page 177: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 177

• Aldosterone is involved in the regulation of Na+ reabsorption.  

             

• Site of action is the epithelial cells of the distal convoluted tubules and collecting ducts.

• Glandular epithelial cells  in the bowel mucosa, salivary and sweat glands.   

 

Page 178: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 178

• Aldosterone  is  implicated  in  instances  of  fluid  and  electrolyte abnormalities associated with some diseases. 

 •   Increased quantities of ALDOSTERONE  in  the urine of patients 

with  primary  and  secondary  hypertension,  congestive  heart failure, liver cirrhossis and nephrosis

 •   Elevated levels of aldosterone are also found in the urine of pregnant women.

• Aldosterone  promotes  Na+  reabsorption  in  exchange  for increased excretion of K+, H+ and NH4

+ ion in humans.

Page 179: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 179

Nuclear membraneCell membrane

(Transcription)

(TRANSLATION) mRNA ribosomesavidin

DNAAcidic protein

               

          

             

 

♦ MECHANISM OF ALDOSTERONE  ACTIONMECHANISM OF ALDOSTERONE  ACTION 

Page 180: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 180

• Mineralocorticoid Escape Phenomenon

∀ ♦♦ EFFECTS ON GFR AND RBFEFFECTS ON GFR AND RBF 

• Aldosterone  and  glucocorticoids  are  necessary for the maintenance of GFR and RBF. 

                 ♦♦ ALDOSTERONE SYNTHESISALDOSTERONE SYNTHESIS

•  ACTH  promotes  steroidgenesis  in  the adrenal cortex 

 

Page 181: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 181

•  Angiotensin II and plasma levels of Na+ or K+ 

 

 •  Plasma sodium (PNa+ )

 

• K+  ions  also  exert  a  stimulatory  effect  on aldosterone biosynthesis by acting directly  on the zona glomerulosa cells 

Page 182: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 182

♦♦RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM (RAAS)(RAAS)

Influences Na+ excretion in two different ways.

   A direct renal action of AII

   An influence of AII over aldosterone synthesis 

 

   AII acts directly on the adrenal cortex to enhance

   aldosterone synthesis.

  Macula densa cells within the distal tubule are

  believed  to act as sensors.

Page 183: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Maculadensa(vasoconstrictorsand vasodilators)

Efferentarteriole

Glomerularcapillaries

Proximaltubule

Bowman’s capsule

Urinary space

Juxtaglomerular(Granular) cells(renin)

Renalnerves

Afferent arteriole

Distaltubule

Page 184: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 184

Page 185: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 186: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 187: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 187

• Alteration of NaCl concentration is accompanied by changes in renin secretion.

(plasma globulin synthesized by the liver)  Angiotensinogen 

↓  Renin (Aspartyl proteinase)

        Angiotensin I (Decapeptide)↓  Converting Enzyme in Pulmonary                   

Circulation   INHIBITED BY CAPTOPRIL

      Angiotensin II (Octapeptide)     ↓   INHIBITED BY SARALISIN         Angiotensin III

Page 188: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 188

♦♦ RENIN RELEASERENIN RELEASE

•  Increased sympathetic activity

Reduction of the extracellular fluid volume and/or the effective circulating volume will decrease systemic arterial blood pressure. 

• Baroreceptor  reflexes  will  subsequently  increase sympathetic activity to arterioles.  

• The  main  baroreceptors  are  in  the  carotid  arteries (carotid sinuses). 

Page 189: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 189

Sympathetic  nerve  activity  causes  renin  release, mediated  by  α 1-adrenergic  receptors  and  activated 

by circulating catecholamines 

Decreased wall tension in the afferent arterioles. 

• Decreased  renal  perfusion  pressure  leads  to increased renin release from the granular cells. 

• The macula densa mechanism

Page 190: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 190

• Changes  in  the  delivery  of  NaCl  to  the macula  densa  (composition  of  fluid  in ascending limb detected)

• The macula densa stimulus releases PGI2 that

acts on the granular cells to release renin.

Page 191: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 191

♦♦ EFFECTS RAASEFFECTS RAAS          A II constricts efferent arterioles, to  reduce peritubular capillary pressure.

     A II increases reabsorption of Na+ in  the     distal tubule.

  A  II  promotes  aldosterone  synthesis  in 

the  zona glomerulosa.     Stimulates thirst sensation in the brain.

Page 192: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 192

Page 193: 1 mb ch b-pm renal-uz-combined slides-11-3-15

2934

Tubuloglomerular feedback

Page 194: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 194

• De Bold (1982) demonstrated that the artrial extracts caused  a  rapid  30-fold  increase  in  NaCl  excretion coupled with an increase in urine flow in the rat.  

 •   Atrial cardiac cells produce ANP.  • Atrial  stretch  leads  to  an  increase  in  the  circulating level of ANP.

• Effects of ANP are modulated via specific cell surface receptors  that  when  bound  to,increase  intracellular levels of cyclic guanosine monophosphate (cGMP). 

Page 195: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 195

• Atrial extracts increase GFR in  isolated perfused kidney.  

 

• A  high  density  of  ANF  receptors  has been  seen  in  adrenal  glomerulosa membranes.  

    

Page 196: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 196

♥♥ ACTIONS OF ANPACTIONS OF ANP

♠Inhibition of aldosterone secretion

♠Reduction of renin release

♠Reduces the release of vasopressin

♠Natriuresis and diuresis.

Page 197: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 197

▲ ▲ ANP/ALDOSTERONEANP/ALDOSTERONE

• A high density of ANF receptors has been seen in adrenal glomerulosa membranes.

Page 198: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 198

REGULATION OF BODY KREGULATION OF BODY K++

• Body K+

= contains 3 - 4 mmoles = 2% of this is extracellular and its maintenance

is essential for life. = Maintenance = regulation of renal excretion.

Page 199: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 199

• RENAL HANDLING OF KRENAL HANDLING OF K++

♦In the proximal tubule 80-90% of the filtered K+ is reabsorbed. ♦In the descending (thin) limb of the loop of

Henle, K+ is secreted, but K+ is reabsorbed from the ascending limb with Na+ and Cl-. ♦In the early distal tubule that is functionally similar to the ascending limb of Henle, Na+, Cl- and K+ reabsorption occurs.

Page 200: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 200

♦The late distal tubule and subsequent segments of the collecting duct system

secrete K+ into the tubular fluid. ♦The rate of K+ secretion is also influenced

by the rate of Na+ reabsorption.

♦Diuretics will increase the rate of K+ secretion.

Page 201: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 201

KK++ EXCRETION EXCRETION

• Aldosterone is the only hormonal control

over K+ output.

• The K+ losing effects of aldosterone do not exhibit the "escape phenomenon.

• Increases in plasma concentration of K+

directly influence aldosterone synthesis.

Page 202: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 203: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 204: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 205: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Summary of Na+ and K+ handling

Page 206: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Strenuous exercise

Cell lysis

Metabolic acidosisMetabolic Alkalosis

B-adrenergic blockadeB-adrenergic stimulation

Aldosterone deficiency (addison’s disease)

Conn’s syndrome (excess aldosterone)

Insulin deficiency (diabetes mellitus)

Insulin

Factors that shift K+ out of cells (Increase EC K+)

Factors that shift K+ into cells (Decrease EC K+)

Page 207: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 207

• HYPOKALAEMIA CAUSESHYPOKALAEMIA CAUSES • Gastrointestinal tract or kidneys losses Persistent vomiting or diarrhoea or the use of diuretics

• Excess insulin.

• Insulin increases K+ entry into cells that the extracellular levels fall.

• Alkalosis reduces proximal tubular HCO-

3 absorption and reduces Na+ reabsorption, therefore more NaHCO3 and water in the tubule.

Page 208: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 208

• EFFECTS OF HYPOKALAEMIAEFFECTS OF HYPOKALAEMIA

 Symptom free until plasma K+ level has fallen to approximately 2 - 2.5 mmol/l.

• Initial symptom is muscle weakness until death occurs when the respiratory function is affected.

In hypokalaemia the time cardiac muscle takes to

repolarize = prolonged.

K+ deficiency also causes derangements of metabolism.

Page 209: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 209

Hypokalaemia also affects vascular tone, causing vasoconstriction. Polyuria and thirst are present because the renal response to ADH is impaired by hypokalaemia that patients are unable to produce urine. Treatment consists of oral administration of potassium salt.

Page 210: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 210

HYPERKALAEMIA CAUSESHYPERKALAEMIA CAUSES

• Ingestion of excess K+ causes a rise in plasma levels of K+.

• Acidosis may also cause hyperkalaemia when the body's K+ stores are normal.

• Insulin causes entry of K+ into cells, therefore deficiency will lead to hyperkalaemia.

Page 211: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 211

• Another cause of hyperkalaemia is breakdown of cells as in severe trauma, or

treatment with cytotoxic drugs.

• Hyperkalaemia can also occur due to decreased K+ excretion in renal failure due reduction in functioning nephrons.

Page 212: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 212

EFFECTS OF HYPERKALAEMIAEFFECTS OF HYPERKALAEMIAExcitable cells are unable to conduct action

potentials and muscle weakness follows. Loop diuretics can be used to promote K+

excretion. Insulin can also be used to promote K+ entry into

cells. The effects of hyperkalaemia on muscle can be

corrected by Ca2+ administration.

Page 213: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 213

Page 214: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 214

♦♦ RENAL CALCIUM HANDLINGRENAL CALCIUM HANDLING

• In the proximal tubule, calcium reabsorption parallels

that of sodium and water.

• Ca2+ is positively charged and therefore entry into the tubular cell is favoured by the electrical gradient.

• A calcium-activated ATPase facilitates transport.

Page 215: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 215

• In addition a Ca2+ counter transport out of the cell coupled to passive Na+ entry occurs (ratio 3Na+ entering for 1Ca++ leaving).

• Ca2+ reasorption in the ascending limb of the loop of

Henle is similar to that has been described before for the proximal tubule.

• Furosemide that inhibits NaCl transport in this region also inhibits Ca2+ reabsorption.

Page 216: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 216

A Ca2+- ATPase facilitates Ca2+ transport in the ascending limb of the loop of Henle.

Calcium is reabsorbed under the influence of parathormone.

The physiological regulation of Ca2+ reabsorption occurs in the cortical thick ascending limb and distal tubule.

Page 217: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 217

♦♦ HANDLING OF PHOSPHATEHANDLING OF PHOSPHATE

Two forms acid phosphate,

• Acid H2PO4- and alkaline phosphate HPO=

4.

Phosphate is freely filtered in the nephron.

Ratio of 4:1 alkaline to acid phosphate is present in

the filtrate.

• The only hormone that regulates renal tubular phosphate transport is PTH.

Page 218: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 218

• Other hormones such as calcitonin, glucagon and insulin may also influence renal phosphate transport.

• PTH, calcitonin and glucagon increase renal

phosphate excretion while insulin reduces phosphate excretion.

• Hypocalcaemia is common in renal failure patients.

Page 219: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 219

• Acidosis decreases the plasma levels of ionized Ca++ while alkalosis has the opposite effect.

• The characteristic feature of low plasma

calcium is tetany, convulsions and muscle cramps.

Page 220: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 220

SUMMARY-CONTRIBUTION OF THE SUMMARY-CONTRIBUTION OF THE DIFFERENT NEPHRON SEGMENTSDIFFERENT NEPHRON SEGMENTS

• Nephron segment Major Functions

____________________________________

Glomerulus Forms an ultrafiltrate of plasma

Proximal tubule Reabsorbs isosmotically 70 percent of the filtered NaCl and H2O

Page 221: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 221

• Proximal tubule Reabsorbs K+, glucose amino acids, calcium, phosphate, magnesium, urea, uric acid, and bicarbonate (by H+secretion)

Secretes H+, ammonia, and organic acids and bases

• Loop of Henle Countercurrent multiplier; reabsorbs NaCl in excess of H2O.

Major site of active regulation of magnesium excretion

Page 222: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 222

• Distal tubule Reabsorb a small and connecting fraction of filtered segment NaCl Major site of

active regulation of

calcium excretion

• Collecting tubules Site of final modification of the urine;

Reabsorb NaCl; urine NaCl concentration can be reduced to less than 1 mmol/L

Page 223: 1 mb ch b-pm renal-uz-combined slides-11-3-15

RENAL ACID BASE BALANCE

Page 224: 1 mb ch b-pm renal-uz-combined slides-11-3-15

WHY MAINTAIN ACID WHY MAINTAIN ACID BASE BALANCE?BASE BALANCE?

Requirements for normal metabolism

• Fluctuations in pH cause significant changes in H+ concentrations.

• The pH of the blood of a normal man is alkaline and it is maintained within a small range of about 7.37 to 7.42.

Page 225: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 226: 1 mb ch b-pm renal-uz-combined slides-11-3-15

BICARBONATE BUFFER SYSTEMBICARBONATE BUFFER SYSTEM          

[H+] nmol/l

pH pCO2

(mm-Hg)[HCO-

3]

m mol/l

Arterial 40 7.42 40 24

Venous 46 7.35 46 25                        

Page 227: 1 mb ch b-pm renal-uz-combined slides-11-3-15

MAJOR SOURCES OF ACIDMAJOR SOURCES OF ACID CO2 + H2O ⇔ H2CO3 ⇔ H+ + HCO-

3

In Western diets approximately 40 to 60 mmoles of non-carbonic acids mainly from protein metabolism. Phosphoric acid from the catabolism of phospholipids makes a minor contribution to daily production of non- carbonic acids.

Page 228: 1 mb ch b-pm renal-uz-combined slides-11-3-15

OTHERSOTHERS

The production of lactic acid during muscular exercise and during hypoxia  The production of aceto-acetic acid and β - OH butyric acid during uncontrolled diabetes mellitus Therefore it is vital that a mechanism be developed to defend the system from fluctuations in H+ ions.

Page 229: 1 mb ch b-pm renal-uz-combined slides-11-3-15

BUFFERS OF THE KIDNEY

HCO-3/CO2

Phosphate

Ammonia

Page 230: 1 mb ch b-pm renal-uz-combined slides-11-3-15

HCO-3/CO2

Page 231: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Phosphate

Page 232: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Ammonia

Page 233: 1 mb ch b-pm renal-uz-combined slides-11-3-15

CO-3/CO2

HCO-3 regulated in proximal tubule – distal

tubule and collecting duct

PhosphateTwo phosphate salts disodium hydrogen phosphate (alkaline) Na2HPO4

Sodium dihydrogen phosphate (acid) NaH2PO4 .

The normal ratio 4 :1 alkaline to acid and can be changed H+ secretion - mainly distal tubule

Page 234: 1 mb ch b-pm renal-uz-combined slides-11-3-15

AmmoniaConversion of glutamine to glutamic acid and α- ketoglutarate NH3 diffuses into the tubule to combine with H+

forming NH4+ that has a much lower permeance

than NH3.

The kidney can greatly increase NH3 production

in acidosis.

This is one of the main ways in which the kidney responds to an acid load.

Page 235: 1 mb ch b-pm renal-uz-combined slides-11-3-15

EFFECTS OF DISTURBANCES OF pHEFFECTS OF DISTURBANCES OF pH

♣ Hyperkalaemia due to movement of potassium from cells into the extracellular fluid and the depression of renal secretion of K+

♥ Widespread loss of smooth muscle tone that

produces a severe drop in arterial pressure. For prolonged periods (weeks to months) leaching of minerals from bones (osteoporosis).

Effect of decreased H+ ion concentration raised

pH is tetany or spasm of muscles.

Page 236: 1 mb ch b-pm renal-uz-combined slides-11-3-15

ACID BASE DISTURBANCESACID BASE DISTURBANCES

Divided into two categories

♣ Disturbances of Respiratory origin Respiratory acidosis

Respiratory alkalosis

♣ Disturbances of Non-Respiratory origin Metabolic acidosis Metabolic alkalosis

♦ "Metabolic" refers to acid-base disturbances

that effect the CO-3/CO2 buffer system by

means other than altering pCO2.

Page 237: 1 mb ch b-pm renal-uz-combined slides-11-3-15

RESPIRATORY ACIDOSIS♣ The respiratory system is unable to remove sufficient pCO2 from the body to maintain normal pCO2.

[CO2] + H2O ⇔  H2CO3 ⇔ HCO-

3 + H+

♣ Consequence = ↑↑  [H] and ↑ [HCO-3] pH

Page 238: 1 mb ch b-pm renal-uz-combined slides-11-3-15

RENAL COMPENSATIONRENAL COMPENSATION

                     ♦ Definitions•Compensation is the restoration of

pH towards normal though [HCO-3]

and/or pCO2 is still disturbed.

•Correction is the restoration of normal pH, [HCO-

3] and pCO2.

Page 239: 1 mb ch b-pm renal-uz-combined slides-11-3-15

♣ A change in [H+] = H+ secretion from the renal tubular cells. ♣ Sufficient to reabsorb HCO-

3 though plasma HCO-3

is raised – therefore generates increased HCO-3 for

the plasma. ♣ The increased H+ leading to increased plasma[HCO-

3] is the RENALCOMPENSATION for respiratory

acidosis. ♣ The pH is restored to normal but [HCO-

3] is elevated.

♣ Respiratory acidosis is associated with hypercapnia, pCO2 = 48 mmHg in arterial blood.

Page 240: 1 mb ch b-pm renal-uz-combined slides-11-3-15

♥ CAUSES OF RESPIRATORY ACIDOSISCAUSES OF RESPIRATORY ACIDOSIS

Chronic bronchitis

Obstruction of airway by a foreign body

Mechanical injuries of the chest

Infections directly affecting the respiratory centre and brain stem.

Anaesthetics such as morphine barbiturates, depressants of respiration

Page 241: 1 mb ch b-pm renal-uz-combined slides-11-3-15

RESPIRATORY ALKALOSISRESPIRATORY ALKALOSIS♣ Excessive removal of CO2 from the

body = arterial pCO2 below 35mmHg.

↓CO2 + H2O ⇔ H2CO3 ⇔ ↓ ↓ H+ +

↓HCO3-

Page 242: 1 mb ch b-pm renal-uz-combined slides-11-3-15

pCO2 and consequent in [H+] in the renal

tubule H+ secretion ♣ Therefore, HCO-

3 is excreted in the urine and

plasma [HCO-3] falls further.

♣ In the kidney the defect leads to a change in pH increasing H+ ions in the blood that will lead to

decreased H+ secretion and therefore HCO3-

reabsorption.

Page 243: 1 mb ch b-pm renal-uz-combined slides-11-3-15

METABOLIC ALKALOSISMETABOLIC ALKALOSIS♣ Acid base disturbances by means other

than altering the pCO2

= pH = H+ in the blood = H+

secretion = HCO3- re-absorption.

H2O + CO2 ⇔ H2CO3 ⇔ H+ + ↑↑ HCO3

-

+ OH-

♣ Metabolic alkalosis = addition of OH-

ions

Page 244: 1 mb ch b-pm renal-uz-combined slides-11-3-15

♣Hypoxia = respiration = hypocapnia- hyperventilation = respiratory alkalosis.

♣The decreased level of H+ acts on the chemo-receptors to reduce ventilation resulting in the increase of pCO2.

♣This is RESPIRATORY COMPENSATION

for metabolic alkalosis.

 

 

Page 245: 1 mb ch b-pm renal-uz-combined slides-11-3-15

♣ This compensation brings down the pH, but further increases the plasma concentration of HCO3

-.

♣ The reduced H+ secretion in the renal tubules leading to low HCO3

- is the RENAL

COMPENSATION for renal alkalosis

Page 246: 1 mb ch b-pm renal-uz-combined slides-11-3-15

METABOLIC ACIDOSISMETABOLIC ACIDOSIS♣ Caused by excessive ingestion of acids

and production of H+ ions from the body.

♣ Addition of H+ ions drives the reaction to the left resulting in the depletion of

plasma levels of HCO3-.

CO2 + H2O ⇔ H2CO3 ⇔ H+ + ↓↓ HCO3-

+ H +

 

Page 247: 1 mb ch b-pm renal-uz-combined slides-11-3-15

♣ This direct loss of HCO3- leads to a

change in pH.

– This change in pH acting on the chemoreceptors stimulates respiration so that pCO2 falls. This is respiratory

compensation for metabolic acidosis.

Page 248: 1 mb ch b-pm renal-uz-combined slides-11-3-15

04/07/15 248

SUMMARYSUMMARY • The kidneys are the major site of sodium output and

regulation of extracellular fluid volume. • Renal Na+ excretion is influenced by GFR, aldosterone,

peritubular capillary

• Starling forces, renal sympathetic nerve activity, diuretics etc. • The kidneys normally maintain potassium balance by

excreting most ingestedpotassium.

Page 249: 1 mb ch b-pm renal-uz-combined slides-11-3-15

SUMMARY CONTINUED The kidney is involved in the maintenance of pH.

• The processes involved include regulation of H+ secretion.

• Urinary acidification involves re-absorption of filtered bicarbonate, excretion of acid and ammonia.

• The kidneys compensate for acidosis by

adding large quantities of new bicarbonate to the blood.

Page 250: 1 mb ch b-pm renal-uz-combined slides-11-3-15

 • When an individual is acidotic for more than a few

days, there occurs a marked increase in ammonia synthesis.

• When an alkalosis exists, the kidneys compensate by secreting too little acid to accomplish complete re-absorption of filtered bicarbonate, thus leading to excretion of bicarbonate

Page 251: 1 mb ch b-pm renal-uz-combined slides-11-3-15

• A diuretic is a substance that increase the rate of urine output.

• It cause natriuresis (increased sodium output), and this in turn cause diuresis (increased water output)

Diuretics and their mechanisms

Page 252: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Early distal tubuleInhibit H secretion and HCO-3 reabsorption

Thiazides (chlorothiazides)

Thick ascending limb

Inhibits Na-K-Cl co-transport in

luminal membrane

Loop (Furosemide)

Mainly proximal tubule

Inhibit water and solute reabsorption

Osmotic (Mannitol)

Site of actionMechanism of action

Class of diuretics

Page 253: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Collecting tubulesBlock entry of Na into the channels

of luminal membrane

Sodium channels blockers

(Amiloride)

Collecting tubulesInhibit aldosterone action

Competitive inhibitors of aldosterone

(Spironolactone)

Proximal tubuleInhibit secretion of H+ and

reabsorption of HCO-3

Carbonic anhydrase Inhibitors

(Acetazolamide)

Page 254: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 255: 1 mb ch b-pm renal-uz-combined slides-11-3-15

• Basic processes involved in the filling and emptying of the bladder

3 muscles are involvedDetrusor muscle-smooth 

(parasympathetic)Internal urethral sphincter-smooth 

(sympathetic)External urethral  sphincter-skeletal 

(somatic motor neurone)

MICTURITION OR URINATION

Page 256: 1 mb ch b-pm renal-uz-combined slides-11-3-15
Page 257: 1 mb ch b-pm renal-uz-combined slides-11-3-15

Micturition reflex

stretchreceptors

Page 258: 1 mb ch b-pm renal-uz-combined slides-11-3-15

• 1) APs generated by stretch receptors

• 2) reflex arc generates APs that

• 3) stimulate smooth muscle lining bladder

• 4) relax internal urethral sphincter (IUS)

• 5) stretch receptors also send APs to Pons

• 6) if it is o.k. to urinate

– APs from Pons excite smooth muscle of bladder and relax IUS

– relax external urethral sphincter

• 7) if not o.k. inhibitory impulses from pons inhibit micturition

Micturition reflex

Page 259: 1 mb ch b-pm renal-uz-combined slides-11-3-15

THE END