1 ln numerical methods - matrices and determinants

33
Numerical Methods Matrices And Determinants

Upload: raylandee

Post on 05-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 1/33

Numerical Methods

Matrices And Determinants

Page 2: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 2/33

Matrices

Given by the expression

11 12 1

21 22 2

n

n

a a a

a a a A a

= =

L

L

where 1 ≤ i ≤ m (rows) and 1 ≤  j ≤ n (columns)Dimensions read as “m by n” (m × n)

1 2m m mna a a L

Page 3: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 3/33

Types Of Matrices

1. Column or row vector

{ }

1

2

1 2 

n

c

c R r r r C 

= = 

L

M

2. Null matrix   nc 0 0 0

0 0 0

0 0 0

 N 

=

L

L

M M O M

L

Page 4: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 4/33

3. Square matrix

Types Of Matrices11 12 1

21 22 2

1 2

n

n

n n nn

s s s

s s s

s s s

=

L

L

M M O M

L

4. Triangular matrix11 12 1

22 20

0 0

n

n

nn

u u u

u u

u

=

L

L

M M O M

L

11

21 22

1 2

0 0

0

n n nn

l

l l

 L

l l l

=

L

L

M M O M

L

Page 5: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 5/33

5. Diagonal matrix

Types Of Matrices

11

22

0 0

0 0

d  D

=

L

L

M M O M

6. Identity matrix   nnL

1 0 0

0 1 0

0 0 1

 I 

=

L

L

M M O M

L

Page 6: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 6/33

7. Scalar matrix

Types Of Matrices1 0 0 0 0

0 1 0 0 0

k kI k 

= =

L L

L L

M M O M M M O M

8. Transpose matrix

L L

11 21 1

12 22 2

1 2

m

mT 

n n mn

a a a

a a a

 A

a a a

=

L

L

M M O M

L

Page 7: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 7/33

9. Symmetric matrix → if A = AT 

10. Inverse matrix →  A· A–1 = A–1· A = I 

Types Of Matrices

11. Singular matrix → matrix that has no inverse

12. Orthogonal matrix → if AT = A–1, then A is an

orthogonal matrix.

Page 8: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 8/33

13. Submatrix

Types Of Matrices

1 2 A A

 A A A

=

{ }

{ } { }

11 12

1 2 13

21 22

3 31 32 4 33

,

,

a a A A   a

a a

 A a a A a

= =

= =

Page 9: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 9/33

Operations1. Addition/Subtraction

→ dimensions should be congruent m = m B

 

ij ij ij

C A Bc a b

= ±

= ±

and n A = n B

Properties:

a. Commutative Property

b. Associative Property

2. Scalar multiplication   ijkA ka=

Page 10: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 10/33

Example

Given:

Evaluate:

Solution:

2 1 5 3,

3 4 0 2

3 4

2 1 5 3 6 3 20 123 4

 A B

 A B

− − = =

− −

− − − − − = −

Final Answer:

( )

( )

6 20 3 123 4

9 0 12 8

26 153 49 20

 A B

 A B

− − − −

− − − − − = 

− − − −

− − = −

Page 11: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 11/33

3. Matrix multiplication

Conditions1.Inner dimensions must conform, n A = m B

 

OperationsC A B= ⋅

 

Properties

1.Non-commutative AB ≠  BA

2.Associative A( BC ) = ( AB)C  Algorithm   ij ik kj

c a b= ∑

Page 12: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 12/33

ExampleGiven:

Evaluate:

5 23 1 6

  , 3 72 4 0

4 1 

 A B

 AB

−  

= = −   − −

Final Answer:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )3 5 1 3 6 4 3 2 1 7 6 1

2 5 4 3 0 4 2 2 4 7 0 1

6 5

22 24

 AB

 AB

+ − − + − + − + =  − + − + − − + +

− =

Page 13: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 13/33

4. Elementary Row Operations  → the following

are the only valid elementary row operations

a. Interchanging two rows, R1 ↔  R2

 

Operations

. ca ar mu t p cat on, 1 →  1

c. Row addition, R1 + R2 →  R1’ or R2’

Page 14: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 14/33

Determinants

Determinant   → a scalar value obtained after

simplifying a square matrix

 det or A A

Page 15: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 15/33

Properties of Determinants1. The determinant of a matrix is the same to

that of its transpose.2. The determinant of a zero matrix is equal to

zero.

3. If a column/row is directly proportional toanother column/row, the determinant is equalto zero.

4. Switching two rows will switch the sign of itsdeterminant.

Page 16: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 16/33

5. A scalar value k multiplied to a row will result to

the same value of determinant times k .6. Using valid elementary row addition/subtractionwill not change the value of the determinant.

Properties of Determinants

7. The determinant of the inverse of a matrix isequal to the reciprocal of its determinant:

8. The determinant of a triangular matrix is equal tothe product of its diagonal elements.

( )   ( )

1 1

detdet

 A A

−=

Page 17: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 17/33

Methods of DeterminantsA. Basket Method

Only valid for matrices with dimension n = 2

or n = 3.

( )

( ) ( ) ( )

11 12

11 22 21 12

21 22

11 12 13

21 22 23

31 32 33

11 22 33 12 23 31 13 21 32 31 22 13 32 23 11 33 21 12

, then detIf

If ,

then det

a a

 A A a a a aa a

b b b

 B b b b

b b b

 B b b b b b b b b b b b b b b b b b b

= = −

=

= + + − + +

Page 18: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 18/33

ExampleGiven

2 1 3

5 3 6

4 2 3

2 3 3 1 6 4 3 5 2

 A

 A

= −

− −

= − + − − + −

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )  4 3 3 2 6 2 3 5 1

99 A

+ − − + − −

= −

Page 19: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 19/33

B. Cofactor Expansion

An n – 1 reduction formula

involves following any row or column of a

Methods of Determinants

eterm nant an mu t p y ng eac e ement othe row or column by its cofactor. The sum of 

these products equals the value of the

determinant.Cofactor of an element aij is   ( )   ( )1 det

i j

ij ij A M 

+

= −

Page 20: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 20/33

ExampleGiven

choosing the 2nd row

2 1 3

5 3 6

4 2 3

 A

= − − −

( ) ( ) ( )2 1 2 2 2 31 3 2 3 2 15 1 3 1 6 1

2 3 4 3 4 2

45 54 0

99

 A

 A

 A

+ + +− − = − + − − − − − − −

= − − +

= −

Page 21: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 21/33

C. Chio’s Condensation Method

An   n – 1 reduction method using the first

element a11 as its reference

Methods of Determinants

( )

11 13 11 111 12

21 23 21 221 22

11 12 11 13 11 1

2

11 31 32 31 33 31 3

11 12 11 12 11 1

1 2 1 3 1

n

n

nn

n

n

n n n n n nn

a a a aa a

a a a a a a

 A a a a a a a a

a a a a a a

a a a a a a

=  

L

L

M M O M

L

Page 22: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 22/33

ExampleGiven

2 1 3

5 3 6

4 2 3

2 1 2 3

 A

= −

− −

  −  

( )2 3 5 3 5 622 1 2 3

4 2 4 3

11 27199

0 182

 A

 A

−  −

= −

− −

−= = −

Page 23: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 23/33

D. Pivotal Method

An   n – 1 reduction method selecting anyelement as its pivot element

Methods of Determinants

or a × matr x, se ect ng a23 as t e p votelement:

( ) ( ) ( ) ( )

21 22

23 2321 22

23 23 21 22

23 23

11 12 13

2 3 2 3 11 13 12 13

23 23

31 13 32 13

31 32 33

1 1 1

a a

a aa aa a   a a

a a

a a aa a a a

 A a aa a a a

a a a

+ +

− −

= − = −   − −  

Page 24: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 24/33

ExampleGiven

choosing element a32 as pivot element

2 1 3

5 3 6

4 2 3

 A

= − − −

( )( )

( )( )  ( )( ) ( )( )

( ) ( ) ( )( )

( )( )

3 2

3

2

33 2 2

3

2

93 2 2

212

2 1 3

2 1 5 3 6

2 1

2 1 2 3 12 1

5 3 2 6 3

02 1 99

11

 A

 A

 A

+

+

+

= − − − −

− − − − −= − −  

− − − −

= − − = − −

Page 25: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 25/33

E. Triangular Matrix Method

Converting a given matrix into an upper/lowertriangular matrix by means of valid elementary

Methods of Determinants

.

The determinant of a triangular matrix is equal

to the product of its diagonal elements.

Page 26: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 26/33

ExampleGiven 2 1 3

5 3 6

4 2 3

 A

= − − −

( )( )   ( )( )

( )( )( )

1 12 1 2 3 1 32 2

2711 11

2 2 2

5 ' 4 '

2 1 3

0 , 2 9 99

0 0 9

 R R R R R R

 A A

+ − → + − →

= − = − = −

Page 27: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 27/33

Inverse MatrixA. Generating the inverse matrix by using

Elementary Row Operations Augment the given matrix with an identity

, ,

augmented matrix to [ I : A–1].

Page 28: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 28/33

ExampleGiven:

Solution:

2 1 3

5 3 6

4 2 3

 A

= − − −

2 1 3 : 1 0 0−

( )( )   ( )( )1 12 1 2 3 1 32 2

27 511

2 2 2

:

4 2 3 : 0 0 1

5 ' 4 '

2 1 3 : 1 0 0

0 : 1 0

0 0 9 : 2 0 1

 R R R R R R

− −

+ − → + − →

− − − − −

Page 29: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 29/33

ExampleContinuing

( )( )21 2 111

6 6 211 11 11

27 5112 2 2

1 '

2 0 : 0

0 : 1 0

 R R R+ →

− −

( )( ) ( )( )6 271 11 3 1 2 3 211 9 2 9

14 2 233 11 33

311 12 2 2

0 0 9 : 2 0 1

' '

2 0 0 :

0 0 : 1

0 0 9 : 2 0 1

 R R R R R R

− −

+ − − → + − →

− − −

Page 30: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 30/33

ExampleFinally, 1 2 1

1 1 2 2 3 32 11 9

7 1 133 11 33

31 211 11 11

2 1

' ' '

1 0 0 :

0 1 0 :

0 0 1 : 0

 R R R R R R→ → − →

Therefore

7 1 133 11 33

1 31 211 11 11

2 1

9 90

 A−

= − −

Page 31: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 31/33

Inverse MatrixB. Generating the inverse matrix by using the

Adjoint Matrix and the determinant

( )1  Adj A

−=

where

( )   ( )cof 

ij Adj A a =

 A

Page 32: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 32/33

ExampleGiven:

Solution:

2 1 3

5 3 6

4 2 3

 A

= − − −

T − −

( )

2 3 4 3 4 2

1 3 2 3 2 199,

2 3 4 3 4 2

1 3 2 3 2 1

3 6 5 6 5 3

 A Adj A

− − − − − − = − = − −

− − − −

− − −

− −

Page 33: 1 LN Numerical Methods - Matrices and Determinants

8/15/2019 1 LN Numerical Methods - Matrices and Determinants

http://slidepdf.com/reader/full/1-ln-numerical-methods-matrices-and-determinants 33/33

ExampleSimplifying further:

1

7 1 1

21 9 3

9 18 27

22 0 11

99 A

− − −

− − −

=−

Therefore,33 11 33

1 31 2

11 11 11

2 19 9

0

 A−

  = − −