1. introduction - ahmad...

20
UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B 1. INTRODUCTION When x 2 is differentiated with respect to x, the derived function is 2x. Conversely, given that an unknown function has a derived function of 2x, it is clear that the unknown function could be x 2 . This process of finding a function from its derived function is called integration and it reverses the operation of differentiation. 1.1 DEFINITIONS : THE INDEFINITE INTEGRAL Let the function f be defined on an interval I. A function F is called an antiderivative for f on the interval I if F is differentiable on I and F’(x) = f(x) for all x I The indefinite integral of the function f on the interval I is the family of all antiderivatives for f on I and is denoted by = + f x dx Fx C () () where the symbol is called an integral sign …dx means ‘ the integral of … w.r.t x ‘ f(x) is called the integrand C is called the arbitrary constant of integration F2-B - 1 - MATHEMATICS UNIT

Upload: others

Post on 12-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

1. INTRODUCTION When x2 is differentiated with respect to x, the derived function is 2x. Conversely, given that an unknown function has a derived function of 2x, it is clear that the unknown function could be x2. This process of finding a function from its derived function is called integration and it reverses the operation of differentiation. 1.1 DEFINITIONS : THE INDEFINITE INTEGRAL Let the function f be defined on an interval I. A function F is called an antiderivative for f on the interval I if F is differentiable on I and F’(x) = f(x) for all x ∈ I The indefinite integral of the function f on the interval I is the family of all antiderivatives for f on I and is denoted by

∫ = +f x dx F x C( ) ( ) where • the symbol ∫ is called an integral sign • ∫…dx means ‘ the integral of … w.r.t x ‘ • f(x) is called the integrand • C is called the arbitrary constant of integration

F2-B - 1 - MATHEMATICS UNIT

Page 2: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

2. BASIC RULES 2.1 BASIC RULES These rules are used to simplify the process of finding the integration of a function. (a)

Integration of a

constant

∫ a dx = ax + C

a = constant,

C = real number.

(b)

Integration of

STANDARD FORM of a polynomial

Remark :

∫ nx dx = Cnxn

++

+

1

1

C and n = constant except for n = -1.

∫ nax dx = a dx ∫ nx

= Cnaxn

++

+

1

1

C , a and n = constant except for n = -1.

(c)

Integration of

GENERAL FORM of a polynomial

∫ + nbax ][ dx = ))(1(][ 1

anbax n

++ +

+ C

C and n = constant except for n = -1.

2.2 PROPERTIES OF INTEGRALS (a) Sum and difference

∫ ∫ ±=± dxxgdxxfdxxgxf )()()]()([ ∫

(b) Constant multiple of a function

[ ( )] ( )cf x dx c f x dx= ∫∫

F2-B - 2 - MATHEMATICS UNIT

Page 3: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

EXAMPLE 1 : Integrate the following function .

(a) 4dx∫ cxdx +=∫ 44

(b) x dx5∫ cxdxx +=∫ 6

65

(c)

dtt∫ ∫∫ +== ctdttdtt

32 2

3

21

(d)

dx

x∫ 6

3 ∫∫ −= dxxdx

x6

6 33

c

x

cx

+−=

+−

=−

5

5

535

3

(e)

dxx

x∫

+− 4

512 3

4

( )

cxx

x

cxxx

dxdxxdxx

dxx

x

+++=

++−

−=

+−=

+−

−∫ ∫ ∫

410

15

2

425

15

2

4512

4512

2

5

25

34

34

(f)

( ) dxx∫ + 432

( ) ( ) cxdxx ++

=+∫ )2(53232

54

( ) cx

++

=10

32 5

(g)

dxx∫ −1

1

( ) dxxdxx ∫∫ −−=

−21

111

( )( )

( ) cx

cx

+−−=

+−

=

21

21

12

1211

F2-B - 3 - MATHEMATICS UNIT

Page 4: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

3. THE INTEGRAL OF CERTAIN FUNCTIONS 3.1 TRIGONOMETRIC FUNCTIONS Whenever a function f ’(x) is recognised as the derivative of a function f(x), then d

dxf x f x f x dx f x C( ) ' ( ) ' ( ) ( )= ⇔ = +∫

Thus, referring to the derivatives of trigonometric functions in Differentiation module, the integration of STANDARD FORM of trigonometric functions are as follow :

DIFFERENTIATION ( standard form )

INTEGRATION

( standard form )

( ) xxdxd

cossin = ∫ += Cxxdx sincos

( ) xxdxd sincos −= ∫ +−= Cxxdx cossin

( ) xxdxd 2sectan = ∫ += Cxxdx tansec 2

( ) xxxdxd tansecsec = ∫ += Cxxdxx sectansec

( ) xxxdxd cotcsccsc −= ∫ +−= Cxxdxx csccotcsc

( ) xxdxd 2csccot −= ∫ +−= Cxxdx cotcsc 2

F2-B - 4 - MATHEMATICS UNIT

Page 5: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

The integration of GENERAL FORM of trigonometric functions are as follow : Remark : f(x) must be a LINEAR FUNCTION which means f(x) = ax+b

DIFFERENTIATION

( general form )

( ) )(').(cos)(sin xfxfxfdxd

=

( ) )(').(sin)(cos xfxfxf

dxd

−=

( ) )(').(sec)(tan 2 xfxfxf

dxd

=

( ) )(').(tan)(sec)(sec xfxfxfxf

dxd

=

( ) )(').(cot)(csc)(csc xfxfxfxf

dxd

−=

( ) )(').(csc)(cot 2 xfxfxf

dxd

−=

INTEGRATION ( general form )

∫ += Cxfxfdxxf)('

)(sin)(cos

∫ +

−= C

xfxfdxxf

)(')(cos)(sin

∫ += C

xfxfdxxf)('

)(tan)(sec 2

∫ += C

xfxfdxxfxf)('

)(sec)(tan)(sec

∫ +

−= C

xfxfdxxfxf

)(')(csc)(cot)(csc

∫ +

−= C

xfxfdxxf

)(')(cot)(csc 2

F2-B - 5 - MATHEMATICS UNIT

Page 6: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

EXAMPLES : Evaluate the following :

(a)

∫ xdxcos12

cxxdx +=∫ sin12cos12

(b)

( )∫ ++ dxxxx cossin3

( ) cxxxdxxxx ++−=++∫ sincos4

cossin4

3

(c)

∫ − tdt2csc5

( ) cttdt +−−=−∫ cot5csc5 2

ct += cot5

(d)

∫ θθd4sin

cd +−=∫ 44cos4sin θθθ

(e)

dxx∫

+

432csc2 π

cx

dxx +

+−

=

+∫ 2

432cot

432csc2

ππ

cx +

+−=

432cot

21 π

(f)

∫ θθθ d5cot5csc

cd +−=∫ 55csc5cot5csc θθθθ

(g)

dxxx∫

− 6

2tan6

2sec ππ

cx

dxxx

+−

=

−∫

6

62

sec

62

tan62

sec

π

ππ

F2-B - 6 - MATHEMATICS UNIT

Page 7: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

3.2 EXPONENTIAL FUNCTION

It is known that xx ee

dxd

=)(

So , the integration of :

(a)

STANDARD FORM

of exponential function

∫ += Cedxe xx

(b)

GENERAL FORM of exponential function

Cxf

edxexf

xf +=∫ )('

)()(

where f(x) must be a LINEAR FUNCTION

EXAMPLE Integrate the following functions with respect to x . (a) xexf 3)( = cedxe xx +=∫ 33

(b) xexf 5

2)( =

c

ecedxe

exf

xxx

x

+−=+−=

=

−−

∫ 555

5

52

522

2)(

(c) xexf 83)( =

cedxe xx +=∫ 88

833

F2-B - 7 - MATHEMATICS UNIT

Page 8: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

3.3 INTEGRATION OF THE FORM

x1

It is already known that for x > 0, xxdx

dxd 1ln =

So, for all values of x, the integration of :

(a)

STANDARD FORM of x1

Cxdxx

+=∫ ln1

(b)

GENERAL FORM of )(1xf C

xfxf

dxxf

+=∫ )()(ln

)(1

'

where f(x) must be a LINEAR FUNCTION

Remark :

We have absolute value of x that is x because the logarithm of a negative number does not exist. EXAMPLE Integrate the following functions with respect to x

(a) ∫∫ +== Cxdxx

dxx

ln4144

(b) ( ) Cxdx

x+

+=

+∫ 252ln

521

(c) ( ) ( ) CxCxdx

xdxx

+−−=+−−

=−

=− ∫∫ 24ln

23

224ln3

2413

243

F2-B - 8 - MATHEMATICS UNIT

Page 9: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

4. INTEGRATING PRODUCTS

(a)

METHOD I BY RECOGNITION

( only for function ( )xfe )

( ) ( ) ( ) cedxxfe xfxf +=∫ '

(b)

METHOD II

BY SUBSTITUTION

( for products with the same type of functions )

STEPS TO EVALUATE THE INTEGRAL

( )[ ] ( )∫ dxxfxfa n '

where a and n are constants 1. Substitute u = f(x) and du = f ‘ (x) dx to

obtain the integral ( )∫ duug

2. Evaluate by integrating with

respect to u

( )∫ duug

3. Replace u by f(x) in the resulting expression

(c)

METHOD III

INTEGRATION BY PARTS

( for products with different types of functions )

Many products are not in the form of

( )[ ] ( )∫ dxxfxf n '

and cannot be expressed in the form ( )ufdxdu '

. Therefore we cannot integrate by using substitution method .To solve this problem , we have to use integration by parts formula as follows :

∫ ∫−= vduuvudv

where u and v are both functions of x .

F2-B - 9 - MATHEMATICS UNIT

Page 10: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

4.1 BY RECOGNITION

(a) Integrate 2 : 2xxe Cedxxe xx +=∫

22

2

(b) Integrate cos : xxesin Cedxxe xx +=∫ sinsincos 4.2 BY SUBSTITUTION

(a) Determine ( )∫ x + dxx 532

STEP 1 : Let then 53 += xu 23 xdxdu

= ,

therefore : dxxdu 2

3=

STEP 2 : Hence ,

( )3

5 21

32 duudxxx∫ ∫=+

CuCu

duu

+=+

=

= ∫

232

3

21

92

32

31

31

STEP 3 : but =u 53 +x

Therefore ( ) ( ) Cxdxx ++=+ 23

33 5925x∫ 2

Find :

(b) (c) ( ) ( dxxxx∫ +++ 2362 243 ) dxxx

+sin1cos

(d) (e) dxxx∫ cossin3dx

xx

∫ln

F2-B - 10 - MATHEMATICS UNIT

Page 11: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

4.3 BY INTEGRATION BY PART

(a) Integrate with respect to x . xxe

SOLUTION :

Let xu = then 1=dxdu

, therefore : dxdu =

Let then dxedv x= xedvv ∫ == By using the formula of integration by parts , :

∫ ∫−= vduuvudv

∫∫ −= dxexedxxe xxx

Cexe xx +−=

NOTE : 1.The choice must be such that the u part becomes a constant after successive differentiation .

2.The dv part can be integrated from standard integrals

3.Normally , we give priority to the following functions as u part by following this order :

i . ( L ) logarithm function

ii ( I ) inverse function

F2-B - 11 - MATHEMATICS UNIT

Page 12: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

(b) Evaluate ∫ xdxx ln4

SOLUTION : Let u then xln=xdx

du 1= , therefore : dx

x1

=du

Let then dxxdv 4=5

5xdvv ∫ ==

By using the formula of integration by parts , :

∫ ∫−= dxx

xxxxdxx 1.5

ln5

ln55

4

Cxxx

dxxxx

+−=

−= ∫

255ln

51

5ln

55

45

(c) Evaluate ∫ xdxx sin2

(repeating process of integration by parts ) SOLUTION : Let then 2xu = x

dxdu 2= , therefore : xdxdu 2=

Let then xdxdv sin= xdvv cos−== ∫ By using the formula of integration by parts , : ∫ ∫ −−−= xdxxxxxdxx cos2cossin 22

∫+−= xdxxxx cos2cos2 Let xu then = 1=

dxdu , therefore : dxdu =

Let then xdxdv cos= xdvv sin∫ == ∫ ∫ −−−= xdxxxxxdxx cos2cossin 22

[ ]

CxxxxxCxxxxx

xdxxxxx

+++−=

+−−+−=

−+−= ∫

cos2sin2cos)cos(2sin2cos

sinsin2cos

2

2

2

F2-B - 12 - MATHEMATICS UNIT

Page 13: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

(d) Evaluate ∫ xdxe x cos

( special case of integration by parts ) SOLUTION : Let then xeu = xe

dxdu

= , therefore : du dxex=

Let then xdxdv cos= xdvv sin∫ == By using the formula of integration by parts , : ∫ ∫−= xdxexexdxe xxx sinsincos

Let then xeu = xedxdu

= , therefore : du dxex=

Let then xdxdv sin= xdvv cos−== ∫ [ ]∫ ∫ −−−−= xdxexexexdxe xxxx coscossincos

∫−+= xdxexexe xxx coscossin

[ ]

[ ] Cxxexdxe

Cxxexdxex

x

xx

++=

++=

∫cossin

2cos

cossincos2

(e) Evaluate ∫ xdxln

( integration of ln x ) SOLUTION :

Let then xu ln=xdx

du 1= , therefore : dx

x1

=du

Let then dxdv = xdvv ∫ == By using the formula of integration by parts , :

∫ ∫−= dxx

xxxxdx 1lnln

Cxxx

dxxx

+−=

−= ∫ln

ln

F2-B - 13 - MATHEMATICS UNIT

Page 14: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

5. INTEGRATING QUOTIENT

(a)

METHOD I

BY RECOGNITION

( only for dxxfxf

∫ )()('

)

Cxfdxxfxf

+=∫ )(ln)()('

Integrating fractions by recognition method will be used only when the numerator is basically the derivative of the complete denominator.

(b)

METHOD II

BY SUBSTITUTION

(only for dxxfxfn∫ )]([

)(' )

Integrating fractions by substitution will be used when an integral whose numerator is the derivative, not of the complete denominator, but of a function within the denominator.

(c)

METHOD III

BY PARTIALFRACTIONS

Integrating fractions by partial fractions method will be used

only for integral other then dxxfxf

∫ )()('

and dxxfxfn∫ )]([

)('

form.

5.1 BY RECOGNITION

(a) Evaluate dxxx

∫ + sin1cos

: ( ) Cxdxxx

++=+∫ sin1ln

sin1cos

(b) Evaluate dxeex

x

∫ + 4 : ( ) Cedx

ee xx

x

++=+∫ 4ln

4

(c) Evaluate dxxx

∫ + 3

2

1 : ( ) Cxdxxx

++=+∫

33

2

1ln31

1

F2-B - 14 - MATHEMATICS UNIT

Page 15: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

5.2 BY SUBSTITUTION

(a) Determine dxxx

∫+ )1(

22

SOLUTION :

STEP 1 : Let then 12 += xu xdu 2dx

=

rearranging , gives xdxdu 2= STEP 2 : Hence,

∫∫ =+ u

dudxx

x

)1(

22

Cu

duu

+=

= ∫−

21

21

2

STEP 3: but 12 += xu

therefore, ( ) Cxdxxx

++=+

∫ 21

2

212

)1(

2

Find :

(b) ∫ dxxx

4sincos

(c) cos

sinxxdx

+1∫

F2-B - 15 - MATHEMATICS UNIT

Page 16: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

5.3 BY PARTIAL FRACTION

(a) Evaluate dxxx∫ ++ )2)(1(

1

SOLUTION : Find the partial fractions :

( )( ) ( ) ( )21211

++

+=

++ xB

xA

xx

( ) ( )( )( )21

12++

+++=

xxxBxA

Compare the numerator of the left hand side to the right hand side : ( ) ( 121 )+++= xBxA

Let : 1−=x 2 ( )( ) ( )( )BA +−++−= 1111 ,

, Let : 2−=x Hence :

dxx∫ ++ )2)(1(

1

NOTE : Only PROPER FIMPROPER FRAproper

(b) Evaluate ∫ ++

xx

)(1(

2

A=1 ( )( ) ( )( )BA +−++−= 12221

B=−1

( ) ( )dxxdx

xx ∫∫ +

−+

=2

11

1

( ) ( ) Cxx ++−+= 2ln1ln

RACTIONS can be converted directly into partial fractions. An CTIONS must first be divided out until the remaining fraction is

−dx

x )11

(c) Evaluate ∫ ++ dxxx

12

F2-B - 16 - MATHEMATICS UNIT

Page 17: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

6. INTEGRATION of TRIGONOMETRIC EXPRESSIONS

(a)

STANDARD RESULT

Cxxxdx

Cxxxdx

Cxxdx

Cxxdx

++−=

++=

+=

+=

∫∫∫∫

.cotcsclncsc

tanseclnsec

sinlncot

seclntan

(b)

INTEGRATION OF SOME

TRIGONOMETRIC EXPRESSIONS

EVEN POWERS OF SIN θ OR COS θ

The double angle trigonometric identities are useful here:

θθθ 22 sincos2cos −=

1cos2

sin212

2

−=

−=

θ

θ

where :

2

2cos12cos θθ +=

22cos1sin2 θθ −

=

ODD POWERS OF SIN θ OR COS θ In this case, we can use the identity:

1sincos 22 =+ θθNote :

cos sin sin

sin cos cos

θ θ θ θ

θ θ θ θ

n n

n n

dn

C

dn

C

=+

+

=−+

+

+

+

11

11

1

1

Can you prove these formulae? (use substitution method)

POWERS OF TAN θ

The identity : θθ 22 sec1tan =+

and the formula Cn

dn

n ++

=∫+

1tansectan

12 θθθθ is

helpful in integrating any power of tan θ.

F2-B - 17 - MATHEMATICS UNIT

Page 18: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

(c)

MULTIPLE ANGLE

When integrating products such as sin nθ cos mθ, one of the factor formulae should be used :

( ) ([ ]BABABA −++= sinsin21cossin )

( ) ([ ]BABABA −−+= sinsin21sincos )

( ) ([ ]BABABA −++= coscos21coscos )

( ) ([ ]BABABA +−−= coscos21sinsin )

6.1 EVEN POWERS OF SIN θ OR COS θ

(a) Evaluate ∫ cos θθd2

SOLUTION :

∫∫

+= θθθθ dd

22cos

21cos 2

C

dd

++=

+= ∫ ∫

42sin

2

22cos

21

θθ

θθθ

(b) Evaluate ∫ cos (c) Evaluate θθd4 ∫ θθd2sin

F2-B - 18 - MATHEMATICS UNIT

Page 19: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

6.2 ODD POWERS OF SIN θ OR COS θ (a) Find ∫ sin θθd3

SOLUTION :

( )( )∫∫ = θθθθθ dd 23 sinsinsin

( )

C

dd

d

++−=

−=

−=

∫ ∫∫

3coscos

cossinsin

cos1sin

3

2

2

θθ

θθθθθ

θθθ

(b) Find ∫ sin θθd5

6.3 ODD AND EVEN POWERS FOR TANGENT

(a) Evaluate ∫ θθd2tan

( )∫∫ −= θθθθ dd 1sectan 22 SOLUTION:

C

dd

+−=

−= ∫ ∫θθ

θθθ

tan

sec 2

(b) Evaluate ∫ θθd3tan

( )∫∫ −= θθθθθ dd 1sectantan 23 SOLUTION:

C

dd

+−=

−= ∫ ∫θθ

θθθθθ

secln2

tan

tansectan2

2

(c) Evaluate (d) Evaluate ∫ tan ∫ θθd4tan θθd5

F2-B - 19 - MATHEMATICS UNIT

Page 20: 1. INTRODUCTION - Ahmad Zakiahmadzaki.weebly.com/uploads/1/8/7/5/1875141/wqd10202-technicalmathii... · 1. INTRODUCTION When x2 is differentiated with respect to x, the derived function

UNIVERSITI KUALA LUMPUR INTEGRATION – F2-B

F2-B - 20 - MATHEMATICS UNIT

6.4 MULTIPLE ANGLE

(a) Determine sin cos5 3θ θd∫ θ SOLUTION :

( )∫∫ += θθθθθθ dd 2sin8sin213cos5sin

C

dd

+−−=

+= ∫ ∫

42cos

168cos

2sin218sin

21

θθ

θθθθ

(b) Determine ∫ θθθ d2cos3sin CONCLUSION : The aims when dealing with trig integrals are usually :

a) to convert the integral to the form

∫ dxufdxdu )('

b) to reduce the trig expression to a number of single trig ratios