1 ieee visualization 2006 vortex visualization for practical engineering applications ieee...

23
1 Visualization for Practical Engineering Applications IEEE Visualization 2006 IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, M. Jankun-Kelly, M. Jiang, D. S. Thompson, R. Machiraju D. S. Thompson, R. Machiraju We thank NSF and DOD for funding our research

Upload: jesus-cole

Post on 10-Dec-2015

241 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

11

Vortex Visualization for Practical Engineering Applications

IEEE Visualization 2006IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang,M. Jankun-Kelly, M. Jiang,

D. S. Thompson, R. MachirajuD. S. Thompson, R. Machiraju

We thank NSF and DOD for funding our research

Page 2: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

22

OverviewOverview

Goal: Feature Based Vortex Goal: Feature Based Vortex VisualizationVisualization

Challenge: Practical Engineering Challenge: Practical Engineering DataData

Existing TechniquesExisting Techniques Our MethodOur Method Results & ConclusionsResults & Conclusions Ongoing WorkOngoing Work

Page 3: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

33

Feature Based Vortex Feature Based Vortex VisualizationVisualization

Vortex: a swirling flow featureVortex: a swirling flow feature Characterization: high level feature Characterization: high level feature

descriptiondescription

Vortex visualization schematic: wing (green),vortex core line with sense of rotation (twisted ribbon), vortex extent & local tangential velocity (shaded surface)

Page 4: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

44

Practical Engineering DataPractical Engineering Data

largelarge unstructured meshunstructured mesh low levellow level noisynoisy complex vortical flowscomplex vortical flows resolutionresolution

spinning missile with dithering canards

[Blades & Marcum 2004]

serrated wing [Hammons 2006]

Page 5: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

55

Existing TechniquesExisting Techniques

swirl parameter isosurfacing

core line segments [Sujudi & Haimes 1995]

streamlines

Feature BasedFeature Based– Stegmeier et al. 2005Stegmeier et al. 2005– Garth, Laramee, Tricoche et al. 2005Garth, Laramee, Tricoche et al. 2005– Tricoche et al. 2005Tricoche et al. 2005

Line BasedLine Based– Sujudi & Haimes method Sujudi & Haimes method

(line segments) 1995(line segments) 1995– streamlines from critical pointsstreamlines from critical points– Banks & Singer method 1995Banks & Singer method 1995– Jiang’s combinatorial method Jiang’s combinatorial method

20022002– Sahner/Weinkauf/Hege Sahner/Weinkauf/Hege λλ22 and and

scalar field method 2005scalar field method 2005

Region BasedRegion Based– Vorticity magnitudeVorticity magnitude– Swirl parameter Swirl parameter

[Berdahl & Thompson 1993] [Berdahl & Thompson 1993]

– λλ22 [Jeong & Hussain 1995] [Jeong & Hussain 1995]

Page 6: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

66

Overview of Our MethodOverview of Our Method

1.1. Vortex detectionVortex detection

2.2. Topology IdentificationTopology Identification

3.3. Core line extractionCore line extraction

4.4. Extent computationExtent computation

Characteristics are Characteristics are found in stages 3,4.found in stages 3,4.

1

2

3

4

Page 7: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

77

Stage 1: Vortex DetectionStage 1: Vortex Detection

1.1. Vortex detectionVortex detection2.2. Topology IdentificationTopology Identification

3.3. Core line extractionCore line extraction

4.4. Extent computationExtent computation

Characteristics are found Characteristics are found in stages 3,4. in stages 3,4.

1

2

3

4

Page 8: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

88

Vortex DetectionVortex DetectionLocal Extrema Method (LEM)Local Extrema Method (LEM)

Vortex core candidate cells

Scalar field whose extrema coincide with vortex core lines

Detection of line-type local extrema

Page 9: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

99

Vortex Detection: Vortex Detection: AggregationAggregation

low level data

(candidate cells)

high level data

(aggregates)

Aggregation moves the level of abstraction from mesh data towards feature data.

Page 10: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

1010

Stage 2: Topology Stage 2: Topology IdentificationIdentification

1.1. Vortex detectionVortex detection

2.2. TopologyTopology IdentificationIdentification

3.3. Core line extractionCore line extraction

4.4. Extent computationExtent computation

Characteristics are found Characteristics are found in stages 3,4. in stages 3,4.

1

2

3

4

Page 11: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

1111

Topology IdentificationTopology Identification

N vortices per aggregate, branching

1 vortex per aggregate, no branching

(feature level data)

Aggregates are split into non-branching pieces with a k-means clustering algorithm.

Page 12: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

1212

Stage 3: Core Line Stage 3: Core Line ExtractionExtraction

1.1. Vortex detectionVortex detection

2.2. Topology IdentificationTopology Identification

3.3. Core line extractionCore line extraction4.4. Extent computationExtent computation

Characteristics are found Characteristics are found in stages 3,4. in stages 3,4.

1

2

3

4

Page 13: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

1313

Core Line ExtractionCore Line Extraction

One core line is extracted from each aggregate with prediction /

correction.

The correction step locates the extreme value at the core line in the swirl plane.

Page 14: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

1414

Correction Step: Function Correction Step: Function FittingFitting

Goal: locate extreme value Goal: locate extreme value in the swirl planein the swirl plane

2D conical fitting function, 2D conical fitting function, one extreme value one extreme value expectedexpected

Best fit: minimal standard Best fit: minimal standard deviation of fit error deviation of fit error (red high, blue low)(red high, blue low)

Locate vortex core line with Locate vortex core line with subcell resolutionsubcell resolution

known function sample point

local extremum (not a data point)

predicted local extremum

Page 15: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

1515

Stage 4: Extent Stage 4: Extent ComputationComputation

1.1. Vortex detectionVortex detection

2.2. Topology IdentificationTopology Identification

3.3. Core line extractionCore line extraction

4.4. Extent computationExtent computation

Characteristics are found Characteristics are found in stages 3,4. in stages 3,4.

1

2

3

4

Page 16: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

1616

Vortex ExtentVortex Extent

vortex core lines

vortex extent surfaces

extent is the surface of maximum tangential velocity

Dacles-Mariani 1995

Page 17: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

1717

Feature Based Visualization: Feature Based Visualization: Serrated WingSerrated Wing

visualization goal schematic

Extent: purple surfaceExtent: purple surface Core lines: ribbonsCore lines: ribbons Rotation sense: ribbon twistRotation sense: ribbon twist Circulation: ribbon colorCirculation: ribbon color

visualization result

Page 18: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

1818

Feature Based Visualization: Feature Based Visualization: Spinning MissileSpinning Missile

Page 19: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

1919

Feature Based Visualization: Feature Based Visualization: Spinning Missile MovieSpinning Missile Movie

Page 20: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

2020

Timing on Sun UltraSPARC Timing on Sun UltraSPARC IIIIII

DatasetDataset Mesh Size Mesh Size (nodes)(nodes)

Feature Feature CountCount

Feature Feature Extraction Extraction

TimeTime

Serrated wingSerrated wing 900,000900,000 2525 < 2 min< 2 min

Spinning Spinning missilemissile

9 million9 million 1,800+1,800+ 33 min33 min

Bronchial tubeBronchial tube 12 million12 million 800+800+ 11 min11 min

Helicopter Helicopter rotorrotor

10.2 10.2 millionmillion

172172 22 min22 min

(12 min on Apple XServe G5)

Page 21: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

2121

ConclusionsConclusions

Vortex core lines resolved through novel Vortex core lines resolved through novel function fitting techniquefunction fitting technique

Individual vortices identified with novel k-Individual vortices identified with novel k-means techniquemeans technique

These techniques work on practical data: These techniques work on practical data: large, noisy, unstructured, not ideally large, noisy, unstructured, not ideally sampledsampled

Feature based visualization of interesting, Feature based visualization of interesting, complex vortex behavior made possiblecomplex vortex behavior made possible

Page 22: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

2222

Ongoing WorkOngoing Work

Improve Core Line QualityImprove Core Line Quality– reduce swirl vector field noisereduce swirl vector field noise– improve local extremum detectionimprove local extremum detection– repair Crepair C00 discontinuities discontinuities

Improve Extent QualityImprove Extent Quality– local repair of outlierslocal repair of outliers– better extent modelbetter extent model

Page 23: 1 IEEE Visualization 2006 Vortex Visualization for Practical Engineering Applications IEEE Visualization 2006 M. Jankun-Kelly, M. Jiang, D. S. Thompson,

2323

Questions?Questions?

Monika Jankun-Kelly

[email protected]