1 glacio-hydrological projections with downscaled climate data · 2018. 12. 7. · research flow...

30
Glacio-hydrological projections with downscaled climate data Megumi Watanabe and Shinjiro Kanae Tokyo Institute of Technology 2018/02/08 1

Upload: others

Post on 08-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Glacio-hydrological projections

    with downscaled climate data

    Megumi Watanabe and Shinjiro Kanae

    Tokyo Institute of Technology

    2018/02/08

    1

  • Current assessmentsand

    our objective

    2

  • Current assessmentsfor impact of climate change

    3

    (NATIONAL INTEGRATED WATER RESOURCES MANAGEMENT PLAN 2016)

    Projected changes in precipitation for RCP4.5

    Rainfall

    River

    discharg

    e

    Basin outflows and their return periods

    To estimate of river discharge taking into

    account glacier melt with a regional climate

    projection

    OBJECTIVE

  • Research flow

    4

  • 5

    Hydrological model

    Research flow

    Energy balance glacier

    model with debris effect

    Temperature index

    glacier model

    River discharge

    Case1 Case2

    Runoff from glaciers (Case1,2)

    (Case1,2)

    Initial glacier data

    Multiple climate data at high elevations

    Precipitation, air temperature and etc.

  • 6

    Hydrological model

    Research flow

    Energy balance glacier

    model with debris effect

    Temperature index

    glacier model

    River discharge

    Case1 Case2

    Runoff from glaciers (Case1,2)

    (Case1,2)

    Initial glacier data

    Multiple climate data at high elevations

    Precipitation, air temperature and etc.

  • 7

    Hydrological model

    Research flow

    Energy balance glacier

    model with debris effect

    Temperature index

    glacier model

    River discharge

    Case1 Case2

    Runoff from glaciers (Case1,2)

    (Case1,2)

    Initial glacier data

    Multiple climate data at high elevations

    Precipitation, air temperature and etc.

  • 8

    Hydrological model

    Research flow

    Energy balance glacier

    model with debris effect

    Temperature index

    glacier model

    River discharge

    Case1 Case2

    Runoff from glaciers (Case1,2)

    (Case1,2)

    Initial glacier data

    Multiple climate data at high elevations

    Precipitation, air temperature and etc.

  • 9

    Hydrological model

    Research flow

    Energy balance glacier

    model with debris effect

    Temperature index

    glacier model

    River discharge

    Case1 Case2

    Runoff from glaciers (Case1,2)

    (Case1,2)

    Initial glacier data

    Multiple climate data at high elevations

    Precipitation, air temperature and etc.

    Past period• Uncertainty

    • Data

    - Air temperature

    - Precipitation

    Future period (GCMs)• Uncertainty

    • Bias correction

    • Multi-model

  • Uncertainty of climate datafor the past period

    The number of gauge (APHRODITE)

    The scarcity of in-situ observations

    (for temperature and precipitation)

    at high elevations

    10

  • Temperature data for the past TA1 TA2

    (Hirabayashi et al., 2008)

    ERA-Interim

    Thermometer

    Reanalysis

    It could be applied to

    sparsely observed regionsRennie et al. (2014)

    Sparse

    stations

    at

    elevations

    H08

    Hybrid of observations and model

    (Dee et al., 2012)

    https://serc.carleton.edu/eet/envisioningcli

    matechange/part_2.html

    http://www.ushistory.org/franklin/fun/thermometer.htm

  • Precipitation data for the pastPR1 PR2

    PR3 PR4

    ©JAXA

    APHRODITE Sakai

    MSWEP MSWEP+PR

    ©JAXA

    Gauge Gauge

    Gauge Satellite Reanalysis Gauge Satellite Reanalysis

    (This study)

    http://www.stuffintheair.com/rain-gauge.html

  • Precipitation data for the pastPR1 PR2

    PR3 PR4

    ©JAXA

    APHRODITE Sakai

    MSWEP MSWEP+PR

    ©JAXA

    ©NASA

    GaugeGauge

    Gauge Satellite Reanalysis Gauge Satellite Reanalysis

    (This study)

    Inverse

    estimation

    using

    discharge

    Inverse

    estimation

    using

    glacier

    elevation

    Directly

    detect rain

    drop using

    satellite radar

  • Precipitation data for the pastPR1 PR2

    PR3 PR4

    ©JAXA

    APHRODITE Sakai

    MSWEP MSWEP+PR

    ©JAXA

    GaugeGauge

    Gauge Satellite Reanalysis Gauge Satellite Reanalysis

    (This study)

    Inverse

    estimation

    using

    discharge

    Inverse

    estimation

    using

    glacier

    elevation

    Directly

    detect rain

    drop using

    satellite radar

  • 15PR2 Sakai et al. (2015)

    Gauge

    Satellite

    derived

    glacier

    elevation

    Correct

    (Nuimura et al., 2015)

    Inversely estimate

  • 16

    𝑷 = 𝑬 +𝑸 + ∆𝑺

    P: Precipitation; Q: Observed discharge; E:Evaporation;

    ∆S: changes in water storage

    PR3 MSWEP (Beck et al., 2015)

    ©JAXA

    Multi

    CorrectGauged

    discharge

    http://www.bafg.de/GRDC/E

    N/02_srvcs/21_tmsrs/riverdis

    charge_node.html

    Global Runoff Data Centre

  • Precipitation data for the pastPR1 PR2

    PR3 PR4

    ©JAXA

    APHRODITE Sakai

    MSWEP MSWEP+PR

    ©JAXA

    GaugeGauge

    Gauge Satellite Reanalysis Gauge Satellite Reanalysis

    (This study)

    Inverse

    estimation

    using

    discharge

    Inverse

    estimation

    using

    glacier

    elevation

    Directly

    detect rain

    drop using

    satellite radar

  • 18

    MicrowaveInfrared Radar (PR)

    High emissivity

    from the ground

    Relationship between

    the cloud height and

    precipitation

    More sensitive

    over land as

    well as ocean

    Yamamoto et al. (2011)

    The peak local-time distribution of precipitation showed a

    relationship with the topography in the order of precipitation

    radar (strongest relationship), microwave radiometer, and

    infrared products.

    PR4 MSWEP + PR (This study)

    ©JAXA

  • 19

    Hydrological model

    Research flow

    Energy balance glacier

    model with debris effect

    Temperature index

    glacier model

    River discharge

    Case1 Case2

    Runoff from glaciers (Case1,2)

    (Case1,2)

    Initial glacier data

    Multiple climate data at high elevations

    Precipitation, air temperature and etc.

    Past period• Uncertainty

    • Data

    - Air temperature

    - Precipitation

    Future period (GCMs)• Uncertainty

    • Bias correction

    • Multi-model

  • 20

    Projected change in

    temperature for RCP4.5

    (NIWRNP 2016)

    Projected annual total

    precipitation from CMIP5

    GCMs (RCP8.5)

    Spread

    of

    climate

    models

    Uncertainty of climate datafor the future

    Climate models

    Coarse spatial resolution & bias

    Spread among models

    Bias correction

    Multi-model

  • 21

    “Original”

    Projected air temperature in 2080-2010 by INM-CM4, RCP8.5

    correctionBias

    ℃“Downscaled”Bias correction

    1950 2000 2050 2100Year

    Climate

    model

    Observation

    Compare

    statics

    【Baseline period】 【Projection period】

    Correct

    statics

    !! Can be different

    depending on data

    for the past !!

  • 22

    Eastern Himalaya

    Various

    climate

    models

    GHG emission levelScenarios

    High

    MidLow

    ΔTemperature(℃) ΔSnowfall(%)(2070-2099 to 1950-1979)RCP2.6-8.5

    CMIP5 GCMs

    Multi-scenario, Multi-model

    GCM1

    GCM3

    GCM2

    High temperature

    Median temperature & snowfall

    More snowfall

  • 23

    Hydrological model

    Research flow

    Energy balance glacier

    model with debris effect

    Temperature index

    glacier model

    River discharge

    Case1 Case2

    Runoff from glaciers (Case1,2)

    (Case1,2)

    Initial glacier data

    Multiple climate data at high elevations

    Precipitation, air temperature and etc.

    Initial glacier data

  • Initial glacier data

    24

  • The latest glacier inventory“Randolph Glacier Inventory”• A globally complete inventory of

    glacier outlines using modern satellite (such as Landsat or ASTER) imagery

    • Version 6.0: released July 28, 2017.

    • Information • Glacier shape• Location (latitude & longitude)• Glacier area• Altitude• Length

    25

    Glacier shape by RGI 6.0

    Legend

    glacier_BH

    TM_WORLD_BORDERS-0.3

    n25e090_dem.tif

    -12.17773819 - 1,000

    1,000.000001 - 2,000

    2,000.000001 - 3,000

    3,000.000001 - 3,500

    3,500.000001 - 4,000

    4,000.000001 - 4,500

    4,500.000001 - 5,000

    5,000.000001 - 5,500

    5,500.000001 - 6,000

    6,000.000001 - 7,557.027832

    n25e085_dem.tif

    -5.14632225 - 1,000

    1,000.000001 - 2,000

    2,000.000001 - 3,000

    3,000.000001 - 3,500

    3,500.000001 - 4,000

    4,000.000001 - 4,500

    4,500.000001 - 5,000

    5,000.000001 - 5,500

    5,500.000001 - 6,000

    6,000.000001 - 8,839.171875

    Legend

    glacier_BH

    TM_WORLD_BORDERS-0.3

    n25e090_dem.tif

    -12.17773819 - 1,000

    1,000.000001 - 2,000

    2,000.000001 - 3,000

    3,000.000001 - 3,500

    3,500.000001 - 4,000

    4,000.000001 - 4,500

    4,500.000001 - 5,000

    5,000.000001 - 5,500

    5,500.000001 - 6,000

    6,000.000001 - 7,557.027832

    n25e085_dem.tif

    -5.14632225 - 1,000

    1,000.000001 - 2,000

    2,000.000001 - 3,000

    3,000.000001 - 3,500

    3,500.000001 - 4,000

    4,000.000001 - 4,500

    4,500.000001 - 5,000

    5,000.000001 - 5,500

    5,500.000001 - 6,000

    6,000.000001 - 8,839.171875

    Legend

    glacier_BH

    TM_WORLD_BORDERS-0.3

    n25e090_dem.tif

    -12.17773819 - 1,000

    1,000.000001 - 2,000

    2,000.000001 - 3,000

    3,000.000001 - 3,500

    3,500.000001 - 4,000

    4,000.000001 - 4,500

    4,500.000001 - 5,000

    5,000.000001 - 5,500

    5,500.000001 - 6,000

    6,000.000001 - 7,557.027832

    n25e085_dem.tif

    -5.14632225 - 1,000

    1,000.000001 - 2,000

    2,000.000001 - 3,000

    3,000.000001 - 3,500

    3,500.000001 - 4,000

    4,000.000001 - 4,500

    4,500.000001 - 5,000

    5,000.000001 - 5,500

    5,500.000001 - 6,000

    6,000.000001 - 8,839.171875

    < 1,000

    1,000-2,000

    2,000-3,000

    3,000-3,500

    3,500-4,000

    4,000-4,500

    4,500-5,000

    5,000-5,500

    5,500-6,000

    > 6,000

    Altitude (m)

    ⒸNASALandsat

  • 26

    Hydrological model

    Research flow

    Energy balance glacier

    model with debris effect

    Temperature index

    glacier model

    River discharge

    Case1 Case2

    Runoff from glaciers (Case1,2)

    (Case1,2)

    Initial glacier data

    Multiple climate data at high elevations

    Precipitation, air temperature and etc.

  • Temperature index glacier model

    27

  • 28

    Melt factor

    [mm/℃/day]

    Surface-air

    temperature [℃] 0 [℃]

    Snow pack is transformed into glacier ice

    MeltingSnowfall

    Accumulation Ablation

    𝑻𝒊 + 𝒅𝑻 − 𝑻𝟎 𝑫𝑫𝑭

    Surface air

    temperaturePrecipitation

    Glacier model –mass balance-Glacier

    Snowfall = Precipitation*Cp

    (if 𝑻𝒊 + dT 2)

    (Hirabayashi et al., 2013)

    Adjustment

    factor

  • Summary

    29

  • Today’s summary

    • Multiple climate data for the past period• Air temperature (In-situ / Reanalysis)

    • Precipitation (In-situ / Reanalysis / Inverse estimations)

    • Climate data for the future period • Bias correction of GCMs

    • Multi-GCMs

    • Initial glacier data from the inventory

    • Temperature index glacier model

    • Uncertainty range of climate data

    • Uncertainty range of glacier projections

    30