1 chapter 11 special functions mathematical methods in the physical sciences 3rd edition mary l....

22
1 Chapter 11 Special functions tical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

Upload: erica-malone

Post on 24-Dec-2015

281 views

Category:

Documents


19 download

TRANSCRIPT

Page 1: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

1

Chapter 11 Special functions

Mathematical methods in the physical sciences 3rd edition Mary L. Boas

Lecture 12 Gamma, beta, error, and elliptic

Page 2: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

2

2. The factorial function (usually, n : integer)

1!!

32,

2Similarly,

.111

011

010

40

330

2

200

0

00

ndxexn

dxex

dxexdxex

dxexedxxe

edxe

xnn

xn

xx

xxax

xax

Page 3: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

3

3. Definition of the gamma function: recursion relation (p: noninteger)

.0,0

1 pdxexp xp- Gamma function

ppp

ppdxexp xp

1

.1,!10

- Example .5/164/94/1,

4/14/14/54/5)4/5(4/9

so

!.1

,!1

0

0

1

ndxexn

ndxexn

xn

xn

- Recursion relation

Page 4: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

4

4. The Gamma function of negative numbers

)0(11 ppp

p

- Example

.7.03.13.0

13.1,7.0

3.0

13.0

.0as11

. ppp

pcf

- Using the above relation, 1) Gamma(p= negative integers) infinite. 2) For p < 0, the sign changes alternatively in the intervals between negative integers

Page 5: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

5

5. Some important formulas involving gamma functions

2/1

.442/1

.2211

2/1)prove(

2/

0 00 0

2

000

222

22

rdrdedxdye

dyeydyey

dtet

ryx

yyt

.sin

1p

pp

Page 6: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

6

6. Beta functions

pqBqpBcfqpdxxxqpB qp ,,..0,0,1,1

0

11

yyxy

dyyqpBiii

xdqpBii

ayxdyyayaa

dy

a

y

a

yqpBi

qp

p

qp

a qpqp

aqp

1/.1

,)

sin.cossin2,)

/.1

1,)

0

1

212122/

0

0

1110

11

Page 7: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

7

7. Beta functions in terms of gamma functions

qp

qpqpB

,

.,2

1

2

1sincos4

sincos4

4

2,2

)Prove

0

2/

0

1212122

0

2/

0

1212

0 0

1212

0

12

0

12

0

1

2

2

22

22

qpBqpddrer

rdrderr

dxdyeyxqp

dxexqdyeydtetp

pqrqp

rpq

yxpq

xqyptp

Page 8: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

8

- Example

0 5

3

1 x

dxxI

0

1

.1

,. qp

p

y

dyyqpBcf

.

4

1

!4

!3

5

14

.1,431,5

qppqp

Page 9: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

9

8. The simple pendulum

.sin0sin

cos2

1

cos

2

1

2

1

22

22

22

l

gmglml

dt

d

mglmlVTL

mglV

lmmvT

- Example 1 For small vibration,

./21

sin

glTl

g

Page 10: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

10

- Example 2

integralellipticcf..constcos2

1

:sinsinsin

2

l

g

dl

gdor

l

g

l

g

In case of 180 swings (-90 to +90)

./42.7computer, Using

!function!Beta,cos2

4

.4

22

cos

.2

cos,cos

2,cos

2

1

.0const.090

2/

0

4/

0

2/

0

2

glT

d

g

lT

T

l

gdt

l

gd

dtl

gd

l

g

dt

d

l

g

T

Page 11: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

11

9. The error function (useful in probability theory)

.2

erf0

2

dtex t- Error function:

- Standard model or Gaussian cumulative distribution function

.2/erf2

1

2

1

2

1

2/erf2

1

2

1

2

1

2/

2/

2

2

xdtex

xdtex

x t

x t

.2

2erfc

,2/erf12

erfc

2/

2/

2

2

x

t

x

t

dtex

xdtex

- Complementary error function

.122erf xx

- in terms of the standard normal cumulative distribution function

Page 12: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

12

- Several useful facts

1.!253

2

!21

22erf

.12

12

2

1

2

122erf

erferf

53

0

42

0

0

2

2

xxx

xdtt

tdtex

dte

xx

xx t

t

- Imaginary error function:

xix

dtexx t

ierfierf

.2

erfi0

2

Page 13: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

13

10. Asymptotic series

.2

erf1erfc2

x

t dtexx

.1

2

1

2

1

1

2

1

2

11

2

11

,2

1111Using

22

2222

2222

2

2

x

tx

x

t

x

t

x

t

x

t

tttt

dtet

ex

dtt

eet

dtedt

d

tdte

edt

d

ttet

tet

e

Page 14: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

14

.

1

2

3

2

13

2

1

2

11

2

1

//1/1Using

22222

22

4343

2132

x

tx

x

t

x

t

x

t

tt

dtet

ex

dtt

eet

dtedt

d

edtdtet

1.2

531

2

31

2

11~erf1erfc 32222

2

xxxxx

exx

x

- This series diverges for every x because of the factors in the numerator. For large enough x, the higher terms are fairly small and then negligible. For this reason, the first few terms give a good approximation. (asymptotic series)

Page 15: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

15

11. Stirling’s formula

.2~288

1

12

1121

2~!

2pep

pppepp

nenn

pppp

nn

- Stirling’s formula

Page 16: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

16

11. Elliptic integrals and functions

- Legendre forms:

.10,sin1,:kindSecond -

,10,sin1

,:kindFirst-

0

22

0 22

kdkkE

kk

dkF

- Jacobi forms:

0 0 2

2222

0 0 22222

.1

1sin1,

,10,11sin1

,

sin,sin

dtt

tkdkkE

ktkt

dt

k

dkF

xt

x

x

Page 17: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

17

- Complete Elliptic integrals (=/2, x=sin=1):

2/

0

1

0 2

222

2/

0

1

0 2222

.1

1sin1,

2

,11sin1

,2

dtt

tkdkkEkEorE

tkt

dt

k

dkFkKorK

t

t

- Example 1

4/,3/sin,/1,2/3,

964951.0~21,3/,sin2/11

1

3/

0

22

EkEorkEkxEor

EkEd

Page 18: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

18

- Example 2

3/

0

223/

0

2 sin2/114sin816

dd

.,2,

,2,.cf

,,sin1.cf 21222

1

kEnEknE

kFnKknF

kEkEdk

Page 19: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

19

- Example 4. Find arc length of an ellipse.

ellipseoftyeccentrici:,kindsecondtheofintegralelliptical

.sin1sin

.sincos

cos,sin

22

222

22

222222

22222222

ea

bak

da

baadbaads

dbadydxds

byax

(using computer or tables)

Page 20: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

20

- Example 5. Pendulum swing through large angles.

2sin24

2sin2

24

integralelliptic2

sin24

2

coscos

.coscos2

.constcos2

0

2

2

Kg

lK

g

lT

KT

l

gd

l

g

l

g

Page 21: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

21

2/~2/sin,smallfor

1612

2sin

4

3

2

1

2sin

2

11

24

series.by ion approximat ,/2sinlargetoonotFor

24

22

2

212

g

l

g

lT

α

- For =30, this pendulum would get exactly out of phase with one of very small amplitude in about 32 periods.

Page 22: 1 Chapter 11 Special functions Mathematical methods in the physical sciences 3rd edition Mary L. Boas Lecture 12 Gamma, beta, error, and elliptic

22

- Elliptic Functions

uuudu

d

xku

xu

uxxtkt

dtu

xt

dtu

x

x

dncnsn

1dn

1cn

.sn function) elliptic(sn11

sin1

22

2

1

0 222

1

0 2