,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · em,...

62

Upload: others

Post on 02-Jun-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

GEOLOGICAL SCIENCES ANDGEOLOGICAL ENGINEERING

DEPARTMENT OF

CURRENT STATE OF FIELD EDUCATION

IN THE DEPARTMENT OF

GEOLOGICAL SCIENCES AND

GEOLOGICAL ENGINEERING,

QUEEN’S UNIVERSITY

REPORT

DECEMBER, 2012DECEMBER, 2012

Page 2: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-ii-

Current State of Field Education 

BACKGROUND AND FINANCIAL SITUATION 

Ten years ago this year, the Rose Field Studies Program was established with your pledge to donate $25,000 per year for a ten‐year period, in support of our field schools and field trips.  Your generous donation, for which we are very gratefull, permitted us to maintain and enhance our field education programs, and presented us with the challenge of finding a way to replace this annual amount with other revenue at the end of the 10‐year period.  As you know, we responded by embarking on a fund‐raising campaign that has, to date, raised more than $1.9 million in a series of endowed funds. These funds generate almost $80,000 in annual revenue to support our field schools. In addition, we have secured significant multi‐year financial support from Shell Canada ($20,000 per year for 5 years) for two of our sedimentary field trips (Quebec City and Bermuda).  Our students have become proactive at fund‐raising and on their own initiative have secured financial support from the Canadian Society of Petroleum Geologists for our New York sedimentary field trip.   

The annual field education revenue covers approximately one third of the current cost of all of our field trips and field schools, with the remaining two‐thirds generated equally by the Department  and paid by the students (by way of a one‐time field‐transportation levy and their share of the cost of accommodation and food while on trips or field schools).  Without the revenue from the field funds, students would either be paying twice what they are now, or we would have been forced to reduce the number of field‐education opportunities available to our students.  (A review of all current field trips and field schools is provided below). 

We believe that we have met the challenge that your original donation set for us, and we are very thankful for the process that you set in motion.  This success has not, however, generated complacency.  We believe that our students still pay too much for their field education (ca. $2,000‐$2,500 per person over their 2nd‐4th years). In addition, the cost of travel and accommodation continue to rise while financial restraint throughout the Ontario university system continues to put pressure on Departmental budgets.  As a result, we continue to put an emphasis on field education when working with potential donors.  The most recent fund ‐ the Paddon Thompson Memorial Field Education Fund was established in consultation with Paddon’s family.  

EVOLUTION OF OUR FIELD‐EDUCATION PROGRAM: CONSTRAINTS AND OUR RESPONSE 

Our suite of field trips (generally 1‐2 days in length as part of a regular lecture course) and field schools (1‐2 weeks in length with their own course‐credit weigh) is more or less the same as it was 10 years ago (see descriptions below), despite the rising cost, a near doubling of student numbers, and a continuing 

Page 3: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-iii-

reduction in our faculty complement, all of which might normally have led to a reduction in the number of trips and schools.    

  The near doubling of student numbers over the last 10 years has placed strains on several of our field trips and schools, but we have adapted by means of hiring additional Teaching Assistants and by modifying the method of instruction in the field to ensure that all of the students have the opportunity to see things in small groups, with lots of one‐on‐one interaction with the instructors.  Fortunately, increased student numbers have not yet reached the physical capacity of the base for our second‐year field school in Sutton, Quebec (GEOE/GEOL 300), so we have so far avoided the need to split the field school into two separate groups and/or venues.  The biggest pressure has been on what we call the “Fall Field Trip” led by Bob Dalrymple, Laurent Godin, Noel James and Guy Narbonne, which is tied to several courses in the 3rd and 4th years (GEOE/GEOL 368 Carbonate Sedimentology; GEOE/GEOL 478 Terrigenous Clastic Sedimentology; and GEOE/GEOL 488 Geology of North America).  As has been the case almost since its inception, this trip has alternated between the Quebec City area and New York State.  For the last 2 years, we have been forced to run this 5‐day trip with two highway coaches!  For a combination of pedagogical and safety reasons, this year we will run both trips simultaneously (rather than in alternate years), so that student numbers on each trip are reduced to a manageable number.   

The loss of faculty has been concentrated in the area of geophysics – one loss was the move of Dr. Gerhard Pratt to the University of Western Ontario.  The implication of this for our field‐education program has been two‐fold.  First, we no longer offer our own geophysics field school.  In its place, we are collaborating with Gerhard at the University of Western Ontario to offer a joint geophysics field school. Second, other workload issues arising from Gerhard’s departure led to the combining of two separate field schools, one in geotechnical/geoenvironmental engineering and the other in mineral‐

deposits geology.  The new combined field school (GEOE 410), which visits selected sites in the Sudbury area, has been highly successful because of its integrated examination of the full life cycle of a mineral deposit, from exploration through planning and geotechnical development, to remediation of mine tailings. A separate report for GEOE 410 is appended to this report.  

As you know we are currently seeking an Applied Geophysics professor. We hope to be able to announce the new professor’s name soon.  

 

   

Page 4: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-iv-

CURRENT FIELD TRIPS AND FIELD SCHOOLS: DESCRIPTIONS OF OFFERINGS 

Despite the pressures outlined above, we continue to offer a rich and diverse array of trips and schools.  In the following pages, we provide thumbnail descriptions of each field activity available to our students, beginning with those in 2nd year.  

GEOE/GEOL 221: This is our signature “Field Methods” course that all students must take in the fall term of 2nd year.  It consists of eight 5‐hours labs that occur weekly over the period during the fall term, rain or shine.  In this course, students learn about safety in the field, making observations and taking notes of rocks ranging in age from the Precambrian Shield granites and gneisses, through the early Paleozoic limestones of the Kingston area, to the Pleistocene till and glacio‐lacustrine sediments.  Students are exposed to a wide range of field techniques, from pace and compass mapping to traversing using GPS, logging of sedimentary successions, to surveying sites using ground‐penetrating radar.  The skills learned in this course make our students highly employable immediately at the end of 2nd year.  A synopsis of this course is provided in Appendix 1.   

GEOE/GEOL 300: The “Field Methods” course is followed at the end of 2nd year by the mandatory 2‐week Field School that is still based in Sutton, Quebec.  This field school may well be one of the most ambitious and multidisciplinary in all of Canada.  Students map a structurally complex succession of weakly metamorphosed sedimentary rocks, and prepare a map and cross sections.  In addition to this primary exercise, they also undertake a investigation of a Quaternary outwash delta using soil augering, as well as GPR and seismic surveys, in order to develop a 3D model of the deposit and determine the aggregate resource present.  They undertake a magnetometer survey of a small gridded area, to evaluate its mineral potential.  In another study, the students use LIDAR and detailed structural measurements to design a new ski lift, evaluating slope‐stability issues.  The several deliverables of the school are presented in writing and in an oral exam.  Appendix 2 provides a more detailed description of this field school, and a series of videos created by the students, showing both the work and fun aspects of field school, can be found on the accompanying DVD. 

Our field trip and field school offerings in third and fourth year are more advanced and generally are more specialized, although several retain a strong multidisciplinary, integrative character.  All of them are focussed on the linked objectives of building observational and interpretive skills, and especially the ability to integrate observations with the knowledge acquired in lectures and labs to arrive at interpretations about the geological processes and history that formed the rocks under study, and about the application of the knowledge gained toward 

the solution of real‐world problems.  The following descriptions provide a brief summary of each trip and school.  

GEOE/GEOL 319: In GEOL 319, there are 6 field labs. The over‐arching goal of the field component of this course is to connect the physical principles described in lectures to the practical application of these techniques for geophysical data acquisition.  The students learn the operational principles of shallow 

Page 5: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-v-

EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys.  This includes hands‐on experience operating the relevant instruments; students work in groups of about 6 or 7, so everyone gets an opportunity to work directly with the equipment.  

  The students collect data in City Park in Kingston (across from the Courthouse), which they examine later in the semester.  GPR and seismic refraction are used to identify the depth to bedrock, and the EM, electrical, and magnetic surveys are used to locate the steam line to Kingston General Hospital; the gravity survey is a simple exercise to demonstrate the influence of elevation on gravity measurements.  Each student performs a processing exercise for each set of data, and answers questions during the process.  The goal of this activity is to help the students understand basic processing principles, and also to stimulate thought on topics of survey utility, survey design, and data interpretation.  At the end of the semester, each student must write a report discussing the acquisition, processing and interpretation of one specific set of data. 

GEOE/GEOL 321:  This structural geology course must be taken by all of our students.  One of the labs of this course involves going to the Kaladar‐North Brook‐Sharbot Lake area north of Kingston to examine various aspects of the structural geology of these deformed rocks.  The students learn how to identify and interpret structural features, which reflect the progressive strain that these Precambrian rocks have experienced, and to utilize strain markers to quantify the amount and directional sense of deformation. 

Students on the structural‐geology field trip near Kaladar, Ontario

GEOE/GEOL 337 and 368: To borrow a phrase coined by Noel James in “Facies Models”, “carbonate sediments are born, not made”; in other words, they are the product of the skeletal‐bearing organisms living in that environment.  It is logical, therefore, that the “Paleontology” (GEOE/GEOL 337) and “Carbonate Sedimentology” (GEOE/GEOL 368) courses run a combined, one‐day field trip each fall in late September that is led by Guy Narbonne and Noel James.  The purpose of the trip is to teach the approaches and methodology for field‐based paleontology and carbonate sedimentology, and to use this information to reconstruct progressive environmental changes recorded in the Ordovician rocks of the Kingston area 460 million years ago.  The field trip progresses stratigraphically – beginning in the hypersaline, mudcracked and stromatolite‐dominated tidal flats of the lower Black River Group and ending in fossiliferous deep‐ramp carbonates of the upper Trenton Group deposited below the base of the photic zone under periodically disoxic conditions.  Samples collected on this fieldtrip form the core of subsequent lab exercises in GEOE/GEOL 337 and 368. 

  This trip illustrates how carbonate sedimentology and paleontology are intimately linked, and how an integrated approach involving both can be used to solve larger‐scale geologic problems.  The principles and methods learned on this trip also provide a superb introduction to the more complex, week‐long 3rd year and 4th year “Fall Field Trips” that most of the geoscience students will be taking later in the fall.    

Page 6: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-vi-

 

Features seen in the Kingston‐area limestones. (A) Mudcracks in lime mudstone.  (B) Calcite after gypsum nodules in storm‐generated carbonate grainstone; note presence of hummocky cross stratification above layer with nodules.  (C) Tetradium (coral) heads surrounded by wave‐rippled carbonate grainstone.  (D) Several types of cephalopods, alligned by a current. 

GEOE/GEOL 343: This hydrogeology course is required by all geological‐engineering students, and is an elective for the geological‐science students.  As part of the course, the students go on a one‐day trip to the Queen’s University Biological Station (QUBS) where they undertake a variety of measurement and sampling activities, for both surface water and groundwater.  Among other things, they undertake stream‐flow measurments, and install and monitor piesometers in wells near the stream.  The students undertake evaluations of the interactions between surface and groundwater, to determine whether there is seepage or recharge.  Chemical characterization of the various water bodies is also undertaken.  A video that was produced to publicize the recently signed $2 million RBC‐Queen’s Watershed Project contains extensive coverage of the GEOE/GEOL 343 class in action at the QUBS.  That video is provided on the DVD that accompanies this report.  It is also available on UTube at https://www.youtube.com/watch?feature=player_embedded&v=Rg0zuv9Wx54.   

GEOE/GEOL 410: This course explores the mineral cycle from exploration through extraction to final mine closure. All 4th year Geological Engineering students take this course, and many indicate that it is the best course that they have taken – giving them the opportunity to view geo engineering concepts in situ. This trip is supported with tremendous amounts of time invested by senior site personnel who guide our group around their properties, and answer any and all questions posed by the students. A report on the new trip is attached in Appendix 3.  

Page 7: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-vii-

GEOE/GEOL 465 and 485 (to become GEOE/GEOL 475): These two courses, Exploration Geochemistry and Environmental Aqueous Geochemistry, respectively, soon to be combined into Exploration and Environmental Geochemistry because of the convergence of the two subdisciplines, occasionally have a field trip if scheduling and weather permit.  GEOE/GEOL 465 has on occasion (it is a winter course, so field work is heavily dependant on weather) visited a mineral showing in the Grenville province, and collected a series of soil and vegetation samples across the structural grain.  Students have brought the samples back to the geochemical facilities in the Department and in subsequent labs have analysed them, interpreted the data and made presentations about their findings.  Students in GEOE/GEOL 485 on the other hand participated in the GEOE/GEOL 343 day trip to the Queen’s University Biological Station.  The emphasis was on sampling water, measuring field parameters such as pH, Eh, alkalinity, as well as the filtering and preservation of water samples for later analyses in subsequent labs.  The way in which field work will be integrated into the new combined GEOE/GEOL 475 remains to be worked out. 

GEOE/GEOL 478: “Terrigenous Clastic Sedimentology” is offered every other year and has a one‐day field trip in mid‐September (in addition to requiring participation in the “Fall Field Trip”; see more  below).  This one‐day trip examines outcrops of the “Potsdam Sandstone” in the area bewteen Kingston and the Ottawa Valley.  Three stops are visited: 1) compositionally immature conglomerates that were deposited in a braided‐fluvial environment, prior to the transgression of the sea in the latest Cambrian or earliest Ordovician; 2) tidally deposited cross‐bedded sandstones that accumulated in the paleo‐Ottawa embayment; and 3) eolian cross bedding that is overlain by storm‐generated sandstones on the Kingston side of the Frontenac Axis.  This trip is devoted to illustrating the techniques of deducing depositional environments from observations of grain size and sedimentary structures. 

 

 

 

Upper:  Eolian cross beds 

outcropping at Sloan’s 

Quarry, north of Kingston.  

These cross beds were formed 

in a coastal dune complex, at 

the margin of the 

transgressing Early Ordovician 

sea. 

 

Lower: Detailed photo of an 

arthropod trackway preserved 

on a bedding plane in the 

eolian cross beds at Sloan’s 

Quarry.  The wide separation 

of the individual leg 

indentations occurs because 

this animal was moving 

rapidly downhill. 

Page 8: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-viii-

Fall Field Trip: For more than 20 years, we have run a major, 5‐day field trip in the week of Thanksgiving that was lead by a consortium of professors.  This trip has been a required part of GEOE/GEOL 368 Carbonate Sedimentology, GEOE/GEOL 478 Terrienous Clastic Sedimentology, and GEOE/GEOL 488 Geology of North America, and has also had participation from students taking GEOE/GEOL 377 Paleontology and/or GEOE/GEOL 418 Petroleum Geology.  Until this coming acadmic year, this trip has alternated between two areas: New York State (the “Circum‐Adirondack” trip) and Quebec City.  A summary of what is seen on this trip is provided in Appendix 4.   The purpose of these trips was to expose students to world‐class outcrops of variety of shallow and deep‐marine sedimentary rocks (both carbonates and siliciclatics) and give them practice in applying the concepts learned in classes, in order to record sedimentary features and from them deduce the environments of deposition.  A uniting theme of the various outcrops on both trips was an exploration of the link between tectonic pocesses that shaped the eastern margin of North America, including seeing affects of rifting and continental breakup to form the passive continental margin bordering the Iapetus Ocean, and the docking of an island arc and the small continent of Baltica, which created the Taconic and Acadian orogenies and their associated foreland basins. 

  Because of mounting pressure from increasing student numbers (which has necessitated taking two highway coaches for each of the last two years, as described above), we have decided to run the two trips simultaneously each year.  The New York trip will be a required part of GEOE/GEOL 368, and of GEOE/GEOL 478 in the years  when it is given, and will be taken primarily by students in their 3rd year.  The outcrops visited on this trip will remain unchanged, and the focus will be, as now, on the interpretation of sedimentary environments.  The Quebec City trip will be a required part of GEOE/GEOL 488 and will be taken primarily by 4th‐year students.  As a result, the level of complexity investigated will be higher than at present.  The Cambro‐Ordovician sedimentary succession that crops out in the Kingston‐Quebec City area will be examined in much the same way as before, but in slightly less detail so that more time can be devoted to deformed sedimentary and ophoilitic rocks of the Appalachian orogen.  The trip will be used to illustrate the broad concepts of Earth evolution that are presented in the “Geology of North America” (GEOE/GEOL 488).  This trip will be led by Laurent Godin and Noel James. 

 

Bermuda Field Seminar: This week‐long trip is not tied to any one course, nor do students get formal credit for it.  Students wishing to participate in this trip must, however, have completed GEOE/GEOL 368 Carbonate Sedimentology, and must apply for one of the limited spots.  Only the best students are selected.  This trip has received heavy financial support from Shell Canada over the years, in return for which Shell can send one of their geologists, at their expense.  The relationship appears to be working well, as Shell renewed its support at an increased level in 2011.  The students appreciate having an industry person on the trip, to provide them with a “real world” perspective on the value of what they are seeing. 

  During the trip, participants see a range of carbonate environments and deposit types, rangingf from a protected lagoonal setting, through beach and intertidal environments, to shallow‐shelf, back‐reef and forereef areas, including carbonate sand bodies generated by the shedding of material from the reefs.  All access is by wading or snorkeling from a boat.  On land, participants see Pleistocene eolianites, extensive karst of various types, and red paleosols that have concentrated wind‐blown dust.  Students are able to undertake microscopic examination of the samples collected in the facilities of the 

Page 9: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-ix-

Bermuda Biological Research Station, which is base for the trip.  A slightly expanded description of this trip is provided in Appendix 5. 

 

Ross Perrot’s mansion near one of the sampling localities on Bermuda. 

 

GEOE 446 and 447: These two courses are the capstone engineering‐design courses taken by all students in the geological engineering program.  Students undertake design projects in groups of 2‐4.  Some of the projects are created by the students themselves, based on summer jobs; others are proposed by faculty or members of the public.  Each year, one or two of the projects concern a site in or near Kingston and involve some amount of field work.  Three notable ones in recent years have been: the development of a “soft” engineering design (i.e., one without the installation of rigid infrastructure) to restore a local beach‐dune complex that had experienced significant deflation; detection of the landfill leachate plume that had migrated under the lagoon at Kingston and the design of a remediation strategy; and development of a geophysical procedure to locate unmarked graves in a pioneer cemetery in Prince Edward County west of Kingston.  This last project garnered a significant amount of very positive publicity in the local community.

   

Page 10: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

GEOLOGICAL SCIENCES ANDGEOLOGICAL ENGINEERING

DEPARTMENT OF

GEOLOGICAL SCIENCE (GEOL 221)&

GEOLOGICAL ENGINEERING (GEOE 221)

“FIELD METHODS”

COURSE OUTLINE

CONTRACT AND WORK PLAN

APPENDIX 1

Page 11: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-xi-

 

 

Supervisor: Dr. D.A. Archibald 

 

SEPTEMBER 2010 

 

Page 12: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-xii-

Queen's University 

 

  Department of Geological Sciences and Geological Engineering 

   

  GEOE/GEOL 221 ‐ Geological and Geological Engineering Field Methods 

 

This is a field‐based course stressing methods used in aspects of geological and engineering site investigation. Characterization of properties and behaviour of earth materials and their structures. Student teams conduct 8 field investigations that address geological and geological engineering problems. Results are analysed and presented in reports illustrated with maps and sections. 

Prerequisite: 1st year geology. 

Note:  GEOE/GEOL  221  is  the  prerequisite  for  GEOE/GEOL  300  Field  School,  which  is,  in  turn,  a prerequisite for GEOE/GEOL 321 Structural Geology. 

 

Instructor:  Dr. D.A. Archibald (e‐mail: [email protected]

Office:  Bruce Wing 432  

Telephone:  533‐6768  

Office Hours:  not Wed. a.m. 

 

Lectures:   Mon. 12:30; Miller 201      Wed. 11:30, Miller 201 

 

Field Trips and Laboratories:  Wed. and Thurs., 1:30 to 6:30; (Labs 9‐12 in Miller 319) 

Teaching Assistants: 3 per section 

                 

Required Texts (*): 

 

* Course Field Trip and Lab Manual 

* Goodman, R.E. ‐ Engineering Geology: Rock in Engineering Construction (TA706.G644) 

‐ This text is also useful for GEOL/GEOE 235, 281, 282, 300 and 4th year. 

Page 13: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-xiii-

* Burger and Harms ‐ DVD on server (FREE!!!) 

* Dictionary of Geological Terms. There are several available. 

* Google Earth with StreetView, Office Suite (Word, Excel, PowerPoint) and Adobe Reader. 

* Access to the Queen's Moodle website for this course (Queen's netid). 

   McClay, K.  ‐  The Mapping of Geological Structures (QE501.3.M42). An optional pocket reference. 

 

Required Equipment (for all field trips):  Hand lens (Ruper X16), knife/hardness point, magnet, acid bottle, watch, drafting equipment (metric scale, Douglas protractor, coloured pencils, Micron drafting pens  (0.25  and 0.5 mm tip), clip board, black permanent/waterproof marker pen, metric rule, metric tape measure, field notebook, tracing paper, masking tape, scissors, hard hat and safety goggles, field boots, geological hammer, belt, first‐aid kit, rain gear, umbrella, pack sack, watch. A "Silva Ranger" Type 15T compass with clinometer and a camera are useful, optional additions to your equipment collection. 

 

Required Reading: 

As listed at the beginning of each Field Trip in the manual. 

You are responsible for reading the manual and doing the required reading BEFORE the field trip. The COMPLETE manual is required at each lecture, lab and field trip. 

Page 14: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-xiv-

   

Marking Scheme:  

 

‐ Field trip reports and assignments    25% 

‐ Oral exam (in last Lab period)      12% 

‐ Final report, maps, sections       20%   (Due the last day of classes) 

‐ Field test, participation and professionalism  13%   (Field Test in week 7 and 8)  

‐ Final exam          30% 

    100% 

Note:     

Some work will be done individually; however, most will be done in groups of three people. Each group will include at least one geological engineer and one geologist. You will be assigned to a group by Week 2. For group work,  ideally, all members of the group will receive the same mark.  It  is up to you to see that each member of your group works  to your high personal  standards and  that  the work  is  shared equally. Field notebooks and field maps will be graded for style and content. 

 

Following  each  field  trip,  each  group will  submit  a  clear,  concise,  professional,  4‐5  page  report  that includes: an introduction stating where the area is (with location map) and the purpose of the trip. The report will include the methods used, a summary of the observations and interpretations, and discussion addressing the specific problems posed in the lab manual. The report should be illustrated with labelled, oriented and  scaled  sketches and photographs  to  show geological  relationships and  include a drafted map  and/or  section  of  the  geology.  Use  the  outline  for  report writing  and map  preparation  in  the Appendix as a  style guide. Reports must be written  in  sentence and paragraph  form. Style as well as content will be considered in marking. 

 

The  final  report  (ca.  10  pages of  text) will be  a  synthesis of  your  field observations  and  subsequent laboratory  analysis  of  the  samples  and  structural  data  into  a  document  detailing  the  geology  and engineering  geology  of  the  Kingston  area.  The  report  will  be  illustrated  with  corrected  maps  and sections done for the weekly field trip reports. 

 

   Because the term work involves considerable "group effort",  

  to pass the course you must pass the final exam. 

 

Page 15: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-xv-

 

SUMMARY OF GEOL/GEOE 221 LAB ACTIVITIES  

 

LAB 1: Basic Skills (Trip 1) 

LOCATION: Joyceville Road: rock cuts up to 500 m north of the Hwy 401 interchange. 

ACTIVITY: 

‐pacing and pace factor 

‐compasses for direction and orientation (Silva and Brunton), declination 

‐strike and dip, trend and plunge 

‐topo maps and airphotos 

‐UTM coords and using GPS 

‐traversing and traverse map 

‐review of several rock‐forming minerals 

‐description of geological material 

 

LAB 2: Characterization of Sedimentary Rocks (TRIP 2) 

LOCATION: Township Library and outcrops east of the mini‐mall at Sydenham. 

ACTIVITY: 

‐description and measurement of a section of carbonate at Sydenham 

‐fossils of the Kingston area (on way to Sydenham for approx. 45 minutes) at 

Isabelle Turner Library and Hwy.# 38/Hwy.# 401 

‐sedimentary structures (bedding and way‐up criteria) 

‐environments of deposition 

 

LAB 3: Characterization of Igneous Rocks (TRIP 3) 

LOCATION: Perth Road: Outcrops between Perth Road Village and the turnoff to Sydenham. 

ACTIVITY: 

Page 16: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-xvi-

‐traverse through the Perth Road pluton 

‐mapping of outcrop and contacts on airphotos 

‐internal and external contacts, xenoliths, foliation and mafic dyke 

‐measurement of joint sets in plutonic igneous rocks 

‐defining map units; map symbols; notebook format 

‐unconformity and Rideau grit 

‐some glacial features of the Kingston area 

 

LAB 4: Characterization of Surficial Deposits (TRIP 4) 

LOCATION: Bracken property. West of Newboro, south on Mon‐O‐Kel Road to second gate, approximately 500 m west in the second field.  

ACTIVITY: 

‐exploration of surficial deposits on a grid using soil augers 

‐description of sediment 

‐magnetometer survey, mapping of concealed contact 

‐geomorphology of Kingston area 

‐old magnetite deposit in layered gabbro 

 

LAB 5: Characterization of Metamorphic Rocks (TRIP 5) 

LOCATION: Hwy. 15 north of Morton. Approx. 2.5 km north of Morton Creek. 

ACTIVITY: 

‐one stop in Lyndhurst pluton 

‐mapping of contacts of marble, quartzite and pelitic gneiss at Morton 

‐limbs and hinge of fold, gneissic layering, mullions and boudins 

‐angular unconformity below Nepean sst (cross strat., dewatering structures) 

‐quartzite shows bedding and crossbedding 

‐protoliths of metamorphic rocks 

Page 17: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-xvii-

 

LAB 6: Structural Mapping and Site Investigation (TRIP 6) 

LOCATION: Billy Green Road. Perth Road to Raymond's Corner, right on Opinicon Road, left on Maple Leaf Road, left on Billy Green Road. Traverse is approx 1.6 km north from this intersection. 

ACTIVITY: 

‐mapping of a fold at 1:10,000 scale on Ontario base map, Maple Leaf Rd. 

‐garnet‐OPX gneiss marker unit 

‐fault parallels axial surface and shows on airphoto  

‐surficial geology; glacial striations, grooves, flutes, roche moutonnee, chatter marks 

‐planning road upgrade and/or new route 

 

LAB 7: Detailed Site Investigation (TRIP 7) 

LOCATION:  Same as Lab #6 

ACTIVITY: 

‐ mapping at 1:2500 scale on air‐photo blowup 

‐ continue with site investigation for road upgrade 

‐auger hole soil profiles 

 

LAB 8: Geological Relationships (TRIP 8) 

LOCATION: Inverary roadcut: ca. 1 km east of Division Street on Dixon Road. 

ACTIVITY: 

‐additional important geological relationships: Inverary roadcut 

‐relative age of mafic dyke, regional similarities of metamorphic and sedimentary rocks 

‐use of Jacob staff 

‐measurement of stratigraphic section and unconformity 

‐underground mapping technique 

 

Page 18: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-xviii-

LAB 9: Analysis of Structural Data Using Stereonet (IN LAB) 

‐introduction to plotting planar and linear structures on stereonet 

‐measurement and plotting of bedding/cleavage for oriented samples 

‐description and classification of folds (axial plane and hinge line) 

‐analysis of gneissic layering and joint measurements from field trips using DIPS 

 

LAB 10: Construction of Geological Cross‐Sections (IN LAB) 

‐basics of constructing a vertical cross‐section 

‐apparent dip 

‐map patterns of folded layers 

‐cross‐section of folds from Lab #5, 6 and 7 

‐down‐plunge projection 

 

LAB 11: Geological and Maps and Cross‐Sections (IN LAB) 

‐final maps and sections for Final Report 

‐airphotos of the Kingston area 

‐regional geology  

‐analysis of geological materials collected on field trips 

‐binocular microscope and identification of minerals, rocks and fossils 

‐formal description and classification 

 

LAB 12: Oral Lab Exam (IN LAB) 

 

Page 19: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-19-

GEOE/GEOL 211 

  

INTRODUCTION to COURSE NOTES 

 

"Geology is a capital science to begin, as it requires nothing but a little reading, thinking and hammering" ‐Charles Darwin (1835) 

 

This course is primarily field‐based and offers an introduction to a variety of field techniques used in geology and geological engineering.  Field geology and site investigations, at all scales, are a critical part of the investigation of the earth’s crust and in designing solutions to geological engineering problems. These investigations involve precise location, description and measurement of the engineering properties and characteristics of earth materials and structures, data reduction through classification and synthesis, and interpretation of these data. You will spend 8 weeks, as teams of 3, investigating the geological relationships and geological engineering characteristics of rocks in the Kingston area. The aim of this course is to develop a “skill set” of diverse field techniques and provide you with some insight into problems encountered and addressed by geologists and geological engineers in professional practice. 

 

The course has two lectures per week and twelve, 5 hour lab periods.  Attendance on field trips is compulsory; any absence must be cleared with me prior to the trip. If you miss the bus, you forfeit the marks for the report. The first 8 lab periods will involve field work and include 8 field trips to some exceptional geological sites in the Kingston area. I consider the experience that you gain by completing the eight realistic field exercises the most important aspect of the course. This experience (see “2nd‐year Skill Set” pages below) should be added to your resume and it may help you obtain summer employment.  Each field trip will require a report, map and section to be submitted a week after the trip. Report writing is a major part of any geological or engineering job and it is important to develop written communication skills early in your career. Feed‐back from the TAs' comments will allow you to improve the quality of these reports throughout the term. Technical problems arising during report writing may be discussed with me or your TAs during office hours or by e‐mail. Following the field trips there are three labs that deal with analysis of structural data. The last two lab periods are primarily slots (ca. 5 hours) that should be used for completion of the final report on the Kingston area. 

 

One lecture slot will be an introduction to the field exercise and part of the other will be used to discuss interpretation and presentation of the results. As such, only a brief overview of new material can be presented in the lectures. In such a project‐based, active‐learning environment, developing an appreciation of course content will be your responsibility. This will be accomplished by pre‐trip reading of both the manual and the textbooks (listed at the beginning of each lab in the manual) and reviewing 1st‐year material if necessary.  The lab manual is organized into convenient subdivisions that roughly parallel the chapters in Goodman's textbook. Most lab write‐ups contain more information than 

Page 20: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-20-

is required to complete a particular lab but will be needed for reference on other field trips. This material is not duplicated so the lab manual must be brought, intact, to all lectures, labs and field trips as it contains some of the slides used in the lectures and will be needed in the field. Because most students are taking mineralogy concurrently, only a first year level of knowledge is assumed. One aim of the course is to sharpen your powers of observation and, by seeing real rocks, minerals, sediments and structures in the field (as opposed to those in a teaching collection in a lab), to clarify material and concepts presented in other geology courses. In this course it is more important to recognize that a rock contains an unfamiliar mineral or feature and to describe it, than it is to name it. 

 

Because the field trips involve additional effort on your part they will be weighted more heavily than the last labs. The weekly field trip component of the course is worth 20% of the final grade and will be apportioned as follows and graded using the topic breakdown shown in the manual: 

 

 

Week 1 

 

 

 

 

 

 

6+7 

 

 

 

10 

 

11 

 

12 

 

wt. = * 

 

 

 

 

 

‐ 

 

 

 

 

 

 

‐ 

* wt. = 0; Participation mark only 

 

In addition to technical skills, the course emphasizes team, or group work. Each group in this course will include at least one Geological Engineering student and one Arts and Science student. Team work is an important real‐world skill required of all geologists and engineers in the modern work environment. It is particularly important for geologists and geological engineers to communicate across the artificial boundaries of various disciplines (e.g., civil or mining engineering). Arts and Science students are expected to participate in, and develop an appreciation of, site investigation techniques used by geological engineers. Reading some of the case histories in Goodman's book should convince you that a lot of technical failures were really communication failures. 

 

To succeed in team work, inter‐personal skills, and organisational skills need to be developed. You will be assigned to a group early in the course and will need to maintain it for the rest of the term. This will simplify preparation of the final report. In the field, each member of the group must be well prepared and participate equally in each of the tasks on every trip. In preparing the report, the office work should be shared equally and planned in advance. An organised, 15 minute, planning meeting is time well spent. Keep a record of the meeting in note form (i.e., minutes) and document how the work is to be shared and when it will be completed.  Each member should have a clear role to play each week (e.g., writing part of the report, drafting the map, editing, proof‐reading) and this role should change each week.  It is a good idea to keep a written record of who did what; this should also be indicated by the order of authorship on the report, map or section. Before submitting your work, convene another 

Page 21: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-21-

meeting to proofread it, to assemble the report and to check it for format and completeness. To avoid any end‐of‐term disasters, keep multiple backup copies of your field trip reports (i.e., each group member should have a copy of the files); assign one (particularly reliable) group member to maintain a file of the traverse maps, graded reports for trips and any samples collected for further analysis. If you form and maintain a successful group you will find that, through group problem solving, you will learn from each other and that the amount you learn will be considerably enhanced. 

 

Other professional skills relate to project management. In professional practice, geological and engineering services are billed to a client at a prescribed hourly or daily rate. Accurate records of these expenditures are essential. In this course, you will need to document your time costs ("billable hours") for each person in your group for each group project and report these and the totals in an appendix to all reports for the course. Different services may have different rates. In your reports, record "field time" and "office time" separately. N.B.: Elapsed time does not equal billable hours. Do not include “downtime” in the field or office work (e.g., coffee breaks, Clark Hall breaks, "travel time" to field sites or meetings or, time wasted waiting for someone to show up for a group meeting, etc.). 

 

Page 22: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-22-

CONTRACT      GROUP #______    GEOE/GEOL 221  Field Methods 2010 

 

I/WE,    _________________________________, 

_________________________________, 

___________________________________ and, ______________________________ 

 

…do commit to undertaking the field and lab studies summarized in this document, including all  tasks  and  subtasks. We  have  read  the  Course Outline  including  the  Introduction  to  the course manual and agree to completely read and understand the weekly work plan and the deliverables  before  commencing  the work  and  agree  that  the  submission  of  this  contract confirms our understanding of the expectations of the course projects. 

 

I/We  commit  to  performing  the  field  work  within  the  time  allotted  and  to  achieving  all specified  deliverables  by  the  specified  time  and with  the  utmost  professional  quality  and academic integrity.  

 

I/We commit to keeping accurate and honest records of  individual and group time spent on each of the group projects. 

 

I/We commit to working as a group (delivering individual work as prescribed) showing respect for  each  others,  our  supervisors  (T.A.’s  and  profs)  and  for  the  public  and  private  property within the field areas and for every private citizen that we encounter. 

 

I/We  commit  to  obeying  all  safety  protocols  as  outlined  in  the GEOL/GEOE  221  Field  Trip Safety Plan and all safety instructions issued by the field trip co‐ordinators. 

 

I/We commit to taking full responsibility for the outcome of this course as  influenced by the factors  under  my/our  control  (preparation,  work  ethic,  intellectual  effort,  attitude, punctuality, respect, etc). 

 

I/We understand that TA help is available, but that first, we will put every effort into working individually  and  as  a  group  through  the  problems  we  encounter  using  the  other  course resources at our disposal. We will all agree individually to support the group projects equally 

Page 23: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-23-

but will also render assistance, as needed and as is reasonable, to our fellow group members. Only in this way will our work be of high quality and our learning experience be maximized. 

     

Signatures (each group member signs each copy of this form) 

 

____________________________________  Date____________ 

____________________________________   Date____________ 

____________________________________   Date____________ 

____________________________________   Date____________ 

 

Each team member keeps one original signed copy  

Each group will hand in one signed copy in Week 2. 

   

Page 24: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

GEOLOGICAL SCIENCES ANDGEOLOGICAL ENGINEERING

DEPARTMENT OF

GEOE/GEOL 300/301 FIELD SCHOOLSUTTON, QUEBEC

APPENDIX 2

Page 25: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-25-

 

Field School Class, 2010: 64 students, 6 teaching assistants and 3 professors. 

 

GEOE/GEOL 300 FIELD SCHOOL  (SUTTON, QUEBEC) 

 

INTRODUCTION 

  Rocks in the Sutton area form part of the Appalachian mountain belt. The Sutton area and nearby parts of the Eastern Townships have long fascinated geologists because of the complexity and completeness of the geological history recorded in the rocks, which span about 250 million years of Earth history. For over 30 years geology students from Queen’s University have gone there every spring to participate in a two‐week field school. Long‐time residents recognize this as a rite of spring. For the students, it is a rite of passage and an essential part of their professional training.  

  GEOL/GEOE 300 is a core course in the Arts and Science and Applied Science programmes, but are run together. Teams of four students drawn from both courses apply the geological field methods and geological‐engineering assessment techniques learned during second year, as the basis for a scientific and engineering assessment of the bedrock and surficial deposits in their study area, in a series of projects that mimic real‐world scenarios. The students prepare a number of reports that include regional and detailed maps and sections, a mineral‐resource evaluation, and geotechnical‐stability and environmental‐baseline assessments related to future engineering works. In addition, the students are expected to optimize the design of their own mapping and site‐investigation programmes, in order to maximize the practical value of the information obtained. Altogether, the completion of this intensive and unique field school will be one of the proudest moments of their academic careers.  

Page 26: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-26-

  A major goal of the second‐year curriculum in our Department is to provide students with a well‐developed set of geological skills (what they can do rather than what they might know). In the Fall term of 2nd year the class is introduced to field methods and gains field experience in the Kingston area (in GEOE/GEOL 221), mapping high‐grade gneisses with simple km‐scale folds, logging the undeformed sedimentary cover, and documenting the nature of the Pleistocene surficial deposits. The Sutton area provides an introduction to the more complex geology found in orogenic belts. The field school is designed to enhance the skill set and provide the hands‐on experience that will prepare them for upper year courses in structural geology and tectonics and advanced field courses as well as summer jobs. 

   The students also develop the “soft skills” expected of geologists and engineers, including effective team work, leadership, time and budget management, and written and graphical communication skills. 

 

ROCKS OF THE SUTTON REGION 

  The rocks in the Sutton area range in age from the Late Precambrian to the Cambrian (600‐500 Ma). The six major units that the students map are part of the Oak Hill Group.  The oldest unit is the Tibbit Hill basalts that record rifting of the eastern margin of Laurentia, leading to the formation of the Iapetus Ocean.  The overlying Call Mill Slate, Pinnacle Sandstone, White Brook Dolostone, West Sutton Slate and Gilman Phyllite are all a part of the early stage of the passive continental margin.  The first geological map of this region was done by Sir William Logan in the 1850s. The field school area, shown below (ca. 15 km2 in size), is mapped at 1:5000 scale. 

Page 27: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-27-

        

The region was intensely deformed during the Taconic Orogeny and folds were developed on all scales (mm to km). Two phases of folding and topographic effects make mapping the unit contacts a challenging exercise. However, the low metamorphic grade and excellent preservation of primary layering, textures and structures in most units make this problem tractable at the second‐year level. 

 

                                   

 

Page 28: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-28-

   

 

 

FIELD SCHOOL ACTIVITIES 

After arrival in Sutton, there is an evening field safety orientation. The next day is an introduction to the stratigraphy and structural style of the area. A 1:5000 map and cross section are made on the traverse that day. 

 

The next day is a more detailed mapping exercise at 1:1000 scale. This is a “refresher” in pace and compass traversing in the bush.  The map and cross section are completed in the field. 

 

 

Page 29: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-29-

     

  

Our field‐school base, Sutton, Quebec 

 

Page 30: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-30-

 

 

        

Page 31: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-31-

 

For the remaining days devoted to mapping the study area, student groups plan and execute traverses. The geological‐science students report on the mineral‐exploration potential of the area, noting and describing any showings of Cu, Fe and Ti, as well as any evidence of past mining activity (some of which dates from pioneer days). The geological‐engineering students are expected to do an environmental base‐line study including an evaluation of the hydrology of the region, and also do rock‐type and rock‐mass characterization of the units in the course of mapping. 

 

        

 

 

Page 32: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-32-

   

Page 33: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-33-

Regardless of weather, regional mapping, character building and lunch go on. 

 

     

 

 

 

One day is spent doing 1:2000 scale mapping on a flagged grid. Students participate in a GPS‐based magnetometer survey, the results of which are used as an aid in drawing contacts. This area is considered to be a mineral‐exploration property. Based on their geological model for the property and 

Page 34: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-34-

their geotechnical characterization of the rocks, each group must assess the resource, design an open‐pit mine and its infrastructure, address environmental concerns, and determine if such a venture would be profitable. The results are presented on maps and sections and in memos and poster presentations. 

                    

Half way through field school, a day is devoted to investigating the surficial sediments in a selected area. Each group augers several holes on a grid.  The combined results from all groups lead to the development of a 3‐D model of a post‐glacial outwash delta.  Hammer‐seismic and GPR data collected by the students aids in the construction of fence diagrams for the deposit. The aggregate resource determined to be present here is available to be used in the mine‐design problem on the previous page. 

                             

Page 35: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-35-

           

One project is specifically designed for the geological‐engineering students. This project involves a geotechnical assessment of a structurally complicated outcrop that is susceptible to wedge failure. Based on structural observations and measurements, supplemented by a LIDAR survey of the outcrop, these students design a ski‐lift system for this area. The Arts and Science students map the outcrop and document the several phases of deformation. The results are analyzed in the evening: engineering students analyze the forces involved, slope stability and safety factor. Professional geotechnical software is used to do a sensitivity analysis of the safety factor, and to design rock‐bolting strategies. Science students do a detailed report on the petrography of the rocks at this site, using previously collected thin sections. Results are presented in the form of an executive‐summary report. 

                               

 

Page 36: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-36-

      

Most evenings throughout the two‐week field‐school period are spent working on the office copy of the geological map, doing interim projects, writing memos and reports, or doing petrographic descriptions of the rocks in the area. After two weeks, each group has accumulated a large portfolio of work (see next page) including several geological maps and sections, an executive summary that integrates all of the deliverables, and the supporting appendices that contain the raw data and interim reports. Groups defend their interpretations and conclusions in a 30‐minute oral exam on the last day before returning to Kingston. 

 

Page 37: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-37-

 

 

      

 

Page 38: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-38-

       

 

 

We believe that we have one of the most ambitious and multifaceted field schools in Canada.  This is all made possible because of the intensive training in field methods that the students obtain in the fall term of second year (in GEOE/GEOL 221).  It is also unique in the extent to which geology, geotechnical engineering and geophysics are integrated.  Because of the skills learned in that course, we are able to raise the standard and demands of this our primary field school.   

 

   

Page 39: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on
Page 40: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

Queen’sUniversityGeologicalEngineeringFieldSchool 2011&2012

A brand-new core course, GEOL 410, has been offered in the fall of 2011 and 2012, providing all of the 4th year Geological Engineering students with a capstone Field Course. Taking the place of three separate field trips (Mineral Exploration; Geotechnical and Geoenvironmental; Geophysics) offered in previous years, the goal of this course is to expose students to mineral exploration and extraction issues and solutions of interest to geological engineers. The focus from the previous course, on geotechnical and geoenvironmental concepts remains in place, but is now complemented by geophysics and mineral exploration engineering.

In 2011, 32 fourth year students and in 2012, 48 fourth year students travelled with Jean Hutchinson and Rob Harrap to Sudbury and Timmins to examine the engineering issues encountered at all stages in the mining cycle. The mining companies we visited1, all provided a superb learning experience, and full access to all parts of the mining cycle. We learned a great deal, by hearing about the technical issues and solutions at the sites from senior technical personnel. This group included Superintendents and Senior Engineers, who spent a great deal of time discussing the sites, issues and solutions with the students, in addition to answering many questions. Relatively newly hired engineers were included as tour guides to provide the students with a good perspective on job opportunities and career paths within the mineral industry.

Prior to the trip, each student identified an engineering design topic of interest. The students carried out research on their selected topic, with the objective of identifying several design related questions to be explored during the trip, and writing a pre-trip summary. During the trip, the students explored answers to their questions through discussions with site contacts and with the instructors each evening.

During the trip, the students were responsible for leading discussions during the evening, regarding the technical issues examined each day. Student groups provided a daily summary of findings and posed technical questions for the discussion, making for very lively evenings and interesting discussions during the trip.

Following the trip, the students produced two main deliverables: i) a factual report about their design issue, providing a technical and financial analysis of the possible solutions they observed during the field trip, or that they read about elsewhere, and ii) a copy of their field notebook, which was marked for accuracy and completeness.

As was noted last year, repeat visits to the sites with such an enthusiastic, well prepared, and engaged group of students, since 2004, has resulted in a group of technical experts on the sites who are very keen to have our students return every year. Several people

1 In 2011 and 2012: Xstrata (Strathcona and Kidd Creek Mine), and GoldCorp (Timmins). In 2012, Lakeshore Gold at several properties in Timmins; and in 2011, Vale and Quadra FNX in Sudbury.

2012 

2011 

2004 

Page 41: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

Queen’sUniversityGeologicalEngineeringFieldSchool 2011&2012

commended the students this year for the depth and quality of their knowledge.

Thank you so much for your continued financial support for this trip, and others, in our department. The financial contribution helps us to keep the student charges for field trips at a low level, and allows us to continue to offer exceptional and very important field education experiences for all of our students. Thank you very much. The technical components of the trip itinerary included:

DAY 1 SUDBURY: VISIT TO THE VALE INCO TAILINGS AREA: 2225 HA. HERE WE SAW

RECLAIMED AND REVEGETATED TAILINGS AREAS, CURRENT

TAILINGS DEPOSITION AREAS AND DUSTING CONTROL, WATER

CONTROL AND TREATMENT. OBSERVED THE CONSTRUCTION OF A

LIFT IN AN UPSTREAM DAM, AND THE CORE OF THE NEW WATER

RETAINING DAM TO BE BUILT BETWEEN THE OLD AND NEWER

TAILINGS AREAS. THE CHANGE IN TAILINGS DAMS DESIGN AND

CONSTRUCTION TECHNIQUES OVER THE LAST 50+ YEARS, AND THE

MEASURES BEING TAKEN FOR PROGRESSIVE DECOMMISSIONING ARE

IMPORTANT ELEMENTS OF THIS VISIT.

VISIT TO THE VALE INCO BROWNFIELDS GEOPHYSICS GROUP. THE

GEOLOGICAL ENGINEERS AND GEOPHYSICISTS IN THIS GROUP GAVE

US PRESENTATIONS ABOUT THE GEOPHYSICS TECHNIQUES THEY USE

FOR EXPLORATION FOR MINERALS ADJACENT TO ALREADY MINED

AREAS. THE SUCCESSES OF THIS GROUP IN FINDING NEW OREBODIES

AND THEIR DISCUSSIONS OF CASE HISTORIES WERE VERY

INTERESTING.

VISIT TO THE DYNAMIC EARTH, SCIENCE NORTH. THIS TOURIST

SITE PROVIDES A UNIQUE OPPORTUNITY TO SHOW STUDENTS

GROUND SUPPORT SYSTEMS IN A QUIET AND CONTROLLED

ENVIRONMENT. MANY TRIALS OF NEW SUPPORT SYSTEMS HAVE

BEEN DEMONSTRATED AT THIS SITE, MAKING IT AN EXCELLENT

STOP ON THE TRIP. DAY 2 SUDBURY: VISIT TO THE STRATHCONA MILL. GEOLOGICAL PRESENTATION

ABOUT THE COMPLEXITY AND VARIABILITY OF THE ORE, WHICH

WAS THEN LINKED TO A DISCUSSION OF THE NICKEL AND COPPER

CIRCUITS IN THE MILL, AND THE ENGINEERING CONTROLS PUT IN

PLACE TO OPTIMIZE RECOVERY. THIS CONNECTION MADE THE VISIT

TO THE MILL EVEN MORE INTERESTING THAN IN PREVIOUS YEARS –

WE SAW THE GRINDING, FLOATATION AND SEPARATION

PROCESSES, AND MILL CONTROL ROOM. WE ALSO VIEWED THE

UPGRADES MADE TO THE MILL TO PROCESS THE ORE FROM NEW

MINES THAT ARE BEING DEVELOPED.

The field trip was a phenomenal experience. Being able to learn about class topics in real situations gave me a better understanding of the scale and complexity of real mining projects. (I also learned how awesomely fun it is to go underground!) 

Sarah Ghadbane (Sci’ 12: Master’s candidate, University of Ottawa)  

  

What I found most valuable was getting to see the scale of these mining operations and the waste associated with them. The volume is absolutely astounding, and I doubt I ever could have understood without seeing it first‐hand. Before the trip, I found mining towns ugly, but now I see how the people embrace their background and how it can be something to be proud of.  Claire MacCallum (Sci ’12: Golder and Associates, Mississauga Office)  

This has been the best field trip I have ever been on. Every day was something new, different and exciting. Our class gained incredible life experience during the past four days – we got to go 4700 feet underground! We learn about all of these processes, ideas and methods in class: being able to learn about and experience them in real life is so necessary to truly understand them. That is why Queen’s Geological Sciences and Geological Engineering are such unique and fantastic programs – there is no substitute for actual hands‐on learning. Lastly, one thing I really love about our program is how bonded our class is – I attribute this to our field trips. It starts with Field Methods, where we bond in the ditch, in the rain, over stereonets and over maps. It then amplifies at Field School, one of the hardest and most rewarding university experiences I’ve had. This trip really brought it all together – our tight‐knit group getting to spend a week together doing just engineering and having a fabulous time. I feel really grateful to the alumni and the department for supporting these trips because they complete our learning experience while allowing us to get to know each other and our professors.  Caitlyn Rush (Sci ’12: Master’s Candidate, University of Manitoba) 

Page 42: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

Queen’sUniversityGeologicalEngineeringFieldSchool 2011&2012

FOLLOWING ON ALONG THE MINING CYCLE, WE THEN VISITED THE XSTRATA TAILINGS MANAGEMENT

AREAS. THERE WE VIEWED THE CONTROL ON WATER FLOW AND QUALITY THROUGHOUT THE SITE, AND

THE INNOVATIVE RECLAMATION OF THE ACID GENERATING TAILINGS USING ORGANIC WASTE

PRODUCTS FROM OTHER INDUSTRIAL SITES. A SUBSTANTIAL IMPROVEMENT HAS BEEN ACHIEVED BY

SEPARATING THE TAILINGS, AND USING THE LOW PERMEABILITY, ‘CLEAN’ TAILINGS TO COVER ACID

GENERATING TAILINGS. GUIDED BY JOE FYFE, SUPERINTENDENT – ENVIRONMENT AND SUSTAINABLE

DEVELOPMENT SYSTEMS, XSTRATA.

DAYS 3 AND 4 TIMMINS: GOLDCORP PROPERTIES, GUIDED BY J. HENNING, GROUP

GEOTECHNICAL ENGINEER AND B. YEE, GEOTECHNICIAN. VISITS TO PAMOUR PIT AND DOME SUPER PIT: VIEWING PIT DEWATERING, PIT BLASTING AND GRADE

SURVEY CONTROL, MUCKING AND TRANSPORT OF ORE, STRUCTURALLY CONTROLLED FAILURE, PIT

ROCK SUPPORT, WASTE ROCK DISPOSAL, INCLUDING STABILITY ISSUES.

SITE TOUR TO SUBSIDENCE AFFECTED AREAS IN THE CENTRE OF TIMMINS. DISCUSSION OF ENGINEERING

RISK MANAGEMENT, AND TECHNICAL COMPONENTS OF MINING THROUGH SUBSIDED GROUND. EVALUATION OF LONG-TERM FENCING OF AN AREA, VERSUS DEVELOPMENT OF A NEW, LARGER, CONTROLLED PIT. GUIDED BY JOHN HENNING, GOLDCORP.

Page 43: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

Queen’sUniversityGeologicalEngineeringFieldSchool 2011&2012

DAYS 3 & 4 TIMMINS: XSTRATA COPPER: KIDD MINE SITE, GUIDED BY D. COUNTER, CHIEF GROUND CONTROL ENGINEER AND

M. VANKOPPEN, ENGINEER IN TRAINING; MET SITE THICKENED

TAILINGS MANAGEMENT AREA, GUIDED BY T. MILLER AND M. LEGACE. KIDD CREEK UNDERGROUND MINE (TO 7500 FT LEVEL, ACCESSED

BY TWO CAGES, AN UNDERGROUND TRAIN, AND A ‘TAXI’ ON THE

RAMP): UNDERGROUND SHAFT SINKING, UNDERGROUND HOIST

ROOM DESIGN, ROCKBURST CONDITIONS AND SUPPORT, DESIGN

AND CONSTRUCTION OF VERY LARGE, PERMANENT UNDERGROUND

EXCAVATIONS FOR MACHINE SHOP AND GARAGE, BLAST DESIGN, TUNNELLING THROUGH ROCKBURST DEBRIS, INFLUENCE OF

REGIONAL FAULTS ON MINE-WIDE STABILITY.

KIDD CREEK SURFACE TOUR: OPEN PIT WALL FAILURE OVER A

VERY LARGE SCALE, SURFACE WATER MANAGEMENT AND

TREATMENT, PROGRESSIVE DECOMMISSIONING OF MINE YARDS

AND WASTE ROCK PILES.

MET SITE SURFACE TOUR: PROGRESSIVE DECOMMISSIONING OF

RECENTLY CLOSED MET SITE, INCLUDING WATER CONTROL AND

TREATMENT, SEGREGATION OF DIFFERENT WASTES. THICKENED TAILINGS TOUR: VISIT TO CONCENTRATOR, TAILINGS

DISPOSAL POINT, WATER CONTROL DYKES, DITCHES AND

TREATMENT.

Seeing most parts of the mining cycle in action created a perspective on their enormity that I find to be lost in the classroom. Most importantly, the logistics of applying the design and developing a 3D perspective in the mine operations were fascinating.  I was most inspired by the underground and open pit mining operations, and am very reassured that I have landed myself at the start of a very exciting career path.  

Jenn Day (Sci’12: Doctoral Candidate, Queen’s University)  

At first, I found the tailings properties to be the most shaking. At the first sites, I felt as though I was on the moon. Over the course of the week, however, I became more confident and optimistic about the practices being used. The concept of in‐perpetuity was very frightening to me, and I was very sceptical of the idea of walk‐away solutions. I now realize that every site is unique and requires its own set of creative closure ideas that take into account the site geometry, geology and the materials being mined.  

Kristin White (Sci ’12: BGC Engineering, Calgary)  

As a student with exposure working in the mining industry on a number of different sites, I was quite surprised with the amount of freedom we were given and the locations we were able to visit on operating sites. I was also surprised with the seniority of most of the tour guides we were given, and benefited greatly from their level of knowledge and willingness to please.  

Julian Duban (Sci ’12: Klohn Crippen Berger, Calgary)  

I found it very interesting to see the different states that each site was in, and how that affected the frequency and type of monitoring that was being used. I have a much better overall understanding of the step by step process of a mine’s life from finding the ore to final closure. I didn’t realize the true importance of waste water management and all the stages that went into treatment. I got a much better understanding of the dynamic nature of mining and how a small change can affect so many other factors.  

K. Ward Algar (Sci ’12: Klohn Crippen Berger, Calgary)  

Page 44: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

Queen’sUniversityGeologicalEngineeringFieldSchool 2011&2012

 

Overall, I found the scale of the mining processes to fill the needs and demands of the world, and make profit, incredible. With all the different types of mining ore and planning and operation of different sites, it is hard to imagine any of it making any economic sense – but it clearly does. I also believe that the idea of a walk‐away  remediation site is plausible as long as no geoenvironmental and geotechnical 

issues remain. No easy task, but possible. 

Matt Corriveau (Sci’12: EBA Consultants, Whitehorse)  

 

This trip was fabulous! All of these years at school, intensely studying and work, started to slide into place. I was sooo excited, practically humming with energy because there were so many adventures and experiences to be had. This trip allowed me to ask 

questions and then see the answers! Kathryn Franklin (Sci’12: BGC Engineering, Vancouver) 

 

Page 45: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

GEOLOGICAL SCIENCES ANDGEOLOGICAL ENGINEERING

DEPARTMENT OF

APPENDIX 4

THE NEW YORK “CIRCUM-ADIRONDACKS”

FIELD TRIP, 2009

Page 46: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

THE NEW YORK “CIRCUM-ADIRONDACKS” FIELD TRIP

Page 47: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-41-

 

Students along the roadside at the “Grand 

  Gorge” stop. 

 

This field trip is a required component of three upper‐level courses: GEOL 368 Carbonate Sedimentology, GEOL 478 Terrigenous Clastic Sedimentology, and GEOL 488 Geology of North America.  This trip, which we have run for more than 20 years, was held most recently in October 2009, during the 5‐day period immediately following the Canadian Thanksgiving, with nearly 60 (!!) undergraduate and graduate students  participating.  Four professors acted as leaders: Drs. Bob Dalrymple (terrigenous‐clastic sedimentology), Laurent Godin (structural geology), Noel James (carbonate sedimentology), and Guy Narbonne (paleontology).  Because of the large number of participants, it was necessary to use two highway busses, as well as modifications to the mode of delivery of information at outcrops, to ensure that all students had the maximum opportunity to see the features being demonstrated, and to interact with the trip leaders.  Feedback from students indicates that we succeeded, as the responses have been very positive.  (See the accompanying student testimonials). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“It was really nice to get hands on 

experience in the field during the 

New York field trip.  Being able to 

integrate all that I had learned in 

previous years, and apply it to the 

specific environments seen on the 

trip was a very rewarding 

feeling.  Above all, I had so much fun 

getting to know the students and 

professors in the faculty much 

better.  Very interesting! Thank you 

so much!” 

K. Bateman 

"The New York trip was my first 

experience at Queens getting to 

study sedimentary rocks intensely 

and on a regional scale. It was 

incredibly valuable and powerful to 

get a sense of how the tectonic 

history of a region is recorded in the 

sedimentary strata of the basin. It 

was also without a doubt one of the 

most fun weeks of the year."  

Page 48: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-42-

 

SYNOPSIS OF THE GEOLOGY 

The stops during the field trip (see itinerary in Appendix 2) are organized strictly in stratigraphic order (from oldest to youngest), to ensure that the students grasp fully how the various pieces of the geological story fit together.  We have learned over the years that field trips in which the stops are out of stratigraphic order are not nearly as effective as a teaching tool.  This geological story consists of 4 phases. 

 

Phase 1: Rifting and Passive‐Margin Development (Precambrian‐M. Ordovician)

The story begins with the rifting of the supercontinent “Rhodinia” and the creation of a passive continental margin along the eastern side of Laurentia.  This phase is illustrated by Stops 1, 2 and the lower part of 3.

Stop 1 is located in Alexandria Bay, New York, and consists of Grenville‐age Precambrian gneiss cut by basaltic dykes dated at about 540 Ma.  These dykes, which show well‐developed chilled margins because of emplacement at a shallow depth in the crust, were derived from a mantle plume that was responsible, along with others, for the rupture of Rhodinia and the initiation of an ocean along the eastern margin of Laurentia referred to as the Iapetus Ocean 

 

   Basaltic dyke (bottom) intruded into 

   Precambrian gneiss.

.

Stop 2 at Chippawa Bay, New York, illustrates the basal Cambro‐Ordovician quartz sandstones that were deposited on the exhumed roots of the Grenville Mountains during the initial Paleozoic transgression of North America.  These sandstones were deposited in a shallow‐water environment that was subjected to the action of tidal currents and storm waves.  A beautiful example of 

Diplocraterion burrows illustrates the response of these organisms to episodic sedimentation. 

Page 49: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-43-

 

Storm event beds with bioturbated tops, overlain by tidally cross‐bedded quartz sandstone of the Potsdam Formation.

 

The lower part of Stop 3 at “The Head”, located along the northern shore of Lake Champlain, exposes a textbook succession of peritidal carbonate deposits that accumulated in an arid coastal zone.  The repeated upward‐shallowing successions begin with bioturbated limestone with a restricted fauna and pass upward into microbially laminated dolostone with spectacularly developed desiccation cracks.  

  Noel James explaining carbonate tidal flats         

along the shore of Lake Champlain.

 

Phase 2: Taconic Orogeny (Middle Ordovician‐Late Ordovician) 

After a long period of “drift” as the Iapetus Ocean grew ever wider, subduction began and the ocean began to close.  The first event to affect the eastern margin of North America was the collision of an island arc.  This caused westerly directed thrusting that depressed the crust, forming a foreland basin in eastern New York State. 

 

Mid‐way up the section at Stop 3, a thin bed of quartz sandstone marks the unconformity between the Sauk and Tippecanoe sequences.  It is marks the passage of the forebulge that migrated westward in advance of the Taconic thrust sheets.  Above this, the limestone of the Chazy Group is fossil rich and accumulated 

in an unrestricted open‐marine ramp setting that was markedly different from the restricted carbonates beneath the sandstone.  Thus, the thin sandstone and the dramatic change in the nature of carbonate sedimentation are the first indications that important tectonic events are happening to the east. 

 

Page 50: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-44-

 

Dark‐coloured quartz sandstone (middle) overlying a karst surface eroded into the peritidal dolostones of the Sauk sequence, overlain in turn by fossiliferous limestone of the Chazy Group (at top) that is part of the Tippecanoe sequence.

 

Nearby (Stop 4), we also visited the oldest stromatoporoid‐sponge‐coral reefs known anywhere in the world.  These reefs, which are spectacularly exposed in three dimensions on an exhumed bedding surface, are the precursors of the stromatoporoid reefs that are so important in the Devonian of Alberta.  This area has been preserved as a natural heritage site, with assistance from various geology departments, including ours at Queen’s.   

Stromatoporoid and sponges of the Chazy reefs

 

Stop 5, which is known as “The Beam”, provides an outcrop‐scale illustration of the structure of fold‐and‐thrust belts.  Here, a more rigid fine‐grained limestone deforms in a brittle manner,  while the surrounding shale accommodates the shortening plastically.  This outcrop is located in the footwall of the Champlain Thrust (see Stop 6) and is parautochthonous, having suffered only minor shortening.

Page 51: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-45-

             

 Imbricate thrusts in a fine‐grained limestone.          Thrusts in limestone, with cleaved shale.

 

Stop 6 provided an unparalleled opportunity to see the leading (most westerly) orogen‐scale thrust in the Appalachians (the Champlain Thrust).  This thrust places Early Cambrian Dunham Dolomite on top of Middle Ordovician shale.  Well‐developed mullions (elongate gouges parallel to the direction of movement) are present on the base of the Dunham Dolomite.   

DumhamDolomite

M. OrdovicianShale

Crown Point (Stop 7) is historically significant, with the fort changing hands between the French, British and Americans several times.  Here, students can examine a 50‐metre thick succession of limestone that changes gradually upward from restricted “lagoonal” deposits that contain only ostracods and gastropods (a salinity‐tolerant assemblage), through open‐marine deposits with a diverse fossil assemblage, to dark‐coloured shaly limestones that lack organisms that require light.  This succession reflects a progressive deepening of the Taconic foreland basin.    

 

 

Page 52: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-46-

Students examining “lagoonal” limestone at the base of the Crown Point succession. 

 

Stop 8 near Canajoharie Creek consists of three linked localities and provides a complete transect through the Taconic foreland basin.  In the town of Canajoharie, Early Ordovician peritidal dolomite that contains large stromatolites is sharply overlain by Middle Ordovician Trenton Formation limestone that is richly fossiliferous.  The unconformity separating them spans some 30 Ma and exhibits karst features and a spectacular suite of borings that were produced as the unconformity was flooded by the sea.  Phosphatic crusts and nodules are also present locally.  The Trenton Limestone passes rapidly and gradationally up into black shales of the Utica Formation, which the students then examine in detail at Wintergreen Park, where some 80 m of shale is exposed in a beautiful gorge.  Bentonites, graptolites and whole pelagic trilobites are the highlights of this stop.  Several hundred metres higher in the succession, at “The Stink” (near the early 1900’s spa town of Sharon Center), we see the eventual filling of the basin, with the accumulation of sandy storm‐generated beds.  These deposits are part of the Queenston Delta that prograded northwestward through southern Ontario. 

 

 

       

Unconformity between Early and Middle                       Borings on the unconformity surface 

Ordovician carbonates. 

 

 

Page 53: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-47-

       

Utica Shale at Wintergreen Park with                      Students examining storm‐generated  

bentonites.                                                                    sandstone beds at “The Stink”. 

 

Page 54: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-48-

Phase 3: Quiescence (Silurian‐Early Devonian) 

Following the end of the Taconic Orogeny, eastern North America experienced a period of quiescence, during which the area underwent erosion, with minimal sedimentation during the Silurian.  In the Early Devonian, sedimentation began again, with a return to open‐marine carbonate sedimentation.  The basal portion of Stop 9 at Cherry Valley allows the students to examine these limestones and deduce the depositional setting: although the carbonate‐producing organisms have changed because of evolution, the fundamental attributes of the deposits remain the same.  The succession contains abundant chert nodules, as well as rare bentonites, which are the first hint that a new episode of tectonic activity is about to begin. 

 

Phase 4: The Acadian Orogeny (Early‐Late Devonian) 

In the Early Devonian, the small continent of “Baltica” (present‐day Europe) collided with North America, an event that marks the final closing of the Iapetus Ocean.  This collision created a belt of mountains that was substantially larger than those produced during the Taconic Orogeny (the Acadian mountains may have been equivalent in size to the present‐day Alps).  Westward‐directed thrusting and loading of North America occurred once more, generating a second foreland basin.  A thick wedge of clastic sediments was shed westward from these mountains, producing the “Catskill Delta”. 

 

At about the middle of the 200‐meter thick carbonate succession at Cherry Valley (Stop 9), a one‐meter thick quartz sandstone (the Oriskany Sandstone) is present.  This anomalous unit indicates the presence of a regional unconformity that is interpreted to represent the westward migration of the Acadian forebulge, in a manner analogous to the thin sandstone seen at Stop 3.  Above this sandstone, carbonate sedimentation resumed, with episodes of deeper‐water shale deposition.  Highlights of this succession include: spectacular examples of the trace fossil Zoophycos, which is produced by a deposit‐feeding worm that completely reworks the sediment in a highly efficient exploitation strategy; biostromes containing delicate corals that lived in a deeper‐water, low‐energy setting; and fossiliferous open‐marine limestones with 

pervasive chert nodules associated with the metre‐thick Tioga Bentonite. 

 

Spectacular example of Zoophycos burrows. 

 

Page 55: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-49-

 

Chert‐bearing limestone.

At the top of the Cherry Valley section (Stop 9), we examined a dark‐coloured limestone and the overlying thick succession of black shale.  This limestone contains a large fragment of bone from an armoured fish (a placoderm) as well as primitive nautiloid cephelopods.  These Middle Devonian black shales represent the initial deep‐water deposits in the Acadian foreland basin, and the basal sediments of the Catskill Delta.  The similarity with the Utica Shale was noted, and the source‐rock potential of these shales was highlighted, as is their potential to host shale gas.  

 

At this point, the trip took a different strategy: instead of progressing vertically through the stratigraphy into ever younger deposits, the stops were now organized to provide a sequential examination of facies within the Catskill Delta, starting from terrestrial (fluvial) sediments, through coastal and shallow‐marine deposits, to deeper‐water deposits.  These stops essentially followed a time line, and moved progressively from more proximal deposits in the east, to more distal deposits in the west, to provide the students with exposure to the full range of depositional environments that are present in a prograding clastic wedge. 

 

Stop 10 (East Guildford) exposes a nice section through the point bar of a meandering river, overlain by red, pedogenically altered mudstone with several tabular crevasse‐splay sandstone beds.  The “master bedding planes” that define the inclined surface of the point bar are well exposed.  Lungfish burrows are reported from this outcrop, but we have never found them.  Deeply penetrating root traces in the overbank mudstone and caliche nodules attest to a seasonally dry climate.  

 

Cross section of a meandering river point bar, overlain by red overbank paleosols.

Page 56: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-50-

 

Stop 11 at Gilboa provides an opportunity to examine casts of the trunks of some of the world’s oldest trees.  These examples were excavated in advance of the flooding of a reservoir for New York City.  Before the attack on the World Trade Center, we had been able to see in situ trees along the shore of the reservoir, but since 9‐11, it has been inaccessible to us.  The impact of the appearance of such trees on the global carbon cycle (through the extraction of carbon to create the first coals, leading to the major glaciations of the Carboniferous) is always the subject of discussion.   

 

Guy Narbonne talking about the oldest trees.

Stop 12 near Gilboa exposes a large amount of fossilized wood in the channel deposits of a small Middle Devonian river.  This outcrop was the subject of a recent paper in the journal Nature, which provided the first documentation of the “leaves” of the trees that we saw at Stop 11.  These primitive leaves were formed by the repeated splitting of the branches and looked more like needles than the flat leaves we are accustomed to now.  Students are able to work out the events responsible for this exceptional preservation. 

 

Fossilized branches from some of the world’s oldest trees.

 

A long roadside outcrop near Grand Gorge (Stop 13) exposes a complete succession that formed by progradation of a wave‐dominated deltaic shoreline.  The lower part of the succession consists of storm event beds that contain beautiful examples of the structure hummocky cross stratification (HCS) and load balls produced by the rapid deposition of sand on top of soft mud.  Higher in the succession, students see shoreface and beach deposits 

that are nearly identical to those that can be seen in such Alberta units as the Viking and Cardium formations.  The top of the succession consists of muddy terrestrial floodplain deposits with well‐developed root traces and paleosols.  Sandstone bodies formed by meandering rivers are also present. 

Page 57: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-51-

 

Large load ball. 

 

 

Beach deposits in the Grand Gorge outcrop.

Page 58: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-52-

Moving further west, the Smithboro outcrop (Stop 14) shows more distal shallow‐marine deposits.  The upward‐coarsening succession of interbedded sandstone and shale exposed here (termed a “parasequence” in modern jargon) was formed by progradation of a storm‐dominated shoreline.  Hummocky cross stratification and wave ripples are common.  The sandstone “lag” that caps the flooding surface at the top of this succession contains a diverse assemblage of fossils.  Criniod columnals here are elliptical (not circular) because of strain associated with the Allegheny Orogeny, the collision of Africa with the southeastern part of North America in the Carboniferous and Permian. 

 

           

Medium‐bedded storm deposits at Smithboro       Thin‐bedded wave‐influenced turbidites at 

(Stop 14).                                                                        Elmira (Stop 15). 

 

Our last stop (Stop 15) at Elmira allows us to examine more distal deposits than those seen at Smithboro.  These very fine, thin sandstone beds contain rare wave ripples but otherwise have the attributes of turbidity‐current deposits.  Thus, they accumulated close to the maximum depth of wave influence as a result of down‐slope movement of sand‐laden density currents.  The sparse fossil content is entirely consistent with this depositional setting. 

 

 

CONCLUDING REMARKS 

Throughout the trip, we consistently take a holistic approach.  Although courses at the university require compartmentalization of information for easy dissemination to the students, the rocks are not so selective.  Our aim is to give the students the opportunity to gain 

Page 59: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-53-

experience in the art and science of making observations of rock types, sedimentary structures (both physical and biological), fossils and structural features, and to demonstrate for them the logical approach needed to create sophisticated environmental reconstructions from their observations.  The level of enthusiasm and engagement shown by the students, despite sometimes harsh weather (which included snow this past October), is always impressive!  We thoroughly enjoy leading this trip and believe that the students learn a great deal, and also enjoy themselves as well.   

   

Page 60: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

APPENDIX 5

BERMUDA FIELD SEMINAR

GEOLOGICAL SCIENCES ANDGEOLOGICAL ENGINEERING

DEPARTMENT OF

Page 61: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-55-

transport them to island outcrops, a magnificent library and teaching rooms, and finally, teaching laboratories with microscopes, running seawater, etc.  Thus, it is possible to examine water and sediment samples that were collected only hours before from known depositional settings, and to give evening lectures: the Shell representative typically gives a presentation about the application of such knowledge to problems in the Western Canada Sedimentary Basin.  Perhaps most importantly from a Western Canada perspective, the reefs in Bermuda lack several Caribbean coral species because of their slightly cooler‐water setting and so are astonishingly like Devonian build‐ups, in style and composition. 

 

Over the six and a half days in Bermuda, the students and industry representative see a variety of modern depositional environments, ranging from a protected lagoonal setting, through beach and intertidal environments, to back‐reef and reef areas, including carbonate sand bodies generated by the shedding of material from the reefs.  By mapping the spatial variability of sediment types, they gain an invaluable insight into the small‐ and large‐scale complexity of carbonate deposits.  On land, they see Pleistocene carbonate aeolianites and beachrock, as well as various styles of karst and terra rosa paleosols. 

 

     

Students in Bermuda. Left: Noel James and students snorkelling to see shallow‐water platform environments.  Right: Students examining prominent karst surface with terra rosa paleosol. 

 

Page 62: ,1 7+( '(3$570(17 2) *(2/2*,&$/ 6&,(1&(6 $1' *(2/2*,&$/ (1 ... · EM, seismic refraction, resistivity, magnetic, gravity, and ground penetrating radar surveys. This includes hands‐on

 

 

-56-

     

Students in Bermuda.  Left: Students examining Late Pleistocene limestones exposed in sea cliffs and modern beachrock.  Right: Students determining the faunal composition of samples collected earlier.