09/27/2010teppei katori, mit1 teppei katori for the miniboone collaboration massachusetts institute...

Download 09/27/2010Teppei Katori, MIT1 Teppei Katori for the MiniBooNE collaboration Massachusetts Institute of Technology Southern Methodist-U HEP seminar, Dallas,

If you can't read please download the document

Post on 18-Dec-2015

217 views

Category:

Documents

5 download

Embed Size (px)

TRANSCRIPT

  • Slide 1
  • Slide 2
  • 09/27/2010Teppei Katori, MIT1 Teppei Katori for the MiniBooNE collaboration Massachusetts Institute of Technology Southern Methodist-U HEP seminar, Dallas, September, 27, 2010 MiniBooNE, a neutrino oscillation experiment at Fermilab
  • Slide 3
  • 09/27/2010Teppei Katori, MIT2 Outline 1.Introduction 2. Neutrino beam 3. Events in the detector 4. Cross section model 5. Oscillation analysis 6. Neutrino oscillation result 7. New Low energy excess result 8. Anti-neutrino oscillation result 9. Neutrino disappearance result MiniBooNE, a neutrino oscillation experiment at Fermilab
  • Slide 4
  • 09/27/2010Teppei Katori, MIT3 1. Introduction 2. Neutrino beam 3. Events in the detector 4. Cross section model 5. Oscillation analysis 6. Neutrino oscillation result 7. New Low energy excess result 8. Anti-neutrino oscillation result 9. Neutrino disappearance result
  • Slide 5
  • 09/27/2010Teppei Katori, MIT4 1. Neutrino oscillation The neutrino weak eigenstate is described by neutrino Hamiltonian eigenstates, 1, 2, and 3 and their mixing matrix elements. Then the transition probability from weak eigenstate to e is The time evolution of neutrino weak eigenstate is written by Hamiltonian mixing matrix elements and eigenvalues of 1, 2, and 3. So far, model independent
  • Slide 6
  • 09/27/2010Teppei Katori, MIT5 1. Neutrino oscillation From here, model dependent formalism. In the vacuum, 2 neutrino state effective Hamiltonian has a form, Therefore, 2 massive neutrino oscillation model is Or, conventional form
  • Slide 7
  • 06/30/10 Neutrino oscillation is an interference experiment (cf. double slit experiment) 6Teppei Katori, MIT 1. Neutrino oscillation If 2 neutrino Hamiltonian eigenstates, 1 and 2, have different phase rotation, they cause quantum interference. screen slitlight source
  • Slide 8
  • 06/30/10 Neutrino oscillation is an interference experiment (cf. double slit experiment) 1 2 U UeUe 1 2 7Teppei Katori, MIT 1. Neutrino oscillation If 2 neutrino Hamiltonian eigenstates, 1 and 2, have different phase rotation, they cause quantum interference. For massive neutrino model, if 1 is heavier than 2, they have different group velocities hence different phase rotation, thus the superposition of those 2 wave packet no longer makes same state
  • Slide 9
  • 06/30/10 Neutrino oscillation is an interference experiment (cf. double slit experiment) If 2 neutrino Hamiltonian eigenstates, 1 and 2, have different phase rotation, they cause quantum interference. For massive neutrino model, if 1 is heavier than 2, they have different group velocities hence different phase rotation, thus the superposition of those 2 wave packet no longer makes same state e 1 2 U UeUe e 8Teppei Katori, MIT 1. Neutrino oscillation 2 1
  • Slide 10
  • 09/27/2010Teppei Katori, MIT9 1. LSND experiment LSND experiment at Los Alamos observed excess of anti-electron neutrino events in the anti-muon neutrino beam. 87.9 22.4 6.0 (3.8. ) LSND signal LSND Collaboration, PRD 64, 112007 L/E~30m/30MeV~1
  • Slide 11
  • 09/27/2010Teppei Katori, MIT10 3 types of neutrino oscillations are found: LSND neutrino oscillation: m 2 ~1eV 2 Atmospheric neutrino oscillation: m 2 ~10 -3 eV 2 Solar neutrino oscillation : m 2 ~10 -5 eV 2 But we cannot have so many m 2 ! 1. LSND experiment m 13 2 = m 12 2 + m 23 2 increasing (mass) 2 We need to test LSND signal MiniBooNE experiment is designed to have same L/E~500m/500MeV~1 to test LSND m 2 ~1eV 2
  • Slide 12
  • 09/27/2010Teppei Katori, MIT11 Keep L/E same with LSND, while changing systematics, energy & event signature; P e sin sin m L MiniBooNE is looking for the single isolated electron like events, which is the signature of e events MiniBooNE has; - higher energy (~500 MeV) than LSND (~30 MeV) - longer baseline (~500 m) than LSND (~30 m) 1. MiniBooNE experiment Booster primary beamtertiary beamsecondary beam (protons)(mesons)(neutrinos) K+K+ e target and horn dirt absorberdetectordecay region FNAL Booster
  • Slide 13
  • 09/27/2010Teppei Katori, MIT12 1. Introduction 2. Neutrino beam 3. Events in the detector 4. Cross section model 5. Oscillation analysis 6. Neutrino oscillation result 7. New Low energy excess result 8. Anti-neutrino oscillation result 9. Neutrino disappearance result
  • Slide 14
  • 09/27/2010Teppei Katori, MIT13 Booster Target Hall MiniBooNE extracts beam from the 8 GeV Booster 2. Neutrino beam Booster K+K+ target and horndetector dirt absorber primary beamtertiary beamsecondary beam (protons)(mesons)(neutrinos) e decay region FNAL Booster MiniBooNE collaboration, PRD79(2009)072002
  • Slide 15
  • 09/27/2010Teppei Katori, MIT14 4 10 12 protons per 1.6 s pulse delivered at up to 5 Hz. 5.58 10 20 POT (proton on target) 20 s 1.6 s Beam macro structure 19ns 1.5 ns Beam micro structure FNAL Booster Booster Target Hall 2. Neutrino beam MiniBooNE collaboration, PRD79(2009)072002
  • Slide 16
  • 09/27/2010Teppei Katori, MIT15 e within a magnetic horn (2.5 kV, 174 kA) that increases the flux by 6 2. Neutrino beam 8GeV protons are delivered to a 1.7 Be target Magnetic focusing horn Booster primary beamtertiary beamsecondary beam (protons)(mesons)(neutrinos) K+K+ target and horn dirt absorberdetectordecay regionFNAL Booster MiniBooNE collaboration, PRD79(2009)072002
  • Slide 17
  • 09/27/2010Teppei Katori, MIT16 Modeling of meson production is based on the measurement done by HARP collaboration - Identical, but 5% Beryllium target - 8.9 GeV/c proton beam momentum HARP collaboration, Eur.Phys.J.C52(2007)29 Majority of pions create neutrinos in MiniBooNE are directly measured by HARP (>80%) HARP experiment (CERN) Booster neutrino beamline pion kinematic space HARP kinematic coverage 2. Neutrino beam MiniBooNE collaboration, PRD79(2009)072002
  • Slide 18
  • 06/30/2010Teppei Katori, MIT17 Modeling of meson production is based on the measurement done by HARP collaboration - Identical, but 5% Beryllium target - 8.9 GeV/c proton beam momentum HARP collaboration, Eur.Phys.J.C52(2007)29 HARP experiment (CERN) 2. Neutrino beam HARP data with 8.9 GeV/c proton beam momentum The error on the HARP data (~7%) directly propagates. The neutrino flux error is the dominant source of normalization error for an absolute cross section in MiniBooNE, however it doesnt affect oscillation analysis. MiniBooNE collaboration, PRD79(2009)072002
  • Slide 19
  • 09/27/2010Teppei Katori, MIT 18 e e K e e K e / = 0.5% Antineutrino content: 6% 2. Neutrino beam Neutrino Flux from GEANT4 Simulation MiniBooNE is the e appearance oscillation experiment Intrinsic e + e sources: e + e (52%) K + e + e (29%) K 0 e e (14%) Other ( 5%) MiniBooNE collaboration, PRD79(2009)072002
  • Slide 20
  • 09/27/2010Teppei Katori, MIT19 1. Introduction 2. Neutrino beam 3. Events in the detector 4. Cross section model 5. Oscillation analysis 6. Neutrino oscillation result 7. New Low energy excess result 8. Anti-neutrino oscillation result 9. Neutrino disappearance result
  • Slide 21
  • 09/27/2010Teppei Katori, MIT20 The MiniBooNE Detector - 541 meters downstream of target - 3 meter overburden - 12 meter diameter sphere (10 meter fiducial volume) - Filled with 800 t of pure mineral oil (CH 2 ) (Fiducial volume: 450 t) - 1280 inner phototubes, - 240 veto phototubes Simulated with a GEANT3 Monte Carlo 3. Events in the Detector MiniBooNE collaboration, NIM.A599(2009)28
  • Slide 22
  • 09/27/2010Teppei Katori, MIT21 The MiniBooNE Detector - 541 meters downstream of target - 3 meter overburden - 12 meter diameter sphere (10 meter fiducial volume) - Filled with 800 t of pure mineral oil (CH 2 ) (Fiducial volume: 450 t) - 1280 inner phototubes, - 240 veto phototubes Simulated with a GEANT3 Monte Carlo 3. Events in the Detector Booster 541 meters MiniBooNE collaboration, NIM.A599(2009)28
  • Slide 23
  • 09/27/2010Teppei Katori, MIT22 The MiniBooNE Detector - 541 meters downstream of target - 3 meter overburden - 12 meter diameter sphere (10 meter fiducial volume) - Filled with 800 t of pure mineral oil (CH 2 ) (Fiducial volume: 450 t) - 1280 inner phototubes, - 240 veto phototubes Simulated with a GEANT3 Monte Carlo 3. Events in the Detector MiniBooNE collaboration, NIM.A599(2009)28
  • Slide 24
  • 09/27/2010Teppei Katori, MIT23 The MiniBooNE Detector - 541 meters downstream of target - 3 meter overburden - 12 meter diameter sphere (10 meter fiducial volume) - Filled with 800 t of pure mineral oil (CH 2 ) (Fiducial volume: 450 t) - 1280 inner phototubes, - 240 veto phototubes Simulated with a GEANT3 Monte Carlo 3. Events in the Detector MiniBooNE collaboration, NIM.A599(2009)28
  • Slide 25
  • 09/27/2010Teppei Katori, MIT24 The MiniBooNE Detector - 541 meters downstream of target - 3 meter overburden - 12 meter diameter sphere (10 meter fiducial volume) - Filled with 800 t of pure mineral oil (CH 2 ) (Fiducial volume: 450 t) - 1280 inner phototubes, - 240 veto phototubes Simulated with a GEANT3 Monte Carlo 3. Events in the Detector Extinction rate of MiniBooNE oil MiniBooNE collaboration, NIM.A599(2009)28
  • Slide 26
  • 09/27/2010Teppei Katori, MIT25 The MiniBooNE Detector - 541 meters downstream of target - 3 meter overburden - 12 meter diameter sphere (10 mete

Recommended

View more >