09 03 lecture 03 16 2018 - labs.chem.ucsb.edu

23
3/18/18 1 https://labs.chem.ucsb.edu/zakarian/armen/courses.html CHEM 109A Organic Chemistry Chapter 9 Substitution Reactions: S N 2 and S N 1 Elimination Reactions: E2 and E1 Final exam is cumulative Chapter 1: 1.1 1.16 bonding Chapter 2: 2.1 2.10, 2.12 (Lewis acids) acids/bases Chapter 3: 3.1 3.15 nomenclature, ph. pr. Chapter 4: 4.1 4.15 (4.16 4.17 ) stereochemistry Chapter 5: 5.1 5.12 (5.13, 5.14 ) thermodyn./kinetics Chapter 6: 6.1 6.13, 6.16 (6.14, 6.15 ) alkene reactions Chapter 7: 7.1 7.12 alkyne reactions, synthesis Chapter 8: 8.1 8.7, 8.9, 8.11, 8.16 8.18 (resonance effect, on pKa, carbocations, intro to aromaticity) Chapter 9: 9.1 9.5 S N 1 and S N 2 reactions and mechanisms ! about ¾ of material from midterms 1-3, about ¼ from 7.6 9.5 ! midterms available to pick (CHEM 2138) until Monday 7 pm Wednesday, March 21, 4:00 – 7 pm, room BUCHN 1910 (last name A S); Phelps 1508 (last name T Z)

Upload: others

Post on 03-Oct-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

1

https://labs.chem.ucsb.edu/zakarian/armen/courses.html

CHEM 109A Organic Chemistry

Chapter 9

Substitution Reactions: SN2 and SN1

Elimination Reactions: E2 and E1

Final exam is cumulative Chapter 1: 1.1 – 1.16 bonding Chapter 2: 2.1 – 2.10, 2.12 (Lewis acids) acids/bases Chapter 3: 3.1 – 3.15 nomenclature, ph. pr.

Chapter 4: 4.1 – 4.15 (4.16 – 4.17) stereochemistry Chapter 5: 5.1 – 5.12 (5.13, 5.14) thermodyn./kinetics Chapter 6: 6.1 – 6.13, 6.16 (6.14, 6.15) alkene reactions Chapter 7: 7.1 – 7.12 alkyne reactions, synthesis Chapter 8: 8.1 – 8.7, 8.9, 8.11, 8.16 – 8.18 (resonance effect, on pKa,

carbocations, intro to aromaticity)

Chapter 9: 9.1 – 9.5 SN1 and SN2 reactions and mechanisms

! about ¾ of material from midterms 1-3, about ¼ from 7.6 – 9.5 ! midterms available to pick (CHEM 2138) until Monday 7 pm

Wednesday, March 21, 4:00 – 7 pm, room BUCHN 1910 (last name A – S); Phelps 1508 (last name T – Z)

Page 2: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

2

Midterm 3 information

Average: 59.5 Standard deviation: 16.1 Max 95 Min 18.5

Practice Questions

Draw the keto tautomer of:

OHOH

Page 3: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

3

Practice Questions

Propose a synthesis of the following molecule from phenylacetylene and any n-alkyl halide:

OCH3

phenylacetylene

The Families of Group II

Page 4: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

4

1.  Boththealkylhalideandthenucleophileareinthetransitionstateoftherate-limitingstep.

2.  Therelativerate:primaryalkylhalide>secondaryalkylhalide>tertiaryalkylhalide

3. Theconfigurationoftheproductisinvertedcomparedtotheconfigurationofthereactingchiralalkylhalide.

Summary of the Experimental Evidence for the Mechanism of an SN2 Reaction

back-sideattack

The Mechanism

Page 5: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

5

Why Back-Side Attack?

Why Back-Side Attack?

Page 6: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

6

Why Bimolecular?

Why Do Methyl Halides React the Fastest and Tertiary the Slowest?

sterichindrance

Page 7: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

7

StericHindranceDecreasestheRate

AlthoughitisPrimary,itReactsVerySlowly

Page 8: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

8

Why the Configuration of the Product is Inverted

SN2 reaction: Nucleophile, The Carbon Center, and the Leaving Group

nucleophile strong or weak? carbon center

(electrophilic) hindered or not?

leaving group good or bad?

Page 9: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

9

TheRateofanSN2ReactionisAffectedbytheLeavingGroup

Leaving Group Effect: TheWeakestBaseistheBest

Nucleophile effect: Bases and Nucleophiles

Abasesharesitslonepairwithaproton.

Anucleophilesharesitslonepairwithanatomotherthanaproton.

Page 10: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

10

1. Nucleophile Strength: stronger base, better Nu

Anegativelychargedatomisastrongerbaseandabetternucleophilethanthesameatomthatisneutral.

Anegativelychargedatomisastrongerbaseandabetternucleophilethanthesameatomthatisneutral.

1. Nucleophile Strength: stronger base, better Nu

Page 11: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

11

Anegativelychargedatomisastrongerbaseandabetternucleophilethanthesameatomthatisneutral.

1. Nucleophile Strength: stronger base, better Nu

Anegativelychargedatomisastrongerbaseandabetternucleophilethanthesameatomthatisneutral.

1. Nucleophile Strength: stronger base, better Nu

Page 12: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

12

2. Nucleophile Strength: same row elements

Ifatomsareinthesamerow,thestrongestbaseisthebestnucleophile.

nucleophilicity goes up

same for NH3 > H2O

3. Nucleophile Strength: Polarizability

Thelargertheatom,themorepolarizableitis(canmovemorefreelytowardapositivecharge).

Page 13: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

13

3. Nucleophile Strength: Polarizability

Thelargertheatom,themorepolarizableitis(canmovemorefreelytowardapositivecharge).

polar protic

solvents

CH3OH

3. Nucleophile Strength: Polarizability

Thelargertheatom,themorepolarizableitis(canmovemorefreelytowardapositivecharge).

polar protic

solvents

polar aprotic solvents

DMF, DMSO

CH3OH

Page 14: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

14

Solvents

1.nonpolarsolvents:hexane,benzene–normallynotusedinsubstitutionreactions(Negativelychargedspeciescannotdissolveinnonpolarsolvents).2.proticpolarsolvents:haveanOHgroup(H2O,CH3OH)3.aproticpolarsolvents:polar,butnoOHgroup

H N

O

DMF

SO

DMSO

Why Do Protic Polar Solvents Make the Strongest Bases the Poorest Nucleophiles?

I−isthebestnucleophileinaproticpolar

solvent.

polar protic

solvents

CH3OH

excellent solvation poor solvation

Page 15: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

15

Aprotic Polar Solvents

Theycansolvateacation(+)betterthantheycansolvateananion(−).

polar aprotic solvents

DMF, DMSO

Aprotic Polar Solvents

Rank the following from best to poorest nucleophile in an aqueous solution:

O HO CH3OHO

OCH3S

Page 16: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

16

Aprotic Polar Solvents

Rank the following from best to poorest nucleophile in an aqueous solution:

O HO CH3OHO

OCH3S

how about in DMF?

4.StericHindranceDecreasesNucleophilicity

mostly when comparing same-class nucleophiles – here, alkoxides

Page 17: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

17

SN2ReactionsCanBeUsedtoMakeaVarietyofCompounds

Thereactionsareirreversiblebecauseaweakbasecannotdisplaceastrongbase.

SynthesizinganAmine

K2CO3makesthesolutionbasicsothattheaminewillexistinitsbasicform.

Page 18: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

18

AnotherSubstitutionReaction:SN1

Thereactionissurprisinglyfast,soitmustbetakingplacebyadifferentmechanism.

Thereactionissurprisinglyfast,soitmustbetakingplacebyadifferentmechanism.

an SN1 reaction: only the alkyl halide is in the transition state of the rate-limiting step.

AnotherSubstitutionReaction:SN1

Page 19: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

19

Solvolysis Reaction

AlotofSN1reactionsaresolvolysisreactions;thesolventisthenucleophile.

The Mechanism

Theleavinggroupdepartsbeforethenucleophileapproaches.Theslowstepiscarbocationformation.

Page 20: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

20

The Reaction Coordinate Diagram

TheProductisaPairofEnantiomers

Ifthehalogenisbondedtoanasymmetriccenter,theproductwillbeapairofenantiomers.

Page 21: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

21

Why a Pair of Enantiomers?

MostSN1ReactionsLeadtoPartialRacemization

Generallymoreinvertedproductisformed,becausethefrontsideispartiallyblocked.

Page 22: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

22

LeavingGroupEffectonSN1reactions:TheWeakestBaseistheBestLeavingGroup

Comparing SN2 and SN1 Reactions

Page 23: 09 03 Lecture 03 16 2018 - labs.chem.ucsb.edu

3/18/18

23

SN1 and SN2 reactions: brief summary

primaryalkylhalidesandmethylhalidesonlySN2Theycannotformcarbocations.

secondaryalkylhalidesonlySN2Carbocationformationistooslowtomakeupforthelargeconcentrationofthenucleophileinasolvolysisreaction.

tertiaryalkylhalidesonlySN1Theycannotundergoback-sideattack.