05_cables.pdf

Upload: aravind-bhashyam

Post on 04-Oct-2015

8 views

Category:

Documents


0 download

TRANSCRIPT

  • 1! Cable Subjected to Concentrated Loads! Cable Subjected to Uniform Distributed

    Loads! Arches! Three-Hinged Arch

    Cables and Arches

  • 2Cable Subjected to Concentrated Loads

    L

    BC

    D

    L1 L2 L3

    P1 P2

    yC yD

    C

    P2

    TCDTCB x

    y

    AyAx

    TCD

    B

    P1

    x

    y

    TBC

    TBA

    Fx = 0:+

    Fy = 0:+

    + MA = 0: Obtain TCD

    L

    A

    BC

    D

    L1 L2 L3

    P1 P2

    yC yD

  • 3Example 5-1

    Determine the tension in each segment of the cable shown in the figure below.Also, what is the dimension h ?

    2 m

    2 m

    h

    2 m 2 m 1.5 m

    A

    BC

    D

    3 kN8 kN

  • 42 mh

    2 m 2 m 1.5 m

    A

    BC

    D

    3 kN8 kN

    SOLUTION

    + MA = 0:

    AyAx

    5TCD

    34

    TCD(3/5)(2 m) + TCD(4/5)(5.5 m) - 3kN(2 m) - 8 kN(4 m) = 0

    TCD = 6.79 kN

  • 56.79(3/5) - TCB cos BC = 0

    BC = 32.3o TCB = 4.82 kN

    Joint C

    Fx = 0:+

    Fy = 0:+ 6.79(4/5) - 8 + TCB sin CB = 0C

    8 kN

    5

    34TCD = 6.79 kN

    TCBBC

    x

    y

    Joint B

    Fx = 0:+ - TBA cos BA + 4.82 cos 32.3o = 0B

    3 kN

    x

    y

    TBC = 4.82 kN

    TBABA 32.3

    o

    Fy = 0:+ TBA sin BA - 4.82 sin 32.3o - 3 = 0

    BA = 53.8o TBA = 6.90 kN

    h = 2 tanBA = 2 tan53.8o = 2.74 m

    A

    B C

    D

    3 kN 8 kN

    h

  • 6y

    x

    x = L

    To

    Cable Subjected to Distributed Load

    WTo

    WT

    T cos = To = FH = Constant

    T sin = W

    oTW

    dxdy

    == tan

    Concepts & Conclusion:

    T

  • 7wo = force / horizontal distance

    Tx

    To

    x

    y

    x

    wo x

    2x

    To

    wox

    o

    o

    Txw

    dxdy

    == tan

    = dxTxwy

    o

    o

    1

    2

    2C

    Txwyo

    o +=

    at x = L , T = TB = Tmax

    22max )( LwTT oo +=

    yxwT oo 2

    2

    =

    0

    To

    woLTmax

    x

    A

    B

    T

    x

    Parabolic Cable: Subjected to Linear Uniform distributed Load

    y

    xL

  • 8wo

    y

    x

    h

    L

    xx

    wo(x)2x

    xs

    Oy

    T

    + T + T

    Fx = 0:+

    Fy = 0:+

    + MO = 0:

    -T cos + (T + T) cos ( + ) = 0

    -Tsin + wo(x) + (T + T) sin( + ) = 0

    wo(x)(x/2) - T cos (y) - T sin(x) = 0

    Derivation:

  • 9Dividing each of these equations by x and taking the limit as x 0, and hence y 0, 0, and T 0, we obtain

    0)cos( =dx

    Td ----------(5-1)

    owdxTd

    =)sin(

    ----------(5-2)

    tan=dxdy

    ----------(5-3)

    Integrating Eq. 5-1, where T = FH at x = 0, we have:

    HFT =cos ----------(5-4)

    Integrating Eq. 5-2, where T sin = 0 at x = 0, gives

    xwT o=sin ----------(5-5)

    Dividing Eq. 5-5 by Eq. 5-4 eliminates T. Then using Eq. 5-3, we can obtain the slope at any point,

    H

    o

    Fxw

    dxdy

    ==tan ----------(5-6)

    To

    woxT

  • 10

    Performing a second integration with y = 0 at x = 0 yields

    2

    2x

    Fwy

    H

    o= ----------(5-7)

    This is the equation of a parabola. The constant FHmay be obtained by using the boundary condition y =h at x = L. Thus,

    hLwF oH 2

    2

    = ----------(5-8)

    Finally, substituting into Eq. 5-7 yeilds

    22 xL

    hy = ----------(5-9)

    From Eq. 5-4, the maximum tension in the cable occurs when is maximum; i.e., at x = L. Hence, from Eqs. 5-4 and 5-5,

    2max )(2 LwFT oH += ----------(5-10)

    To

    woLTmax

    wo

    y

    x

    h

    L

  • 11

    Example 5-2

    The cable shown supports a girder which weighs 12kN/m. Determine the tensionin the cable at points A, B, and C.

    12 m

    30 m

    6 m

    A

    B

    C

  • 12

    SOLUTION

    L30 - L

    12 m

    30 m

    6 m

    A

    B

    C

    y

    xwo = 12 kN/m

    x1x2

    TCC

    TA

    A

  • 13

    12x1

    TCC

    wo = 12 kN/m

    L

    x1

    6 mB

    C

    y

    x

    12 L

    To

    To

    Tx1

    oTx

    dxdy 1

    1

    1 12tan ==

    = 11112 dxT

    xyo

    0

    oTL

    2'1262

    =

    ----------(1)2'LTo =

    1

    21

    1 212 C

    Txyo

    +=

  • 14

    12 m

    A

    B

    y

    x

    wo = 12 kN/m

    30 - L

    x2

    To

    TA

    A

    12 (30 - L)

    12 x2

    To

    Tx2

    oTx

    dxdy 2

    2

    2 12tan ==

    2

    22

    22

    2 21212 C

    Txdx

    Txy

    oo

    +== 0

    oTL

    2)'30(1212

    2=

    oTxy

    212 22

    2=

    ----------(2)oTL

    2)'30(1

    2=

  • 15

    ----------(1)2'LTo =

    ----------(2)oTL

    2)'30(1

    2=

    From (1) and (2), L = 12.43 m, To = 154.5 kN

    12 L

    To

    TC

    C

    TB = To = 154.5 kN

    12 (30 - L )

    To

    TA

    A

    22 )'12( LTT oC +=

    22 )43.1212()50.154( +=

    22 )]'30(12[ LTT oA +=

    22 )]43.1230(12[)50.154( +== 214.8 kN

    = 261.4 kN

  • 16

    Example 5-3

    The suspension bridge in the figure below is constructed using the two stiffeningtrusses that are pin connected at their ends C and supported by a pin at A and arocker at B. Determine the maximum tension in the cable IH. The cable has aparabolic shape and the bridge is subjected to the single load of 50 kN.

    I H

    A B

    D

    F G C

    8 m

    6 m

    50 kN

    4 @ 3 m = 12 m 4 @ 3 m = 12 m

    Pin rocker

    E

  • 17

    ----------(1)

    SOLUTION

    I

    A

    D

    F G C

    E

    12 m

    8 m

    6 m

    + MA = 0:

    0812 =+ oy TC

    yo CT 5.1=

    To

    Cy

    Cx

    To

    Iy

    Ay

    Ax

    H

    BC

    8 m

    6 m

    50 kN

    9 m3 m

    To

    To

    Hy

    ByCy

    Cx

    + MB = 0:

    ----------(2)

    08)9(5012 =+ oy TC

    25.565.1 += yo CT

    From (1) and (2), Cy = 18.75 kN, To = 28.125 kN

  • 18

    I

    12 m

    wo

    8 m

    x

    y

    wox

    To = 28.12 kN

    From (1) and (2), Cy = 18.75 kN, To = 28.12 kN

    x

    I

    TI

    28.12 kN

    woxTx

    12.28tan xw

    dxdy o==

    = dxxwy o12.28

    0

    1

    2

    12.28Cxwy o +=

    )12.28(2)12(8

    2ow=

    wo = 3.125 kN/m

  • 19

    8 m

    H

    8 m

    I

    12 m 12 m

    37.5 kN

    12wo = 37.5 kN12wo = 37.5 kN

    To = 28.12 kN To = 28.12 kN

    THH

    22 )12.28()5.37( +=IT

    = 46.88 kN

    Tmax = TI = TH = 46.88 kN

    Tmin= To = 28.12 kN

    28.12 kN

    TI

    I

    TI

  • 20

    A B

    D

    F G C50 kN

    4 @ 3 m = 12 m 4 @ 3 m = 12 m

    E

    ByAy

    Ax

    TTTTTTT 3125.33 == owT

    = 9.375 kN0

    + MA = 0: 0)24()15(50)21181512963(375.9 =+++++++ yB

    Fy = 0:+ 056.150)375.9(7 =+yA

    Ay = -14.07 kN,

    By = -1.56 kN,

  • 21

    Example 5-4

    For the structure shown:(a) Determine the maximum tension of the cable(b) Draw quantitative shear & bending-moment diagrams of the beam.

    8 m

    8 m

    0.5 m

    AB

    C

    5 m 20 m

    D

    E

    1 kN/m

    Hinge

  • 22

    8 m

    0.5 m

    A B

    5 m

    D

    1 kN/m

    5 kN

    To

    By

    BxAy

    Ax

    To

    Dy

    8 m

    B C

    20 m

    E

    1 kN/m

    20 kN

    To

    To

    Ey

    CyBy

    Bx

    + MA = 0:

    0)5.0()5.2(5)5( =+ oy TB

    + MC = 0:

    0)8()10(20)20( =+ oy TB

    From (1) and (2), By = 0, To = 25 kN

    SOLUTION

  • 23

    20wo

    To= 25 kN

    8 m

    20 m

    E

    x

    y

    TE = Tmax

    22max )20()25( +== ETT

    Tmax = 32.02 kN

    TE = Tmax

    To= 25 kN

    20wo = 20 kN

    25tan xw

    dxdy o==

    1

    2

    )25(2

    25

    Cxw

    dxxwy

    o

    o

    +=

    = 0

    )25(2)20(8

    2ow=

    wo = 1 kN/m

    Tx

    To= 25 kN

    wox

  • 24

    A BC

    1 kN/m

    CyAy

    Ax

    5 m 20 m

    10 @ 2.5 m = 25 m

    T = wo(2.5 m) = (1kN/m)(2.5 m) = 2.5 kN

    2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

    =1.25 kN = 1.25 kN

    1.25

    -1.25

    1.25

    -1.25

    1.25

    -1.25

    1.25

    -1.25

    1.25

    -1.25

    x (m)

    V (kN)

    x (m)

    M (kNm) 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78

  • 25

    Example 5-5

    The cable AB is subjected to a uniform loading of 200 N/m. If the weight of thecable is neglected and the slope angles at points A and B are 30o and 60o,respectively, determine the curve that defines the cable shape and the maximumtension developed in the cable.

    30o

    60o

    A

    B

    15 m200 N/m

    x

    y

  • 26

    SOLUTION

    (0.2 kN)(15 m) = 3 kN30o

    60o

    A

    B

    15 m

    TA

    60oTB

    3 kN

    TA30o

    TB

    60o

    30o

    30o 30o

    120o

    oA

    ooB TT

    30sin30sin3

    120sin==

    TB = 5.20 kN

    TA = 3 kN

  • 27

    30o3 kN

    30o

    Ax

    y

    TA = 3 kN

    0.2x

    x

    T

    0.2x

    3 sin 30o = 1.5

    3 cos 30o = 2.6

    T

    6.25.12.0tan +== x

    dxdy

    0 += 577.00769.0 xy

    577.00769.0 += xdxdy

    1

    2

    577.02

    0769.0 Cxxy ++=

    y = 0.0385x2 + 0.577x

  • 28

    Example 5-6

    The three-hinged open-spandrel arch bridge shown in the figure below has aparabolic shape and supports the uniform load . Show that the parabolic arch issubjected only to axial compression at an intermediate point D along its axis.Assume the load is uniformly transmitted to the arch ribs.

    7 kN/m

    15 m 7.5 m 7.5 m

    7.5 m

    A C

    B2

    2)15(5.7 xy =

    y

    xD

  • 29

    210 kN

    15 m

    B2

    2)15(5.7 xy =

    15 m

    SOLUTION

    Ax

    Ay Cy

    Cx

    Entire arch :

    + MA = 0: 0)15(210)30( =yC

    Fy = 0:+ 0105210 =+yA

    Ay = 105 kN

    Cy = 105 kN

  • 30

    105 kN

    B

    7.5 m 7.5 m 105 kN

    CxB

    Arch segment BC :

    + MB = 0:

    Fy = 0:+ 0105105 =+yB

    Bx

    By

    Fx = 0:+

    Cx = 105 kN

    Bx = 105 kN

    By = 0

    0)5.7()15(105)5.7(105 =+ xC

  • 31

    52.5 kN

    B

    D

    105 kN

    0

    3.75 m

    26.6o

    26.6o

    A section of the arch taken through point D, x = 7.5 m, y = -7.5(7.52)/(15)2 = -1.875 m,is shown in the figure. The slope of the segment at D is

    Fy = 0:+

    ND = 117.40 kN, VD = 0, MD = 0 kN

    Fx = 0:+ 105 - ND cos 26.6o - VD sin 26.6o = 0

    Arch segment BD :

    VDND

    MD

    5.0)15(

    15tan5.7

    2 =

    ===x

    xdxdy

    + MD = 0: MD + 52.5(3.75) - 105(1.875) = 0

    -52.5 + ND sin 26.6o - VD cos 26.6o = 0

    , = 26.6o

  • 32

    52.5 kN

    B

    D

    105 kN

    0

    3.75 m

    26.6o

    26.6o

    A section of the arch taken through point D, x = 7.5 m, y = -7.5(7.52)/(15)2 = -1.875 m,is shown in the figure. The slope of the segment at D is

    Arch segment BD :

    VDND

    MD

    5.0)15(

    15tan 5.72 =

    == =xxdxdy , = 26.6o

    No= 25 kN

    7.5 wo = (7.5)(7)= 52.5 kNND

    22max )5.52()105( +== ETT

    Tmax = 117.4 kNNotes : Since the arch is a parabola, there are noshear and bending moment, only ND is present

    Alternate Method

  • 33

    Example 5-7

    The three-hinged tied arch is subjected to the loading shown in the figure below.Determine the force in members CH and CB. The dashed member GF of the trussis intended to carry no force.

    E

    15 kN20 kN

    15 kN

    A

    BC

    D

    FG

    H

    3 m 3 m 3 m 3 m

    4 m

    1 m

  • 34

    E

    15 kN20 kN

    15 kN

    AB

    CD

    FG

    H

    3 m 3 m 3 m 3 m

    4 m

    1 m

    SOLUTION

    + MA = 0:

    Fy = 0:+

    Fx = 0:+

    025152015 =+yA

    0)9(15)6(20)3(15)12( =yE

    Ax

    Ay Ey

    Ax = 0

    Ay = 25 kN

    Ey = 25 kN

  • 35

    15 kN20 kN

    AB

    C

    GH

    3 m 3 m

    5 m0

    25 kN

    + MC = 0:

    Fy = 0:+

    Fx = 0:+

    0201525 =+ yC

    0)3(15)6(25)5( =+AEF

    0Cx

    CyFAE

    -Cx + 21= 0Cx = 21.0 kN

    Cy = 10 kN

    FAE = 21.0 kN

  • 36

    Fy = 0:+

    Fx = 0:+

    020 =GCF

    FGC = 20 kN (C)

    FHG = 0

    20 kN

    0

    FGC

    FHG G

    Joint G :

    Fy = 0:+

    Fx = 0:+

    FCH = 4.75 kN (T),

    Joint C :

    20 kN

    21 kN

    10 kNFCB

    C18.43o18.43o

    FCH

    -FCH cos18.43 - FCB cos18.43 - 21= 0

    FCH sin18.43 - FCB cos18.43 - 20 + 10 = 0

    FCB = -26.88 kN (C)

    Thus,

  • 37

    Archescrownextrados

    (or back)

    Intrados(or soffit)

    huanch

    centerline rise

    abutment

    springline

    fixed arch two-hinged arch

    three-hinged archtied arch

  • 38

    P1

    A

    C

    P2

    B

    C

    Three-Hinged ArchP1

    P2

    AB

    C

    Bx

    By

    Cx

    Cy

    Ax

    Ay

    Cx

    Cy

    D

    NDMD

    VDAx

    Ay

    D

  • 39

    Example 5-8

    The tied three-hinged arch is subjected to the loading shown. Determine thecomponents of reaction at A and C and the tension in the cable.

    10 kN

    15 kN B

    A

    C

    0.5 m 1 m

    2 m 2 m

    D

    2 m

  • 40

    SOLUTION

    10 kN

    15 kN B

    A

    C

    0.5 m 1 m

    2 m 2 m

    D

    2 m

    Cy

    Ax

    Ay

    Entire arch :

    + MA = 0: 0)5.0(15)5.4(10)5.5( =yC

    Cy = 9.545 kN

    Fy = 0:+ 0545.91015 =+yA

    Ay = 15.46 kN

    0

  • 41

    TD

    10 kN

    C

    1 m

    2 m

    D

    BBx

    By

    Cy = 9.545 kN

    15 kN B

    A

    0.5 m

    2 m

    2 m

    Bx

    By

    TA

    Ay = 15.46 kN

    Member AB :

    + MB = 0: 0)2()5.2(455.15)2(15 =+ AT TA = 4.319 kN

    Fy = 0:+ 015455.15 = yB By = 0.455 kN

    Fx = 0:+ 0319.4 = xB Bx = 4.319 kNMember AB :

    Fx = 0:+ 0319.4 = DT TD = 4.319 kN