02_scour and protection

Upload: alejandro-urquieta-quiroga

Post on 04-Jun-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 02_Scour and Protection

    1/46

    Scour and scour protection

    Krystian W. Pilarczyk

    Rijkswaterstaat

    Road and Hydraulic Engineering Division,

    Delft, the Netherlands

  • 8/13/2019 02_Scour and Protection

    2/46

    Types of scour

    Currents

    Jets

    Waves

  • 8/13/2019 02_Scour and Protection

    3/46

    Types of scour

    a) S2 = S1 > 0. This is a dynamic equilibrium situation.

    Sediment can be picked up and can settle again, but there is

    no net change of the position of the bottom.

    b) S2 > S1 = 0. There is no sediment supply from upstream,

    while there is sediment transport downstream. This case isknown as clear-water scour. (uo1< uc)

    c) S2 > S1 > 0. There is sediment supply from upstream but the

    sediment transport downstream is larger. This case is known

    as live-bed scour. (uo1> uc)

    S f S f c

    ( ) ( ) or

    Types of scour

    Or, S = f(uuc)

  • 8/13/2019 02_Scour and Protection

    4/46

  • 8/13/2019 02_Scour and Protection

    5/46

    Flow deflectors

    Increase footing depth

    Examples scour damage

  • 8/13/2019 02_Scour and Protection

    6/46

    Literature

    See also selected literature in lectures by Pilarczyk

  • 8/13/2019 02_Scour and Protection

    7/46

  • 8/13/2019 02_Scour and Protection

    8/46

    General aspects

    and components

    Hydraulic boundaryconditions

    -flow pattern

    - soil conditions

  • 8/13/2019 02_Scour and Protection

    9/46

    scour behind bed protection

    4.07.0

    2.0

    0

    7.1

    10)( thuuth cs

    hs(t) maximum scour depth

    h0 original water depth

    u vertically averaged velocity at end of protection

    uc critical velocity

    t time in hours scour intensity parameter

  • 8/13/2019 02_Scour and Protection

    10/46

  • 8/13/2019 02_Scour and Protection

    11/46

  • 8/13/2019 02_Scour and Protection

    12/46

  • 8/13/2019 02_Scour and Protection

    13/46

  • 8/13/2019 02_Scour and Protection

    14/46

  • 8/13/2019 02_Scour and Protection

    15/46

  • 8/13/2019 02_Scour and Protection

    16/46

  • 8/13/2019 02_Scour and Protection

    17/46

    Bank sliding Zeeland

    Probably due to flow slide

    schematic view of a flow-slide

    l d fi i i fi b d

  • 8/13/2019 02_Scour and Protection

    18/46

    Control definitions of

    scour depth?

    Sometimes = scour depth

    Sometimes = scour depthplus water depth

    Scour Manual, 1997

    Hoffmans&Verheij

    Scour in bends

  • 8/13/2019 02_Scour and Protection

    19/46

    River, Coastal and Shoreline Protection: Erosion

    Control Using Riprap and ArmourstoneC. R. Thorne (Editor), Steven R. Abt (Editor), Frans B. J. Barends

    (Editor), Stephen T. Maynord (Editor), Krystian W. Pilarczyk (Editor)Hardcover , 784 pages , April 1995

    Velocity prediction in bendsempirical method

    Vtoe/Vavg= 1.660.42 log (Rc/w)

    (Rc/w)= the radius of river curvature to widthratio for the bend

    WES (US Army):

    Vtoe/Vavg= 1.750.5 log (Rc/w)

  • 8/13/2019 02_Scour and Protection

    20/46

    Bend scour depth prediction-empirical method

    (Thorne, 1988, 1995)

    All meanders:

    dmax/dbar= 2.070.19 log (Rc/w-2)

    Revetted bends:

    dmax/dbar= 2.150.27 log (Rc/w-2)

    Equation for the prediction of maximum bend scour

    (dmax) on the basis of the mean depth of the

    approach channel at the crossing upstream of thebend (dbar) and the bend geometry represented by

    the ratio of bend radius (Rc) divided by width at the

    upstream crossing (w).

  • 8/13/2019 02_Scour and Protection

    21/46

  • 8/13/2019 02_Scour and Protection

    22/46

    Comment Steve Maynord

    Regarding bend scour, dmax and hb are the maximum water depth inthe bend, not scour depth. Dbar and h are the average or hydraulic

    depth in the channel approaching the bend. I prefer using a form ofthese equations I published in:

    Maynord, S.T. (1996). Toe-Scour Estimation in StabilizedBendways, ASCE Journal of Hydraulic Engineering, Vol 122, No. 8.

    Regarding the R/W limitation of 2, my recollection is that we believedthat few cases were less than 2 and that 2 was likely close to a

    maximum. Regarding velocities, our EM 1110-2-1601, Hydraulic Design of

    Flood Control Channels has our empirical equations for velocity innatural and trapezoidal channel bends. I have been told that manualcan be downloaded from our website.

    Steve Maynord

    EM 1110 2 1601 US A 1994

    http://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htm
  • 8/13/2019 02_Scour and Protection

    23/46

    EM 1110-2-1601, US Army, 1994

    http://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htm

    EM 1110-2-1601

    R t t i

    http://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htmhttp://www.usace.army.mil/usace-docs/eng-manuals/em1110-2-1601/toc.htm
  • 8/13/2019 02_Scour and Protection

    24/46

    Revetment in

    bends

    S d

  • 8/13/2019 02_Scour and Protection

    25/46

    http://www.ctre.iastate.edu/pubs/midcon2003/ettemascour.pdf

    Robert Ettema, Tatsuaki Nakato, and Marian Muste

    Scour around spur

    dikes/groynes

  • 8/13/2019 02_Scour and Protection

    26/46

  • 8/13/2019 02_Scour and Protection

    27/46

    Scour at groyns, Schiereck 2002, H-04

    3/2

    0 2.2

    bB

    Qhh se Eq. 4.9

    Breusers/Raudkivi, 1991

    ho= water depth

    hse= scour depth

    Q = discharge

    (constant 2.2 is not dimensionless)

    Expression of Ahmed for scour spur dikes as

  • 8/13/2019 02_Scour and Protection

    28/46

    Expression of Ahmed for scour spur dikes as

    given by Hoffmans & Verheij (Scour Manual,

    1997) reads:

  • 8/13/2019 02_Scour and Protection

    29/46

    Scour at bridges

  • 8/13/2019 02_Scour and Protection

    30/46

    S f S f c ( ) ( ) or

    scour around a cilinder

    Or, S = f(uuc)

  • 8/13/2019 02_Scour and Protection

    31/46

    scour around a cylinder as function

    of waterdepth and diameter

  • 8/13/2019 02_Scour and Protection

    32/46

    Example of scour formula, Schiereck, 2001, H-04

    Pier shape l/b K S

    Cylinder

    Rectangular

    Elliptic

    -

    1

    3

    5

    2

    3

    5

    1.0

    1.2

    1.1

    1.0

    0.85

    0.8

    0.6

    DhKKK

    Dh uSs

    0tanh2 not in example 4.1 ??

    Ks= shape factorK= angle of attack

    Ku= velocity factor

    Ku= velocity factor :

    Ku= 0 for u/uc< 0.5,Ku= 1 for u/uc> 1 andKu= (2u/uc- 1) for 0.5 < u/uc< 1

    A constant of proportionality of 2 is recommended by Breusers et al,1977, for design purposes

    Schiereck Example 4-1; cylindrical piers

  • 8/13/2019 02_Scour and Protection

    33/46

    Schiereck, Example 4 1; cylindrical piers

    A cylindrical pier with a diameter of 5 m is located in ariver, 5 m deep, with a gravel bed, d50 = 5 mm. The flowvelocity is 1 m/s. What is the expected scour depth?

    The dimensionless diameter, d*, in the Shields-Van Rijngraph, see figure 3.2b, is: 0.005*((1.65*9.81)/(1.33*10-6)2)1/3 = 105. This gives = 0.05 (Note: scour refers to

    sediment transport, not to damage to a bottom protection,

    so, the original Shields values should be used). With anassumed roughness of twice the median grain diameter we

    find C = 18log(12*5/0.01) = 68 m/s. From this we find acritical velocity: uc = 68*(1.65*0.005*0.05) = 1.38 m/s.The velocity coefficient in equation 4.7 then becomes:

    2*1/1.38-1=0.45. The scour depth becomes:5*0.45*tanh(5/5) = 1.7 m.

    Or, with a proportionality factor of 2: hs= 2 x 1.7 = 3.4 m

    Schields; Schiereck H-03; Fig 3-2

  • 8/13/2019 02_Scour and Protection

    34/46

    Schields; Schiereck H-03; Fig. 3-2

    Figure 3-2 Critical shear stress according to Shields - van Rijn

    Uc= C (dn50 )^0.5

  • 8/13/2019 02_Scour and Protection

    35/46

    Bridge scour protection

    Stability of protection material can be calculated based on theassumption that the maximum shear stress and maximum flow velocity

    near the cylinder are roughly equal to:

    max= 4undisturbed

    And/or umax = 2uundisturbed

    Tere is a large number of formulas:

  • 8/13/2019 02_Scour and Protection

    36/46

    HEC-18 USA

    Tere is a large number of formulas:

  • 8/13/2019 02_Scour and Protection

    37/46

    Example from USA:

    y1 = average flow depth upstream

    http://www.haestad.com/library/books/FMRAS/FloodplainOnlineBook/javascript/wwhelp/w

    whimpl/common/html/wwhelp.htm?context=Floodplain_with_HEC_RAS&file=Floodplain%20with%20HEC-RAS-22-06.html

  • 8/13/2019 02_Scour and Protection

    38/46

  • 8/13/2019 02_Scour and Protection

    39/46

  • 8/13/2019 02_Scour and Protection

    40/46

    Reference

    Title:Bridge Scour

    Authors:Bruce W. Melvilleand Stephen E. ColemanSpecifications:Soft Cover, 572pp, ISBN 1-887201-18-1Price:US $85Cat No:BSR

    "A comprehensive state-of-the-art treatment of scour andbridge foundations - both a handy reference text and amanual for the practicing bridge designer."

    http://www.wrpllc.com/authors/melcole.htmlhttp://www.wrpllc.com/authors/melcole.htmlhttp://www.wrpllc.com/authors/melcole.htmlhttp://www.wrpllc.com/authors/melcole.html
  • 8/13/2019 02_Scour and Protection

    41/46

    R t t

  • 8/13/2019 02_Scour and Protection

    42/46

    Revetments

    - Scour

    - Toe protection

    Rule of thumb:

    Max Scour hole = height of local waveDepth limited :

    Local wave height = 0.5 water depth

    Thus, max scour depth = 0.5 water depth

  • 8/13/2019 02_Scour and Protection

    43/46

    Conclusions

    Integrated approach:

    Hydraulic aspects

    Geotechnical aspects

    Structural aspects

  • 8/13/2019 02_Scour and Protection

    44/46

    Literature

    See also selected literature in lectures by Pilarczyk

    http://www.unesco-ih / /di /b k80/d f lt ht ?htt //

  • 8/13/2019 02_Scour and Protection

    45/46

    ihe.org/we/dicea/brk80/default.htm?http://www.unesco-

    ihe.org/we/dicea/brk80/brk8001.htm

    Dicea overview:

    CLO06 Bed protection near closure works

    CLO0601 Function of a bed protection

    CLO0602 Stability of a bed protection

    CLO0603 Length of a bed protection

    CLO0604 Calculation of a scouring hole

    CLO0611 Stability under current attack

    CLO0613 The Knauss and TAW formula (CRESS routine 612)

    CLO0616 The Shields and Pilarczyk formula (CRESS routine 611)

    download RWS-Cress (English version)

    download IHE-Cress (Windows version)

    Also:http://ikm.nl/rwscress/

    http://www.unesco-ihe.org/we/dicea/clo06/clo0601.htmhttp://www.unesco-ihe.org/we/dicea/clo06/clo0602.htmhttp://www.unesco-ihe.org/we/dicea/clo06/clo0603.htmhttp://www.unesco-ihe.org/we/dicea/clo06/clo0604.htmhttp://www.unesco-ihe.org/we/dicea/clo06/clo0613.htmhttp://www.waterbouw.tudelft.nl/public/ct4310/cress/rwscressEN.ziphttp://www.ihe.nl/we/dicea/cress.htmhttp://www.ihe.nl/we/dicea/cress.htmhttp://www.ihe.nl/we/dicea/cress.htmhttp://www.ihe.nl/we/dicea/cress.htmhttp://www.waterbouw.tudelft.nl/public/ct4310/cress/rwscressEN.ziphttp://www.waterbouw.tudelft.nl/public/ct4310/cress/rwscressEN.ziphttp://www.waterbouw.tudelft.nl/public/ct4310/cress/rwscressEN.ziphttp://www.unesco-ihe.org/we/dicea/clo06/clo0613.htmhttp://www.unesco-ihe.org/we/dicea/clo06/clo0604.htmhttp://www.unesco-ihe.org/we/dicea/clo06/clo0603.htmhttp://www.unesco-ihe.org/we/dicea/clo06/clo0602.htmhttp://www.unesco-ihe.org/we/dicea/clo06/clo0601.htm
  • 8/13/2019 02_Scour and Protection

    46/46

    The end

    Questiona and discussion