© a2 046 20-jul-12. zn 2+ (aq) + 2 e – zn(s)

50
© www.chemsheets.co.uk A2 046 20- Jul-12

Upload: kiya-sias

Post on 16-Dec-2015

265 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

© www.chemsheets.co.uk A2 046 20-Jul-12

Page 2: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Zn2+(aq) + 2 e– Zn(s)

Page 3: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)
Page 4: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Zn

Zn Zn2+ + 2 e-

oxidation

Cu2+ + 2 e- Cureduction

- electrode

anodeoxidation

+ electrodecathode

reductionelectron flow

At this electrode the metal loses

electrons and so is oxidised to metal

ions.

These electrons make the electrode

negative.

At this electrode the metal ions gain

electrons and so is reduced to metal

atoms.

As electrons are used up, this makes the electrode positive.

Cu

Page 5: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)
Page 6: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)
Page 7: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Standard Conditions

Concentration 1.0 mol dm-3 (ions involved in ½ equation)

Temperature 298 K

Pressure 100 kPa (if gases involved in ½ equation)

Current Zero (use high resistance voltmeter)

Page 8: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

S tandard H ydrogen E lectrode

Page 9: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Emf = E = Eright - Eleft

H2 at 100 kPa

o

o

o

o

o

o

o

o

o

o

o

o

salt bridge

1.0 M H+(aq)

Pt

temperature= 298 K

1.0 M Cu2+(aq)

V

Cu

high resistancevoltmeter

E = Eright

Page 10: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)
Page 11: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)
Page 12: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

H2 at 100 kPa

o

o

o

o

o

o

o

o

o

o

o

o

salt bridge

1.0 M H+(aq)

Pt

temperature= 298 K

1.0 M Cu2+(aq)

V

Cu

high resistancevoltmeter

Pt(s) | H2(g) | H+(aq) || Cu2+(aq) | Cu(s)

Page 13: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Ni(s) | Ni2+(aq) || Sn4+(aq), Sn2+(aq) | Pt(s)

K(s) | K+(aq) || Mg2+(aq) | Mg(s)

ROOR

Page 14: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Emf = Eright - Eleft

ELECTRODE POTENTIALS – Q1

- 2.71 = Eright - 0

Eright = - 2.71 V

Page 15: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Emf = Eright - Eleft

ELECTRODE POTENTIALS – Q2

Emf = - 0.44 - 0.22

Emf = - 0.66 V

Page 16: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Emf = Eright - Eleft

ELECTRODE POTENTIALS – Q3

Emf = - 0.13 - (-0.76)

Emf = + 0.63 V

Page 17: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Emf = Eright - Eleft

ELECTRODE POTENTIALS – Q4

+1.02 = +1.36 - Eleft

Eleft = + 1.36 - 1.02 = +0.34 V

Page 18: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Emf = Eright - Eleft

ELECTRODE POTENTIALS – Q5

a) Emf = + 0.15 - (-0.25) = +0.40 Vb) Emf = + 0.80 - 0.54 = +0.26 Vc) Emf = + 1.07 - 1.36 = - 0.29 V

Page 19: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Emf = Eright - Eleft

ELECTRODE POTENTIALS – Q6

a) Eright = +2.00 - 2.38 = - 0.38 V

Ti3+(aq) + e- Ti2+(aq)

b) Eleft = -2.38 - 0.54 = - 2.92 V

K+(aq) + e- K(aq)c) Eright = - 3.19 + 0.27 = - 2.92 V Ti3+(aq) + e- Ti2+(aq)

Page 20: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

ELECTRODE POTENTIALS – Q7

Emf = -0.76 - (-0.91) = +0.15 V

a) Cr(s) | Cr2+(aq) || Zn2+(aq) | Zn(s)

Emf = +0.77 - 0.34 = +0.43 V

b) Cu(s) |Cu2+(aq)|| Fe3+(aq),Fe2+(aq)| Pt(s)

Emf = +1.51 – 1.36 = +0.15 V

c) Pt(s) | Cl-(aq)| Cl2(g) || MnO4-(aq),H+(aq),Mn2+(aq)| Pt(s)

Page 21: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Standard electrode potentials E/V

F2(g) + 2 e- 2 F-(aq) + 2.87

MnO42-(aq) + 4 H+(aq) + 2 e- MnO2(s) + 2 H2O(l) + 1.55

MnO4-(aq) + 8 H+(aq) + 5 e- Mn2+(aq) + 4 H2O(l) + 1.51

Cl2(g) + 2 e- 2 Cl-(aq) + 1.36

Cr2O72-(aq) + 14 H+(aq) + 6 e- 2 Cr3+(aq) + 7 H2O(l) + 1.33

Br2(g) + 2 e- 2 Br-(aq) + 1.09

Ag+(aq) + e- Ag(s) + 0.80

Fe3+(aq) + e- Fe2+(aq) + 0.77

MnO4-(aq) + e- MnO4

2-(aq) + 0.56

I2(g) + 2 e- 2 I-(aq) + 0.54

Cu2+(aq) + 2 e- Cu(s) + 0.34

Hg2Cl2(aq) + 2 e- 2 Hg(l) + 2 CI-(aq) + 0.27

AgCl(s) + e- Ag(s) + Cl-(aq) + 0.22

2 H+(aq) + 2 e- H2(g) 0.00

Pb2+(aq) + 2 e- Pb(s) - 0.13

Sn2+(aq) + 2 e- Sn(s) - 0.14

V3+(aq) + e- V2+(aq) - 0.26

Ni2+(aq) + 2 e- Ni(s) - 0.25

Fe2+(aq) + 2 e- Fe(s) - 0.44

Zn2+(aq) + 2 e- Zn(s) - 0.76

Al3+(aq) + 3 e- Al(s) - 1.66

Mg2+(aq) + 2 e- Mg(s) - 2.36

Na+(aq) + e- Na(s) - 2.71

Ca2+(aq) + 2 e- Ca(s) - 2.87

K+(aq) + e- K(s) - 2.93

Increasingreducing

power

Increasingoxidising

power

Page 22: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

The more +ve electrode gains electrons

(+ charge attracts electrons)

Page 23: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

– + 0

– 0.76 V

–ve electrode

Zn2+ + 2 e- Zn

+ 0.34 V

+ve electrode

Cu2+ + 2 e- Cu

+ 1.10 V

e–

Cu2+ + Zn → Cu + Zn2+

Page 24: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

– + 0

– 0.76 V

–ve electrode

Zn2+ + 2 e- Zn

– 0.25 V

+ve electrode

Ni2+ + 2 e- Ni

+ 0.51 V

e–

Ni2+ + Zn → Ni + Zn2+

PREDICTING REDOX REACTIONS – Q1

Page 25: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

+ 0

+ 0.34 V

–ve electrode

Cu2+ + 2 e- Cu

+ 0.80 V

+ve electrode

Ag+ + e- Ag

+ 0.46 V

e–

2 Ag+ + Cu → 2 Ag + Cu2+

PREDICTING REDOX REACTIONS – Q2

Page 26: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

0

– 2.36 V

–ve electrode

Mg2+ + 2 e- Mg

– 0.26 V

+ve electrode

V3+ + e- V2+

+ 2.10 V

e–

Mg(s)|Mg2+(aq)||V3+(aq),V2+(aq)|Pt(s)

PREDICTING REDOX REACTIONS – Q3 a

YES: Mg reduces V3+ to V2+

Page 27: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

0

+ 0.77 V

–ve electrode

Fe3+ + e- Fe2+

+ 1.36 V

+ve electrode

Cl2 + 2 e- 2 Cl-

+ 0.59 V

e–

PREDICTING REDOX REACTIONS – Q3 b

+

NO: Cl- won’t reduce Fe3+ to Fe2+

Page 28: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

0

+ 1.09 V

–ve electrode

+ 1.36 V

+ve electrode

Cl2 + 2 e- 2 Cl-

+ 0.27 V

e–

PREDICTING REDOX REACTIONS – Q3 c

+

YES: Cl2 oxidises Br- to Br2 Br2 + 2 e- 2 Br-

Pt(s)|Br-(aq),Br2(aq)||Cl2(g)|Cl-(aq)|Pt(s)

Page 29: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

0

– 0.14 V

–ve electrode

Sn2+ + 2 e- Sn

+ 0.77 V

+ve electrode

Fe3+ + e- Fe2+

+ 0.91 V

e–

PREDICTING REDOX REACTIONS – Q3 d

YES: Sn reduces Fe3+ to Fe2+

+

Sn(s)|Sn2+(aq)||Fe3+(aq),Fe2+(aq)|Pt(s)

Page 30: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

0

+ 1.33 V

–ve electrode

Cr2O72- + 14 H+ + 6 e- 2 Cr3+ + 7 H2O

+ 1.36 V

+ve electrode

Cl2 + 2 e- 2 Cl-

+ 0.03 V

e–

PREDICTING REDOX REACTIONS – Q3 e

+

NO: H+/Cr2O72- won’t oxidise Cl- to

Cl2

Page 31: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

0

+ 1.36 V

–ve electrode

MnO4- + 8 H+ + 5 e- Mn2+ + 4 H2O

+ 1.51 V

+ve electrode

Cl2 + 2 e- 2 Cl-

+ 0.03 V

e–

PREDICTING REDOX REACTIONS – Q3 f

+

YES: H+/MnO4- oxidises Cl- to Cl2

Pt(s)|Cl-(aq)|Cl2(g)||MnO4- (aq),H+(aq),Mn2+(aq)|

Pt(s)

Page 32: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

0

– 0.44 V

–ve electrode

Fe2+ + 2 e- Fe

0.00 V

+ve electrode

2 H+ + 2 e- H2

+ 0.44 V

e–

PREDICTING REDOX REACTIONS – Q3 g

YES: H+ oxidises Fe to Fe2+

Fe(s)|Fe2+(aq)||H+(aq)|H2(g)|Pt(s)

Page 33: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

0

0.00 V

–ve electrode

Cu2+ + 2 e- Cu

+ 0.34 V

+ve electrode

2 H+ + 2 e- H2

+ 0.34 V

e–

PREDICTING REDOX REACTIONS – Q3 h

+

NO: H+ won’t oxidise Cu to Cu2+

Page 34: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

0

+ 1.36 V

MnO4- + 8 H+ + 5 e- Mn2+ + 4 H2O

+ 1.51 V

Cl2 + 2 e- 2 Cl-

PREDICTING REDOX REACTIONS – Q4

+

+ 1.33 V Cr2O7

2- + 14 H+ + 6 e- 2 Cr3+ + 7 H2O

+ 0.77 V Fe3+ + e- Fe2+

YES

NO

NO

Page 35: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

+ 0

? V

–ve electrode

Be2+ + 2 e- Be

+ 0.34 V

+ve electrode

Cu2+ + 2 e- Cu

+ 2.19 V

e–

Be + Cu2+ → Be2+ + Cu

PREDICTING REDOX REACTIONS – Q5a

2.19 = 0.34 - Eleft

Eleft = 0.34 – 2.19 = – 1.85 V

Page 36: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

– 0

? V

–ve electrode

Th4+ + 4 e- Th

+ 0.00 V

+ve electrode

1.90 V

e–

4 H+ + Th → 2 H2 + Th4+

PREDICTING REDOX REACTIONS – Q5b

When using SHE

E = cell emf = – 1.90 V

2 H+ + 2 e- H2

Page 37: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

0

0.00 V

–ve electrode

+ 1.09 V

+ve electrode

+ 1.09 V

e–

PREDICTING REDOX REACTIONS – Q6a

+

Br2 + 2 e- 2 Br-

Pt(s)|H2(g)|H+(aq)||Br2(aq),Br-(aq)|Pt(s)

2 H+ + 2 e- H2 H2 + Br2 → 2 H+ + 2 Br-

Page 38: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

0

+ 0.34 V

–ve electrode

+ 0.77 V

+ve electrode

+ 0.43 V

e–

PREDICTING REDOX REACTIONS – Q6b

+

Fe3+ + e- Fe2+

Cu(s)|Cu2+(aq)||Fe3+(aq),Fe2+(aq)|Pt(s)

Cu2+ + 2 e- Cu 2 Fe3+ + Cu → 2 Fe2+ + Cu2+

Page 39: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Electrochemical cells

i appreciate that electrochemical cells can be used as a commercial source of electrical energy

j appreciate that cells can be non-rechargeable (irreversible), rechargeable and fuel cells

k be able to use given electrode data to deduce the reactions occurring in non-rechargeable and rechargeable cells and to deduce the e.m.f. of a cell

l understand the electrode reactions of a hydrogen-oxygen fuel cell and appreciate that a fuel cell does not need to be electrically recharged

m appreciate the benefits and risks to society associated with the use of these cells

Page 40: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Non-rechargeable (primary) cells – Zinc-carbon

-0.80 V Zn(NH3)22+ + 2 e- Zn + 2 NH3

+0.70 V 2 MnO2 + 2 H+ + 2 e- Mn2O3 + H2O

• Standard cell

• Short lifeDetermine: a) cell emf

b) overall reaction during discharge

Page 41: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Non-rechargeable (primary) cells – alkaline

-0.76 V Zn2+ + 2 e- Zn

+0.84 V MnO2 + H2O + e- MnO(OH) + OH-

• Longer lifeDetermine: a) cell emf

b) overall reaction during discharge

Page 42: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Non-rechargeable (primary) cells – lithium

• Very long life

• High voltageDetermine: a) cell emf b) overall reaction during discharge

Page 43: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Rechargeable (secondary) cells

• In non-rechargeable (primary) cells, the chemicals are used up so the voltage drops

• In rechargeable (secondary) cells the reactions are reversible – they are reversed by applying an external current.

• It is important that the products from the forward reaction stick to the electrodes and are not dispersed into the electrolyte.

Page 44: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Rechargeable (secondary) cells – Li ion

+0.60 V Li+ + CoO2 + e- LiCoO2

-3.00 V Li+ + e- Li

Determine: a) cell emf b) overall reaction during dischargec) overall reaction during re-charge

• Rechargeable

• Most common rechargeable cell

Page 45: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Rechargeable (secondary) cells – lead-acid

+1.68 V PbO2 + 3 H+ + HSO4- + 2 e- PbSO4 + 2 H2O

-0.36 V PbSO4 + H+ + 2 e- Pb + HSO4

-

• Used in sealed car batteries (6 cells giving about 12 V overall)

Determine: a) cell emf b) overall reaction during dischargec) overall reaction during re-charge

Page 46: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Rechargeable (secondary) cells – nickel-cadmium

+0.52 V NiO(OH) + 2 H2O + 2 e- Ni(OH)2 + 2 OH-

-0.88 V Cd(OH)2 + 2 e- Cd + 2 OH-

Determine: a) cell emf b) overall reaction during dischargec) overall reaction during re-charge

Page 47: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

FUEL CELLS

+0.40 V O2 + 2 H2O + 4 e- 4 OH-

-0.83 V 2 H2O + 2 e- H2 + 2 OH-

Determine: a) cell emf b) overall reaction

• High efficiency (more efficient than burning hydrogen)

• How is H2 made?

• Input of H2/O2 to replenish so no need to recharge

Page 48: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)
Page 49: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

From wikipedia (public domain)

Page 50: ©  A2 046 20-Jul-12. Zn 2+ (aq) + 2 e –  Zn(s)

Pros & cons of cells

+ portable source of electricity

Pros & cons of non-rechargeable cells

+ cheap, small

– waste issues

Pros & cons of rechargeable cells

+ less waste, cheaper in long run

– still some waste issues

Pros & cons of fuel cells

+ water is only product

– most H2 is made using fossil fuels, fuels cells expensive