小崎敏寛 (toshihiro kosaki)

21
線線線線線線線線線線線線線線線線線線線線 線線線線線線線線線線線 線線線線線線線線線線線線線線線 Computation of Indexwise Step Sizes Considering Reduction of Complementarity Terms in a Primal- Dual Interior-Point Method for Linear Problems 線線線線 (Toshihiro Kosaki)

Upload: fidelina-catalin

Post on 03-Jan-2016

59 views

Category:

Documents


1 download

DESCRIPTION

線形計画問題に対する主双対内点法における 相補項の減少を考慮した 変数ごとのステップサイズの計算 Computation of Indexwise Step Sizes Considering Reduction of Complementarity Terms in a Primal-Dual Interior-Point Method for Linear Problems. 小崎敏寛 (Toshihiro Kosaki). Spectral Method( in Optimization) スペクトル法. Introduction General Framework - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 小崎敏寛 (Toshihiro Kosaki)

線形計画問題に対する主双対内点法における相補項の減少を考慮した

変数ごとのステップサイズの計算Computation of Indexwise Step Sizes Considering Reduction of Complementarity Terms in a Primal-Dual Interior-Point Method for Linear Problems

小崎敏寛 (Toshihiro Kosaki)

Page 2: 小崎敏寛 (Toshihiro Kosaki)

Spectral Method( in Optimization)スペクトル法

1. Introduction2. General Framework3. Interior-Point Method4. Applications5. Conclusions

RIMS2012   2012/07/24 2

Page 3: 小崎敏寛 (Toshihiro Kosaki)

1 Introduction( Spectral Method)

x*

x in R2

kkkk xxx 1

kk x11

kk x22

kk21 and are distinct.

Δxk

kx1

kx2

A (general) iterative algorithm for optimization problems

RIMS2012   2012/07/24 3

Page 4: 小崎敏寛 (Toshihiro Kosaki)

1 Spectral Method (cont.)

• R6

• Spectral Method(スペクトル法 )

Δx:direction

α:step size

RIMS2012   2012/07/24 4

Page 5: 小崎敏寛 (Toshihiro Kosaki)

2 General Framework

1. An initial point is given.2. If termination condition is satisfied then stop.3. Compute a direction .4. Compute step sizes .5. Update

.

6. Update k:=k+1.7. Go to 2.

),...,1(0 Nixi

),...,1( Niki

),...,1( Nixki

kN

kN

kk

kN

k

kN

k

x

x

x

x

x

x

111

1

11

RIMS2012   2012/07/24 5

Page 6: 小崎敏寛 (Toshihiro Kosaki)

2 General Framework (cont.)

Features1. An iterative algorithm with computing indexwise

step sizes ‘s. 2. x is in a finite dimension.3. x is a continuous variable.4. Can compute easily all appropriate indexwise

step sizes ‘s. (time of computing )

>>(time of computing )

kN

kN

kk

kN

k

kN

k

x

x

x

x

x

x

111

1

11

ki

kikix

kiRIMS2012   2012/07/24 6

Page 7: 小崎敏寛 (Toshihiro Kosaki)

3 (Primal-Dual) Interior-Point Method (for LP)

)conditionoptimality(0,0,,0,

)problemdual(0,..max

)problemprimal(0,..min

XzzczyAxbAx

zczyAtsyb

xbAxtsxc

T

TT

T

• From an initial positive point w0:=(x0,y0,z0) with x0 >0 and z0 >0, keeping positivity and using both primal and dual problems, the algorithm seeks a point satisfying optimality condition.

RIMS2012   2012/07/24 7

Page 8: 小崎敏寛 (Toshihiro Kosaki)

3 Interior-Point Method (cont.)

x i z i ↓0, i=1,…,n (optimality)

||r||↓0, (infeasibility)s.t. x>0 and z>0,

where r is residual .

RIMS2012   2012/07/24 8

Page 9: 小崎敏寛 (Toshihiro Kosaki)

.ryADAT

3 Interior-Point Method (cont.)

.and)1,0[where

,

,

,

),,(:directionNewton

n

zx

XzezXxZ

zyAczyA

AxbxA

zyxw

T

TT

central path

Δw

Most of computational cost is solving normal equations:

RIMS2012   2012/07/24 9

Page 10: 小崎敏寛 (Toshihiro Kosaki)

3 Interior-Point Method (cont.)

• (total computational time)=(number of iterations)×(time per iteration)Predictor-corrector methodMultiple-centering method

CG method

RIMS2012   2012/07/24 10

Page 11: 小崎敏寛 (Toshihiro Kosaki)

3 Proposition1

Proposition1:Relation between positivity and xizi

xi(α):=xi(0)+αΔxi, zi(α):=zi(0)+αΔzi (i=1,…,n).

Suppose xi(0)>0 and zi(0)>0 (i=1,…,n).

),...,1(0)()(

),...,1(0)(and0)(

),,0[],1,0[ **

nizx

nizx

ii

ii

RIMS2012   2012/07/24 11

Page 12: 小崎敏寛 (Toshihiro Kosaki)

3 Proposition2Proposition2:Relation between step size α and xTz

α10

xTz

γxTz

α2 Δ xTΔz

RIMS2012   2012/07/24 12

Neglecting quadratic term, reduction of xTz is in proportion to α.

Page 13: 小崎敏寛 (Toshihiro Kosaki)

3 Proposition3

Proposition3:Relation between step size α and residual r

r1

r2

RIMS2012   2012/07/24 13

Reduction of r’s is in proportion to α.

Page 14: 小崎敏寛 (Toshihiro Kosaki)

3 Interior-Point Method (cont.)

• IPM has been extended from LP to QP, LCP, SOCP and SDP.

RIMS2012   2012/07/24 14

Page 15: 小崎敏寛 (Toshihiro Kosaki)

4 Applications

1. LP12. LP23. SDP4. SOCP

RIMS2012   2012/07/24 15

Page 16: 小崎敏寛 (Toshihiro Kosaki)

**

*

*

}{min4nPropositio

,...,1}}0:max{,1min{:

}}0:max{,1min{:

ii

iiiici

c

nixx

xx

4-1 LP1

e.g. αc=0.99995

Computation of Δy Computation of αi* ’s

Cholesky decompositionADAT

O(m3)O(m2n)

O(n)

RIMS2012   2012/07/24 16

Page 17: 小崎敏寛 (Toshihiro Kosaki)

4-1 LP1 (cont.)

• Numerical experiment

• Transportation problem• M: # of supply nodes, N: # of demand nodes• LP with M×N variables

RIMS2012   2012/07/24 17

IPM proposed IPM

M=N # of iterations time (sec.) # of iterations Time (sec.)

50 6 3.10×10-2 6 3.10×10-2

100 7 1.09×10-1 6 7.80×10-2

500 11 5.42 6 3.06

Page 18: 小崎敏寛 (Toshihiro Kosaki)

4-2 LP2• Minimizing

→Analytical solutions are available from quadratic equations

10,0)()(s.t.)()( iiiiiiiii zxzx xi(αi):=xi(0)+α i Δxi, zi(αi):=zi(0)+αiΔzi (i=1,…,n).

x i z i

0 1α i

•The smaller xi zi is, the better it is.•The larger αi is, the better it is.

ideal

RIMS2012   2012/07/24 18

Page 19: 小崎敏寛 (Toshihiro Kosaki)

4-3 SDP

Block diagonal SDP

RIMS2012   2012/07/24

OXXO

OXX

OXO

OX

222

111

2

1variable

19

Page 20: 小崎敏寛 (Toshihiro Kosaki)

4-4 SOCP

Direct product of second order conesvariables:

Δx1 Δx2

K1K2

x1 x2

×

RIMS2012   2012/07/24

.)(...)(

,)(...)(

22221

20

21211

10

2

1

n

n

xxx

xxx

20

Page 21: 小崎敏寛 (Toshihiro Kosaki)

5 Conclusions

• We proposed a general framework (Spectral Method).

• The framework was applied to some optimization problems.

RIMS2012   2012/07/24 21