第四章 地下水向完整井的非稳定运动

36
第第第 第第第第第第第第第第第第第 1 MULTIPLE AQUIFERS Distorted scale!! 肖 肖 肖 , 肖肖 203 肖肖 88502287 肖肖肖肖肖肖肖肖肖肖肖 2009-11

Upload: alvin-grimes

Post on 02-Jan-2016

56 views

Category:

Documents


11 download

DESCRIPTION

第四章 地下水向完整井的非稳定运动. Distorted scale!!. MULTIPLE AQUIFERS. 1. 肖 长 来 , 水工 203 ,电话 88502287 吉林大学环境与资源学院. 2009-11. 第四章 地下水向完整井的非稳定运动. §4-1 承压含水层中的完整井流 §4-2 有越流补给的完整井流 §4-3 有弱透水层弹性释水补给和越流补给的完整井流 §4-4 潜水完整井流 天地不可一日无和气, 人心不可一日无喜神。. 著名科学家. Jules Dupuit (1804-1866). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 第四章 地下水向完整井的非稳定运动

第四章 地下水向完整井的非稳定运动

1

MULTIPLE AQUIFERS Distorted scale!!

肖 长 来 , 水工 203 ,电话 88502287

吉林大学环境与资源学院 2009-11

Page 2: 第四章 地下水向完整井的非稳定运动

第四章 地下水向完整井的非稳定运动

• §4-1 承压含水层中的完整井流• §4-2 有越流补给的完整井流• §4-3 有弱透水层弹性释水补给和越流补给

的完整井流• §4-4 潜水完整井流

• 天地不可一日无和气,• 人心不可一日无喜神。

Page 3: 第四章 地下水向完整井的非稳定运动

著名科学家

 Henry Darcy (1803-1858) Karl Terzaghi (1883-1963)

M. King Hubbert (1903-1989)

Charles Vernon Theis

(1900-1987)

Oscar Edward Meinzer

(1876-1948)

Charles Edward Jacob (1914-1970)

Jules Dupuit (1804-1866)

Jacob Bear

Page 4: 第四章 地下水向完整井的非稳定运动

§4-1 承压含水层中的完整井流 当承压含水层侧向边界离井很远,边界对研究区的水头分布没有明显影响时,可以把它看作是无外界补给的无限含水层。4.1.1 定流量抽水时的 Theis 公式 承压含水层中单井定流量抽水的数学模型是在下列假设条件下建立的: (1) 含水层均质各向同性,等厚,侧向无限延伸,产状水平; (2) 抽水前天然状态下水力坡度为零; (3) 完整井定流量抽水,井径无限小; (4) 含水层中水流服从 Darcy 定律; (5) 水头下降引起的地下水从贮存量中的释放是瞬时完成的。

Page 5: 第四章 地下水向完整井的非稳定运动

The Theis solution assumes the following:

The aquifer is confined and has an "apparent" infinite extent;The aquifer is homogeneous, isotropic, and of uniform thickness over the area influenced by pumping;The piezometric surface was horizontal prior to pumping;The well is fully penetrating and pumped at a constant rate; The well diameter is small, so well storage is negligible ;Water removed from storage is discharged instantaneously with a decline in head 。Data requirements:Drawdown vs. time at an observation wellFinite distance from the pumping well to observation wellPumping rate (constant)

Page 6: 第四章 地下水向完整井的非稳定运动

在上述假设条件下,抽水后将形成以井轴为对称轴的下降漏斗,将坐标原点放在含水层底板抽水井的井轴处,井轴为 Z 轴,如图 4-1 所示。

图 4-1 承压水完整井流

Page 7: 第四章 地下水向完整井的非稳定运动

单井定流量的承压完整井流,有如下的数学模型:

式中, s=H0-H 。 下边研究如何求降深函数 s (r, t) 。为此,利用 Hankel 变换,将方程式 (4-1) 两端同乘以 rJ0(βr) ,并在 (0,∞) 内对 r 积分。

2 *

2

1s s s

r r r T t

t>0 , 0<r>∞ (4-1)

( 4-2 ) s(r , 0)=0 0<r<∞

s(∞ , t)=0 , 0r

s

r

0lim

2r

s Qr

r T

( 4-4 )

( 4-3 ) t>0

第一类零阶 Bsessel 函数

Page 8: 第四章 地下水向完整井的非稳定运动

设导压系数 ,则有:

方程式右端

方程式左端,利用分部积分,同时注意到边界条件式( 4-3 )与式 (4-4) ,有:

按 Bessel 函数的性质,有:

*

Ta

0 00 0

1( ) ( )

s sa r rJ r dr rJ r dr

r r t t

0 00 0( ) ( )

s d srJ r dr srJ r dr

t t dt

0 10 0

1( ) ( ) ( )

2

s aQa r rJ r dr a sd rJ r

r r t T

1 00 0( ) ( )sd rJ r s rJ r dr

Page 9: 第四章 地下水向完整井的非稳定运动

因此,有:

上述定解问题,经过 Hankel 变换,消去了变量 r ,转变为常微分方程的初值问题,即:

其解为:

再通过 Hankel 逆变换由 求 s ,即:

200

1( )

2

s aQa r rJ r dr a s

r r r T

2

2

00

d s aQa s

dt T

s t

2 ( )

0 2

t a taQs e d

T

2

00

( )00 0

( )

( )2

t a t

s s J r d

aQe J r d d

T

( 4-5 )

s

Page 10: 第四章 地下水向完整井的非稳定运动

先计算方括号内的积分,为此设:

将 (4-6) 式对 r 求导数,有:

根据( 4-6 )式,有:

2 ( )00

( ) ( )a tF r e J r d ( 4-6 )

2

2

( )00

( )00

( ) ( )

1( )

2 ( )

a t

a t

F r e J r dr

e rJ r da t

( ) ( )2 ( )

( )

( ) 2 ( )

rF r F r

a t

dF r rdr

F r a t

Page 11: 第四章 地下水向完整井的非稳定运动

两边积分得: , 令 C1=lnC ,则有:

故:

利用 r=0 时的 F(r) 值,由( 4-6 )可以确定 C 值:

由 (4-7) 式,有:

把上式代入 (4-5) 式,有:

2

1ln ( )4 ( )

rF r C

a t

2( )ln

4 ( )

F r r

C a t

2

4 ( )( )r

a tF r Ce

( 4-7 )

2 ( )00

1(0) (0)

2 ( )a tF e J d

a t

1(0) , ,

2 ( )F C C

a t

2

4 ( )1( )

2 ( )

r

a tF r ea t

2

4 ( )

0

1

2 2 ( )

rt

a taQs e d

T a t

( 4-8 )

Page 12: 第四章 地下水向完整井的非稳定运动

为计算方便,对( 4-8 )式进行变量代换,令:

同时更换积分上下限,当 τ=0 时, ;当 τ=t 时, y=∞ , 于是,

其中,

(4-9) 式为无补给的承压水完整井定流量非稳定流计算公式,也就是著名的 Theis 公式。

2 2

2,

4 ( ) 4

r ry d dy

a t ay

2

2

2 244 4 4

4

y y

ru

at

Q e r Q es dy dy

rT ay T yay

( 4-9 )

2 2 *

4 4

r ru

aT Tt

( 4-10 )

Page 13: 第四章 地下水向完整井的非稳定运动

在地下水动力学中,采用井函数 W(u) 代替 (4-9) 式中的指数积分式:

则 (4-9) 式可改写成:

式中, s—— 抽水影响范围内,任一点任一时刻的水位降深(m) ;

Q—— 抽水井的流量 (m3/d, m3/h) ; T—— 导水系数 (m2/d, m2/h) ; t——自抽水开始到计算时刻的时间 (d, h) ; r—— 计算点到抽水井的距离 (m) ; µ*—— 含水层的贮水系数。

( ) ( )y

i u

eW u E u dy

y

( )4

Qs W u

T ( 4-11 )

Page 14: 第四章 地下水向完整井的非稳定运动

为了计算方便,通常将W(u)展开成级数形式:

并制成数值表(表 4-1 ),只要求出u值,从表 4-1 中就可查

出相应的W( u)值;反之亦然。

2

1( ) 0.577216 ln ( 1)

!

ny n

un

uW u e dy u u

y n n

Page 15: 第四章 地下水向完整井的非稳定运动
Page 16: 第四章 地下水向完整井的非稳定运动

Thei s标准曲线

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E-02 1E+00 1E+02 1E+04 1E+06 1E+08 1E+10 1E+12 1E+14 1E+16

1/ u

W(u)

Page 17: 第四章 地下水向完整井的非稳定运动

Theis 公式是在假定流量固定不变的情况下导出的。这种情况通常只有在抽水试验时才能做到。实际上,很多生产井的流量是季节性变化的。如农用井在灌溉季节抽水量大,非灌溉季节抽水量小。工业用水也有类似情况,常随需水量而变化。在这种情况下,怎样应用 Theis 公式 ? 首先需要绘出生产井的 Q=f(t)关系曲线,即流量过程线。 然后将流量过程线概化,用阶梯形折线代替原曲线,坐标选择如图 4-2所示。概化原则是矩形面积等于曲线于横坐标所围成的面积。其中,每一个阶梯都可视为定流量,应用 Theis 公式。把各阶梯流量产生的降深,按叠加原理叠加起来,即得流量变化时水位降深的计算公式。 当 0<t<t1 时,水位降深为:

21

4 4

Q rs W

T Tt

4.1.2 流量变化时的计算公式

Page 18: 第四章 地下水向完整井的非稳定运动

图 4-2 流量概化呈阶梯状变化图

Page 19: 第四章 地下水向完整井的非稳定运动

当 时,阶梯流量抽水的水位降深为:

t 时刻经历若干个阶梯流量后所产生的总水位降深为:

式中,设 t0=0 ,相应的 Q0=0 。(4-12) 式为流量变化时,经概化呈阶梯状变化后的计

算公式。

2 2 211 2 1

1 14 4 4 4 ( ) 4 4 ( )i i

i

Q QQ Q Qr r rs W W W

T Tt T T t t T T t t

2

11 1

1( )

4 4 ( )

n

i ii i

rs Q Q W

T T t t

( 4-12 )

1i it t t

1i it t t

Page 20: 第四章 地下水向完整井的非稳定运动

如前述, Theis 公式中的井函数,可以展开成无穷级数形式,即:

前三项之后的级数是一个交错级数。根据交错级数的性质可知,这个级数之和不超过 u。

也就是说,当 u很小,井函数W(u) 用级数前两项(-0.577216-lnu) 代替时,其舍掉部分不超过 2u。

2

1( )

0.577216 ln ( 1)!

y

u

nn

n

W u e dyy

uu u

n n

4.1.3 Theis 公式的近似表达式

Page 21: 第四章 地下水向完整井的非稳定运动

•当 u ≤0.01( 即 ) 井函数用级数前两项代替时,其相对误差不超过 0.25% ;

•当 u≤0.05 时 ( 即 ) ,相对误差不超过 2% ;•当 u ≤0.1 时(即 ),相对误差不超过 5% 。

一般生产上允许相对误差在 2% 左右。因此,当 u≤0.01

或 u ≤ 0.05 时,井函数可用级数的前两项代替,即:

2

25r u

tT

2

5r u

tT

2

2.5r u

tT

2

2.25( ) 0.577216 ln ln

TtW u u

r

Page 22: 第四章 地下水向完整井的非稳定运动

于是, Theis 公式可以近似地表示为下列形式:

(4-13) 式称为 Jacob 公式 (1946 年 ) 。 流量阶梯状变化时,当 ui≤0.01 时,即

(4-12) 式可近似地表示为:

2 * 2

2.25 0.183 2.25ln lg

4

Q Tt Q Tts

T r T r

(4-13)

11 2

1

2.25 ( )0.183( ) lg

ni

i ii

T t ts Q Q

T r

(4-14)

2

( ) 25 ( 1,2 )i

rt t i n

T

Page 23: 第四章 地下水向完整井的非稳定运动

1) Theis 公式反映的降深变化规律 将( 4-11 )式改写成无量纲降深形式,即 ,并给出 曲线 [ 图 4-3(a)] 。曲线表明,同一时刻随径向距离 r 增大,降深 s 变小,当 r

→∞ 时, s→0 ,这一点符合假设条件。同一断面 ( 即 r 固定 ) , s 随 t 的增大而增大,当 t=0 时, s=

0 ,符合实际情况。当 t→∞ 时,实际上 s 不能趋向无穷大。因此,降落漏斗随时间的延长,逐渐向远处扩展。这种永不稳定的规律是符和实际的,恰好反映了抽水时在没有外界补给而完全消耗贮存量时的典型动态 . 图 4-3 反映了上述结论。

( )/ 4

sW u

Q T

1( )W u

u

4.1.4 对 Theis 公式和与之有关的几个问题的讨论

Page 24: 第四章 地下水向完整井的非稳定运动

从( 4-11 )或( 4-13)式还可以看出:同一时刻的径向距离 r相同的地点,降深相同。这说明抽水后形成的等水头线(s= 常数 ) 是一些同心圆,圆心在井轴。当 u≤0.05时 , 可直接由 (4-13) 式导出描述它们的方程式为:

42 2 2.25

Ts

QTtx y e

(4-15)

图 4-3 ( a ) 曲线;( b )承压含水层中的降深 s ( r ,t )

Page 25: 第四章 地下水向完整井的非稳定运动

将 (4-9) 式对 t 求导数,得:

式 (4-16)表明,抽水初期随着 r 的增大, 值减小。因此,近处水头下降速度大,远处下降速度小。当 r 一定时,(4-16) 式又表明,不同时刻的水头下降速度 ,由于 和 两个因素起着增、减两个方向相反的作用,所以不是 t 的单调函数; s-t曲线 ( 图 4-3b) 不能沿着同一斜率变化,存在着拐点。可以利用 ,找出拐点的位置。为此有:

2

4

0

1

4 4

ruTts Q e u Q

du et u T u t T t

(4-16) 2

4

r

Tte

s

t

1

t2

4

r u

Tte

2

20

s

t

22 24

2 2

11 0

4 4

r

Tts Q re

t T t Tt

2) Theis 公式反映的水头下降速度的变化规律

Page 26: 第四章 地下水向完整井的非稳定运动

所以

拐点出现的时间 ( 此时 u=1) 为:

图 4-3的曲线也反映了上述结论,即每个断面的水头下降速度初期由小逐渐增大,当 1/u =1 时达到最大;而后下降速度由大变小,最后趋近于等速下降。 式 (4-17)还表明不同断面拐点出现的时间 ti不同。将

(4-17) 式代入 (4-11) 式,得拐点处降深 si 为:

2

14

r

Tt

2

4i

rt

T

( 4-17 )

2

0.01754 4i

i

Q r Qs W

T Tt T

( 4-18 )

Page 27: 第四章 地下水向完整井的非稳定运动

式 (4-18)还反映出拐点处降深与 r 无关。说明任一断面都经历着一个相同的过程,当 s=si 时,出现最大下降速度 , 即:

当抽水时间足够长时,

(4-16) 式变为:

上式意味着: t足够大时,在抽水井一定范围内,下降基本上是相同的,与 r 无关。换言之,经过一定时间抽水后,下降速度变慢,在一定范围内产生大致等幅的下降。

2

42

1 0.117

4i

r

Tt

i i

s Q Qe

t T t r

2 *2 * 2425 ( 0.01, 0.99 1)

4

r

Ttr rt u e

T Tt

1

4

s Q

t T t

( 4-19 )

Page 28: 第四章 地下水向完整井的非稳定运动

将 (4-9) 式对 r 求导数,得:

又根据 Darcy 定律,可些导出 r 处过水断面的流量为:

将 (4-20) 式代入上式,得:

2

4

4

2

u

u

r

Tt

s Q e udu

t u T u r

s Qr e

r T

( 4-20 )

2r

sQ KMr

r

2

4

r

TtrQ Qe

( 4-21 )

3) Theis 公式反映出的流量和渗流速度变化规律

Page 29: 第四章 地下水向完整井的非稳定运动

因为 恒取正值,所以 ,因而 Qr<Q ,当 r →0 时, Qr→Q 。 式( 4-21 )说明,通过不同过水断面的流量是不等的, r值越小,即离抽水井越近的过水断面,流量越大。这一点是和稳定流理论无垂向水量交换条件下通过任何断面的流量都是相等的结论不同。它反映了地下水在流向抽水井的过程中,不断得到贮存量的补给。当抽水延续时间 t大到一定程度以后

则 Qr≈Q 。换言之,这时在该断面范围内释放出的水量( Q-Qr )就微不足道了。 由( 4-20 )式还可知,水井抽水时地下水渗流速度为:

2

4

r

Tt

2

4 1r

Tte

2 *2425 , 0.99 1

r

Ttrt e

T

(如 )

2

4

2

r

Tts QK e

r Mr

Page 30: 第四章 地下水向完整井的非稳定运动

式中负号表示速度与 r 的正方向相反。式中 为抽水达到稳定时的渗流速度。

由于沿途含水层的释放作用,使得渗流速度小于稳定状态的渗流速度。但随着时间的增加, 逐渐趋于 1 ,又接近稳定渗流速度。

当 =0.01 时,与稳定流速相差只有 1% 了。这时可以认为达到相对稳定(似稳定)。在距离 r 处,似稳定出现的时间为:

2

Q

Mr

2

4

r

Tte

2

4

r

Tt

2

25r

tT

Page 31: 第四章 地下水向完整井的非稳定运动

4) 关于“影响半径”的问题

Theis 公式本身不包含“影响半径”的概念。因此,理论上讲,在无限延伸的无越流补给的承压含水层中是不存在“影响半径”的。但把( 4-13)式稍加改变,即可改写为:

和 Dupuit 公式比较,有人定义影响半径为:

它能近似地说明某一时刻的相对影响范围。

1

21.5ln

2

TtQs

T r

1 2

1.5Tt

R

Page 32: 第四章 地下水向完整井的非稳定运动

实际上,由( 4-21 )式可以得到:

若 a=0.1 , ;若 a=0.05 ,

若 a=0.01 , ;若 a=0.005,

若 a=0.001 ,则 。

R 的扩展速度为:

( 4-22 ) 2 (ln ) 2 (ln )

* *rQ Tt Tt

RQ

3.0349*

TtR

3.46

*

TtR

4.29*

TtR

4.60

*

TtR

5.254*

TtR

(ln )*

rQ TtQdR

dt t

Page 33: 第四章 地下水向完整井的非稳定运动

经过长时间抽水后 ,由( 4-13 )式可得某一时刻离井 r1 和 r2 两点的降深分别为:

两式相减得:

上式和稳定流的 Thiem公式 (3-6) 完全相同。取 r1

=rw, r2=r ,则可得 (3-5) 式。

2

( 25 )r

tT

1 21

2.25ln

4

Q Tts

T r

2 22

2.25ln

4

Q Tts

T r

22 1

1

ln2

rQs s

T r

Page 34: 第四章 地下水向完整井的非稳定运动

上式说明,在无越流补给且侧向无限延伸的承压含水层中抽水时,理论上不可能出现稳定状态。 但随着抽水时间的增加,降落漏斗范围不断向外扩展,自含水层四周向水井汇流的面积不断增大,水井附近地下水测压水头的变化渐渐趋于缓慢,在一定的范围内,接近稳定状态 (似稳定流 ) ,和稳定流的降落曲线形状相同。要注意,这不能说明地下水头降落以达稳定。

Page 35: 第四章 地下水向完整井的非稳定运动

5) 关于假设井径 rw→0 和天然水力坡度为零的问题 要求 rw→0 是为了不必考虑井筒中的水量,可以把井当作汇点或源点来处理。实际上,井径 rw总是个有限值。这样一个假设条件对 Theis 公式的应用有什么限制 ?

由 (4-20) 式可以直接看出,在边界条件式( 4-4 )中使用这个假设,是为了使

即 ,我们知道 e-0.01=0.99 ,可近似地等于 1 ,误差不超过 1% ,所以只要

2

4

0 0lim( ) lim

2 2

r u

Tt

r r

s Q Qr e

r T T

2

4 1r

Tte

2 2 *

0.01 254

r rt

Tt T

Page 36: 第四章 地下水向完整井的非稳定运动

上述假设所引起的误差不超过 1%。实际上,要满足上述要求并不困难,在抽水早期就能满足。 在推导 Theis 公式的过程中,假设初始的承压水头面是水平的,这一假设是否会影响公式的使用 ? 从实际资料看来,承压水头面一般坡度很小,尤其在平原区,通常为千分之几到万分之几。从实用观点看来,这种假设不影响 Theis 公式的实际使用。