· ! 5! abstract! overthepastthreedecades,tremendousamountofresearchhas...

157
Degradation Pathways in Organic Small Molecule and Hybrid Solar Cells GOLNAZ SHERAFATIPOUR NanoSYD-Mads Clausen Institute SDU Sønderborg-University of Southern Denmark

Upload: others

Post on 21-May-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

Degradation Pathways in Organic Small Molecule and Hybrid Solar Cells

GOLNAZ SHERAFATIPOUR NanoSYD-Mads Clausen Institute SDU Sønderborg-University of Southern Denmark  

Page 2:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 2  

Page 3:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  3  

Degradation Pathways in Organic Small Molecule and Hybrid Solar Cells

Golnaz Sherafatipour

Doctoral Thesis

2018

Nanoscience Centre NanoSYD Mads Clausen Institute Faculty of Engineering

SYDDANSK UNIVERSITET

Supervisor:

Morten Madsen            

Page 4:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 4  

   

                                                                                     

 

Page 5:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  5  

Abstract  

Over   the   past   three   decades,   tremendous   amount   of   research   has  been  devoted  to  the  field  of  renewable  energy  in  order  to  reduce  our  dependence   on   fossil   fuels.   Among   them,   organic   (OSC)   and  perovskite  (PSC)  solar  cells  have  gained  enormous  attention  as  they  offer   unique   advantages   compared   to   the   traditional   silicon   solar  cells,  such  as  low  fabrication  cost,  mechanical  flexibility,  light-­‐weight  modules   and   semi-­‐transparency.   These   unique   properties   offer   a  wide  range  of  applications  and  integration  schemes,  which  make  this  field   of   research   even   more   exciting.   OSC   and   PSC   have   recently  achieved   power   conversion   efficiencies   (PCE)   of   around   15%   and  22%,   respectively,   emphasizing   the   great   potential   of   the  technologies.   However,   both   of   these   devices   suffer   from   low  stability  and  short   lifetime  (degradation).  Therefore,  understanding  the   degradation   mechanisms   of   these   devices,   paves   the   way   for  viable  commercialization  of  this  appealing  technology  in  the  market.  This   work   is   dedicated   to   investigate   governing   degradation  mechanisms   and   pathways   taking   place   inside   organic   and  perovskite   solar   cell   devices.   First   part   of   the  work   focuses   on   the  performance   and   stability   of   DBP-­‐C70   based   organic   solar   cells   in  standard  and   inverted  device   configurations.  We  study   their  device  stabilities   by   aging   them   under   ISOS-­‐D-­‐3   (darkness,   85℃  and   85%  RH-­‐humidity)   and   ISOS-­‐T-­‐3   (darkness,   -­‐40℃  and   room   humidity)  conditions.   The   results   show   that   despite   a   change   in   the  performance   upon   aging,   there   is   a   pronounced   morphological  stability  at   the  DBP-­‐C70   interface.  Possible  effects   from   the  electron  transport   layer   (ETL)   on   the   device   stability   were   investigated,  demonstrating   that   this   layer   contributes   significantly   to   the  degradation  of  the  inverted  devices.    The   second   part   of   this   work   focuses   on   understanding   the  degradation   mechanisms   taking   place   inside   perovskite   solar   cells  under   real   operational   conditions.   Results   for   indoor   (ISOS-­‐L-­‐1,  illumination,   60℃  and   ambient   humidity)   and   outdoor   (ISOS-­‐O-­‐1,  sunlight,   ambient)   degradation   test   conditions   are   conducted,  showing  reversible  and  irreversible  degradation  mechanisms  under  light-­‐darkness  cycles,  which  reveal  interesting  degradation  pathways  and   emphasize   on   the   importance   of   including   these   cycles   in  experimental   protocols   for   the   assessment   of   long-­‐term   stability   of  the  PSCs.  

Page 6:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 6  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 7:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  7  

Resume  

I   de   seneste   tre   årtier   har   forskningen   inden   vedvarende   energi  været   stærkt   stigende,   således   at   mængden   og   afhængigheden   af  fossile   brændstoffer   kan   reduceres   i   fremtiden.     Blandt   teknologier  indenfor  vedvarende  energi  har  organiske  (OSC)  og  perovskite  (PSC)  solceller   tiltrukket   meget   opmærksomhed,   da   de   tilbyder   unikke  fordele  sammenlignet  med  traditionelle  silicium  solceller,  såsom  lave  fabrikationsomkostninger,   mekanisk   fleksibilitet,   samt   lette   og  gennemsigtige   moduler.   Disse   unikke   egenskaber   tilbyder   en   lang  række   applikationer   og   integrationsmuligheder,   som   gør   dette  forskningsfelt   yderligere   interessant.   OSC   og   PSC   har   for   nyligt  opnået   ydeevner   på   hhv.   15%   og   22%,   hvilket   understreger   deres  store  potentiale.  Begge  disse  typer  solceller   lider  dog  under  relativt  lav   stabilitet   og   levetid,   hvorfor   en   forståelse   for  degraderingsmekanismerne   der   finder   sted   i   disse   celler   kan   være  med   til   at   bane   vejen   for   en   kommercialisering   af   denne   lovende  teknologi.    

Dette   arbejde   er   fokuseret   mod   at   undersøge   de   grundlæggende  degraderingsmekanismer   og   retninger   som   finder   sted   i   organiske  og  perovskite  solceller.  I  første  del  af  arbejdet  undersøges  ydeevnen  og   stabilitet   af  DBP-­‐C70   organiske   solceller   i   standard  og   inverteret  konfigurationer.   Vi   studerer   deres   stabilitet   ved   at   degradere   dem  under   ISOS-­‐D-­‐3   (mørke,   85℃  og   85%   luftfugtighed)   og   ISOS-­‐T-­‐3  (mørke,   -­‐40℃  og   normal   luftfugtighed)   betingelser.   Resultaterne  viser  at  der,  på  trods  af  ændringer  i  ydeevnen  under  degradering,  er  en   udtalt   morfologisk   stabilitet   ved   DBP-­‐C70   grænsefladen.   Mulige  effekter   fra   elektron   transport   laget   på   solcelle   stabiliteten   blev  undersøgt,  hvilket  demonstrerede  at  dette  lag  bidrager  væsentligt  til  degradering  af  de  inverterede  solceller.  Den   anden   del   af   dette   arbejde   fokuserer   på   forståelsen   af   de  degraderingsmekanismer  der  finder  sted  I  perovskite  solceller  under  reelle   arbejdsbetingelser.   Resultater   for   indendørs     (ISOS-­‐L-­‐1,  belysning,  60℃  og  rum  luftfugtighed)  og  udendørs  (ISOS-­‐O-­‐1,  sollys)  degraderingstest  betingelser  blev  udført,  og  viste  reversible  og  ikke-­‐reversible   degraderingsmekanismer   under   lys-­‐mørke   overgange,  hvilket   afslører   interessante   degraderingsmekanismer   og  understreger   vigtigheden   i   at   inkludere   disse   overgange   i  eksperimentelle  stabilitetsprotokoller  for  PSC  solceller.  

Page 8:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 8  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 9:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  9  

Acknowledgments    

I  would  like  to  express  my  gratitude  to  everyone  who  supported  me  throughout  the  course  of  my  PhD  studies.  This  work  would  not  have  been   possible   without   their   help   and   contribution   in   one   way   or  another.  

First   and   foremost,   I   am   greatly   thankful   to   my   supervisor   Dr.  Morten  Madsen   for  giving  me  the  opportunity   to   join  NanoSYD  and  be  part  of  the  THINFACE  project.  His  aspiring  guidance,  patience  and  enthusiasm   have   always   motivated   me,   and   his   friendliness   and  openness  releases  inevitable  tensions  of  a  PhD  work.    

Next,  I  would  like  to  thank  my  supervisor  at  TU  Dresden,  Prof.  Koen  Vandewal,  for  sharing  his  incredible  knowledge  and  skills  in  the  field  and  all  his   support  and  encouragement  during  my  stay  at  TUD  and  through  this  research  work.    

Thank  you  Prof.  Horst-­‐Günter  Rubahn  and  Dr.  Katharina  Rubahn,  for  all   your   support   and   friendly   advice   during   my   PhD   studies   and  THINFACE  project.      

My  colleagues/friends,  Mina,  Peyman,  Andre,  Mehrad,  Bhushan,  Ela,  Pawel,   Michela,   Elodie,   Jani,   Arkadiusz,   Vida,   Elahe   and   Fatemeh  thank   you   for   all   the   nice   time   and   happy   memories   inside   and  outside  of  the  office.  Mina  and  Peyman,  I  was  so  lucky  to  have  your  valuable   friendship  during   the   long  and  dark  days  when   things  can  challenge   you   to   your   very   core.   You   turned   all   of   them   into   great  memories.  

Thanks  to  beautiful  souls  around  the  department,  Sabina,  Charlotte,  Lise,   Ferran,   Zora,   Roana   and   Luciana   for   their   kind   and   cheering  attitude.    

I  would  also  like  to  thank  our  lab  technicians  and  manager  who  are  the  backbone  of   the   lab  and   the   facilities,  Mogens,  Reiner,   Jens  and  Arkadiusz.  

Page 10:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 10  

I  would  especially   like   to   thank  my  colleagues/friends  at   IAPP,  TU-­‐Dresden   Johannes   Benduhn   for   the   sEQE   measurements,   and   Dr.  Donato   Spoltore   for   his   help   with   the   device   fabrication.   It   was   a  pleasure   to   work   with   you.   I   enjoyed   the   energetic   and   friendly  research  environment  of  IAPP.  You  made  my  stay  memorable!    

To   my   love   Gerrit,   I   am   deeply   thankful   for   your   unconditional  support  and  love.  You  made  it  possible  to  come  this  far.  You  are  truly  one  of  a  kind!    

Last  but  not   least,   I  am  extremely  grateful   to  my  beloved  family   for  their   love   and   never   ending   support   throughout   all   these   years.   In  every  moment  of  my  life  they  have  always  stood  by  me  and  cheered  me  up.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 11:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  11  

List  Of  Papers    I.   Degradation   pathways   in   standard   and   inverted   DBP-­‐C70  based  organic  solar  cells  Golnaz   Sherafatipour,   Johannes   Benduhn,   Bhushan   Ramesh   Patil,  Mehrad   Ahmadpour,   Donato   Spoltore,   Horst-­‐Günter   Rubahn,   Koen  Vandewal,  Morten  Madsen  Manuscript                II.   Dynamics   of   photoinduced   degradation   of   perovskite  photovoltaics:  from  reversible  to  irreversible  processes  Mark  V.   Khenkin,   Anoop  K.  M.,   Iris   Visoly-­‐Fisher,   Sofiya  Kolusheva,  Yulia   Galagan,   Francesco   Di   Giacomo,   Olivera   Vukovic,   Bhushan  Ramesh   Patil,   Golnaz   Sherafatipour,   Vida   Turkovic,   Horst-­‐Günter  Rubahn,  Morten  Madsen,  Alexander  V.  Mazanik,  and  Eugene  A.  Katz  ACS  Appl.  Energy  Materials      III.  Reconsidering  figures  of  merit  for  performance  and  stability  of  perovskite  photovoltaics  Mark   V.   Khenkin,   Anoop   K.   M.,   Iris   Visoly-­‐Fisher,   Yulia   Galagan,  Francesco   Di   Giacomo,   Bhushan   Ramesh   Patil,   Golnaz  Sherafatipour,   Vida   Turkovic,   Horst-­‐Günter   Rubahn,   Morten  Madsen,  Tamara  Merckx,  Griet  Uytterhoeven,  João  P.  A.  Bastos  ,  Tom  Aernouts,  Francesca  Brunetti,  Monica  Lira-­‐Cantu    and  Eugene  A.  Katz  RSC  Energy  &  environmental  science    IV.  Area-­‐dependent  behavior  of  bathocuproine  (BCP)  as  cathode  interfacial  layers  in  organic  photovoltaic  cells  Bhushan  Ramesh  Patil,  Mehrad  Ahmadpour,  Golnaz  Sherafatipour,  Talha  Qamar,  Antón  F.  Fernández,  Karin  Zojer,  Horst-­‐Günter  Rubahn,  Morten  Madsen          Scientific  Reports-­‐Nature-­‐Submitted,  2018      

 

Page 12:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 12  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 13:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  13  

Contents    

List  of  Figures  .........................................................................................................  15  

1    Introduction  .......................................................................................................  19  1.1  A  green  horizon  ........................................................................................................  19  1.2  Photovoltaic  devices  ..............................................................................................  20  1.3  organic  solar  cells  ....................................................................................................  21  1.3.1  Challenges  toward  commercialization  of  organic  solar  cells  ......  22  

1.4  Perovskite  solar  cells  .............................................................................................  23  1.4.1  Challenges  toward  commercialization  of  perovskite  solar  cells  23  

1.5  Aim  of  the  thesis  ......................................................................................................  24  2    Fundamentals  ....................................................................................................  27  2.1  Organic  semiconductors  .......................................................................................  27  2.2  Operation  principles  of  organic  solar  cells  (OSCs)  ...................................  29  2.2.1  exciton  generation  .........................................................................................  29  2.2.2  exciton  diffusion  and  dissociation  ..........................................................  30  2.2.3  carrier  transport  .............................................................................................  35  2.2.4  charge  extraction  at  electrodes  ................................................................  36  2.2.5  Summery  of  the  operation  ..........................................................................  37  

2.3  Solar  cell  architectures  .........................................................................................  38  2.3.1  Planar  vs.  bulk  heterojunction  ..................................................................  38  2.3.2  Standard  vs.  inverted  structure  ...............................................................  39  

2.4  Materials  ......................................................................................................................  40  2.4.1  Donor  and  Acceptor  ......................................................................................  40  2.4.2  buffer  layers  ......................................................................................................  42  2.4.3  Contacts  ..............................................................................................................  44  

2.5  Fabrication  techniques  .........................................................................................  44  2.6  Stability  of  organic  solar  cells  ............................................................................  46  2.6.1  Intrinsic  degradation  ....................................................................................  46  2.6.2  Extrinsic  degradation  ...................................................................................  46  

2.7  Perovskite  solar  cells  .............................................................................................  47  2.7.1  Fabrication  ........................................................................................................  49  2.7.2  Stability  ...............................................................................................................  49  

2.8  Characterization  ......................................................................................................  50  2.8.1  J-­‐V  characteristics  ..........................................................................................  50  2.8.2  ISOS  degradation  tests  .................................................................................  56  

2.9  Relation  between  VOC  and  CT  states  ................................................................  56  3    Experimental  Setup  ........................................................................................  61  3.1  Device  fabrication  ...................................................................................................  61  3.1.1  patterning  of  the  substrates  ......................................................................  61  3.1.2  Pre-­‐cleaning  the  substrates  .......................................................................  62  

Page 14:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 14  

3.1.3  Vacuum  deposition  of  organic/recombination  layers  and  top  electrode  ........................................................................................................................  63  3.1.4  Final  structure  .................................................................................................  66  

3.2  Characterization  ......................................................................................................  67  3.2.1  J-­‐V  measurements  ..........................................................................................  67  3.2.2  Sensitive  external  quantum  efficiency  (sEQE)  measurements  ..  68  3.2.3  Degradation  protocols  .................................................................................  69  3.2.4  Morphological  characterization  ...............................................................  70  3.2.5  Photoluminescence  quenching  measurements  .................................  70  

4    Degradation  pathways  in  Standard  and  Inverted  DBP-­‐C70  Based  Organic  Solar  Cells  .................................................................................  73  4.1  Device  Performance:  ..............................................................................................  75  Standard  vs.  Inverted  configuration  .......................................................................  75  4.2  Sensitive  EQE  measurements  ............................................................................  77  4.3  Morphology  investigation  at  the  D-­‐A  interface  ..........................................  78  4.4  Degradation  studies  ...............................................................................................  80  4.5  ETL  charge  transport  properties  and  its  effect  on  the  stability  ..........  85  4.5.1  Electron-­‐only  devices  ...................................................................................  86  4.5.2  Photoluminescence  quenching  measurements  .................................  88  4.5.3  Improved  stability  of  the  inverted  devices  .........................................  90  

5    Understanding  the  degradation  mechanisms  in  perovskite  solar  cells  ...................................................................................................................  93  5.1.  Outdoor  day/night  degradation  and  recovery  tests  ...............................  94  5.2  Indoor  degradation  and  recovery  dynamics  ...............................................  99  5.3  Correlation  between  indoor  and  outdoor  stability  measurements  .  106  

6    Summary  and  outlook  ................................................................................  109  Appendix  A  ............................................................................................................  113  ISOS-­‐T-­‐3  degradation  test  for  standard  structure  ..........................................  113  

Appendix  B  ............................................................................................................  115  TTF  as  donor  material  in  organic  solar  cells  .....................................................  115  

Bibliography  .........................................................................................................  133      

 

 

 

Page 15:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  15  

List  of  Figures    

Figure  1.1.  Three  generations  of  solar  cells.  Mono  crystalline  and  poly  crystalline  Silicon  based  solar  cells,  thin  film  solar  cells  and  organic  solar  cells  ..........................................................................................  21  

Figure  2.1.  Illustration  of  HOMO  and  LUMO  level  of  an  organic  material  with  bonding-­‐antibonding  interactions.  ...........................  28  

Figure  2.2.  Three  differnet  types  of  excitons.  a)  Wannier-­‐Mott  excitons,  with  delocalized  and  weakily  bound  presented  in  inorganic  materilas  b)  Strongly  bound  Frenklel  excitons  entirely  located  on  one  molecule  in  organic  semiconductotors.  ...............  30  

Figure  2.3.  Left)  Charge-­‐trasfer  excitons,  located  on  the  adjacent  molecules  at  the  donor-­‐acceptor  hetetojunction;  right  a)  Ground  state  at  which  the  molecules  are  neutral  and  the  HOMO  of  the  molecules  is  filled;  right  b)  Charge  transfer  state  at  which  the  donor  is  positively  and  the  acceptor  is  negatively  charges.  Electron  is  transferred  from  donor  to  the  acceptor  molecule  and  it  is  still  coulombically  bounded  to  the  hole  in  the  donor  molecule.  ...........................................................................................................  31  

Figure  2.4.  Marcus  theory.  Electron  transport  can  occur  if  the  initial  state  overcomes  the  barrier  of  ΔG*  to  reach  the  crossing  point  of  the  potentials.  Marcus  derived  the  height  of  the  barrier.  ............  34  

Figure  2.5.  The  principle  of  charge  separation  in  an  organic  solar  cell  operation.  Summary  of  the  4  main  steps.  ...........................................  37  

Figure  2.6.  a)  Planar  heterojunction  or  bilayer  solar  cell  b)Bulk  heterojunction    solar  cell  with  a  donor/acceptor  blended  active  layer  for  more  efficient  charge  generation.  .......................................  38  

Figure  2.7.  Two  main  geometries  of  PHJ  organic  solar  cells:  a)  standard  and  b)  inverted  configuration.  .............................................  40  

Figure  2.8.  Skeletal  formula  of  tetraphenyldibenzoperiflanthene  (DBP).  .................................................................................................................  41  

Figure  2.9.  Schematic  drawing    (a)  soccer-­‐ball  structure  of  buckyball  C60  and  (b)  rugby-­‐ball  structure  of  common  fullerene  C70.  (c)  C70  Powder  ...............................................................................................................  42  

Figure  2.10.  (left)  Crystal  structure  of  molybdenum  trioxide  (Hyung-­‐Seok  Kim/Nature  Materials),  (right)  MoO3  powder  ......................  43  

Figure  2.11.  Left)  skeletal  formula  of  Bathocuproine,  2,9-­‐dimethy-­‐4,  7-­‐diphenyl  -­‐1,10-­‐phenathroline  (BCP),  right)  BCP  powder.  ......  44  

Figure  2.12.  Schematic  drawing  of  spin  coating  procedure.  Desired  solution  is  applied  over  a  substrate  located  on  a  spinner,  then  

Page 16:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 16  

the  spinner  is  rotated  and  the  material  is  spread  over  the  surface  by  centrifugal  force  to  form  a  film.  ........................................  44  

Figure  2.13.  Thermal  evaporation  chamber.  Substrate  is  located  upside  down  above  the  source.  Material  is  thermally  evaporated  and  is  deposited  on  the  surface  of  the  rotating  substrate.  A  Crystal  monitors  the  deposition  rate.  ...................................................  45  

Figure  2.14.  Generic  perovskite  crystalline  lattice  arrangement  of  the  form  ABX3.    Note  that  the  lines  represent  crystal  orientation  and  not  the  bonding  patterns.  The  two  structure  are  equivalent  with  left)  atom  B  at  the  <0,0,0>  position  and  right)  atom  A  at  the  <0,0,0>  position.  .............................................................................................  48  

Figure  2.  15.  Electric  circuit  equivalent  to  an  OPV  device.  ....................  51  Figure  2.  16.  Current-­‐voltage  (I-­‐V)  curve  of  an  organic  solar  cell.  a)  

Without  illumination,  the  solar  cell  behaves  like  a  diode,  b)  after  illumination,  the  curve  is  shifted  downward  as  the  cell  start  to  generate  power,  c)  increasing  the  light  intensity  results  in  further  shift  of  the  curve  downward  as  the  generated  power  increases.  ...........................................................................................................  52  

Figure  2.17.  Operation  of  a  solar  cell  under  different  applied  biases;  1)  large  reverse  bias;  2)  small  reverse  bias;  3)  positive  bias,  results  in  zero  initial  field,  and  corresponds  to  open-­‐circuit  condition;  4)  positive  bias  and  carrier  injection  ..............................  53  

Figure  2.18.  Solar  cell  J-­‐V  curve  metrics.  .......................................................  54  Figure  2.19.  a)  free  energy  diagram  for  the  ground  state  and  lowest  

excited  state.  b)  Reduced  EQE  PV  and  EL  spectrum  with  fits  using  formulas  (10)  and  (11).  Each  parameter  is  indicated  in  the  figure.  ..................................................................................................................  59  

Figure  3.1.  Layout  of  the  patterned  ITO  coated  glass  substrates.  ......  62  Figure  3.2.  Cryofox  deposition  cluster  system.  Organic  materials  and  

metals  are  deposited  in  two  separated  chambers  in  ultra  high  vacuum  conditions.  A  robotic  arm  transfers  the  sample  between  the  chambers  without  breaking  the  vacuum  between  the  steps.  Right.  The  system  is  connected  to  a  glove  box  to  avoid  exposure  of  the  samples  to  air.  (http://www.polyteknik.com/index.php)  ...............................................................................................................................  64  

Figure  3.3.  Organic  sources  located  inside  the  ultra  high  vacuum  chamber.  Each  source  is  placed  inside  crucible,  and  a  shutter  to  cover  the  source  while  not  in  use.  ..........................................................  65  

Figure  3.4.  Final  outlook  of  the  DBP-­‐C70  based  organic  solar  cells.  Each  sample  consists  of  4  cells.  Overlap  of  the  top  electrode  with  

Page 17:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  17  

the  bottom  ITO  electrode  defines  the  cell  area,  which  here  is  10  mm2  .....................................................................................................................  66  

Figure  3.5.  Final  illustration  of  DBP-­‐C70  based  organic  solar  cells  with  a)  standard  and  b)  inverted  configurations.  C  and  d  show  energy  band  diagram  for  each  structure.  ...........................................................  67  

Figure  3.  6.  Sample  holder  with  4  sample  positions  ................................  68  Figure  3.7.  Sketch  of  the  sensitive  EQE  measurement  setup120.   69  

Figure  4.1.  J-­‐V  curves  of  DBP-­‐C70  organic  based  PHJ  devices  having  standard  or  inverted  configurations.  ........................................................  76  

Figure  4.2.  sEQE  measurements  at  300  K  and  Marcus  fits  for  standard  and  inverted  structures.  Dashed  lines  are  fits  to  the  EQE  using  Marcus  theory.  .....................................................................................................  78  

Figure  4.3.  AFM  images  of  interface  layer  (a)  DBP  on  MoO3/ITO,  b)  C70  on  DBP/MoO3/ITO,  c)C70  on  BCP/ITO,  and  d)  DBP  on  C70/BCP/ITO  ....................................................................................................................................  79  

Figure  4.4.  J-­‐V  curves  for  fresh  (solid  lines)  and  aged  (dashed  lines)  devices  at  a)  ISOS-­‐D-­‐3  b)  and  ISOS-­‐T-­‐3  degradation  conditions.  .  81  

Figure  4.5.  sEQE  measurements  and  their  corresponding  Fits  for  fresh  and  aged  devices  at  a)  ISOS  D-­‐3  and  b)  ISOS-­‐T-­‐3  degradation  conditions.  .............................................................................................................  83  

Figure  4.6.  sEQE  measurements  and  Marcus  Fits  for  fresh  and  annealed  devices  at  110  ℃  for  3  hours  .........................................................................  84  

Figure  4.7.  a)  Electron  only  devices  with  different  ETLs,  and  with  deposited  10  nm  BCP  and  100  Ag  on  top  b)  JV  measurements  of  the  fresh  EODs  c)  JV  measurements  after  aging  devices  for  24  hours  in  ISOS-­‐D3  and  d)  ISOS-­‐T-­‐3  degradation  conditions.  ............  87  

Figure  4.8.  Photoluminescence  (PL)  measurements  for  five  ETLs,  fresh  and  degraded  at  ISOS-­‐D-­‐3  and  ISOS-­‐T-­‐3.  The  stack  has  the  structure:  (0.5nm)/BCP  (0.5nm)  and  BCP  (2nm)/Ag  (1nm)/BCP  (2nm)/Ag  (1nm)/BCP  (2nm)).  ........................................................................  89  

Figure  4.9.  JV  measurements  for  fresh  and  aged  inverted  device  with  0.5  nm  BCP  and  BCP/Ag  stack.  .....................................................................  91  

Figure  5.1.  Normalized  PCE  evolution  for  indoor  contentious  simulated  sunlight  illumination  of  glass/ITO/SnO2/Cs0.05((CH3NH3)0.15(CH(NH2)2)0.85)0.95PbI2.55Br0.45/spiro-­‐OMeTAD/Au  cells  (type  I).  ..................................................................  96  

Figure  5.2.  Normalized  PCE  evolution  during  two  weeks  of  outdoor  exposure  to  natural  sunlight  (a)  type  I    (glass/ITO/SnO2/Cs0.05((CH3NH3)0.15(CH(NH2)2)0.85)0.95PbI2.55Br0.45/spiro-­‐OMeTAD/Au),  and  (b)  type  II  mini-­‐modules  

Page 18:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 18  

(glass/ITO/TiO2/CH3NH3PbI3/Spiro-­‐OMeTAD/Au).  All  lines  are  guides  for  the  eye.  ..............................................................................................  96  

Figure  5.3.  Normalized  evolution  of  daily  energy  output,  Eday,  of  (a)  cell  type  I,  and  (b)  mini-­‐modules  type  II.  All  lines  are  guides  for  the  eye.  ...........................................................................................................................  98  

Figure  5.4.  Evolution  of  PV  parameters  of  PSCs  under  continuous  1-­‐sun  indoor  illumination,  interrupted  at  T80  (a)  T60  (b),  or  T50  (c,  d).  Gray  areas  show  their  subsequent  recovery  in  the  dark.  ...............  100  

Figure  5.5.  Evolution  of  PV  parameters  after  turning  on  the  light  and  continuous  simulated  1-­‐sun  re-­‐illumination  of  the  PSCs  after  T50  and  recovery  in  the  dark  (gray  areas):  (a)  The  cell  whose  PCE  dark  recovery  reached  saturation  (as  in  Figure  5.4.c);  (b)  The  cell  whose  PCE  dark  recovery  did  not  reach  saturation  (as  in  Figure  5.4.d).  .....................................................................................................................  100  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Page 19:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  19  

 

 

         

CHAPTER  1  

Introduction  

1.1  A  green  horizon    The  future  generation  is  facing  a  broad  and  complex  topic,  which  

is   the   foreseeable  world’s   energy   crisis.  The  main   supply  of   energy  

today  is  Fossil  fuels,  however,  these  natural  resources  are  in  limited  

supply   and   consumption   of   them   is   giving   rise   to   further   climate  

change.   By   2020,   the   global   consumption   of   energy   is   expected   to  

increase  by  50  percent,  and  the  main  debate  is  to  find  alternatives  to  

meet   this   demand.   The   best   solution   is   to   replace   these   finite  

resources   with   renewable   ones,   known   as   green   energy   such   as  

wind,   solar,   biomass   and   geothermal.   Green   energy   utilizes   energy  

resources  that  are  readily  available  all  over  the  world.  

During   the   past   three   decades,   there   has   been   a   tremendous  

amount   of   research   and   development   in   the   field   of   green   energy  

that  has  helped  to  reduce  our  dependence  on  fossil  fuels.  Among  all  

the   renewable   resources,   solar   energy   has   gained   enormous  

attention   in   past   decades.   Harnessing   energy   from   the   sun   is   the  

Page 20:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 20  

most   reliable   and   pragmatic   approach   to   cater   the   global   energy  

needs.  In  fact,  the  energy  from  the  sun  that  hits  the  earth’s  surface  in  

just   one   hour   can   power   the  whole   planet   in   energy   for   one   year.  

However,   utilizing   this   great   power   to   its   maximum   potential   is  

limited  by  many  factors  such  as  materials,  manufacturing,  etc.    

1.2  Photovoltaic  devices    In  order  to  harvest   the  sunlight,  we  use  devices  that  can  convert  

sunlight  into  electricity.  These  devices  are  called  solar  cells,  and  the  

process  of  converting  sunlight  into  electricity  is  called  photovoltaic;  

therefore,  solar  cells  are  also  known  as  photovoltaic  devices.  

 Solar  cells  are  categorized  into  three  generations  according  to  the  

time   sequence1   (see   Figure   1.1).   First   generation   solar   cells   are  

crystalline  and  multi-­‐crystalline  Silicon  (Si),  with  simple  constitution,  

but  high  manufacturing  cost.  The  theoretical  efficiency  of  this  type  of  

solar   cells   is   of   about   30%2.   Efficiency   of   a   solar   cell   refers   to   the  

portion   of   sunlight   that   can   be   converted   into   electrical   power   via  

the  photovoltaic  effect.  

Second  generation  solar  cells  or   thin   film  solar  cells  made  out  of  

amorphous  Si  with  lower  manufacturing  cost,  but  poor  stability  and  

inherent  problems.  The  most  successful  materials  of  this  generation  

are   Cu(In,Ga)Se2   (CIGS)   and   CdTe/CdS.   The   lab   efficiency   for   this  

generation  is  around  19%.    

The  third  generation  solar  cells   introduce  new  concepts  in  terms  

of   device   architecture   and  materials;   for   example   the   idea   of  multi  

junction  solar  cells  to  improve  harvesting  of  photons  and  overcome  

the   30%   limit   for   efficiency.   This   3rd   generation   includes   dye-­‐

Page 21:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  21  

sensitized   (DSSCs)3,4   and   Organic   Solar   Cells   (OSCs),   quantum   dot  

(QD)   and  Perovskite   photovoltaic.  DSSCs   are   fabricated  using  dyes,  

metal  oxides  and  electrolyte,  and  their  efficiencies  are  in  the  range  of  

12%  for  small  lab  scale  devices.  However,  the  lifetime  of  the  devices  

are  low  compared  to  inorganic  solar  cells.    

Figure   1.1.   Three   generations   of   solar   cells.   Mono   crystalline   and   poly  crystalline  Silicon  based  solar  cells,  thin  film  solar  cells  and  organic  solar  cells  

1.3  organic  solar  cells    An  organic  solar  cell  is  a  type  of  an  organic  optoelectronic  device,  

that   deals   with   conductive   low   weight   organic   materials   such   as  

small   molecules   and   oligomers,   or   high   weight   molecules,   i.e.,  

polymers,   which   is   vastly   used5.   These   devices   use   photovoltaic  

effect  to  directly  convert  sunlight  into  direct  current  (DC)  electricity.    

In   1906,   Pochettino   observed   photoconductivity   in   an   organic  

compound  named  Anthracene6,  and  it  was  the  beginning  of  a  new  era  

for  application  of  organic  compounds  in  electronics.    

In   1954,   high   conductivity   in   perylene-­‐iodine   complex   was  

discovered7,   after   which   organic   semiconductors   attracted   great  

amount   of   attention.   In   recent   decades,   organic   solar   cells   (OSCs)  

have   been   under   intense   research   due   to   their   interesting  

Page 22:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 22  

advantages   compared   to   first   and   second   generation.   They   exhibit  

higher   absorption   coefficient,   which   makes   it   possible   to   fabricate  

very   thin   films   with   low   amount   of   materials.   Moreover,  

manufacturing   them   is   easy   and   cost-­‐effective7–10,   and   the   final  

product   is   flexible,   semitransparent   and   lightweight.   They   also  

provide   a   huge   potential   for   large   area   applications   and   portable  

solar   panels.   This   means   they   can   be   printed   by   roll-­‐to-­‐roll   (R2R)  

machinery.   These   advantages   connote   a   great   potential   for   organic  

solar   cells   to   make   a   significant   impact   on   the   future   of   the   PV  

market.  More  details   and   technical   information  about  organic   solar  

cells  is  provided  in  chapter  2.      

1.3.1  Challenges  toward  commercialization  of  organic  solar  cells  Despite  all  the  advantages  for  organic  solar  cells,  still  achieving  a  

high  efficiency  and  long-­‐term  stability11   is  remaining  the  bottleneck  

for  potential  commercialization  of  this  appealing  technology.  To  this  

date,  a  world-­‐record  of  15%  efficiency  has  been  achieved  for  organic  

solar   cells12,   however,   this   still   needs   to   be   improved   to   compete  

with  current  photovoltaic  technologies  on  the  market.    

Low  stability  and  short   lifetime  of  organic  solar  cells  means   that  

over  time,  they  loose  their  photovoltaic  ability,  and  their  efficiency  is  

decreased.   These   changes   can   be   caused   by   extrinsic   or   intrinsic  

factors   such   as   oxygen   and  moisture   from   the   air   or   dynamic   and  

active  nature  of  organic  materials11,13  (more  details  in  chapter  2).    

Despite  improvements  regarding  these  issues14,  loss  mechanisms  

and  degradation  patterns  yet  need  to  be  fully  understood.  In  order  to  

push   the   limitations   for   application  of   organic   solar   cell   beyond   its  

Page 23:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  23  

boundaries,   a   deep   understanding   of   the   degradation   process   that  

limits   and   controls   the   stability   of   the   devices   is   crucial.   Our  

comprehensions  can  serve  as  a  guide   for   finding  new  solutions  and  

identify  new  materials  for  more  advanced  and  stable  next-­‐generation  

solar  cells.    

1.4  Perovskite  solar  cells    Perovskite   solar   cells   are   another   type   of   solar   cells   that   have  

attracted   prominent   attention   over   the   past   few   years   due   to   their  

high  efficiency  of  around  20%15,  which  is  comparable  to  other  types  

of   inorganic   photovoltaic   such   as   Cadmium   Telluride.   Their   high  

efficiency  have  made  them  rising  star  of  the  photovoltaic  world  since  

their   breakthrough   paper   of   201216,   and   a   huge   interest   to   the  

academic  community  (more  details  in  section  2.7).    

Over   the   past   two   years,   improvements   in   fabrication   routines  

and   engineering   of   perovskite   formulations   has   led   to   significant  

increase   in   their   power   conversion   efficiency   which   reached   over  

22%,  as  of  April  201717.  This  dramatic  rise   is   incredibly   impressive  

and   the   efficiency   is   comparable   to   Cadmium   Telluride,   which   has  

been  used   for  near  40  years.  Furthermore,   their  potential   for  much  

lower   processing   cost   makes   them   significantly   interesting   for   its  

future  market.    

1.4.1  Challenges  toward  commercialization  of  perovskite  solar  cells  Despite   their   high   efficiency,   perovskite   solar   cells   suffer   from  a  

low   stability   and   short   operational   lifetime.   There   are   several  

reaction   pathways   involving,   oxygen,   water   and   diffusion   of   metal  

Page 24:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 24  

from  the  electrodes  that  leads  to  degradation  (more  details  in  section  

2.7.2)18–25.   Another   problem   is   the   use   of   lead   in   perovskite  

compounds  and  products  for  commercial  use  that  is  a  huge  source  of  

toxic   pollution.   A   lead   alternative   such   as   tin-­‐based   perovskites   is  

possible,  however,  the  power  conversion  efficiency  of  such  devices  is  

much  behind  the  lead-­‐based  devices26.  

Finally   another   issue   is   the   lower   optical   density   of   these  

materials,   which   means   a   higher   thickness   of   the   light-­‐harvesting  

layer  is  needed  compared  to  organic  solar  cells,  which  again  results  

in   some   fabrication   limitations   in   solution   processed   devices27.  

Perovskite   solar   cells   can   also   be   fabricated   based   on   vacuum  

deposition   techniques   to  give  a  better,  more  uniform   film  qualities.  

However,   evaporation   of   organic   and   inorganic   materials   requires  

special   evaporation   chambers   that   are   not   available   in   many  

research   labs,   and   not   easy   to   control   in   large   area   depositions.  

Previously,   vacuum   deposition   techniques   offered   the   highest  

efficiency   devices,   but   recently,   through   the   improvements   in  

solution-­‐based   deposition   techniques,   the   record-­‐breaking   devices  

has  shifted  to  solution-­‐based  processing28.    

 Overall,   to   enable   a   reliable   low   cost-­‐per-­‐watt   energy   solution,  

perovskite  solar  cells  need  to  obtain  longer  device  lifetime,  and  low  

manufacturing   costs.   Although   this   has   not   yet   been   achieved,  

perovskite-­‐based  solar  cells  still  demonstrate  enormous  potential  to  

achieve  this.  

1.5  Aim  of  the  thesis    The  broad  title  of  this  dissertation  comprises  degradation  studies  

on  organic  and  perovskite  solar  cells.  The  presented  work  takes  the  

Page 25:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  25  

opportunity  to  investigate  governing  mechanisms  taking  place  inside  

these   devices.   For   organic   solar   cells,  we   focus   on   factors   affecting  

the   open-­‐circuit   value   as   one   of   the   most   important   parameters  

affecting  both  performance  and  stability  of  the  devices.  In  this  work  

small  molecule  solar  cells  based  on  DBP  and  C70  are  investigated.  For  

perovskite   solar   cells,   their   stabilities   are   tested   under   real  

operational   conditions   and   a   correction   between   already   existing  

stability  measurements  for  indoor  and  outdoor  testing  conditions  is  

suggested.   The   results   points   on   possible   and   specific   degradation  

pathways   that   are   important   to   understand   in   detail,   in   order   to  

facilitate   the   viable   commercialization   of   organic   and   perovskite  

solar  cells  in  the  future.  The  work  is  structured  as  follows.      

Chapter   2   provides   background   information   regarding   organic  

and   perovskite   solar   cells,   principles   of   operation,   materials   and  

characterization  techniques.    

Chapter   3   describes   the   fabrication   steps   including   the  

measurement  and  characterization  setups  employed  in  this  work.    

Chapter   4   presents   the   results   and   discussion   regarding   the  

performance   and   degradation   mechanism   in   the   DBP-­‐C70   organic  

solar  cells  investigated  in  this  work.    

Chapter  5  presents  results  and  discussion  related  to  degradation  

mechanism   in   the   perovskite   solar   cells   tested   under   both   indoor  

cycling  protocols  and  outdoor  testing.  

Chapter  6  provides  conclusion  remarks  as  well  as  an  outlook   for  

the  future  studies.  

 

 

Page 26:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 26  

 

 

                                           

Page 27:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  27  

           CHAPTER  2    

Fundamentals  This  chapter  introduces  basics  of  the  organic  and  perovskite  solar  

cell   (OSC)   technologies,   including   the   characterization   of   those.  

Understanding   these   concepts   is   required   to   follow   the   studied  

material  subjected  to  this  work.      

2.1  Organic  semiconductors  Organic   semiconductors   are   carbon-­‐based   materials   in   which  

carbon   atoms   are   covalently   bonded   to   each   other   by   alternating  

single  and  double  bonds  (conjugated  π-­‐bonds),  and  a  weak  Van  der  

Waal’s   force   that   holds   two   organic  molecules  within   the   solid29,30.  

The   bonding   structure   is   the   property   that   gives   organic  

semiconductors  its  unique  advantages  such  as  flexibility,  lightweight,  

and  easy  processing.      

The   band   structure   of   an   organic   semiconductor   can   be   viewed  

similarly   as   inorganic   semiconductor   in   which   the   valance   band   is  

filled   with   electrons   and   conduction   band   is   free   of   electrons.   In  

Page 28:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 28  

organic   semiconductors,   the   lowest   electronic   transition   (and   the  

most   probable   one)   is   between   the   π–band,   which   is   the   Highest  

Occupied  Molecular  Orbital   (HOMO),  and   the  π*–band,  which   is   the  

Lowest  Unoccupied  Molecular  Orbital   (LUMO),   (Figure   2.1).     These  

types   of   molecular   orbitals   are   analogous   to   the   valance   and  

conduction   band   of   an   inorganic   semiconductor,   respectively29.  

There  are  techniques  such  as  cyclic  voltammetry  and  photoemission  

yield   spectroscopy   to   measure   the   HOMO   and   LUMO   level   of   the  

organic  materials31.    

The   energy   difference   between   the   HOMO   and   LUMO   in   an  

organic   semiconductor   is   denoted   as   the   band   gap   of   the  material,  

which  is  generally  between  1.1-­‐3.5  eV.  Hence,  optical  excitation  can  

happen  in  the  range  of  visible  light  and  near  infra-­‐red32.  

When   an   electron   is   excited   from  HOMO   to   LUMO,   it   causes   the  

excitation   of   the   whole   molecule   itself   into   a   higher   energy   state.  

This  is  different  than  the  actual  excitation  of  a  free  electron  from  the  

valance  band  to  the  conduction  band  in  inorganic  semiconductor33  .  

 

Figure  2.1.  Illustration  of  HOMO  and  LUMO  level  of  an  organic  material  with  bonding-­‐antibonding  interactions.  

Page 29:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  29  

2.2  Operation  principles  of  organic  solar  cells  (OSCs)  Operation   of   an   organic   solar   cell   can   be   simplified   into   4  main  

steps:  

1.  Photon  absorption  resulting  in  formation  of  electron-­‐hole  pairs  

(exciton)  

2.    Exciton  diffusion  to  heterojuction  

3.  Exciton  dissociation  at  the  heterojunction  

4.  Carrier  transport  and  extraction  at  the  electrodes  

Each  of  these  steps  will  be  described  here  in  detail.  

2.2.1  exciton  generation  When   light   is   shined   over   an   organic   solar   cell,   photons   are  

absorbed   at   the   active   organic   materials.   If   the   photon   energy  

exceeds   the   band   gap   of   the  material,   it   excites   an   electron   to   the  

LUMO  level,  while  leaving  a  hole  in  the  HOMO.  Due  to  low  dielectric  

constant   (2-­‐4)34   of   the   organic   materials   and   low   screening   of  

charges,   upon   transition   of   an   electron   from   HOMO   to   LUMO,   a  

coulombically   bounded   electron-­‐hole   pair   known   as   exciton   is  

formed  with  a  binding  energy  of  0.1-­‐1.4  eV.  These  types  of  excitons  

are   known   as   Frenkel   excitons,   which   are   entirely   located   on   one  

molecule,  Figure  2.2.b.  However,  in  inorganic  semiconductors  due  to  

a   higher   dielectric   constant   (12-­‐16),   the   Coulomb   attraction   is  

weakened  and  screening   is   increased;   therefore,   the  average  radius  

between  electron  and  holes  is  larger  than  the  lattice  spacing,  leading  

to  a  much   lower  binding  energy  of  only  5-­‐15  meV33.  These  types  of  

excitons   are   known   as   Wannier-­‐Mott   excitons   and   their   binding  

energies  are  sufficiently  below  thermal  energy  at  room  temperature  

Page 30:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 30  

(KBT≈25  meV),  which   results   in  a  higher  probability  of   free  charge  

carrier   generation   after   absorption   of   photons   and   dissociation   of  

the  pairs  by  absorbing  thermal  energy,  Figure  2.2.a.    

Due  to  the  fact  that  the  absorption  coefficient  of  organic  materials  

is  higher  than  inorganic  materials  (~105  cm-­‐1),  a  thin  layer  of  a  few  

hundreds   of   nanometers   of   the   active   layer   is   sufficient   to   absorb  

enough  amount  of  light  and  generate  carriers.    

 

Figure  2.2.  Three  differnet  types  of  excitons.  a)  Wannier-­‐Mott  excitons,  with  delocalized  and  weakily  bound  presented   in   inorganic  materilas  b)  Strongly  bound   Frenklel   excitons   entirely   located   on   one   molecule   in   organic  semiconductotors.  

2.2.2  exciton  diffusion  and  dissociation  After   excitons   are   formed,   next   step   is   to   separate   them   and  

generate   free   charges,   which   eventually   leads   to   generation   of  

current  (electricity).  To  achieve  an  efficient  exciton  pair  separation,  

Tang  et  al.10  provided  a  solution  by  employing  two  different  kinds  of  

organic  materials  with  properly  aligned  band  energies.  One  material  

acts  as  electron  donor  and  the  other  is  an  electron  acceptor,  resulting  

in   the  basic   concept  of   the   so-­‐called  donor-­‐acceptor   (D/A)   in  OSCs.  

The   interface   between   the   two   materials   is   called   the   D/A  

heterojunction.   The   acceptor  material   is   a   strongly   electronegative  

Page 31:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  31  

and  when  placing  the  two  materials  adjacently,  the  electron  can  go  to  

a   much   lower   energy   state   within   the   acceptor.   This   causes   the  

dissociation  of  the  exciton  at  the  heterojunction.  When  an  exciton  is  

generated   in   the   electron   donor   material,   it   migrates   towards   the  

heterojunction,  and  charge  transfer  from  donor  to  acceptor  initiates  

if   the  difference  between   the  LUMO  energy   levels  of   the  donor  and  

acceptor   overcome   the   exciton   binding   energy.   This   makes   the  

electron   to   transfer   from   exciton   to   LUMO  of   the   acceptor   while   a  

hole  remains  in  HOMO  of  the  donor35,  Figure  2.5.3.    

2.2.2.1  Charge  transfer  states  After   the  charge   transfer  at   the  heterojunction,   the  electron-­‐hole  

pair  is  still  Coulombically  bound  and  are  located  at  the  D/A  interface  

on  adjacent  but  different  molecules.  This  new  type  of  exciton,  which  

is   between   the   two   other   types   in   terms   of   binding   energy   and  

binding  distance,   is   called   charge   transfer   (CT)   exciton   and   its   in   a  

charge  transfer  state,  Figure  2.3.    

Figure   2.3.  Left)  Charge-­‐trasfer  excitons,  located  on  the  adjacent  molecules  at   the   donor-­‐acceptor   hetetojunction;   right   a)   Ground   state   at   which   the  molecules   are   neutral   and   the   HOMO   of   the   molecules   is   filled;   right   b)  Charge   transfer   state   at   which   the   donor   is   positively   and   the   acceptor   is  negatively   charges.   Electron   is   transferred   from   donor   to   the   acceptor  molecule   and   it   is   still   coulombically   bounded   to   the   hole   in   the   donor  molecule.  

Page 32:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 32  

The   charge   separation   at   the   CT   state   is   about   1   nm,   which   is  

roughly  the  distance  between  the  donor  and  acceptor  molecules.  The  

energy   of   the   CT   state   is   defined   as   the   energy   difference   between  

the   ionization   potential   of   the   donor   and   electron   affinity   of   the  

acceptor  (IPD-­‐EAA)  plus  EB  which  is  a  term  to  account  for  the  binding  

energy  of   the  CT  which   is   typically  estimated  at  approximately  0.1-­‐

0.5  eV.    

The   energy   of   the   CT   state   depends   on   different   factors   such   as  

the   composition   of   the   donor   and   acceptor   molecules,   processing  

treatments,   etc36.   For   example,   Loi   et   al.   noted   that   increasing   the  

concentration  of  the  high  dielectric  constant  PCBM  in  F8DTBT:PCBM  

blend   results   in   lowering   the   CT   state   energy   due   to   an   increased  

effective  dielectric  constant  of   the  blend37–39.   In  addition,   it  reduces  

the   effective  Coulombic   interaction  between  electron  and  hole,   and  

facilitates  CT  state  dissociation  into  free  carriers40.  Moreover,   it  has  

been   reported   that   thermal   annealing   of   the   P3HT:PCBM   decrease  

the  energy  of  its  CT  state38,41–43.  

As   mentioned   before,   CT   pairs   at   the   heterojunction   are   still  

Coulombically  bound  and  need   to  be   separated  by  an   internal   field  

before   they   recombine.   In   fact,   CT   states   are   intermediate   states  

between  exciton  recombination  and  dissociation;  hence,  they  play  a  

crucial  role  in  charge  generation  in  organic  photovoltaics44–48.    

2.2.2.2  Marcus  theory  From   a   molecular   perspective,   charge   transfer   from   donor  

molecule   to   acceptor  molecule   is   describing   by   a   theory   known   as  

Marcus   theory49.   In   1956   R.   A.   Marcus   won   a   Nobel   Prize   for  

introducing   a   method   for   calculating   rates   of   electron   transfer  

Page 33:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  33  

reactions  at  which  electrons  can  hop   from  electron  donor  molecule  

to   electron   acceptor.   This   theory   is   now  widely   used   in   chemistry  

and  physics.    

In   Marcus   theory,   the   potential   of   reactants   and   products   are  

sketched  as  parabolas,  Figure  2.4,   In   this   sketch,  ΔG°   is   free  energy  

changes   between   the   reactants   and   products   (difference   between  

potential  minima),   ΔG*   is   activation   energy   and   λ   is   reorganization  

energy,  which   is   the  energy  required   to   force   the   reactants   to  have  

the   same   nuclear   configuration   as   the   products   without   electron  

transfer.   Electron   transfer   can   only   occur   if   the   excited   D/A   pair  

(D*/A)  overcomes   the  barrier  of  ΔG*   to   reach   the  crossing  point  of  

the   potential  wells.  Marcus   derived   the   height   of   the   ΔG*   from   the  

thermodynamic  parameters  of  the  system:  

ΔG∗ =(𝜆 + 𝛥𝐺°)!

4𝜆                                                                                  (2.1)  

In  organic  solar  cells,  the  theory  has  been  successfully  applied  to  

describe  the  absorption  and  emission  shape  of  charge  transfer  states  

in  D-­‐A  systems.    

In  Figure  2.4,  a  parabola  with  the  lowest  energy  shows  the  relaxed  

ground   state   for   donor   and   acceptor   interface.   After   absorption   of  

the  light,  one  of  the  molecules  is  excited  (D*  or  A*)  and  the  molecular  

conformation   changes  at   the  D/A   interface.   If   the  excitation  energy  

can  overcome  the  barrier  ΔG*,  the  Frenkel  exciton  being  localized  at  

one  molecule  separates  at  D/A  interface  and  forms  CT  exciton  (D*/A  

   D+/A-­‐).      

 

Page 34:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 34  

Figure   2.4.  Marcus   theory.   Electron   transport   can  occur   if   the   initial   state  overcomes   the   barrier   of   ΔG*   to   reach   the   crossing   point   of   the   potentials.  Marcus  derived  the  height  of  the  barrier.  

2.2.2.3  Recombination  As   mentioned   earlier,   due   to   the   low   dielectric   constant   of   the  

organic  materials,  excited  electron-­‐hole  pairs  are  still  Coulombically  

bound  after  dissociation  and  while  they  form  a  CT  exciton.    The  pair  

is   called   a   geminate   pair   and   before   they   fully   dissociate   into   free  

charge  carriers,  they  can  still  recombine  back  to  the  ground  state  in  a  

process   known   as   geminate   recombination.   Since   charge   transfer  

process  occurs  faster  than  the  charge  recombination  (~45  fm  vs.  ~1  

ns)50,51,   efficient   exciton   dissociation   at   the   heterojunction   is  

possible.    

Even   after   dissociation,   recombination   can   happen   again   if   the  

dissociated  free  electrons  and  holes  encounter  each  other  once  more.  

This   time,   since   the   two   carriers   are   separated,   free   carriers,   this  

process  is  called  a  nongeminate  recombination.    

In   addition   to   these   two   situations,   if   after   absorption   of   light,  

generated  excitons  cannot  reach  the   interface,   they  recombine  back  

Page 35:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  35  

to   their   ground   state.   The   maximum   length   that   an   exciton   can  

diffuse  before  recombination  is  called  the  exciton  diffusion  length.  In  

organic  materials  this  distance  is  a  few  tens  of  nanometer52,53.  If  the  

distance   where   the   excitons   are   generated   is   longer   than   their  

diffusion  length,  they  recombine  before  reaching  the  heterojunction.  

Hence,   in   organic   solar   cells,   the   active   layer   is   kept   thin   to   make  

sure   that   it   is   within   the   exciton   dissociation   length.   However,   a  

thinner   active   layer   can   result   in   low   absorption   efficiency.  

Therefore,   as   a   solution   to   this   tradeoff,   bulk   heterojunction   solar  

cells  were   invented   to   increase   the  efficient  exciton  dissociation  by  

increasing   the   amount   of   the   interface   between   the   acceptor   and  

donor  materials.    

In  all  cases  being  explained  above,  the  energy  of  the  photon  is  lost  

in   the   form   of   radiation   that   results   in   fewer   carriers   that   are  

collected  at  the  electrodes.    

2.2.3  carrier  transport  After  dissociation,  generated  electrons  and  holes  have  to  travel  to  

electrodes   for   collection.  The   two  main  driving   forces   for   transport  

are  drift   and  diffusion  currents.  Drift   current   causes   the  carriers   to  

move   along   the   potential   gradient   inside   the   solar   cell   and   it  

determines   by   the   choice   of   electrodes.   Choosing   a   high   work  

function   anode   and   low   work   function   cathode   creates   a   built-­‐in  

electric  field,  in  which  applying  an  external  bias  modifies  the  internal  

electric   field   and   the   drift   current.   This   current   leads   the   carriers  

toward  the  respective  electrodes  and  from  there  they  are  collected.    

Diffusion   current   is   another   mechanism,   which   transport   the  

carriers   along   the   concentration   gradient   inside   the   solar   cell.  

Page 36:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 36  

Concentration   of   electrons   and   holes   are   higher   around   the  

heterojunction   due   to   generation   of   geminate   pairs   there;   hence,  

carriers  diffuse  away  from  the  interface  and  cause  diffusion  current.    

After  this  point,  the  ability  of  the  material  to  transport  the  carriers  

is  critical.  This  ability  is  called  mobility  and  characterizes  the  speed  

of   the   carrier   transport   through   the  material.   In   general,   electrons  

have  higher  mobility54  than  holes  which  means  choosing  donor  and  

acceptor   materials   with   high   mobility   differences   can   lead   to  

accumulation   of   charges   at   the   interface   between   active   layer   and  

electrodes55.   Therefore,   balancing   hole   and   electron   mobilities   is  

critical   to   achieving   efficient   carrier   transport   in   the   organic   solar  

cells.  

2.2.4  charge  extraction  at  electrodes  When   the   carriers   reach   at   the   active   layer/electrode   interface,  

they  can  be  extracted.  In  order  to  maximize  the  efficiency  in  charge  

extraction,   the   potential   barrier   have   to   be   minimized.   Therefore  

ideally  the  work  function  of  the  cathode  should  match  the  LUMO  of  

the  acceptor  and  the  work  function  of  anode  should  match  the  HOMO  

of   the   donor.     This   way   an   ohmic   contact   is   formed   and   carrier  

extraction   condition   is   fulfilled.   In   organic   solar   cells,   indium   tin  

oxide   (ITO)   with   a   work   function   of  ~4.7   eV   is   commonly   used   as  

anode.  On  the  cathode  side,  a  low  work  function  material  such  as  Al    

(4.2  eV)  can  be  used.    

 Another   trick   to  align   the  work   functions  of   the  electrodes  with  

HOMO  and  LUMO  of   the   organic  materials   is   to   use   the   interlayers  

known   as   buffer   layers   at   the   active   layer/electrode   interface.  

Molybdenum   oxide   (MoO3),   Zinc   oxide   (ZnO)   and   Bathocuproine  

Page 37:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  37  

(BCP)   are   a   few   examples   of   buffer   layers,   which   have   shown   to  

improve   the   carrier   collection56.  Apart   from  changing   the  electrode  

materials   and   using   buffer   layers,   increasing   the   roughness   or  

interface   area   of   the   active   layer   and   electrodes   can   improve   the  

charge  collection  efficiency.        

2.2.5  Summery  of  the  operation  Upon  absorption  of  a  photon  in  an  organic  solar  cell,  an  exciton  is  

formed.   This   exciton   travels   toward   the   donor-­‐acceptor   interface,  

and   if   it   can   reach   the   interface   before   decaying,   the   exciton   can  

dissociate,   with   the   electron   transferred   to   the   adjacent   acceptor  

molecule   and   hole   remained   at   the   donor   molecule.   This   state   is  

called  a  charge   transfer   (CT)  state   in  which   the  charge  carriers  can  

either  dissociate  or  recombine  back  to  the  ground  state.  If  they  split  

into   free  charge  carriers,   they  can   travel   toward   the  electrodes  and  

be  collected,  or  if  they  meet  at  an  interface,  they  can  recombine  with    

Figure   2.5.   The   principle   of   charge   separation   in   an   organic   solar   cell  operation.  Summary  of  the  4  main  steps.  

Page 38:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 38  

another  charge  carrier  and   loose   their  energy.  The  summery  of   the  

operation  is  shown  in  Figure  2.5.    

2.3  Solar  cell  architectures  Solar   cell   architectures   can   significantly   influence   the  

performance  of  the  devices.  Here,  two  main  types  with  two  common  

architectures  are  explained.    

2.3.1  Planar  vs.  bulk  heterojunction  Planar   heterojunction   or   bilayer   cell   is   the   simplest   interface  

structure  in  which  a  layer  of  donor  and  a  layer  of  acceptor  on  top  of  

each   other   (joined   together)   form   the   active   layer.   This   layer   is  

sandwiched   between   charge   collection   layers   (buffer   layers)   and  

electrodes  (anode  and  cathode),  Figure  2.6.a.  This  simple  structure  is  

based   on   the   basic   operating   principles   of   the   solar   cell.   However,  

due   to   the   low   diffusion   length   of   the   excitons   in   organic  material  

(around  10  nm),  there  is  a  thickness  limitation  for  the  layers.    

Figure   2.6.   a)   Planar   heterojunction   or   bilayer   solar   cell,   b)Bulk  heterojunction     solar   cell   with   a   donor/acceptor   blended   active   layer   for  more  efficient  charge  generation.    

Furthermore,  a  thin  active  layer  results  in  a  weak  absorption,  and  

a  delicate  thickness  balance  is  thus  present  in  these  cells.  Introducing  

Page 39:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  39  

bulk  heterojunctions  (BHJ)  solar  cells  in  the  mid  1990s7  provided  the  

solution  to  this  tradeoff,  Figure  2.6.b.  In  this  structure,  mixing  or  co-­‐

evaporation  of  donor  and  acceptor  materials  forms  the  junction.  The  

resulting  film  is  a  network  of  donor/acceptor  domains,  and  since  the  

scales  of  the  domains  are  within  the  diffusion  length  of  the  excitons,  

it   provides   a   path   for   efficient   carrier   transport   and   dissociation.  

Therefore,   nearly   all   generated   excitons   are   dissociated   and   free  

charge  carriers  are  transported  towards  electrodes  and  are  collected.  

This   advantage   makes   it   possible   to   form   a   thicker   active   layer  

compared   to   bilayer   solar   cells.   Nevertheless,   controlling   the   film  

morphology  is  harder  in  the  films  formed  by  spin  coating  compared  

with  vacuum  deposition  (more  information  about  the  techniques  are  

provided  in  section  2.5).  This  means  that  there  are  many  parameters  

that   can   affect   the   performance   of   the   BHJ   devices.   There   exist  

various  methods   to   improve   the  morphology  of   the  BHJ   solar   cells,  

such   as   thermal   annealing,   solvent   annealing   or   modifying   the  

functionality   of   the   organic   materials57–59.   These   techniques   have  

improved  the  performance  of  the  OSC  devices.    

2.3.2  Standard  vs.  inverted  structure  

There   are   two   different   solar   cell   geometries:   standard   (or  

conventional)  and   inverted  (see  Figure  2.7).   If   the  anode   is  directly  

placed  on  the  substrate  it  is  a  standard,  and  if  the  cathode  is  on  the  

substrate   it   is  an   inverted  configuration.    There  are  advantages  and  

drawbacks  of  each  geometry.  Standard  configuration  usually  results  

in   higher   efficiencies;   however,   inverted   configuration   usually   has  

higher   stability60–65,   although   clear   exceptions   are   present   in   both  

cases.  

Page 40:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 40  

Figure  2.7.  Two  main  geometries  of  PHJ  organic  solar  cells:  a)  standard  and  b)  inverted  configuration.  

 

2.4  Materials    2.4.1  Donor  and  Acceptor    Oligomers   (small-­‐molecules)   and   conjugated   polymers   are   two  

main  categories  of  organic  materials  being  commonly  used  in  active  

layer  of  the  organic  solar  cells.  Small  molecules  have  low  molecular  

weights;   while   polymers   are   heavy   molecules   consist   of   long  

molecular   chains.   Small   molecules   are   usually   deposited   via   ultra-­‐

high   vacuum   thermal   deposition   whereas   polymers   are   deposited  

using  solution-­‐processed  methods,   such  as  spin-­‐coating,  or  printing  

techniques  such  as  ink-­‐jet  printing  and  doctor  blade.    

Small   molecules   have   several   advantages   compared   to   polymer  

materials,  which  makes  them  attractive  for  their  application  in  solar  

cells.  Some  of  the  main  advantages  are:  

• Ease  of  synthesis  and  reproducibility  of  the  process.  

• High  purity  of  the  material  

• Better  control  of  the  morphology  and  structure  of  the  film  by  

controlling   the   growth   parameters,   such   as   substrate  

temperature,  deposition  pressure  and  rate.  

Page 41:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  41  

• No  need  for  solvents  (some  toxic)  

• Fabrication   of   multilayer   structures,   such   as   tandem   solar  

cells   is   possible   by   controlling   the   thickness   of   the   layer   in  

nanometer  scale.  

In   the   following,   the   chemical   structure   and   key   optoelectronic  

properties  of  the  materials  used  in  this  thesis  are  presented.    

Tetraphenyldibenzoperiflanthene  (DBP)  

DBP   is   a   p-­‐type   (electron   donor)   semiconductor   with   a  

symmetrical  molecular  structure.  This  molecule  is  only  composed  of  

carbon   and   hydrogen   atoms   (see   Figure   2.8).   Among   other   donor  

molecules,   DBP   is   a   promising   electron   donor   material,   which   has  

been  utilized  in  many  laboratories  since  200966–72.    

High  optical  absorption  and  a  deep  HOMO  level  around  5.5  eV  are  

principle   advantages   of   DBP   in   application   of   solar   cells66,73.   These  

main   advantages   allow   fabrication   of   a   thinner   active   layer,   which  

facilitates   reaching   the   exciton   to   the   D/A   interface.   Moreover,   its  

HOMO   level   energy   of   around   -­‐5.5   eV   is   energetically   compatible  

with   fullerene   acceptors   to   be   used   in   the   active   layer.   Energy  

difference   between   HOMO   of   the   DBP   and   LUMO   of   the   fullerene  

results  in  a  high  open  circuit  voltage  (VOC)4,66,71,74–78.

 Figure  2.8.  Skeletal  formula  of  tetraphenyldibenzoperiflanthene  (DBP).  

 

Page 42:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 42  

Fullerene  C70  

Fullerene  molecule  is  a  hollow  molecule  cage  consisting  of  sixty  or  

more  carbon  atoms.  It  can  be  in  the  shape  of  a  sphere,  ellipsoid,  tube  

or   other   shapes.   Buckminsterfullerene   or   buckyball   was   the   first  

known  example  of  the  spherical  shaped  fullerenes.  C70  is  a  fullerene  

molecule  with  70  carbon  atoms,  and  resembles  the  shape  of  a  rugby  

ball.   In   1985,   Robert   Curl,   Harold   Kroto   and   Richard   Smalley  

discovered   Fullerenes   (with   the   most   common   C60   and   C70)   (see  

Figure   2.9),   and   they   were   awarded   the   1996   Nobel   Prize   in  

chemistry   for   their   discovery79.   Since   then   C70   has   been   used   as  

electron   acceptor   and   electron   transporting   molecule.     HOMO   and  

LUMO  of  C70  are  -­‐6.1  eV  and  -­‐4.0  eV  respectively80.  

Figure  2.9.  Schematic  drawing    (a)  soccer-­‐ball  structure  of  buckyball  C60  and  (b)  rugby-­‐ball  structure  of  common  fullerene  C70.  (c)  C70  Powder  

2.4.2  buffer  layers  Molybdenum  trioxide  MoO3    

Molybdenum   oxide   is   known   for   its   catalytic   activity   and   semi-­‐

conductive  properties.  MoO3  is  an  n-­‐type  material  being  used  as  hole  

transport  layer  in  organic  solar  cells81–84  (Figure  2.10).  

 Compared   to   other   metal   oxides   such   as   WO3   and   V2O5,  

molybdenum   oxide   can   be   evaporated   at   very   low   temperatures  

(~  400  ℃)   in  vacuum  from  a  crucible.  Using  MoO3  between  the  ITO  

Page 43:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  43  

and  donor   layer   improves   the   fill   factor   of   the  devices   by   reducing  

the  series  resistance.  This  in  general  improves  the  power  conversion  

efficiencies   of   the   solar   cells83.   Moreover,   it   has   been   shown   that  

using   MoO3   instead   of   PEDOT:PSS   in   OPV   devices   improves   their  

stability85.  

   

Figure   2.10.   (left)   Crystal   structure   of   molybdenum   trioxide   (Hyung-­‐Seok  Kim/Nature  Materials),  (right)  MoO3  powder  

                       

 Bathocuproine  BCP  

Bathocuproine,  2,9-­‐dimethy-­‐4,  7-­‐diphenyl   -­‐1,10-­‐phenathroline  or  

BCP   is  a  well-­‐known  electron   transport   layer  being  used   in  organic  

solar   cells86–88.   BCP   is   a   crystalline  white   or   yellow  powder,   and   is  

insoluble   in  water   (Figure   2.11).   This  molecule   is   a  wide   band   gap  

material,   and   importing   an   8-­‐10   nm   thick   layer   BCP   between  

acceptor   layer   and   top   metal   contact   such   as   aluminum   improves  

electron   transport   properties   by   reducing   geminate   recombination  

of   the   exciton   at   the   acceptor-­‐metal   interface.   Furthermore,   it  

protects   the   active   layer   from   damages   caused   by   the   metal  

deposition87,88.  

 

Page 44:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 44  

Figure   2.11.   Left)   skeletal   formula   of   Bathocuproine, 2,9-dimethy-4, 7-diphenyl -1,10-phenathroline (BCP), right) BCP powder.  

2.4.3  Contacts  

Active  layer  and  buffer  layers  are  sandwiched  between  indium  tin  

oxide   (ITO)   as   anode   and   top   Ag   or   Al   as   cathode.   ITO   is   a  

transparent  conducting  oxide  with  electrical  conductivity  and  optical  

transparency  in  the  visible  regime.      

2.5  Fabrication  techniques  There   are   two   common  ways   to   deposit   layers   of   a   solar   cell:   spin  

coating   and   vacuum   deposition.   In   spin-­‐coating   processes,   a   small  

amount  of  material  in  form  of  a  solution  is  applied  on  the  center  of  a  

substrate  being   located  on  a  holder  of   a   spin-­‐coater  machine.  Then  

the  substrate  is  rotated  at  a  high  speed  and  the  coating  material  is    

Figure  2.12.  Schematic  drawing  of  spin  coating  procedure.  Desired  solution  is  applied  over  a   substrate   located  on  a  spinner,   then   the  spinner   is   rotated  and  the  material  is  spread  over  the  surface  by  centrifugal  force  to  form  a  film.      

Page 45:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  45  

spread   by   centrifugal   force   (see   Figure   2.12).   Depending   on   the  

viscosity   and   concentration   of   the   solution,   as  well   as   the   speed   of  

the  spinner,  a  desired  thickness  of  the  film  is  achieved.    

Vacuum   thermal   evaporation   is   another   deposition   technique,   in  

which   an   organic   material   is   heated   up   in   high   vacuum.   In   this  

technique,  the  substrate  is  place  upside  down  in  a  distance  above  the    

Figure   2.13.   Thermal   evaporation   chamber.   Substrate   is   located   upside  down  above  the  source.  Material  is  thermally  evaporated  and  is  deposited  on  the  surface  of  the  rotating  substrate.  A  Crystal  monitors  the  deposition  rate.    

 

source,  where  the  evaporated  material  is  directly  deposited  onto  the  

substrate,  as  shown  in  Figure  2.13.  This  allows  for  depositing  many  

layers  of  different  materials  without  chemical  reactions  between  the  

layers.   A   crystal  monitors   the   deposition   rate   to   reach   the   desired  

thickness.   However,   for   large-­‐area   substrates,   there   may   be  

problems  with  film  thickness  and  uniformity.   In  this  work,  we  used  

Page 46:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 46  

vacuum  thermal  evaporation  technique  to  fabricate  bulk  and  bilayer  

DBP-­‐C70  based  organic  solar  cells.        

2.6  Stability  of  organic  solar  cells  One   of   the   main   drawbacks   of   organic   solar   cells   is   their   low  

stability   and   short   lifetime   due   to   device   degradation.   This   means  

that   over   time,   they   loose   their   photovoltaic   ability   to   generate  

electricity,  which   results   in   a  decay   in   their  PCE.  Depending  on   the  

importance   of   air   exposure,   it   can   be   divided   into   two   categories;  

intrinsic  and  extrinsic  degradation.  

2.6.1  Intrinsic  degradation  Intrinsic  degradation  is  caused  by  thermal  intrusion  of  constituent  

materials  inside  the  solar  cell.  This  incudes  chemical  degradation  as  

well  as  molecular  segregation  or  rearrangement  at  the  interfaces  and  

active  materials13.  This  type  of  degradation  can  happen  either  in  dark  

conditions  or  under  illumination  (photo-­‐induced)11,89,90.  

Over   a   short   period   of   time   at   dark   conditions,   molecular  

segregation  and  rearrangement  at  material  interfaces  hinder  charge  

extraction.  For  longer  periods,  degradation  causes  phase  separation  

at  BHJ  solar  cells  and  results  in  less  efficient  charge  generation11,91–98.    

Under   illumination,   photo-­‐induced   degradation   causes   JSC   or   VOC  

losses  especially  at  solution  processed  active  layers  due  to  increasing  

the   energy   disorder   of   the   polymer   materials11.   In   fullerene  

acceptors  especially  C60,  photo-­‐dimerization  causes  JSC  loss99.  

2.6.2  Extrinsic  degradation  Extrinsic   degradation   is   penetration   of   air   (oxygen   and   water)  

into  the  active   layer  and   interlayers,  and  causing  chemical  reaction.  

Page 47:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  47  

This   results   in   the   loss   of   photocurrent   from   the   active   layer   and  

dead   zones   are   grown   in   the   device100,101.   Reaction   of   oxygen  with  

the  electrodes  can   increase   the  work   function  of  metals  by   forming  

surface  dipoles  and  deteriorate  the  performance  of  the  devices100,102.  

Under  light  condition,  photooxidative  loss  of  absorption  (bleaching)  

of  the  semiconductor  materials  can  cause  degradation97,103,104.    

There   are   solutions   to   prevent   intrinsic   and   extrinsic  

degradations11,13,   such   as   encapsulation   of   the   devices   with   low  

permittivity  materials105,  or  using  pure,  dense  materials  with  highly  

ordered   film  morphology   to   lower   the   oxygen   and  water   diffusion  

into   the   layers106.   Using   non-­‐fullerene   acceptor   materials   will   also  

reduce  photo-­‐induced  JSC  and  VOC  losses,  which  normally  results  from  

photo-­‐dimerization   of   fullerene   acceptors107.   Moreover,   using   high  

work  function  metals  is  desirable  to  reduce  extrinsic  degradation102.    

2.7  Perovskite  solar  cells    Perovskite  solar  cells  are  made  out  of  the  perovskite  mineral  that  

was  named  after  Lev  Perovskite  who  was  the  founder  of  the  Russian  

Geographical  Society.    

The   perovskite   structure   can   be   simplified   as   a   hybrid  molecule  

with  organic   atom  A   (positively-­‐charged   cation   in   the   center  of   the  

cube),   inorganic   atoms   B   (usually   a   metal   cation)   located   on   the  

corners  of  the  cube,  and  smaller  halide  atoms  X  (anion  with  negative  

charge)  occupying  the  faces  of  the  cube108.  In  the  world  of  solar  cells,  

perovskites   and   the   perovskite   structure   are   used   interchangeably.  

Any   compound   that   has   the   same   crystallographic   structure   as   the  

perovskite  mineral  is  also  called  perovskite,  which  means  the  generic  

Page 48:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 48  

form   ABX3.   For   example,   Perovskite  mineral   composed   of   Calcium,  

Titanium  and  Oxygen  forms  the  CaTiO3.  

 Depending  on  the  atoms/molecules  that  are  used  in  the  structure,  

perovskite   can   show   interesting   properties   that   make   them   very  

exciting   for   physicists,   chemists   and   material   scientists.   Their  

intrinsic  properties  such  as  broad  absorption  spectrum,   fast  charge  

separation   and   long   carrier   lifetime   and   long   electron   and   hole  

transport   distance   (over   one   micron109,110)   have   made   them  

promising   materials   for   solid-­‐state   solar   cells.   The   perovskite  

crystalline  lattice  arrangement  is  demonstrated  in  Figure  2.14.  

Figure   2.14.  Generic  perovskite  crystalline   lattice  arrangement  of  the  form  ABX3.    Note  that  the   lines  represent  crystal  orientation  and  not  the  bonding  patterns.   The   two   structure  are   equivalent  with   left)   atom  B  at   the  <0,0,0>  position  and  right)  atom  A  at  the  <0,0,0>  position.  

 Low   costs   of   both   raw   materials   and   fabrication   methods,   high  

efficiency,   light  weight   and   flexible  perovskite   solar   cell  have  made  

them   commercially   attractive.   Perovskite   conversion   efficiency   has  

reached   to   about   22.7%   in   late   2017   (listed   in   an   efficiency   chart  

provided  by  NREL).  However,   one  of   the  main   challenges   that  hold  

them  back  from  the  market  is  their  low  stability  and  lifetime.      

Page 49:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  49  

2.7.1  Fabrication    Perovskite  solar  cells  can  be  easily  incorporated  into  standard  or  

thin   film   architecture.   Vacuum   deposition   can   be   used   to   co-­‐

evaporate   the   organic   (methylammonium)   and   inorganic   (lead  

halide)   components   to   give   a   uniform   and   high   quality   film.  

However,   co-­‐evaporation   of   these   materials   requires   special  

chambers   that   may   not   be   available   in   many   labs.     Moreover,   this  

may   cause   cross-­‐contamination   between   organic   and   non-­‐organic  

sources  in  the  deposition  chambers,  which  is  difficult  to  clean.    

Development   of   solution   deposition   processes   has   provided  

simpler  methods   to   fabricate   Perovskite   solar   cells28.   A   lead   halide  

and  methylammonium  halide  can  be  dissolved  in  a  solvent  and  spin  

coated  in  one-­‐step  processing  onto  a  substrate.  However,  other  steps  

and   additives   are   required   in   order   to   achieve   a   homogenous   and  

high  quality  film.    

For   the   interlayers,   many   of   the   standard   electron   and   hole  

transport   layers   from   the   world   of   organic   solar   cells   such   as  

PEDOT:PSS,   PCBM,   ZnO   and   TiO2   can   be   used   in   perovskite   solar  

cells.      

2.7.2  Stability  

As  mentioned  before,  one  main  challenge  in  the  field  of  perovskite  

solar   cells   is   their   poor   stability   and   short   lifetime.   This   is   mainly  

related   to   influence   of   the   different   factors   such   as   oxygen   and  

moisture18,19,   thermal   intrinsic   stability20,   heating   under   applied  

voltage21,   UV  photodegradation22,   and  mechanical   fragility23.  Water  

solubility   of   the   organic   constituent   of   the   perovskite   absorber  

material  make   these  devices   highly   sensitive   to  moisture   in   the   air  

Page 50:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 50  

and   causes   rapid   degradation24.   This   sensitivity   can   be   reduced   by  

reducing   the   constitute   material   or   by   changing   the   cell’s  

architecture.   Moreover,   encapsulation   of   the   devices   prevents   the  

immediate   degradation   of   these   devices   under   moist   conditions;  

however,  long-­‐term  studies  have  yet  to  be  performed24,25.  It  has  been  

shown  that  the  UV  Photodegradation  of  the  perovskites  with  TiO2  is  

linked  to  the  interaction  of  the  photogenerated  holes  inside  the  TiO2  

with  the  oxygen  radicals  on  the  surface  of  the  TiO2  111.      

These   two   instability   problems   can   be   solved   by   using  

multifunctional  coatings   to  provide  strong  hydrophobic  barrier  and  

block   the  UV   light   of   the   incident   solar   spectrum  and   converting   it  

into   visible   light112.   In   addition   to   these   solutions,   Insertion   of   a  

mechanically   reinforcing   scaffold   into   the   active   layer   of   the  

perovskite   solar   cells   has   provided   a   higher   fracture   resistance   by  

30-­‐fold113.  Nevertheless,  despite  all  these  efforts,   long-­‐term  stability  

of   the   perovskite   solar   cells   needs   to   be   further   enhanced   for  

successful   commercialization   of   this   appealing   technology   in   the  

market.    

2.8  Characterization    

2.8.1  J-­‐V  characteristics  Organic   solar   cells   are   typically   characterized   under   1000W/m2  

light   (1.5   AM   solar   spectrum).   In   the   dark,   the   solar   cell   acts   as   a  

simple   diode.     An   ideal   solar   cell   can   be  modeled   by   an   equivalent  

circuit   in   which   the   current   source   is   in   parallel   with   a   diode.  

However,   since   no   solar   cell   is   ideal,   a   series   resistance   (Rs)   and   a  

shunt   resistance   (Rsh)   component   are   added   to   the   circuit.   This  

Page 51:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  51  

model  is  useful  to  understand  the  electronic  behavior  of  a  solar  cell  

(see  Figure  2.15).    

Figure  2.  15.  Electric  circuit  equivalent  to  an  OPV  device.  

 Series   resistance   is   resulted   from   all   the   resistances   at   the  

interfaces,   conductivity   of   the   semiconductors   and   the   electrodes.  

Shunt   resistance   is   related   to   the  defects   in   the   film  and   takes   into  

account   the   leakage   of   the   current   through   these   defects.   Ideally   a  

low  Rs  and  a  high  Rsh  is  desired.  In  this  circuit,  n  is  the  ideality  factor  

of  the  diode,  ID  is  the  saturation  current,  which  is  the  current  in  the  

dark   at   the   reverse   bias,   and   Iph   corresponds   to   photocurrent  

generated  during  illumination.    

Figure  2.16  shows  the  current-­‐voltage  (I-­‐V  curve)  characteristic  for  a  

typical   solar   cell.   Without   illumination,   the   solar   cell   electrical  

characteristics  are  similar  to  a  diode.  After  illumination,  the  IV  curve  

is   shifted   down   to   the   4th   quadrant   as   the   cell   begins   to   generate  

power.   The   greater   the   light   intensity,   the   greater   the   generated  

current  and  the  amount  of  shift.  

Page 52:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 52  

Figure  2.  16.  Current-­‐voltage  (I-­‐V)  curve  of  an  organic  solar  cell.  a)  Without  illumination,   the   solar   cell   behaves   like   a   diode,   b)   after   illumination,   the  curve   is  shifted  downward  as  the  cell   start   to  generate  power,  c)   increasing  the   light   intensity   results   in   further   shift   of   the   curve   downward   as   the  generated  power  increases.  

 The  operation  of  the  solar  cell  under  different  applied  biases  can  

be  summarized  into  4  steps  (see  Figure  2.17):  

1. Large   reverse   bias:  when   a   reverse   bias   is   applied,   it  

reinforces  the  built-­‐in  electric   field,  and  due  to  presence  of  a  

strong  electric   field  drift   current   is  dominant.  This  enhances  

the   exciton   dissociation   and   results   in   an   efficient   charge  

transport  and  a  large  photocurrent.  

2. Small   reverse   bias:   when   the   applied   bias   is   close   to  

zero,   the   built-­‐in   field   is   the   only   force   exists   in   the   device,  

which  drives  the  carriers  to  the  corresponding  electrodes  for  

collection.   When   the   applied   bias   is   increased   in   positive  

direction,  it  opposes  the  built  in  field.  Therefore,  drift  current  

decreases  and  results  in  decrease  of  the  current.    

Page 53:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  53  

3. Positive  bias  and  zero  internal  field:  at  the  point  where  

the  applied  bias  is  equal  to  the  built  in  field,  the  electric  field  

inside   the   device   becomes   very   small   and   diffusion   current  

dominates   the   current.   This   condition   is   called   open-­‐circuit  

condition  and   corresponds   to   the  maximum  voltage  out  of   a  

solar  cell.  

4. Positive   bias:   by   further   increasing   the   bias,   the  

applied   bias   becomes   larger   than   the   built-­‐in   field   that  

reverses   the   potential   gradient   in   the   device.   Therefore,  

carrier  injection  occurs  through  the  tunneling  and  results  in  a  

positive  current.    

 

Figure  2.17.  Operation  of  a  solar  cell  under  different  applied  biases;  1)  large  reverse  bias;  2)  small  reverse  bias;  3)  positive  bias,  results  in  zero  initial  field,  and   corresponds   to   open-­‐circuit   condition;   4)   positive   bias   and   carrier  injection  

It  is  more  common  to  use  current  density  (J)  instead  of  current  (I)  

on   the   y-­‐axis.   Therefore,   the   key   parameters   of   the   solar   cell   that  

define  the  performance  of  the  cell  can  be  extracted  from  its  J-­‐V  curve.  

These  parameters  are  open  circuit  voltage  (VOC),  short  circuit  current  

(JSC),   fill   factor   (FF),   the   maximum   power   conversion   efficiency  

(Pmax),   the   voltage   and   the   current   at   max   power   point   (Vmax   and  

Imax).   Figure   2.18   shows   solar   cell   J-­‐V   curve  metrics.   Each   of   these  

parameters  is  described  here:  

Page 54:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 54  

 

Figure  2.18.  Solar  cell  J-­‐V  curve  metrics.  

 

Open  circuit  voltage  (VOC)    

Is   defined   as   the   voltage   at  which   the   current   density   output   is  

zero.  The  value   can  be   extracted   from   the   crossing  point   of   the   J-­‐V  

curve  with  V  axis  at  0  J.    

Short  circuit  current  (JSC)    

Is  defined  as  the  current  at  which  the  externally  applied  voltage  is  

zero.  The  value   can  be   extracted   from   the   crossing  point   of   the   J-­‐V  

curve   at   0   volt.   The   value   presents   the   number   of   the   generated  

charge  carriers  that  were  collected  at  the  electrodes  at  short  circuit  

condition.   JSC   value   can   be   improved   by   using   small   bandgap  

materials  with  high  absorption  coefficient  and  high  carrier  mobility.  

Moreover,   as   discussed   before,   a   bulk   heterojunction   with   more  

mixed  phases  (smaller  domains)  can  improve  the  charge  generation  

efficiency.      

Fill  factor  (FF)  

The  shape  of  the  J-­‐V  curve  is  defined  by  the  fill  factor  parameter.  It  

is   defined   as   the   ratio   between   the   maximum   obtainable   output  

Page 55:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  55  

power   (product   of   Jmpp   and   Vmpp   at   maximum   power   point)   and  

product  of  the  open-­‐circuit  voltage  and  short-­‐circuit  current.  

FF =J!""  V!""J!"  V!"

                                                                                         (2.2)  

A  low  electron  mobility  causes  increase  in  the  recombination  rate  

before   they   reach   the   interface   therefore   a   higher   external   bias   is  

needed  to  sweep  the  carriers  to  the  heterojunction  for  dissociation.  

This   results   in   a   strong   dependency   of   the   current   on   the   applied  

bias  and  leads  to  a  lower  FF.  

Power  conversion  efficiency  (PCE)  

Efficiency   of   a   solar   cell   is   also   known   as   the   solar   power  

conversion  efficiency,   that   is   the   ratio  of  produced  electrical  power  

to  the  incident  irradiation  power.    

𝑃𝐶𝐸 =𝑉!"  𝐽!"𝐹𝐹  

𝑃!"                                                                                  (2.3)  

Where  Pin  is  the  input  power  density.    

External  Quantum  Efficiency  (EQE)  

The   percentage   of   the   photons   that   are   converted   to   charge  

carriers   and   collected   at   the   electrodes   is   called   the   external  

quantum  efficiency  (EQE).  This  parameter   is  defined  as  the  product  

of  the  efficiency  of  the  four  steps;  absorption,  diffusion,  dissociation  

and  collection,  

𝜂!"! = 𝜂!  . 𝜂!"##  . 𝜂!"##  . 𝜂!                                                                (2.4)  

A   narrow   absorption   band   or   a   thin   active   layer   can   lower   the  

absorption   efficiency.   Moreover,   a   high   recombination   rate   and  

photo   generated   loss   due   to   quenching   at  metal   electrodes   or   high  

phase  separation  in  the  active  layer  can  lower  EQE.    

Page 56:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 56  

2.8.2  ISOS  degradation  tests      

In  order   to   track   the  behavior  of   the  organic  and  hybrid  devices  

over  time  and  to  understand  the  degradation  mechanisms,  solar  cell  

devices   are   tested  under  various   stability   test   conditions  known  as  

accelerated   lifetime   measurements.   To   increase   reproducibility   of  

the   conditions   across   different   labs,   International   Summit   on   OPV  

Stability   (ISOS)  protocol   have  been  established.  There   are  different  

ISOS   test   conditions,   such   as   dark,   illumination,   indoor,   outdoor,  

laboratory   weathering,   thermal   and   humidity   cycling.   These  

conditions   are   simulated   in   systems   known   as   climate   chambers.  

After   putting   the   devices   in   the   desired   environment,   the  

performance  of  the  devices  is  monitored  over  time  and  the  result  is  a  

plot   that   shows   the   efficiency   versus   time,   known   as   decay   curve.    

There  are  three  main  regimes  of  degradation  of  solar  cells  known  as  

burn-­‐in,   long-­‐term   and   failure.   Analyzing   the   behavior   of   the   solar  

cells   in   these   three   zones   can   give   much   information   about   the  

overall  stability  of  the  devices114–117.    

2.9  Relation  between  VOC  and  CT  states  One  of  the  prominent  parameters  that   limits  the  efficiency  of  the  

solar  cells  is  open  circuit  voltage  (VOC),  that  is  the  maximum  possible  

voltage  out  of  a  solar  cell.  Numerous  studies  have  shown  that  VOC  can  

be  predicted   from   the  energy  gap  between   the  HOMO  of   the  donor  

and  LUMO  of  the  acceptor  material  in  a  BHJ.  Therefore,  VOC  depends  

on   the   choice   of   the   materials;   which   means   choosing   light  

harvesting  materials  with  higher  energy  bandgaps  can  be  beneficial.  

However,  analyzing  VOC  across  a  wide  range  of  materials  have  shown  

Page 57:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  57  

that  although  the  optical  bandgap  of  the  light  harvesting  materials  is  

around  1.7  to  2.1  eV,  VOC  barely  exceeds  half  of  the  incident  photon  

energy   meaning   around   1.0   V118.   This   difference   between   the  

material   bandgap   and   VOC   has   experimentally   shown   to   be  

approximately   0.6   eV,   while   it   is   only   0.3   to   0.45   eV   for   inorganic  

materials   such   as   Si,   CIGS,   and   GaAs119.   To   date,   there   have   been  

many  efforts  to  address  the  origins  of  the  VOC  losses  and  finding  the  

solutions   to   prevent   these,   however,   it   remains   still   an   open  

question.        

There  are  many  factors  that  can  influence  the  open  circuit  voltage  

in  organic  solar  cells  such  as  energetic  disorders  or  density  of  states,  

charge  transfer  states,  donor-­‐acceptor  interface,  carrier  density  and  

interface  morphology.    Apart   form  these,  various  other   factors  such  

as  temperature,  light  intensity,  recombination,  etc.  can  influence  the  

VOC   indirectly120.   Among   all,   we   are   interested   in   charge   transfer  

states,  which  are   relating   the  properties  of   the  D-­‐A   interface   to   the  

VOC  value.  Several   studies  have  demonstrated   that   there   is  a   strong  

relation   between   VOC   and   CT   state   emission   (ECT)   being   correlated  

according  to:    

ECT−qVOC=0.6±0.1  eV                                                                            (2.5)  

Vandewal   et   al.   obtained   an   analytical   expression   for   VOC   by  

separating   the   losses   from   ECT   into   radiative   and   non-­‐radiative  

recombination:  

𝑉!" =𝐸!"𝑞 − Δ𝑉!"#  (𝑇)− Δ𝑉!"!#$%  (𝑇)                                      (2.6)  

The   two   temperature   dependent   radiative   and   non-­‐radiative  

recombination  losses  are  given  by  the  following  equations:  

Page 58:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 58  

Δ𝑉!"#   𝑇 = −  𝑘𝑇𝑞 ln

𝐽!"  ℎ!𝑐!

𝑓𝑞2𝜋 𝐸!" − 𝜆                                      (2.7)  

Δ𝑉!"!#$%   𝑇 = −𝑘𝑇𝑞 ln 𝐸𝑄𝐸!"                                                        (2.8)  

Here  J!"  represents   the   short   circuit   current,   and  EQE!"  is   the  

external   quantum   efficiency   of   electroluminescence.   Equation   2.6  

shows  a  linier  correlation  between  the  photovoltage  with  the  energy  

of   the  CT  states.  A  detailed  deduction  can  be   found   in   the  paper  by  

Vandewal  et  al.121.  

Since  the  energy  of  the  CT  state  is  one  of  the  lowest  energy  states  

in   the   SC,   a   highly   sensitive   absorption   technique   such   as   sEQE   is  

used,   in   which   the   CT   state   is   determined   at   the   shoulder   of   the  

spectrum  at  very  low  energies38.  The  working  principle  of  the  sEQE  

measurements   is   similar   to   the   standard   EQE   measurements,   and  

will  be  explained  in  Chapter  3.    

There  are  two  methods  both  based  on  the  principles  of  the  Marcus  

theory  (see  section  2.2.2.2)  to  extract  the  CT  properties.  

Based   on   this   theory49,122,   a   formalism   has   been   raised   by  

Vanderwal  et  al.121  to  characterize  the  properties  of  the  CTS,  and  has  

been  widely  used  to  investigate  the  energy  of  the  CT  states123–125.    

𝐸𝑄𝐸(𝐸) =𝑓!!

𝐸 4𝜋𝜆𝑘𝑇𝑒𝑥𝑝

−(𝐸!" + 𝜆 − 𝐸)!

4𝜆𝑘𝑇                            (2.9)  

Where   k   is   Boltzmann’s   constant   and   T   is   the   absolute  

temperature.   ECT   is   the   free   energy   difference   between   the   CT  

complex   ground   state   and   the   CT   excited   state,  𝜆  is   reorganization  

energy,  f  is  a  parameter  proportional  to  the  density  of  CT  states  and  

represents  the  strength  of  the  donor/acceptor  material  interaction,  h  

is  Planck’s  constant,  and  c  is  the  speed  of  light  in  vacuum.  Through  a  

Page 59:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  59  

Gaussian   fit   over   the   shoulder   of   the   sEQE   curve   at   sub-­‐bandgap  

region,  ECT,  𝜆,  and  f  can  be  extracted  (fitting  parameter).    

Another  method  is  to  measure  both  CT  absorption  via  sEQE,  and  

CT   emission   via   electroluminescence   (EL).     The   crossing   point   of  

these  two  spectra  equals  ECT,  and  𝜆  and  f  can  be  extracted  through  a  

fit   over   the   sub-­‐bandgap   region   and   using   Equations   below.   (see  

Figure  2.19)126.      

𝐸𝑄𝐸!" 𝐸 .𝐸 =𝑓!"!4𝜋𝜆𝑘𝑇

exp−(𝐸!" + 𝜆 − 𝐸)!

4𝜆𝑘𝑇                      (2.10)  

𝐸𝐿(𝐸)𝐸 =

𝑓!"4𝜋𝜆𝑘𝑇

exp−(𝐸!" − 𝜆 − 𝐸)!

4𝜆𝑘𝑇                                  (2.11)  

The  left  hand-­‐side  of  the  above  equations  show  a  mirror  image  

relationship,  and  due  to  the  multiplication  and  division  of  the  spectra  

by  E,  they  are  called  reduced  absorption  and  emission  spectrum,  

respectively.    

Figure  2.19.  a)  free  energy  diagram  for  the  ground  state  and  lowest  excited  state.  b)  Reduced  EQE  PV  and  EL  spectrum  with  fits  using  formulas  (10)  and  (11).  Each  parameter  is  indicated  in  the  figure.  

Page 60:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 60  

 

 

 

 

 

 

 

 

 

 

 

                             

Page 61:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  61  

         

CHAPTER  3    

Experimental  Setup  

Organic   solar   cells   used   in   this   work   are   fabricated   over   pre-­‐

patterned   indium-­‐tin-­‐oxide   (ITO)   (≈   100   nm)   coated   glass   wafers  

with   a   sheet   resistance   of   9-­‐15  Ω/sq  (purchased   from   University  

wafer,   Inc,   USA).   Patterning   process   is   carried   out   in   a   class   ISO7  

cleanroom,   and   then   prepared   substrates   are   transferred   to   a  

laboratory   equipped  with   fabrication   and  measurement   systems   to  

proceed  with  other  steps.  All  organic  active  materials,  metal  oxides  

and  metal  layers  are  formed  using  a  vacuum  deposition  system.    

In   this   chapter,   each   of   these   device   fabrication   steps   and   the  

measurement  setups  are  explained  in  detail.  

3.1  Device  fabrication      

3.1.1  patterning  of  the  substrates  Pattering   process   is   done   using   a   positive   lithography   process,  

through   which   a   thin   layer   of   adhesion   promoter,  

Bis(trimethylsilyl)amine   (also   known   as   hexamethyldisilazane,   or  

Page 62:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 62  

HMDS)   is   applied   in   120°C,   and   a   photoresist   (AZ5214E,  

Microchemicals  GmbH,  Germany)   is   spin-­‐coated   and   baked   at   90°C  

for   1  min  on   a   hot   plate.     Patterns   are   transferred  using   a  UV  Karl  

Suss  MA  150  Aligner.  Then  an  ITO  etching  process  is  performed  for  4  

min  in  HCL:HNO3:H2O  (1:0.08:1)  solution  at  40°C  (etching  rate≈  0.5-­‐

1  nm)  to  remove  excess  areas.  Then  the  photoresist  is  stripped  off  in  

Acetone   placed   in   ultra-­‐sonic   bath   for   10   min   to   reveal   the   final  

patterns.    

3.1.2  Pre-­‐cleaning  the  substrates  Patterned  wafers  are  diced  into  15  by  15  mm2  substrates,  and  are  

cleaned   using   detergent,   acetone   and   isopropanol   in   an   ultra-­‐sonic  

water  bath  (10  min  each),  and  blow-­‐dried  with  a  nitrogen  (N2)  gun.  

Figure  3.1  shows  the  layout  of  the  pattered  ITO  samples  after  being  

diced  into  smaller  substrates.    

Figure  3.1.  Layout  of  the  patterned  ITO  coated  glass  substrates.  

 

Prior   to   fabrication   process,   substrates   are   treated   with   air  

plasma   cleaning   at   400   mTorr   for   20   min.   Then   right   after   the  

treatment,   they   are   transferred   to   a   glovebox   connected   to   a   high-­‐

vacuum  deposition  system  with  a  base  pressure  of  about  10-­‐8  mbar.    

Page 63:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  63  

3.1.3  Vacuum  deposition  of  organic/recombination  layers  and  top  electrode  The  whole  fabrication  process  is  done  in  a  Cryofox  cluster  system  

in   UHV   environment,   and   via   thermal   evaporation   process   (Figure  

3.2).  Cluster  system  is  connected  to  a  Nitrogen  Glovebox  to  avoid  air  

exposure   during   the   whole   fabrication   process.   In   order   to   avoid  

material   contamination   in   different   layers,   deposition   of   organic  

materials,   and   metals   are   performed   in   separate   chambers   having  

vacuum   pressure   of   about   5   x   10-­‐8   mbar.   These   chambers   are  

connected  with  a   transfer   chamber  with  a  base  pressure  of   around  

10-­‐9,   where   a   robotic   arm   transfers   the   sample   between   the  

chambers.   This   allows   a   sequential   deposition   in   high   vacuum  

conditions  without  breaking  the  vacuum  between  the  steps.  Vacuum  

is  broken  only  when  there  is  a  need  to  use  a  different  mask,  during  

which  the  samples  are  only  exposed  to  the  Nitrogen  environment  of  

the  glovebox.  The  whole  process  is  controlled  through  a  control  unit  

where   sample   recipes   are   loaded   for   deposition   of   each   layer  

separately.    

To   form   the  active   layer,   tetraphenyldibenzoperiflanthene   (DBP)  

(purchased   from   Luminescence   Technology   Corp.,   Taiwan)   and  

fullerene  (C70)  (purchased  from  Sigma-­‐Aldrich,  Germany)  are  used  as  

electron  donor  and  acceptor,  respectively.  For  exciton  blocking  layer  

Bathocuproine  (BCP),  and  for  electron  transport   layer  molybdenum  

oxide   (MoO3)   (both   purchased   from   Sigma-­‐Aldrich,   Germany)   are  

deposited.  

Page 64:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 64  

 Figure  3.2.  Cryofox  deposition  cluster  system.  Organic  materials  and  metals  are  deposited  in  two  separated  chambers  in  ultra  high  vacuum  conditions.  A  robotic  arm  transfers  the  sample  between  the  chambers  without  breaking  the  vacuum  between  the  steps.  Right.  The  system  is  connected  to  a  glove  box  to  avoid  exposure  of  the  samples  to  air127.  

Figure  3.3  shows  the  organic  sources  for  DBP,  C70  and  BCP  inside  

the  organic  chamber.  Each  crucible  is  covered  with  a  shutter  when  it  

is   not   in   use,   and   a   quartz   crystal   microbalances   (QCM)   are  

controlling   the   deposition   rate   for   each   source   with   tenth   of   an  

angstrom   precision.   Materials   are   thermally   evaporated   and   are  

deposited  over  the  surface  of  rotating  samples  that  are  placed  upside  

down  in  a  distance  above  the  sources.  This  way  thickness  uniformity  

of   10%   across   a   10cm   sample   holder   is   achieved.   Moreover,   if  

needed,   there   is  a  possibility   to  heat  up  the  substrates  up  to  250℃.  

This  allows  annealing  the  samples  in  vacuum  during  evaporation  or  

between  depositions  of  each  layer.  

Page 65:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  65  

Figure   3.3.  Organic  sources   located   inside  the  ultra  high  vacuum  chamber.  Each  source  is  placed  inside  crucible,  and  a  shutter  to  cover  the  source  while  not  in  use.  

As   the   final   step,   100nm   silver   (Ag)   (purchased   from   AESpump  

ApS,  Denmark)  is  deposited  as  top  electrode  to  finish  the  fabrication.  

Deposition   of   MoO3   and   Ag   is   performed   in   a   separate   chamber.  

Deposition  rate  is  kept  at  0.3  Å/s  for  organic  materials  and  0.5-­‐1  Å/s  

for  Ag  top  electrode  using  quartz  crystals.   In  order  to  avoid  a  short  

between  the  bottom  ITO  contact  with  the  top  Ag  electrode,  a  shadow  

mask  with  a  wider  opening  is  used  to  form  the  active  layer,  while  a  

mask  with  smaller  opening  is  used  during  the  metallization.  Overlap  

of  Ag  contact  area  with   its  underneath  organic   layers  defines  a   cell  

area   of   around   10   mm2.   These   fabrication   steps   takes   around   3-­‐4  

hours.  Figure  3.4  shows  the  final   look  of  the  fabricated  sample.  The  

final  sample  consists  of  4  cells  with  separated  active  areas  sharing  a  

common  ITO  bottom  electrode.    

 

 

Page 66:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 66  

Figure   3.4.   Final   outlook   of   the   DBP-­‐C70   based   organic   solar   cells.   Each  sample   consists  of  4   cells.  Overlap  of   the   top  electrode  with   the  bottom   ITO  electrode  defines  the  cell  area,  which  here  is  10  mm2  

3.1.4  Final  structure    In   this  work  we   fabricate   organic   solar   cells   based   on   the   same  

active   and   buffer   materials   but   with   two   different   standard   and  

inverted   configurations,   Figure   3.5.a   and   3.5.b,   respectively.   The  

order  and  thickness  of  each  layer  is  as  follow:  

• Standard  configuration:  

ITO/MoO3   (10   nm)/DBP   (20   nm)/C70   (30   nm)/BCP   (10   nm)/  

Ag  (100  nm)  

• Inverted  configuration:  

ITO/BCP   (0.5   nm)/C70   (30   nm)/DBP   (20   nm)/MoO3   (10  

nm)/Ag  (100  nm).  

Note  that  the  thickness  of  the  DBP  (donor)  and  C70  (acceptor)  are  

kept   the   same   in   both   configurations.   Energy   diagram   for   each  

configuration  is  illustrated  in  Figure  3.5.c  and  3.5.d.  

 

Page 67:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  67  

Figure   3.5.   Final   illustration   of   DBP-­‐C70   based   organic   solar   cells   with   a)  standard  and  b)  inverted  configurations.  C  and  d  show  energy  band  diagram  for  each  structure.      

3.2  Characterization  

3.2.1  J-­‐V  measurements  Fabricated   devices   are   mounted   in   a   homemade   sample   holder  

(Figure   3.6),   and   are   characterized   in   ambient   condition   using   a  

3000  class  AAA  solar  simulator  from  Abet  Technology  Inc.,  USA  with  

a   calibrated   arc   lamp.   The   system   is   connected   to   a   Keithley   2400  

source  measure   unit   (Keithley   instrument   Inc.,   USA),   and   LAbView  

software   is  controlling  the  measurements.  The   JV  curve   is  recorded  

applying  a  voltage  sweep  between  +1  to  −0.25  V  under  illumination  

intensity  of  100  mW/cm2.    

Page 68:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 68  

 

Figure  3.  6.  Sample  holder  with  4  sample  positions  

3.2.2  Sensitive  external  quantum  efficiency  (sEQE)  measurements  The   working   principle   of   the   sEQE   measurements   is   shown   in  

Figure  3.7,  and  is  similar  to  the  standard  EQE  measurements.    

In  this  technique,  the  light  from  a  quartz  Halogen  lamb  (50  W,  TS  

Electric)   is   chopped   at   140   Hz   and   is   passed   through   a  

monochromator   (Cornerstone   260   1/4m,   Newport).   Then   the  

monochromatic  light  is  focused  onto  a  solar  cell  mounted  in  a  holder,  

and   the  produced  current  at   the   short   circuit   condition   is   sent   to  a  

current   amplifier   (DHPCA-­‐100,   FEMTO).   This   current   is   then  

analyzed   by   a   LOCK-­‐IN-­‐amplifier   (7280   DSP,   Signal   Recovery,   Oak  

Ridge,  USA)  to  extract  the  EQE  properties.  EQE  is  defined  as  the  ratio  

of   the  photocurrent   to   flux   of   incoming  photons,  which   is   obtained  

using   a   calibrated   silicon   (FDS100-­‐CAL,   Thorlabs)   and/or   indium-­‐

gallium-­‐arsenide  (InGaAs)  photodiode  (FGA21-­‐CAL,  Thorlabs) 119.   In  

order   to   achieve   a   span   spectrum   over   5-­‐7   decades,   the   time  

constant   of   the   amplifier   was   set   to   1s,   and   its   amplification   was  

Page 69:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  69  

increased   to   resolve   low  photocurrent.  The  key  points   to   achieve  a  

higher  sensitivity  compared  to  the  standard  EQE  are  to  use  a  halogen  

lamp  which  has  a  broad  and  contentious  spectrum  down  to  infrared  

(IR),   avoid   optical   fibers   for   illumination,   and   using   high   optical  

density  filter.        

Figure  3.7.  Sketch  of  the  sensitive  EQE  measurement  setup128.  

3.2.3  Degradation  protocols  Stability   measurements   are   performed   in   four   ISOS   aging   test  

conditions:    

1. ISOS-­‐D-­‐1  (darkness,  room  temperature  and  humidity)  in  a  

dark  shelf  

2. ISOS-­‐D-­‐3   (darkness,   85℃  and   85%   RH-­‐humidity)   in   a  

climate  chamber  with  controlled  humidity  and  temperature  

3. ISOS-­‐T-­‐3  (darkness,  -­‐40℃  and  room  humidity)  in  a  thermal  

chamber  with  ambient  humidity  and  controlled  temperature  

4. ISOS-­‐L-­‐1   (illumination,   60℃  and   ambient   humidity)   in   a  

setup   consisting   a   solar   simulator   with   monitored   ambient  

conditions    

Page 70:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 70  

The  setup  used  for  ISOS-­‐L-­‐1  condition  is  consisting  of  a  wide-­‐area  

metal  halide   lamp  solar   simulator   (metal  halide  display/optic   lamp  

HMI  from  Orsam).  The   lamp  is  calibrated   in  ambient  air  with  a  Cell  

and   Meter   (91150V,   Newport).   Using   intensity   and   temperature  

sensors,   the   ambient   conditions   are   monitored   and   recorded  

together  with  the  solar  cell  parameters.  For  ISOS-­‐D-­‐1,  D-­‐3  and  T-­‐3,  J-­‐

V   characteristics   of   the   fresh   samples   are   first  measured   using   the  

solar  simulator  under  1  sun  illumination,  and  then  devices  are  placed  

in   each   condition   for   24   hours   in   darkness,   after   which,   J-­‐V  

characteristics  are  recorded  again  for  the  aged  samples.  

3.2.4  Morphological  characterization  Morphological   characteristics   are   recorded   using   atomic   force  

microscopy  (AFM).  For  our  morphology  investigations,  a  Dimension  

3100   Nanoman   scanning   probe   microscope   from   Veeco   is   used   to  

record  the  AFM  images  of  the  samples  in  air.  Between  the  two  modes  

of   AFM   scanning,   which   are   contact   mode   and   tapping   mode,   the  

second   one   is   used   for   our   experiments   to   avoid   adhesions   or  

frictions   between   the   tip   of   the   cantilever   and   the   surface   of   the  

organic  thin-­‐films.    

3.2.5  Photoluminescence  quenching  measurements  Photoluminescence   (PL)   intensity   measurements   are   performed  

using   a   florescence   microscope   (Nikon   Eclipse   ME600),   equipped  

with   a   mercury   short   arc   lamp   having   a   filtered   excitation  

wavelength   centered   between   330nm-­‐380nm.   The   system   is  

connected   to   a   Maya2000Pro   Spectrometer   from   Ocean   optics   to  

Page 71:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  71  

record   the   spectra,   and  PL   is   collected  with  a  microscope  objective  

(Nikon   E   Plan   50X   0.75   EPL)   and   after   10   sec   integration   time.  

Measurements  were  repeated  for  aged  samples.  

We  use  the  techniques  described   in   this  chapter   to   fabricate  and  

characterize   fresh   and   degraded   DBP-­‐C70   based   organic   solar   cells  

with  standard  and  inverted  configurations.  The  results  are  presented  

in  the  next  chapter.    

 

 

 

 

 

 

 

 

 

 

 

 

               

Page 72:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 72  

   

 

 

 

 

 

 

 

 

 

 

 

 

Page 73:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  73  

 

 

 

CHAPTER  4  

Degradation  pathways  in  Standard  and  Inverted  DBP-­‐C70  Based  Organic  Solar  Cells  

Organic   solar   cells   have   become   an   emerging   competitive  

technology   due   to   their   unique   advantages   such   as   low   fabrication  

cost,  semi-­‐transparency,  flexible  and  lightweight  products.  However,  

as  it  was  discussed  previously  in  this  literature,  achieving  long-­‐term  

stability   in   organic   solar   cells   is   a   remaining   bottleneck   for   the  

commercialization  of  this  otherwise  highly  appealing  technology.  For  

organic   solar   cells   to   be   commercially   viable,   at   least   10   years   of  

long-­‐term   stability   is   required129,130,   which   has   presented   a  

significant  challenge  to  this  field.  Therefore,  a  deeper  understanding  

of   the   degradation  mechanism  of   the   devices   is   needed,  which  will  

pave  the  way  for  strategies  on  device  lifetime  improvement.  

Page 74:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 74  

Degradation  mechanisms  in  organic  solar  cells  can  be  divided  into  

two  main   categories   caused   by   either   intrinsic   or   extrinsic   factors.  

The   former   is  caused  by  diffusion  of  oxygen  and  moisture   from  the  

air   into   device   layers,   and   the   latter   is   due   to   dynamic   and   active  

nature  of  organic  materials,  and   includes  chemical  degradation  and  

molecular   rearrangement   in   the   active   materials   and   interfaces13.  

Encapsulation  of  the  organic  solar  cells  minimizes  the  availability  of  

air   to   the   different   layers,   and   can   significantly   slow   down   the  

extrinsic  degradation.  However,   intrinsic  degradation  happens  over  

time   even   for   the   best-­‐encapsulated   devices91–96.   Degradation  

mechanisms   in   organic   solar   cells   are   rather   complex   and   include  

degradation   of   interfaces   and   interlayers,   electrode   diffusion,   and  

morphological   changes.   This   implies   the   strong   impact   of   the  

interface   between   every   two   adjacent   layers   on   the   stability   of   the  

devices60–65,131.  In  organic  solar  cell,  the  interface  between  the  donor  

and   acceptor   materials   plays   a   critical   rule   in   degradation   of   the  

devices,   where   chemical   and   morphological   changes   over   time  

directly  affect  charge  photogeneration  and  recombination  pathways.    

As   introduced   in   chapter  2,   residing   at   the  D-­‐A   interface,   charge  

transfer  (CT)  state  represents  an  intermediate  state  between  charge  

generation   and   recombination   and   its   properties   directly   affect   the  

performance   of   the   devices,   especially   the   open-­‐circuit   voltage  

(VOC)38,47,121,132.  Moreover,  degradation  paths  are  rather  intricate  and  

differ   between   standard   and   inverted   devices60–63.   As   an   example,  

Krebs  et  al.  and  Cros  et  al.  reported  a  higher  air  stability  for  inverted  

configuration   compared   to   standard   configuration,   while   both  

devices   have   the   same   type   of   photovoltaic   layer   and   undergo   an  

identical  processing  procedure64,65.    

Page 75:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  75  

In   the  work  presented   in   this   chapter,  we  study   the  degradation  

pathways   in  DBP-C70 based organic solar cells,   having   standard   and  

inverted  device  architectures.  We  utilize  sensitive  external  quantum  

efficiency   (sEQE)   measurements   to   detect   differences   in  

morphological   properties   between   standard   and   inverted   device  

configurations,  as  well  as  detecting  the  potential  degradation  at   the  

DBP/C70  interface  after  degrading  the  devices  at  ISOS-­‐D-­‐3  and  ISOS-­‐

T-­‐3   aging   conditions.   Our   investigations   reveal   that   despite   the  

variations   in   the   VOC  values   of   the   fresh   and   degraded   devices,   CT  

state   properties   undergo   only   very   minor   changes,   suggesting   a  

pronounced  morphological  stability  at   the   interface  of  DBP  and  C70.  

Instead,   it   is   shown   that   presence   of   Bathocuproine (BCP) electron

transport layer (ETL) in inverted devices leads to higher VOC losses and

low stability of these devices133. To address this issue, as an alternative

ETL, we introduce BCP/Ag stack with improved exciton blocking

properties and carrier transport efficiency. Our final results show

enhanced device stabilities for inverted devices implementing BCP/Ag

stack as their ETL.  

4.1  Device  Performance:    

Standard  vs.  Inverted  configuration  The   experiments   were   performed   with   DBP-­‐C70   based   organic  

solar  cells  having  standard  and  inverted  structure.  More  information  

about   fabrication  processes  and  characterization   techniques   can  be  

found  in  chapter  3.    

The   performances   of   the   devices   were   recorded   via   J-­‐V  

measurements   by applying a voltage sweep between +1 to −0.25 V  

Page 76:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 76  

under   1   sun   illumination.   Figure   4.1   and   Table   4.1   show   the   J-­‐V  

characteristics   for   the   two   types   of   devices   with   identical   active  

layers   and   contacts.   Solar   cell   parameters   are   averages   over   7  

devices   of   each   type,   and   J-­‐V   curves   show   the   devices   with  

characteristics  closest  to  the  average  parameters.  

Figure  4.1.  J-­‐V  curves  of  DBP-­‐C70  organic  based  PHJ  devices  having  standard  or  inverted  configurations.

 

Table   4.1.  Photovoltaic  performances  of  DBP-­‐C70  organic  based  PHJ  devices  having  standard  or  inverted  configurations.  The  values  extracted  over  seven  best  performing  devices  of  each  type.  

Devices   VOC (V)  

Jsc

(mA/cm2)  PCE %  

FF  

St-PHJ   0.85 ± 0.05   6.32 ± 0.36   3.66 ± 0.21   68.0 ± 1.8  In-PHJ   0.72 ± 0.07   5.78 ± 0.40   2.68 ± 0.29   62.0 ± 2.5    

Although   both   devices   have   identical   active   layers,   standard  

structure   show   an   overall   better   performance  with   130  mV   higher  

Page 77:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  77  

VOC  and  higher  PCE.  However,  a  recent  work  has  demonstrated  that  

this   trend  may  depend  on  device   area134. The reported efficiencies are

similar to the ones previously reported for PHJ DBP/C70 cells in the

literature72,135.

Previous  studies  have  shown   that  morphological  differences  and  

changes   in  molecular  orientations  at   the  D-­‐A   interface  can  result   in  

VOC   changes   by   altering   the  material   energy   levels136   and   CT   states  

properties.   Based   upon   Marcus   formalism   (see   section   2.9)   and  

Gaussian  fitting,  we  investigate  the  VOC  differences  through  the  sEQE  

measurements   and   CT   state   characteristics.   Using   this   method121,  

ECT, lambda and f are determined by fitting the low energy part of the

EQE spectrum with a Gaussian.  

4.2  Sensitive  EQE  measurements    Using   Eq.   2.9   and   fitting   to   the   sEQE   spectra,   we   obtained   ECT  

values  as  1.44  eV  for  standard  vs.  1.37  eV  for  inverted  configuration.  

The  normalized  sEQE  spectra  and  their  corresponding  fits  are  shown  

in  Figure  4.2,  and  extracted  CT  parameters  (ECT,  𝜆,  and  f)  are  listed  in  

Table  4.2.    

In  standard  configuration,  the  70  meV  higher  ECT  is  in  agreement  

with  its  higher  obtained  VOC  value;  however,  it  does  not  fully  explain  

the  differences  in  VOC  upon  inverting  the  structure.  A  slightly  higher  f  

value  obtained  for  standard  structure  identifies  as  higher  density  of  

CT  states.  This   is   correlated   to  higher  amount  of   interface  between  

the  donor  and  acceptor  materials,  and  represent  the  strength  of  the  

interaction   between   the   donor/acceptor   molecules137.   Previous  

finding  show  that  larger  interface  area  results  in  more  VOC  losses  due  

Page 78:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 78  

to   a   higher   recombination   current138.   However,   the   difference   in   f  

value  obtained  here  is  minor,  and  should  not  contribute  to  significant  

VOC  differences.    

Figure   4.2.   sEQE  measurements  at  300  K  and  Marcus  fits   for  standard  and  inverted  structures.  Dashed  lines  are  fits  to  the  EQE  using  Marcus  theory.  

 Table  4.  2.  VOC  and  CT  characteristics  extracted  from  fit  parameters.  

 

4.3  Morphology  investigation  at  the  D-­‐A  interface  In  order  to  further  study  the  morphological  differences  at  the  D-­‐A  

interface   of   the   devices,   AFM   imaging   was   performed.   For   this  

purpose,  samples  were  prepared  with  following  structures:    

 

Devices   VOC  (V)   ECT  (eV)   f  (eV2)   λ  (eV)  St-­‐PHJ   0.85  ±  0.007   1.41   0.0015   0.17  In-­‐PHJ   0.72  ±  0.07   1.37   0.0008   0.22  

Page 79:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  79  

a)  ITO/MoO3  (10nm)/DBP  (20nm),  

b)  ITO/MoO3/DBP  (20nm)/C70  (30nm),  

c)  ITO/BCP  (0.5nm)/C70  (30nm),      

d)  ITO/BCP  (0.5nm)/C70  (30nm)/DBP  (20nm).    

 

Figure   4.3.   AFM   images  of   interface   layer   (a)  DBP  on  MoO3/ITO,  b)  C70  on  DBP/MoO3/ITO,  c)C70  on  BCP/ITO,  and  d)  DBP  on  C70/BCP/ITO

Samples  a  &  b  represent  layers  in  standard  configuration,  and  c  &  

d   represent   layers   in   inverted   configuration.   For   each   sample  

vacuum   deposition   was   performed   without   breaking   the   vacuum  

between  the  layers,  and  AFM  images  were  recorded  in  air  right  after  

fabrication,   Figure   4.3.   The   root-­‐mean-­‐square   (RMS)   and   surface  

area  values  were  calculated  by  software  techniques  applied  to  image  

analysis  and  are  shown  in  the  figure.    

Figure  4.3.a  and  4.3.c  show  the  surface  of  the  lower  layer  of  the  D-­‐

A   interface   in   each   type   of   device,   respectively.   The   DBP   layer   in  

standard   configuration   (Fig.   4.3.a)   has   a   slightly   smoother   surface  

with  lower  surface  area,  although  very  close  to  the  one  for  inverted  

configuration.   Non-­‐conformal   film   coverage   for   DBP   on   the   C70   in  

inverted  device  configuration  could  lead  to  the  slightly  lower  f  value  

Page 80:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 80  

seen   for   this   type   of   devices.   In   general,   variations   in   interfacial  

molecular   orientations   and   morphological   differences   alter   the  

interaction  of  the  molecules  by  varying  electronic  coupling  between  the  

two   molecules,   and   influences   the   charge   generation   efficiency,   CT  

properties   and  VOC   loss   paths136,139–142.  Therefore,  we  note   that   both  

modified  molecular  orientations  and  interface  area  can  result  in  slightly  

different   f   values   seen   here.   This   can   be   further   investigated   using  

grazing   incident   wide-­‐angle   X-­‐ray   scattering   (GIWAXS),   and   high-­‐

resolution   transmission   electron   microscope   (HR-­‐TEM)140;   however,  

difficulties   in   controlling   the  molecular   orientations   and   a   thin   active  

layer  make  this  investigations  impossible  or  challenging.  

4.4  Degradation  studies      So  far  our  findings  show  that  morphological  changes  affect  the  CT  

properties,  which  can  be  detected  using  sEQE  measurements.  

 In  this  section,  we  benefit  from  this  finding  to  detect  degradation  

mechanisms   caused   by   morphological   changes   or   molecular  

rearrangement   at   the   D-­‐A   interface.   In   order   to   track   dark  

degradation,  standard  and  inverted  devices  were  aged  under  ISOS-­‐D-­‐

3  (85  ℃,  85%  RH-­‐darkness)  and  ISOS-­‐T-­‐3  (-­‐40℃  and  room  humidity-­‐

darkness)  degradation  protocols  for  24  hours  without  encapsulation.  

Figure   4.4   shows   J-­‐V   characteristics   measured   for   both   fresh   and  

aged   devices   under   1   Sun   illumination   using   a   solar   simulator.  

Average  values  over  7  devices  of  each  set  are  presented  in  Table  4.3.  

Page 81:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  81  

Figure   4.4.   J-­‐V  curves  for  fresh  (solid  lines)  and  aged  (dashed  lines)  devices  at  a)  ISOS-­‐D-­‐3  b)  and  ISOS-­‐T-­‐3  degradation  conditions.  

 Table   4.3.  Photovoltaic  performance  parameters  of   fresh  and  aged  devices  under  ISOS-­‐D-­‐3  and  ISOS-­‐T-­‐3  degradation  conditions.  Device  parameters  for  standard  configuration  are  marked  in  blue,  and  for  inverted  devices  in  red.  

Devices VOC (V) Jsc (mA/cm2) PCE % FF

St-Fresh 0.85 ± 0.05 5.8 ± 0.26 3.50 ± 0.17 71.2 ± 1.1

In-Fresh 0.72 ± 0.07 5.88 ± 0.57 2.68 ± 0.29 62.0 ± 2.5

St-ISOS-D-3 0.36 ± 0.28 4.90 ± 1.44 0.68 ± 0.73 23.3 ± 16.7

In-ISOS-D-3 0.03 ± 0.05 5.60± 0.54 0.01 ± 0.02 7.3 ± 14.5

St-ISOS-T-3 0.87 ± 0.05 5.67 ± 0.34 2.94 ± 0.52 59.3 ± 6.7

In-ISOS-T-3 0.45 ± 0.07 5.86 ± 0.93 1.02 ± 0.55 37.9 ± 13.8

 

Results  for  ISOS-­‐D-­‐3  condition  show  a  significant  drop  in  the  PCE  

values   of   both   devices.   However,   it   is  most   significant   for   inverted  

cells.  This  drop  is  mostly  affected  by  reductions  in  VOC  and  FF  values,  

which   may   be   resulted   from   an   increase   in   the   density   of   deeper  

traps  due  to  oxidation  of  the  active  layer143–145.  These  traps  can  act  as  

recombination   sites   and   disturb   the   internal   electric   field  

distribution144.  Moreover,  at  high  temperature  condition,  diffusion  of  

metal   from   the   top   contact   into   the   buffer   layer   results   in   a  

decreased  FF90,146.  Results  for  ISOS-­‐T-­‐3  condition  show  that  the  PCE  

Page 82:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 82  

value  of  the  standard  devices  is  less  affected  by  this  aging  condition  

and  the  VOC  value  remains  intact.  This  could  be  due  to  the  used  low  

temperature   resulting   in   a   slowed   down   chemical   reactions   taking  

place   in   the   organic   materials.   This   effect   is   demonstrated   in  

Appendix  A,  Figure  A.1,  where  degradation  of  encapsulated  standard  

devices  in  ISOS-­‐T-­‐3  condition  is  compared  with  the  ones  in  ISOS-­‐D-­‐1  

(darkness,   room  temperature)  condition.  We  observe   that   for   ISOS-­‐

T-­‐3  condition,  after  3500  hours,  the  VOC  value  of  the  devices  remains  

above   80%   of   its   initial   value,   while   for   the   devices   kept   at   room  

temperature  (ISOS-­‐D-­‐1),  T80  point  is  reached  much  earlier  at  around  

500   hours121,147.   However,   results   for   inverted   devices   in   ISOS-­‐T-­‐3  

condition  (Figure  4.4),  show  a  notable  change  in  the  device  stability  

compared   to   standard   devices.   Since   both   devices   have   the   same  

material   system,   these   results   indicate   a   degradation   process   not  

related  to  standard  photo-­‐oxidation  of  the  active  layer.  Under  ISOS-­‐

D-­‐3   conditions,   when   high   temperature   and   humidity   are   present,  

degradation   is   accelerated   and   is   influence   by   both   chemical  

reactions   in   the   active   layer   and   instabilities   of   the   interlayers  

resulting  in  pronounced  degradation.      

In   order   to   detect   possible   degradations   due   to   morphological  

changes   at   the  D-­‐A   interface,   sEQE  measurements  were   performed  

after   aging   the   devices.   Figure   4.5   shows   normalized   sEQE   spectra  

and  their  corresponding  fits   for   fresh  and  degraded  devices  at  each  

degradation   condition.   Table   4.4   represents   the   extracted   CT  

parameters.      

 

 

Page 83:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  83  

Figure   4.5.   sEQE  measurements  and  their  corresponding  Fits   for   fresh  and  aged  devices  at  a)  ISOS  D-­‐3  and  b)  ISOS-­‐T-­‐3  degradation  conditions.

 

Table  4.4.  Extracted  Voc  and  CT  parameters  through  fits  on  sEQE  spectra  for  fresh  and  aged  devices.

Devices VOC (V) f (eV2) λ (eV) ECT (eV)

St-PHJ-Fresh 0.85 ± 0.05 0.0017 0.17 1.44

In-PHJ-Fresh 0.72 ± 0.07 0.0008 0.22 1.37

St-PHJ-ISOS-D-3 0.36 ± 0.28 0.0017 0.19 1.44

In-PHJ-ISOS-D-3 0.03 ± 0.05 0.0011 0.23 1.38

St-PHJ-ISOS-T-3 0.87 ± 0.05 0.0014 0.18 1.44

In-PHJ-ISOS-T-3 0.45 ± 0.07 0.0006 0.20 1.40

 

The  sEQE  results  indicate  that  regardless  of  a  change  in  VOC  value  

of  the  devices  after  degradation,  the  CT  properties  remain  almost  the  

same.  Unchanged  f  value  after  degradation  suggests  a  morphological  

stability  at  the  DBP/C70  interface  that  means  morphological  changes  

at   the  D/A   interface  are  not   responsible   for  a  drop   in  voltage  upon  

aging  of  the  devices.  We  further  supported  this  by  investigations  on  

morphological   stability   of   the   DBP-­‐C70   interface   through   annealing  

standard   PHJ   and   BHJ   devices.   We   fabricated   these   devices   and  

Page 84:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 84  

annealed   them   at   110  ℃  for   3   hours   in   dark   inside   the   glovebox.  

Extracted   J-­‐V   parameters   and   CT   properties   for   fresh   and   annealed  

devices  are  presented  in  Figure  4.6  and  Table  4.5.  

Figure   4.6.   sEQE   measurements   and   Marcus   Fits   for   fresh   and   annealed  devices  at  110  ℃  for  3  hours  

 Table  4.5.  Voc  and  CT  parameters  extracted  through  fits  on  sEQE  spectra  for  fresh  and  aged  devices.  

 

The  results  show  that  although,  as  expected,  a  significant  higher  f  

value   (higher   amount   of   interface)   is   observed   for   BHJ   cells,   no  

changes   in   CT   properties   and   f   value   of   the   devices   is   seen   upon  

annealing.  

Page 85:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  85  

For   the   inverted   configuration   (Figure   4.5),   during   degradation,  

the  C70  absorption  (shoulder  at  1.8  eV)  decreases  slightly  relative  to  

DBP  absorption.  We  ascribe   the   reason   for   this   instability   of   C70   to  

changes   in   the   underlying   BCP   layer.   It   has   been   reported   that  

insertion   of   a   BCP   as   ETL   in   inverted   devices,   depending   on   the  

device  area134,  can  hamper  the  device  performance  with  low  FF  and  

PCE133,148,  and  lead  to  poor  stabilities148.  Moreover,  BCP  tendency   for  

crystallization   can   induce   defects   at   the   ETL-­‐C70   interface   that   can  

give  rise  to  increased  VOC  losses149.  

In  standard  configuration,  due  to  diffusion  of  the  top  Ag  electrode  

into   the   BCP   layer,   a   Ag-­‐BCP   complex   is   formed87.   This   complex  

introduces  a  new  LUMO  level  aligned  with  the  LUMO  of  the  C70  that  

facilitates   electron   transfer150.   Nevertheless,   the   inverted   structure  

suffers   from   an   inefficient   electron   extraction   due   to   lacking   this  

metal-­‐BCP   complex151.   Small   device   area   of   10   mm2   being   studied  

here  show  reasonable  device  efficiencies   for   inverted  architectures,  

but  with  limited  device  stability.    

We   further   investigated   the   instabilities   by   assessing   the   ETL  

properties  of  different  thicknesses  of  BCP  in  inverted  configuration.  

Moreover,   two  BCP  ETL   stacks  based  on  C70   and  Ag  were   tested   in  

these  devices.      

4.5  ETL  charge  transport  properties  and  its  effect  on  the  stability        We  investigated  the  possible  effect  of  the  ETL  contact  on  stability  

of   the   inverted   devices   by   assessing   the   ETL   properties   of   three  

different   thicknesses   of   BCP   (0.5,   5   and   10nm)   and   two   BCP   ETL  

Page 86:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 86  

stacks  based  on  C70  and  Ag.  It  has  been  shown  that  deposition  of  an  

ultrathin   layer   of   C70   between   ITO   and   BCP   can   improve   the   ETL  

properties   and   increase   the   device   yield149.   The   BCP-­‐Ag   stack   can  

provide  a  BCP-­‐Ag   semi-­‐complex  without   a  need   for  directly  doping  

the  BCP  layer.  

Electron   transport   and   exciton   blocking   properties   of   each  

implemented  ETL  were  examined  via  Electron-­‐Only  Devices  (EODs)  

and   photoluminescence   (PL)   spectroscopy,   respectively.   These  

measurements  were  performed  for  both  fresh  and  degraded  devices.  

4.5.1  Electron-­‐only  devices  Electron  transport  properties  of  the  implemented  ETL  films  were  

assessed   by   performing   space-­‐charge   limited   current   (SCLC)  

measurements  on  EODs,  Figure  4.7.a.  EODs  were  fabricated  with  the  

same  methods  described   in   chapter  3  by   sandwiching   the  C70   layer  

between  the  respective  bottom  ITO/ETL  and  top  BCP/Ag  contact.  In  

these  devices,   electrons  are   injected   from   the  Ag  electrode   into   the  

devices  and  extracted  from  the  ITO  side.  Five  following  devices  were  

fabricated:  

• ITO/No  BCP  (0nm)/C70/BCP/Ag  

• ITO/BCP  (0.5nm)/C70/BCP/Ag  

• ITO/BCP  (5nm)/C70/BCP/Ag  

• ITO/C70  (0.5nm)/  BCP  (0.5nm)/C70/BCP/Ag  

• ITO/BCP  (2nm)/Ag  (1nm)/BCP  (2nm)/Ag  (1nm)/BCP  (2nm)/  

C70/BCP/Ag  

J-­‐V   characteristics   of   the   EODs   were   recorded   by   applying   a  

sweeping   voltage   between  +1  and  −1  V   at   reverse   bias   using   a  

Page 87:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  87  

Keithley  2400  source  measure  unit.  Measurements  were  performed  

directly  after  fabrication  and  repeated  after  degradation  period.    

Figure  4.7.  a)  Electron  only  devices  with  different  ETLs,  and  with  deposited  10  nm  BCP  and  100  Ag  on   top  b)   JV  measurements   of   the   fresh  EODs   c)   JV  measurements   after   aging  devices   for   24  hours   in   ISOS-­‐D3  and  d)   ISOS-­‐T-­‐3  degradation  conditions.

Figure   4.7.b   and   4.7.c   show   EOD   characteristics   for   fresh   and  

degraded  devices  in  ISOS-­‐D-­‐3  and  ISOS-­‐T-­‐3  conditions  for  24  hour.  

J-­‐V  measurements   show  a   lower   series   resistance   for  EODs  with  

BCP/Ag   stack,  which   indicates   better   electron   transport   properties  

with   ease   of   electron   transportation   through   the   implemented  ETL  

layer.  Among  the  investigated  BCP  thicknesses,  interestingly,  devices  

without  BCP  layer  at  the  bottom  (0nm  BCP)  show  no  or  very  minor  

deterioration.  Noting  that  these  devices  have  a  top  BCP  layer,   these  

results   indicate  that  the  bottom  BCP  layer   is   indeed  responsible   for  

Page 88:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 88  

the  degradation  in  inverted  cells,  while  the  top  BCP  layer  has  a  high  

stability  and  no  major  rule  in  degradation  of  the  devices.  Therefore,  a  

pure  BCP  layer  hampers  electron  extraction  in  the  inverted  devices,  

which  is  expected  due  to  lack  of  a  metal-­‐BCP  complex.    

4.5.2  Photoluminescence  quenching  measurements  The   exciton   blocking   properties   of   the   ETLs  were   characterized  

using   PL  measurements   (for  more   information   see   3.2.5).   Samples  

are  consisted  of  the  ETL  and  100nm  C70  deposited  on  top:    

• ITO/No  BCP  (0nm)/C70  

• ITO/BCP  (0.5nm)/C70  

• ITO/BCP  (5nm)/C70  

• ITO/C70  (0.5nm)/  BCP  (0.5nm)/C70  

• ITO/BCP   (2nm)/Ag   (1nm)/BCP   (2nm)/Ag   (1nm)/BCP   (2nm)/  

C70    

Figure  4.8.a  demonstrates  that  upon  increasing  the  BCP  thickness,  

PL   intensity   of   the   C70   layer   increases,   which   means   an   increased  

exciton  blocking  capability  for  the  ETL  and  thus  minimum  quenching  

at   the   cathode   interface.   Among   all   samples,   BCP/Ag   stack   shows  

stronger  PL  emission,  and  hence  minimized  exciton  quenching  at  the  

cathode  interface.    

After   aging   the   samples   in   ISOS-­‐D-­‐3   and   ISOS-­‐T-­‐3   conditions   for  

24   hours,   stabilities   of   the   ETLs   were   tested   by   repeating   the   PL  

measurements.  Figure  4.8.b  and  4.8.c  represent   the  results   for  each  

aging   condition,   and   show   overall   decreased   PL   intensity   in   both  

conditions   compared  with   the   fresh   samples.  However,   in   each   set,  

Page 89:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  89  

BCP/Ag   stack   shows   higher   PL   intensity   meaning   better   exciton  

blocking  properties.    

Figure   4.8.  Photoluminescence   (PL)  measurements   for   five  ETLs,   fresh  and  degraded  at  ISOS-­‐D-­‐3  and  ISOS-­‐T-­‐3.  The  stack  has  the  structure:  (0.5nm)/BCP  (0.5nm)  and  BCP  (2nm)/Ag  (1nm)/BCP  (2nm)/Ag  (1nm)/BCP  (2nm)).  

Page 90:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 90  

From   these   results   we   conclude   that   the   BCP/Ag   stack   ETL  

provides   both   improved   electron   transport   and   exciton   blocking  

properties   as   well   as   less   interface   degradation.   Therefore,   we  

implemented  this  ETL  candidate  as  an  alternative  to  pure  BCP  in  full  

inverted  devices,  and  evaluated  the  performance  and  stability  of  the  

devices.    

4.5.3  Improved  stability  of  the  inverted  devices  

The  stability  of   the   inverted  devices  with  the   following  structure  

were   tested:   ITO/BCP   (2nm)/Ag   (1nm)/BCP   (2nm)/Ag  

(1nm)/BCP   (2nm)/C70   (30nm)/DBP   (20   nm)/MoO3   (10   nm)/Ag  

(100  nm)  

Devices   were   aged   at   ISOS-­‐D-­‐3   condition   for   24   hours   and   J-­‐V  

characteristics  were  recorded  under  1  sun  illumination  for  fresh  and  

aged  devices.  Results  are   illustrated   in  Figure  4.9   together  with   the  

previously  obtained  results   for  0.5nm  BCP  as  ETL.  Table  4.6  shows  

the  extracted  J-­‐V  parameters  for  both  types  of  devices.    

The  obtained  results  show  both  improved  VOC  and  stability  for  the  

inverted   devices   with   BCP/Ag   stack   ETL,   demonstrating   that   for  

inverted  cells,   the   initial   larger  VOC  drop  along  with   the  accelerated  

degradation  compared  to  standard  devices  is  caused  by  the  BCP  ETL.  

Since   J-­‐V   characterizations   were   performed   through   a   bottom  

illumination,  slightly  lower  JSC  is  achieved  due  to  a  reflection  from  the  

thin  layer  of  Ag  at  the  lower  layers.  Interestingly,  performance  of  the  

degraded   inverted   devices   based   on   BCP-­‐Ag   stack   in   ISOS-­‐D-­‐3  

condition  is  similar  to  the  performance  of  the  standard  configuration  

cells   after   aging   at   the   same   condition.   This   indicates   that   now   the  

Page 91:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  91  

interlayers   possess   a   similar   stability   as   those   implemented   in   the  

devices  with  standard  configuration.    

Figure  4.9.  JV  measurements  for  fresh  and  aged  inverted  device  with  0.5  nm  BCP  and  BCP/Ag  stack.  

 Table   4.6.   Photovoltaic   characteristics   of   fresh   and   aged   inverted   devices  with  0.5  nm  BCP  or  BCP/Ag  stack  as  their  HTL.  

 

In  summary  the  results  show  that  despite  the  differences  in  VOC  of  

the  standard  and  inverted  devices  upon  degradation  in  ISOS-­‐D-­‐3  and  

ISOS-­‐T-­‐3   conditions,   no   morphological   or   CT   state   changes   are  

observed.   These   results   suggest   that   instabilities   are   mainly  

originated  from  electrode  or  interlayer  degradations,  and  in  inverted  

Page 92:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 92  

devices  the  BCP  ETL  has  a  significant  effect  on  the  performance  and  

degradation   of   these   devices.   Evaluating   the   performance   of   the  

implemented  ETLs  via  EODs  and  PL  measurements  backed  up  these  

conclusions.  We   showed   that   implementing   an   alternative   BCP/Ag  

stack  as  ETL  for  inverted  devices  can  enhance  both  performance  and  

stability  of  these  devices.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Page 93:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  93  

           CHAPTER  5    

Understanding  the  Degradation  Mechanisms  in  Perovskite  Solar  Cells      

The  efficiency  of  hybrid  organic-­‐inorganic  metal  halide  perovskite  

solar  cells  (PSCs)  have  reached  PCE  of  around  22%15  and  12%152  for  

laboratory   scale   and   large   area   cells,   respectively.   However,  

combining  high  efficiency  with  high  stability  in  a  device  still  remains  

challenging.   There   are   numerous   reports   addressing   the   instability  

of   the   active   and   transport   layers   in   PSCs   under   exposure   to   heat,  

light,   electric   field   and   air153–160.   In   real   operational   outdoor  

conditions,  these  factors  can  simultaneously  take  part  in  degradation  

processes  making  it  complicated  to  understand  the  precise  origin  of  

the  degradation  mechanisms  involved161,162.  

Recently,  reversibility  of  certain  PSC  degradation  processes  under  

illumination-­‐darkness   cycling   has   drawn   a   lot   of   attention163–166,  

Page 94:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 94  

since   it   provides   a   more   complicated   stability   issue   than   typically  

seen  in  photovoltaic  cells.  The  loss  in  the  device  performance  being  

caused   by   the   illumination   can   be   recovered   fully   or   partially   by  

resting   at   dark   conditions.   This   means   that   in   real   operational  

conditions   with   diurnal   cycling,   a   dark   period   following   natural  

sunlight  might  help  the  cell  to  recover.    

 On   the   other   hand,   some   groups   reported   recently   an   opposite  

behavior   in  which   recovery   occurs   under   illumination   in  darkness-­‐

light   cycles,  which   is   known   as   “fatigue”   behavior.   This   behavior   is  

related   to   the   well-­‐known   light   soaking   effect,   and   is   mostly  

attributed   to   trap   filling  upon   illumination157,163–168.  To  observe   the  

aforementioned   two   types   of   behaviors   for   PSCs   during   day/night  

cycle,  we  have  tested  long-­‐term  stability  of  the  PSCs  in  outdoor  and  

indoor   conditions,   and   compared   the   results   with   already   existing  

figures  of  merit  in  stability  measurements.  Then  the  degradation  and  

recovery  dynamics  observed  under  outdoor  day-­‐night   cycling  were  

related   to   the   ones   from   constant   illumination   condition.   This  

strategy   helps   us   to   understand   the   degradation   mechanism   that  

may  be  responsible  for  both  types  of  diurnal  behaviors.  This  chapter  

summarizes  the  results  presented  in  paper  II  and  III,  and  the  work  is  

done   in   collaboration  with   Ilse  Katz   institute   for  Nanoscale  Science  

and  GTechnolog   (outdoor   testing)   and   the  Holst   center   (perovskite  

cell  fabrication).  Indoor  testing  was  done  at  MCI,  SDU.  

5.1.  Outdoor  day/night  degradation  and  recovery  tests  Outdoor  degradation  experiments  were  performed  with  two  types  of  

PSCs:  

Page 95:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  95  

glass/ITO/SnO2/Cs0.05((CH3NH3)0.15(CH(NH2)2)0.85)0.95PbI2.55Br0.45/spiro-­‐

OMeTAD/Au  cells  (type  I)  and    glass/ITO/TiO2/CH3NH3PbI3/Spiro-­‐OMeTAD/Au  mini-­‐modules  (type  II).    

Devices   were   degraded   indoor   by   continuous   illumination   of  

simulated  sunlight  (ISOS-­‐L-­‐1  protocol)  at  60°C,  and  outdoor  natural  

sunlight  in  the  Negev  desert  (the  spectrum  was  measured  very  close  

to   the  AM1.5G,   ISOS-­‐O-­‐1   protocol)  with   performance   testing   under  

simulated  sunlight   three   times  a  day.  The   initial  PCE  of   the  devices  

were  ~15%   and  ~10%   for   the   devices   of   type   I   and   type   II,  

respectively.  Devices  were  degraded  until  their  PCE  dropped  to  80%  

of   its   initial   value   (T80).  This  point  plays  a   crucial   rule  as   it  defines  

the  overall  lifetime  of  the  solar  cell  and  total  energy  generated  by  the  

cell   during   its   lifetime169.   For   indoor   measurements,   the   type   I  

devices   were   placed   under   continuous   illumination.   At   this  

condition,  T80  was  reached   in  about  1  hour   (𝑇!"!"#$~1  ℎ),  Figure  5.1,  

while   in   outdoor   test   conditions   for   both   types   of   devices   the  

degradation  happened  at  much  slower  speeds,  also  due  to  the  effect  

of  the  day/night  cycles,  which  appeared  as  fluctuations  in  PCE  values  

during   day   and   night   periods,   Figure   5.2.a   and   5.2.b.   For   type   I  

devices,   in   the   first   11   days   of   two   weeks   exposure,   the   cell  

performance   degraded   during   the   days   and   recovered   during   the  

nights,  which  resulted   in  higher  “morning”  PCE  values  compared  to  

“evening”   PCE   values.   Therefore,   the   effect   of   the   night   recovery  

resulted  in  much  slower  long-­‐time  degradation  dynamics  compared  

with  continuous  illumination.  In  this  pattern  since  the  cell  PCE  would  

cross   the   80%   mark   multiple   times,   T80   as   a   point   for   lifetime  

determination   is   a  misleading   parameter.   This   result   demonstrates  

Page 96:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 96  

the   significance   of   including   a   light/dark   cycling   in   stability  

measurements  for  defining  the  cell  lifetime.    

Figure   5.1.   Normalized   PCE   evolution   for   indoor   contentious   simulated  sunlight   illumination   of  glass/ITO/SnO2/Cs0.05((CH3NH3)0.15(CH(NH2)2)0.85)0.95PbI2.55Br0.45/spiro-­‐OMeTAD/Au  cells  (type  I).  

Figure  5.2.  Normalized  PCE  evolution  during  two  weeks  of  outdoor  exposure  to  natural  sunlight  (a)  type  I    (glass/ITO/SnO2/Cs0.05((CH3NH3)0.15(CH(NH2)2)0.85)0.95PbI2.55Br0.45/spiro-­‐OMeTAD/Au),  and  (b)  type  II  mini-­‐modules  (glass/ITO/TiO2/CH3NH3PbI3/Spiro-­‐OMeTAD/Au).  All  lines  are  guides  for  the  eye.  

Nighttime   recovery   of   the   PSCs   does   not   result   in   100%  

restoration   of   the   initial   PCE   due   to   two   superimposed   factors:  

presence   of   a   permanent   damage,   i.e.,   irreversible   degradation  

Page 97:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  97  

mechanism  and/or  a  recovery  requiring  longer  time  than  one  night.  

Moreover,  a  number  of  different  degradation  mechanisms  can  occur  

simultaneously   and   some   can   dominate   at   different   degradation  

stages  and  define  the  dynamics  of  the  PCE  changing  during  the  day.  

In   the   curve   shown   in   Figure   5.2.a   after   a   certain   aging   time,   the  

effect  of   these   factors   lead   to  much  closer   “morning”  and  “evening“  

PCE  values  and  even  invert  the  pattern  during  days  12-­‐14,  at  which  

the   cell   demonstrates   “fatigue-­‐like”   behavior,   similar   to   type   II  

devices  (Figure  5.2.b).      

Cell   lifetime   can   for   example   be   estimated   using   the   maximum  

PCE  values  measured  every  day,  so  that  𝑇!"!"#~4  d  (i.e.,  morning  PCE  

values  up  to  day  10  in  Figure  5.2.a).  𝑇!"!"#  counts  for  the  irreversible  

losses  and/or  incomplete  recovery  during  one  night;  however,  since  

the  dynamics  of  the  diurnal  degradation  are  not  taken  into  account,  

the   total   energy   generation   by   the   cell   during   its   lifetime   can   be  

overestimated  from  this  approach170,171.    

𝐸!!"!"# = 𝑃𝐶𝐸   𝑡 ∗ 𝑃!"   𝑡 ∗ 𝑑𝑡

!!"!"#

!                                              (5.1)  

Where  Pin  is  the  power  of  incoming  sunlight  (for  simplicity,  Pin=1  

sun=100  mW/cm2).  

The  evolution  of  the  daily  generated  energy  output  by  cell  type  I  is  

depicted  in  Figure  5.3.a.  

𝐸!"# = 𝑃𝐶𝐸   𝑡 ∗ 𝑃!"   𝑡 ∗ 𝑑𝑡!!"#

!                                                (5.2)  

Where  𝑡!"#  is   the   illumination   time   during   one   day.   Now,   we   can  

estimate  𝑇!"! ≈ 9  d  at  which  Eday  drops  to  80%  of  its  value.  Therefore,  

from   this   definition   of   T80,   both   the   reversible   and   irreversible  

Page 98:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 98  

degradation   of   the   cell   performance   are   taken   into   account,   which  

suggests  a  reliable  figure  of  merit  for  PCE  stability.    

Figure  5.3.  Normalized  evolution  of  daily  energy  output,  Eday,  of  (a)  cell  type  I,  and  (b)  mini-­‐modules  type  II.  All  lines  are  guides  for  the  eye.  

Now,  using  𝑇!"! ~9  d,  we   calculate   the   total   energy  generated  by   the  

cell  during  its  lifetime  as:  

𝐸!!"! = 𝑃𝐶𝐸   𝑡 ∗ 𝑃!"   𝑡 ∗ 𝑑𝑡!!"!

!                                                  (5.3)  

This   value   connects   the   cell   performance  and   its   stability  whose  

overall   improvement   is   the   ultimate   goal   of   the   photovoltaic  

technology.   This   relation   does   not   depend   on   the   certain   PCE  

changes   day/night   (illumination/darkness)   cycle   due   to   the   reason  

that   in   both   device   types,   we   observe   a   behavior   resulted   from  

superposition   of   reversible   and   irreversible   mechanism,   which   is  

very  different  from  that  of  continuous  illumination  experiment.    

Overall  these  results  suggest  that  a  light-­‐dark  cycling  is  to  be  used  

for   precise   stability   measurements   of   PSC,   and   that   a   new   set   of  

figures   of  merit   are   required   to  describe   the  performance,   stability  

and  the  interplay  between  them.    

Page 99:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  99  

5.2  Indoor  degradation  and  recovery  dynamics    To  understand  the  dynamics  of  degradation  and  recovery  process  

under   light/dark   cycles   further,   we   performed   indoor   degradation  

under  continuous  light  illumination  and  recovery  at  dark  to  different  

extends.  This  allows  us  to  suggest  degradation  mechanism  that  may  

be   responsible   for   both   types   of   behaviors   and   relate   them   to   the  

results  from  continuous  illumination  tests.  

For  this  purpose,  we  used:  

glass/ITO/SnO2/Cs0.05((CH3NH3)0.15(CH(NH2)2)0.85)0.95PbI2.55Br0.45/  

spiro-­‐OMeTAD/Au  cell  (type  I)  (more  information  regarding  the  

materials  and  methods  can  be  found  in  paper  II172).  

Indoor   illumination   was   performed   in   ISOS-­‐L-­‐1   protocol   in  

ambient   air   and   using   a   degradation   setup   equipped   with   a   wide  

area   solar   simulator   (metal   halide   display/optic   lamp   HMI   from  

Osram).   The   ambient   temperature   (60 °C )   and   intensity   were  

monitored   by   sensors,   and   recorded   along   with   the   solar   cell  

parameters.     During   the   exposure   test,   solar   cell   performance  was  

recorded   in   situ   every   2  minutes   via   J-­‐V  measurements   in   forward  

direction,   and   the   parameters   were   tracked.   During   the   dark  

recovery,   the   cells  were  kept   in   the  dark   at   room   temperature   and  

were  exposed  to  light  only  when  J-­‐V  measurements  were  conducted  

every  hour  for  the  first  8  h  of  degradation.    

Samples   were   divided   into   three   batches   and   aged   until   their  

efficiency  value  reached  80%  (T80),  60%  (T60)  and  50%  (T50)  of  the  

initial  value.  Then  cells  were  located  in  dark  condition  for  recovery.  

Figure  5.4  shows  the  evolution  of  cell  performance  parameters.    

Page 100:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 100  

 

 

 

 

 

 

 

 

 

 

 

 

Figure   5.4.   Evolution   of   PV   parameters   of   PSCs   under   continuous   1-­‐sun  indoor   illumination,   interrupted   at   T80   (a)   T60   (b),   or   T50   (c,   d).   Gray   areas  show  their  subsequent  recovery  in  the  dark.  

Figure   5.5.   Evolution   of   PV   parameters   after   turning   on   the   light   and  continuous  simulated  1-­‐sun  re-­‐illumination  of  the  PSCs  after  T50  and  recovery  in   the   dark   (gray   areas):   (a)   The   cell   whose   PCE   dark   recovery   reached  saturation  (as  in  Figure  5.4.c);  (b)  The  cell  whose  PCE  dark  recovery  did  not  reach  saturation  (as  in  Figure  5.4.d).    

For  cells,  which  their  PCE  reached  to  80%  of   its   initial  value,   full  

recovery  was  observed  after  a   few  hours  of   resting   in  dark   (Figure  

Page 101:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  101  

5.4.a).   This   result   is   in   accordance   with   the   previously   reported  

observation  for  indoor  light-­‐darkness  cycling  of  state-­‐of-­‐the-­‐art  PSCs  

(PCE~20%)164.  At  this  stage,  degradation  is  determined  by  the  decay  

of  mainly   open   circuit   voltage   (VOC)   and   fill   factor   (FF)   and  minor  

contribution   of   short   circuit   current   (JSC).   This   result   suggests   that  

this   reversible   mechanism   with   fast   recovery   should   not   cause   a  

permanent   damage   and   a   long-­‐term   deterioration   of   the   PSC  

performance   under   day/night   cycle.   For   reversible   degradation   in  

PSCs,   three   different   mechanisms   were   previously   suggested:   (1)  

migration   of   ion   vacancies,   upon   which   both   halide   and   cation  

vacancies   are  moving   in   the   perovskite   toward   the   interfaces  with  

charge  transport  layers  that  can  affect  the  charge  extraction  from  the  

active   layer164;   (2)   in   inverted  planer  PSCs,   light   induced  reversible  

JSC   degradation   is   attributed   to   the   formation   of   metastable   deep  

traps   in   the   perovskite   layer163;   (3)   a   fully   reversible   halide  

segregation   into  Br-­‐rich  and  I-­‐rich  domains,  which  can  be  observed  

as  two  photoluminescence  peaks  that  merge  into  one  when  allowed  

to   relax   in   dark166,173,174.   These   domains   give   rise   to   trap   assisted  

recombinations   for  photo-­‐excited  charge  carriers175,176.  However,   in  

our   case,   PL   measurements   reveal   that   phase   segregation   is   not  

likely   the   reason   of   our   results,   probably   as   the   Br   content   is   very  

low  (~15%)  in  our  perovskite  layer  (more  information  is  provided  in  

paper   II172   and   its   supplementary   information177).   Moreover,   we  

observed  that  under  illumination,  both  PL  intensity  and  JSC  decreased  

and   recovered   in   the   dark.   While   the   degradation   caused   by  

interfacial   effects   would   result   in   decreased   JSC   and   increased   PL  

yield   due   to   deterioration   of   charge   transfer   from   the   active   layer.  

Therefore,   similarity   in   reversible   degradation   dynamics   for   these  

Page 102:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 102  

parameters   may   be   attributed   to   light   induced   formation   of   bulk  

nonradiative   recombination  centers   in   the  photoactive   layer,  which  

may  be  related  to  the  metastable  deep  traps  (mechanism  number  2)  

or  to  lattice  point  defects178.  Hence,  formation  of  bulk  traps  is  one  of  

the  possible  mechanisms   that   contribute   to   reversible   degradation.  

Reversible   VOC   and   FF   changes   may   have   been   caused   by   trap  

formation/annihilation   and/or   light-­‐induced   migration   of   ionic  

species   in  the  perovskite   layer,  which  lead  to  changes   in  the  charge  

extraction  and  electric  field  across  the  cell164,165.  

To   study   the   dynamics   of   later   degradation   stages   (t>T80),   the  

second  and   third  batches  were   illuminated   further  until   the  PCE  of  

the   cell   reached   60%   and   50%   of   their   initial   value,   and   then   the  

devices   where   placed   in   dark   condition   for   recovery   (Figure   5.4.b  

and  Figure  5.4.c,d  respectively).  Dynamics  of   further  aging   the  cells  

to   t~T50   were   found   to   be   dramatically   different   from   early   stage  

degradation.  Within  the  first  10  minutes  of  the  dark  storage,  a  rapid  

drop  in  JSC  and  FF  was  observed  for  all  cells  resulted  in  further  decay  

of  PCE  from  50%  to  around  10%  of   its   initial  value  (Figure  5.4.c,d).  

Corresponding  J-­‐V  curve  showed  an  “s-­‐shape”  distortion  (see  Figure  

S4   in   supplementary   information177  of  paper   II172),  which  has  been  

attributed   to   surface   recombination   or   charge   accumulation   at   the  

interface  between  perovskite  and  transport  layer179.    

The   PCE   drop   in   the   dark   then   followed   by   a   slow   recovery  

process,  which  ended  up  in  two  cases:  either  reached  saturation  over  

5  days  of  measurements  or  continued  its  evolution  (Figure  5.4.c  and  

5.4.d   respectively,   after   turning   off   the   light).     It   is   not   clear   if   the  

observed   difference   is   qualitative   or   is   due   to   a   different   recovery  

time   scale.   Nevertheless,   in   both   cases,   due   to   occurrence   of   an  

Page 103:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  103  

irreversible  mechanism,  a  full  recovery  of  the  PCE  was  not  observed,  

and  only  reached  a  maximum  saturation  level  of  70-­‐80%  of  its  initial  

value  for  the  behavior  shown  in  Figure  5.4.c.  

In  order  to  investigate  the  dynamics  of  PCE  drop  after  turning  off  

the  light,  the  cells  from  both  cases  were  re-­‐illuminated  (Figure  5.5).  

For   the   cells   whose   PCE   reached   saturation   in   dark   (as   in   Figure  

5.4.c),  no  further   light  soaking  improvement  were  observed  (Figure  

5.5.a).  However,   the   cells   for  which   the  PCE  did  not   saturate   (as   in  

Figure   5.4.d),   a   rapid   PCE   improvement   (mostly   resulted   from  

increases   in   JSC   and   FF)   was   observed,   which   was   then   degraded  

upon   further   illumination   (Figure   5.5.b).   Qualitatively,   this   type   of  

behavior   is   similar   to   type   II   behavior   observed   in   outdoor  

measurements  in  which  the  cells  showed  recovery  under  subsequent  

illumination  (Figure  5.2.b).  

An  intermediate  case  between  degradation  times  of  T80  and  T50  is  

when   the   cell   is   degraded   to   60%   of   its   initial   PCE   (T60)   (Figure  

5.4.b).     After   this   point,   a   dark   storage   results   in   the   following  

dynamics:  VOC  was  recovered  rapidly  (as  in  the  T80  case)  and  drops  in  

JSC   and   FF   were   slowly   recovered   (as   in   the   T50   case,   but   much  

slower).   The   result  was   reflected   in   a   slow  PCE   recovery   that   took  

significantly   longer   than   one   night   in   time   scale.   Therefore,   to   our  

view   Figure   5.4.b   and   5.4.d   illustrate   apparently   irreversible  

dynamics  due  to  the  fact  that  the  recovery  rate  is  such  slow  that  the  

full   recovery   is   not   practical   under   real   operational   day-­‐night  

stressing.  At   this   stage   J-­‐V  curve  shows  an  s-­‐shape  when  measured  

without  light  soaking  (see  Figure  S4  in  supplementary  information177  

of  paper  II172).  

Until   now   these   dynamics   have   not   been   described   in   the  

Page 104:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 104  

literature.  Therefore,   to  explain   this  behavior  we  discuss  a  possible  

scenario172:   at   later   aging   stages,   shallow   interfacial   traps   of   a  

different   origin   than   the   deep   bulk   traps   are   generated   under  

illumination.   While   the   cell   is   under   illumination,   these   traps   are  

being   occupied   by   photogenerated   carriers   and   are   neutralized  

which  mitigate   their   effect   on   PSC   performance.  When   the   light   is  

turned   off,   detrapping   of   the   charge   carriers   leads   to   charging   of  

these   states   that   forms   an   interfacial   charge   extraction   barrier.  

Therefore,   it   may   result   in   the   J-­‐V   curve’s   s-­‐shape   distortion   and  

correspondingly   JSC   and   FF   decrease   as   observed   in   our  

experiment180,181.  

These   results   reveal   that,   although   the   traps   are   formed   during  

illumination,   their  effect   is  appearance  only  after  the   light   is  turned  

off,  which  is  not  the  case  for  the  experiments  commonly  performed  

under   continuous   illumination.   This   emphasizes   the   importance   of  

considering   a   dark-­‐light   cycling   as   a   viable   strategy   for   stability  

testing  of  the  PSCs,  and  thus  lifetime  determination164.    

As   shown   in   Figure   5.5.b,   by   re-­‐illuminating   the   cell  whose   PCE  

did   not   reach   saturation   (as   in   Figure   5.4.d),   both   JSC   and   FF  

increased  significantly  within  the  first  10  minutes  due  to  trap  filling  

upon  light  soaking  before  further  degradation  takes  place.  According  

to  the  literature,  the  effect  of  light  soaking  can  take  from  minutes  to  

hours   to   reach   saturation167,168.   Notably,   our   findings   are  

considerably  different   than  commonly  observed   light  soaking  effect  

in   the   following  way:   (1)   in   our   case,   the   cell   developed   following  

~50%  PCE  degradation  in  contrast  to  a  feature  of  fresh  devices;  (2)  

the   PCE   improvement   under   illumination   was   mainly   related   to  

increase   in   JSC   and   FF   in   our   case   rather   than   commonly   observed  

Page 105:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  105  

improvements  in  the  VOC  from  light  soaking182–186;  and  (3)  in  our  case  

the   performance   improvement  was   followed   by   degradation   under  

further   illumination   (Figure   5.5.b).   As   it   has   been   previously  

suggested,  deep  traps  lead  to  VOC  decrease,  while  shallow  ones,  being  

located   near   the   charge   extraction   interface,   may   contribute   to   JSC  

variations  by  inducing  interface  charging  and  poor  charge  extraction.  

Hence,   the   hypothesis   of   formation   of   shallow   interfacial   traps  

suitably   describes   our   observations.   These   shallow   traps   can   be  

originated   from   interstitial   ions   or   ion   vacancies   at   the  

perovskite/transport  layers  interface178,187.    

For   the   type  of  behavior  shown   in  Figure  5.4.c,   the  PCE  partially  

recovered  and  saturated  after  a  long  time  in  the  dark.  Due  to  the  fact  

that  upon  re-­‐illumination  of  the  recovered  cell  no  light  soaking  effect  

was  observed  (Figure  5.5.a),  this  type  of  slow  recovery  can  be  related  

to   trap   states   disappearing,   (e.g.,   due   to   back-­‐migration   of   ionic  

species).  To  look  further  into  this  matter,  more  investigations  using  

secondary  ion  mass  spectroscopy  (SIMS)  are  under  way.      

Figure  5.4.b  and  5.4.c  show  irreversible  long-­‐term  degradation  in  

which   the  PCE  value   reaches   saturation   level  without   full   recovery.  

This   behavior  was   also   noted   in   long-­‐term   outdoor   degradation   of  

the   cells172.   Irreversible   degradation   mechanism   may   be   due   to  

decay   of   the   perovskite   photoactive   layer111,188–193,   as   well   as  

transport   layers   and   contacts22,194,195,   especially   catalyzed   by  

interlayer   ion   diffusion161,195–197.   We   should   also   take   into   account  

the  effect  of  oxygen  and  water  penetration  through  encapsulation  as  

our  indoor  and  outdoor  experiments  were  conducted  in  air.      

There   are   factors   that   have   been   reported   to   contribute   to   the  

irreversible  degradation  mechanism  that  can  be  considered,  such  as  

Page 106:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 106  

chemical   decomposition   of   the   perovskite   layer   upon   exposure   to  

light,   effect   of   humidity,   and   temperature188–191,   as   well   as  

irreversible   trap   generation192   and   ion  migration   to   the   perovskite  

from  contact/transport  layers193,198.  

The   chemical   decomposition   is   typically   accompanied   by   PbI2  

formation  resulting  in  a  color  change  to  yellow  in  the  samples.  In  our  

case,  we  did  not  visually  observe  any  color  change  in  the  cells  during  

the  degradation.  Moreover,  Raman  scattering  measurements  did  not  

reveal  PbI2  peaks  even  after  cells  were  degraded  to  50%  of  the  initial  

PCE  (more   information  can  be   found   in  section  7   in   the  supporting  

information177  of  paper  II172).  Although  the  sensitivity  of  the  Raman  

technique  to  small  PbI2  quantities  can  be  limited,  we  suggest  that  the  

irreversible   loss   of   the   cell   performance   was   not   resulted   from  

significant  decomposition  of  the  perovskite  layer  itself.  

5.3  Correlation  between  indoor  and  outdoor  stability  measurements  Reversible   and   irreversible   degradation   mechanisms   were  

observed  for  both  indoor  and  outdoor  measurements.    

In   case   of   outdoor  measurements,   in   the   first   stage   of   the   aging  

process  when  the  cell  is  degraded  to  not  more  than  80%  of  its  initial  

PCE,   the   decrease   in   the   VOC   and   FF  was   partially   compensated   by  

nighttime  recovery172  (type  I  dynamics).  This  effect  slows  down  the  

rate   of   the   long-­‐term   degradation   compared   to   a   constant  

illumination   condition199,   This   mechanism   is   similar   to   the   one  

depicted   in   Figure   5.4.b   (t<T50)   in   which   the   PCE   decay   is   mainly  

caused  by  the  decrease  in  VOC  and  FF  with  minor  contribution  of  JSC  

Page 107:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  107  

deterioration,  and  then  the  performance  is  significantly  recovered  in  

the  dark.  Full  recovery  was  not  reached  in  outdoor  conditions  due  to  

“apparently  irreversible”  processes  occurring  at  t>T80  and  a  recovery  

time   longer   than   one   night.   However,   we   observed   that   increasing  

the   dark   recovery   time   did   not   significantly   improve   the   degree   of  

recovery.    At   later  aging   stages  of  outdoor  degradation,   the  diurnal  

behavior  of  the  cells  is  switched  from  type  I  to  type  II  in  which  PCE  

decreased  over  night  and   increased  under  subsequent   illumination.  

This   behaviors   is   roughly   corresponding   to   the   one   depicted   in  

Figure   5.4.d   in   which   after   PCE   decreased   to   less   than   50%   of   its  

initial   value,   a   sharp   PCE   decrease   is   observed   immediately   after  

turning   off   the   light.   At   this   stage   both   indoor   and   outdoor  

experiments  show  a  decrease  in  the  PCE  during  the  darkness  and  its  

increase   under   subsequent   illumination,   which   suggests   a   similar  

degradation  mechanism(s)  for  both  cases.    

Overall,  summarizing  the  results  that  were  shown  for  indoor  and  

outdoor  degradation  tests,  we  suggest  the  following  scenario  for  cell  

degradation:   at   the   very   early   aging   stages   (t≤T80   in   our   case),  

degradation  mechanism  is  reversible.  Then  at  t>T60,  both  reversible  

and  irreversible  degradation  mechanism  take  place.  Finally,  at  t~T50,  

a   third   type   of   unique   dynamic   kick   in   that   changes   the   diurnal  

dynamics   of   type   I   to   that   of   type   II,   which   result   in   further  

degradation  after  turning  of  the  light  and  subsequent  improvements  

in  PCE  under  light  soaking.  

In   summery,   these   results   reveal   that   understanding   the  

degradation   processes   under   real   operational   conditions   is   only  

achievable   by   including   the   light-­‐darkness   cycles   in   experimental  

protocols  for  the  assessment  of  PSCs  long-­‐term  stability.    

Page 108:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 108  

 

 

   

 

 

                           

             

Page 109:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  109  

           CHAPTER  6  

Summary  and  Outlook    Organic   and   hybrid   solar   cells   have   become   appealing  

technologies  due   to   their  unique  advantages.  Efficiencies  of  organic  

and   perovskite   solar   cells   have   recently   reached   world   records   of  

15%   and   22%,   respectively,   however,   in   order   for   them   to   be  

commercially  viable  they  need  to  have  at   least  10  years  of  stability,  

which  has  introduced  challenges  to  the  field.    

In  this  work,  we  studied  the  stability  of  both  OSC  and  PSC  devices.  

For  organic  solar  cells,  we  fabricated  and  evaluated  performance  and  

stability   of   DBP-­‐C70   based   organic   solar   cells   with   standard   and  

inverted   device   configurations.   We   focused   on   the   morphological  

changes  at   the  DBP-­‐C70   interface,  which  can   lead   to   intrinsic  device  

degradations.   We   performed   sEQE   measurements   to   identify  

molecular  and  morphological  changes  at  D-­‐A  interface  after  aging  the  

devices  at   two  different   ISOS  degradation   test  conditions   (ISOS-­‐D-­‐3  

and  ISOS-­‐T-­‐3).  The  results  revealed  a  pronounced  stability  at  the  D-­‐A  

interface  for  both  devices.  Instead,  the  results  suggest  that  the  drop  

Page 110:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 110  

in   performance   and   stability   of   inverted   devices   is   resulted   from  

using   a   BCP   bottom   ETL   in   this   configuration.   This   shows   the  

potential  strong  impact  of  all  layers  and  interlayers  on  the  stability  of  

the   devices.   To   address   this,   we   evaluated   exciton   blocking   and  

electron   transport   properties   of   different   BCP   film   thicknesses   as  

ETL,  and  two  alternatives  based  on  C70/BCP  and  BCP/Ag  stacks.  The  

ETL   layers   were   evaluated   using   standard   JV,   SCLC   and   PL  

measurements   together   with   stability   tests.   The   results   showed  

improved   device   performance   and   stability   for   inverted   devices  

implementing  the  BCP/Ag  stack  as  ETL,  which  implies  the  significant  

contribution   of   a   pure   BCP   ETL   to   the   hampered   stability   of   the  

inverted  devices.  

For   perovskite   solar   cells,   we   tested   long-­‐term   stability   of   the  

devices   under   indoor   and   outdoor   conditions   during   day/night  

cycles,   revealing   both   reversible   and   irreversible   degradation  

dynamics.  We  compared  the  results  with  already  existing   figures  of  

merit  for  stability  measurements,  and  related  the  ones  observed  for  

outdoor   degradation   tests   to   the   results   obtained   from   indoor  

constant   illumination   condition.   We   concluded   that   under  

illumination/dark  cycles,  at  early  stages  of  the  aging  process  (t≤T80),  

degradation   mechanism   is   still   reversible;   however,   as   the   aging  

process   continues   (t>T60),   irreversible   degradation   mechanism  

appears.  At  a  stage  when  t~T50,  a  third  type  of  mechanism  kicks   in,  

which   changes   the   degradation   pattern   and   degradation   in   dark   is  

seen,   instead   of   typically   observed   degradation   under   light.   These  

results   revealed   the   importance   of   including   the   light-­‐darkness  

cycles   in   the   experimental   stability   protocols   to   achieve   a   deeper  

Page 111:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  111  

understanding  of   the  degradation  processes  under   real   operational  

conditions.  

This  work  thus  touches  upon  some  essential  points  in  the  stability  

of  both  organic  and  hybrid  solar  cells,  however,  there  are  still  lots  of  

investigations  to  be  made  and  unknown  to  be  explored.  For  the  OPV  

devices   investigated   here,   there   is   still   a   need   for   a   better   ETL  

candidate   with   improved   properties   to   be   used   in   inverted   device  

configuration.   Moreover,   as   a   useful   method,   Fourier-­‐transform  

infrared   spectroscopy   (FTIR)   can  be  used   to   study   the  degradation  

mechanisms   related   to   pure   chemical   changes   in   the   investigated  

materials.    

Further  improvements  in  performance  and  stability  of  the  organic  

and   hybrid   solar   cell   devices   can   be   achieved   through   systematic  

investigations   and   proper   characterization   methods.   Degradation  

studies   under   real   operational   conditions   can   reveal   more  

degradation   paths   taking   place   inside   the   devices   and   link   our  

findings   to   the  broader   context   in   the   literature.   It   is   expected   that  

these   results   will   be   a   path   to   further   study   the   degradation  

mechanisms,   and  will  be  built  upon   so   that   true   implementation  of  

organic   and   hybrid   solar   cells   in   our   everyday   life  will   be   realized  

soon  from  all  the  joint  efforts  made  on  these  topics.    

 

 

 

 

 

Page 112:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 112  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 113:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  113  

 

Appendix  A    

ISOS-­‐T-­‐3  degradation  test  for  standard  structure    DBP-­‐C70   based   organic   solar   cells  with   standard   strictures  were  

encapsulated  using  a  Dow  Corning  732  silicon  vacuum  sealant  and  a  

glass   on   top   in  order   to  decrease   the   effect   of   the   air   and   extrinsic  

degradation.  Then  half   of   the  devices  were  placed   inside   a   thermal  

chamber  under   ISOS-­‐T-­‐3   test  condition  ((-­‐40℃  and  room  humidity-­‐

darkness),   and   the   other   half  were   stored   in   a   shelf   in   darkness   at  

room  temperature  (ISOS-­‐D-­‐1).  JV  characteristics  of  the  devices  were  

recorded   regularly   using   a   solar   simulator   until   they   reached   their  

T20  (where  the  efficiency  reaches  20%  of  its  initial  value).  Figure  A.1  

presents  the  decay  curves  of  the  devices.  

As  it  can  be  seen,  for  the  devices  which  were  kept  under  ISOS-­‐T-­‐3  

at   low   temperature,   the   VOC   value   remain   above   80%   of   its   initial  

value  after  3500  hours  (almost  145  days).  However,  for  devices  kept  

at  room  temperature,  T80  point   is  reached  much  earlier  and  around  

500  hours  (20  days).    

 

Page 114:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 114  

Figure   A.1.   Lifetime   curves   of   the   DBP-­‐C70   based   organic   solar   cells   with  Standard   planar   structure.   Top”   Under   ISOS-­‐D-­‐1   (darkness,   room  temperature   and   room   humidity)   and   bottom:   under   ISOS-­‐T-­‐3   (-­‐40℃  and  room  humidity-­‐darkness)  aging  condition    

 

Page 115:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  115  

 

Appendix  B    

TTF  as  donor  material  in  organic  solar  cells      Tetrathiafulvalene   (TTF)200–202   is   recognized   as   a   strong   π-­‐

electron  organic  donor  and  has  been  of  great  interest  since  the  early  

1970s  due  to  the  discovery  of  the  first  organic  metal203,204.  TTF  is  an  

small   organic  molecule  with  good  mobility   and  a  wide   spectrum  of  

applications205–207(Figure  B.1).  This  molecule  can  reversibly  undergo  

a   two-­‐step   oxidation   process   to   form   the   radical   cation   and   the  

dication  forms  of  the  TTF  and  is  in  general  thermodynamically  stable  

to  many  synthetic  transformations.  Moreover,  it  is  relatively  stable  in  

air,  and  its  oxidation  potentials  can  be  finely  tuned  by  the  attachment  

of   electron-­‐donating   or   electron-­‐withdrawing   substituents208.

Overall,   interesting   charge-­‐transport   properties,   photoinduced  

electron   transfer   leading   to   highly   stabilized   ion   radical   pairs,  

together   with   possibility   of   tailoring   the   properties,   makes   TTF  

derivatives   appealing   candidate   for   organic   photovoltaic  

applications.  

Page 116:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 116  

Figure   B.1.   Various   applications   of   TTF   in   super  molecular   chemistry   and  material  chemistry202,209.    

 

TTF  is  widely  researched  in  charge  transfer  salts  where   it  conducts  

electrons200,   and   it   is   possibly   the   best   organic   electron-­‐donor  

material   and   used   extensively   in   supramolecular   chemistry210.  

However,   surprisingly   their   application   in   organic   and   dye  

synthesized  solar  cells  has  been  very  limited211,212.  

In  this  work  we  tested  three  generations  of  novel  TTF  derivatives  

as  electron  donor  with  acceptor  PC60BM  in  organic  solar  cells.  We  are  

aiming  to  improve  the  performance  and  stability  of  the  organic  solar  

cells  by  implementing  and  optimizing  the  properties  of  this  molecule  

in  the  active  layer  of  the  devices.    

The   novel   TTF   molecules   have   been   synthesizes   by   our  

collaborator  Dr.   Steffen  Bähring  at   SDU  FKF  Odense,  Denmark,   and  

solar  cell  device  fabrication  and  optimization  has  been  performed  at  

SDU  NanoSYD.  

 

 

Page 117:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  117  

B.1  First-­‐generation  TTF  molecules    We  started  the  process  by  testing  the  received  first  generation  of  

the  synthesized  novel  TTF  derivatives  named  as  TTF1  and  TTF2  with  

different   electron-­‐donor   and   absorption   properties   (Figure   B.2).  

Cyclic   voltammetry   (CV)   and  HUMO-­‐LUMO   levels   of   each  molecule  

are  shown   in  Figure  B.3.  The  molecules  were   tested   in  TTF:PC60BM  

based  solar  cell  devices  with  the  structure  of  ITO/ZnO/TTF:PC60BM  

/MoO3/Ag.  

Figure  B.2.  Skeletal  formula  of  TTF1  and  TTF2  molecules.  

 

Figure   B.3.   (left)   Cyclic   voltammetry   and   (right)   HUMO   LUMO   levels   for  TTF1  and  TTF2  molecules    

 

Page 118:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 118  

To   fabricate   the   devices,   pre-­‐patterned   ITO   coated   substrates  

were  cleaned  using  acetone  and   isopropanol   in  ultrasonic  bath  and  

blow-­‐dried  with  nitrogen  gun.  In  order  to  avoid  exposure  to  air,  the  

whole   fabrication   process   was   done   in   a   nitrogen   glove-­‐box.   A  

commercial  ZnO  semi-­‐conductive  ink  (Genes’  Ink,  France)  was  spin-­‐

coated  on  top  of  ITO  with  1000  rpm  for  60  sec  and  annealed  on  a  hot  

plate  at  130°C  for  15  min.  First,  we  started  with  TTF1  molecule  from  

which  TTF1:PC60BM  solutions  were  prepared  by  dissolving  20  mg  of  

TTF1  and  20  mg  of  PC60BM  in  Chlorobenzene  (CB)  solvent  to  result  

in   40   mg/ml   concentration   with   the   ratio   (1:1).   To   spin-­‐coat   the  

active  layer,  three  different  rpms  were  used:  500,  1000  and  2000.  In  

parallel  with  device   fabrication,   the  solutions  were  separately  spin-­‐

coated   over   cleaned   glass   substrates   in   order   to   investigate   the  

quality  and  thickness  of  the  films.  Finally,  10  nm  MoO3  and  100  nm  

Ag  were  vacuum  deposited  on  top  of  the  deposited  films,  and  a  mask  

was  used  to  define  a  cell  area  of  10  mm2  for  each  cell  (design  of  the  

devices  are  similar  to  the  ones  described  in  chapter  3).    

J-­‐V   characteristics   of   the   devices   were   recorded   under   1   sun  

illumination   in   a   solar   simulator   (3000   class   AAA   solar   simulator  

from  Abet  Technology  Inc.,  USA).  Among  three  types  of  devices,  only  

the   ones   with   deposited   active   layer   at   2000   rpm   showed  

photovoltaic   effect   with   0.001%   PCE   and   0.08   mA/cm2   JSC.   The  

deposited  films  over  the  cleaned  glasses  were  very  thin  and  showed  

absorption  only  in  the  UV  range  (Figure  B.4).  

 

 

Page 119:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  119  

Figure   B.4.   Absorption   spectra   of   the   three   types   of     TTF1:PC60BM   films  deposited  at  three  different  rpms  (500,  1000  and  2000).  

B.1.1   increasing   the   concentration   to   increase  

absorption  In   the   next   step,   a   solution  with   a   3   times   higher   concentration  

(120   mg/ml)   was   made,   and   the   whole   experiment   was   repeated.  

However,   similar   results  were   obtained  without   any   improvement,  

confirming   that   the   devices   were   hampered   by   the   poor   visible  

absorption   from   the   material.     Moreover,   phase   segregation   of  

PC60BM   and   TTF1   molecules   were   seen,   which   resulted   in   low  

quality  and  uneven  films.    

B.1.2  Changing  the  solvent  and  using  dynamic  dispense  To   improve   the   solubility   of   the  molecules,  we   used   Chloroform  

(CF)   solvent   instead   and   annealed   the   solution   before   and   during  

spin  coating.  In  this  experiment,  2  solutions  with  40  mg/ml  and  120  

mg/ml  concentrations  were  prepared  over  night  by  stirring  on  a  hot  

plate   at   80   °C.   This   time   1000,   2000   and   3000   rpms  were   used   to  

Page 120:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 120  

deposit   the   films.   Moreover,   since   CF   is   a   high   vapor   pressure  

solvent,  each  solution  was  applied  while  the  substrate  was  spinning  

(dynamic  dispense)  to  avoid  evaporation  of  the  solvent  and  resulting  

in  a  better  film  uniformity.  

For   each   sample,   the   quality   of   the   deposited   films   and   their  

absorption  properties  were  evaluated  (Figure  B.5),  and  devices  were  

fabricated  based  on  the  highest  absorber  film.    However,  none  of  the  

developed  devices  worked.  It  was  noticed  that  right  after  deposition  

of   the   films,   crystalline   zones   were   growing   very   fast   on   each  

substrate,   which   may   be   the   main   result   for   the   failure   of   this  

experiment  (Figure  B.6).    

Figure   B.5.   Absorption   spectrum   for   deposited   films   from   TTF1:PC60BM  solutions   with   40mg/ml   and   120mg/ml   concentration,   deposited   at   1000,  2000  and  3000  rpm.    

Figure  B.6.  Crystallized  zones  formed  right  after  spin  coating.  

Page 121:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  121  

Crystallization   can   occur   either   due   to   the   reason   that   the   two  

materials   reject   each   other   (originating   from   their   structure   or  

dipole  dipole  interaction)  or  due  to  a  very  strong  attraction  between  

the  TTF  molecules.  Unlike   polymers,   this   often   happens  with   small  

molecules,   as   they   are   not   connected   in   long   chains,   which  makes  

them   more   mobile.   To   solve   this   problem,   we   added   a   polymer  

(polystyrene=PS)   into   the   solution,   which   would   act   as   a   sort   of  

'spacer'  that  prevents  them  from  aggregating.    

B.1.2  Adding  polystyrene  (PS)    

The   experiments   with   both   TTF1   and   TTF2   molecules   were  

repeated,   and   TTF1:PC60BM   and   TTF2:PC60BM   solutions   with   40  

mg/ml  and  80  mg/ml   concentrations   containing  either  10%  or  5%  

PS   were   made.   SPS   with   8   mg/ml   concentration   (10%   PS   in   a   80  

mg/ml   concentration)   was   prepared   by   dissolving   a   33mg  

polystyrene   bead   in   about   4.12  ml   chloroform,   and   left   for   stirring  

for   a   few   days   on   a   hot   plate   at   50   °C.   Next,   8   different   types   of  

TTF:PC60BM   solutions   were   prepared   by   adding   different   ratios   of  

SPS  (Table  B.1).  

Films  were  spin-­‐coated  over  cleaned  glass  substrates  with  1000,  

2000  and  3000  rpms.  Photographs  and  optical  microscope  images  of  

each  substrate  is  shown  in  Figure  B.7  and  B.8.  Absorption  properties  

of  each  film  was  recorded  and  is  illustrated  in  Figure  B.9  

 

 

 

Page 122:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 122  

Table   B.1.   8   different   solutions   with   TTF1   and   TTF2,   with   two   different  concentrations  (80  and  40mg/ml)  containing  5%  and  10%  PS.  

TTF1:PC60BM  

40mg/ml  

5%  PS   10%  PS  

20mg  TTF1+20mg  PCBM  

0.25ml  SPS+0.75ml  CF    

20mg  TTF1+20mg  PCBM  

0.5ml  SPS+0.5  ml  CF    

80mg/ml  

5%  PS   10%  PS    

40mg  TTF1+40mg  PCBM  

0.5ml  SPS+0.5ml  CF  

40mg  TTF1+40mg  PCBM  

1ml  SPS  

 

TTF2:PC60BM  

40mg/ml  

5%  PS   10%  PS  

20mg  TTF2+20mg  PCBM  

0.25ml  SPS+0.75ml  CF  

20mg  TTF2+20mg  PCBM  

0.5ml  SPS+0.5  ml  CF  

80mg/ml  

5%  PS   10%  PS  

40mg  TTF2+40mg  PCBM  

0.5ml  SPS+0.5ml  CF  

40mg  TTF2+40mg  PCBM  

1ml  SPS  

 

Figure  B.7.  Deposited  films  from  TTF1:PC60BM  solutions  with  40mg/ml  and  80mg/ml  concentration  containing  5%  and  10%  PS.  

 

Page 123:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  123  

Figure  B.8.  Deposited  films  from  TTF2:PC60BM  solutions  with  40mg/ml  and  80mg/ml  concentration  containing  5%  and  10%  PS.  

Figure   B.9.  Absorption  spectra  of   films  deposited  from  4  different  solutions  based  on  TTF2:PC60BM,  each  deposited  with  3  different  rpms.  

Page 124:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 124  

Overall,   TTF2:PC60BM   films   showed   better   film   quality,   and  

stronger  absorption  properties  in  visible  wavelengths.  Therefore,  the  

TTF2   molecules   were   evaluate   as   the   active   layer   material   in   the  

solar  cell  devices.  

B.1.3  Assessing  TTF2  molecules  in  organic  solar  cells  

As   the  next  step,  4  different  TTF2:PC60BM  solutions  were  coated  

over   ITO/ZnO  substrates   to   investigate   the  quality  of   the  deposited  

films.  Figure  B.10  shows  optical  and  AFM  images  of  the  spin-­‐coated  

solution   over   ITO/ZnO   substrates,   and   Figure   B.11   illustrates  

absorption  properties  for  each  sample.  

 

Figure   B.10.   Optical  microscope   and   AFM   images   of   the   films   deposited  from   TTF2:PC60BM   solutions   with   two   different   concentrations   and   two  different  PS  concentrations  

 

Page 125:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  125  

 Figure   B.11.   Absorption   properties   of   TTF2:PC60BM  with   40mg/ml   and  80mg/ml  containing  5%  and  10%  PS.  

 

As   the   results   show,   the  quality   and  uniformity  of   the  deposited  

films   has   significantly   improved.   Based   on   these   results,   solar   cell  

devices  based  on  TTF2:PC60BM  active   layer  were   fabricated.   In   this  

process,   the   4   types   of   solutions   were   deposited   over   ITO/ZnO  

substrates  with  1000  rpm,   followed  by  vacuum  deposition  of  MoO3  

and   Ag   on   top.   Figure   B.12   shows   J-­‐V   curves   and   extracted  

parameters  for  each  type  of  device.    

As  it  can  be  seen,  although  the  efficiency  is  very  low,  this  time  the  

cells   show   reproducible   performance   results.   Low   PCE   is   resulted  

from  a  low  current  (JSC),  which  is  expected  as  very  little  visible  light  

is   absorbed.  Therefore,   the   challenge  were   to   incorporate  modified  

TTF  molecules  that  absorb  in  the  visible  area.  

Page 126:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 126  

 

Figure   B.12.   J-­‐V   curves   and   extracted   parameters   of   4   different   types   of  devices  based  on  TTF2:PC60BM  active  layer.    

 

B.2  Second-­‐generation  TTF  molecules    For   the   second-­‐generation   TTF   molecules,   we   introduced   an  

electron-­‐accepting   moiety   (benzoyl   groups)   to   lower   the   LUMO  

energy  level,  and  thereby  increase  the  absorption  band  between  400  

and   600   nm  of   varying   intensity.  We   assessed   two  TTF   editions   in  

our  solar  cells  (Figure  B.13).    

Page 127:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  127  

 

Figure  B.13.  Skeletal  formula  of  TTF2I  and  TTF2II  molecules.  

 

Devices  were   fabricated  with   the   new  TTF2   compounds   in   their  

active   layers.  TTF2:PC60BM  solutions  with  40  mg/ml  and  80  mg/ml  

concentrations   were   prepared,   and   devices   were   fabricated   as  

described   before.   Final   results   showed   only   very   low   PCE   around  

0.004%  for  80  mg/ml  solutions,  and  not  much  improvement.  

 

B.3  Third-­‐generation  TTF  molecule  This   time   our   collaborator   synthesized   third-­‐generation   TTF  

molecules  with   better   absorption  properties,  which   can   assist  with  

improved   cell   characteristics.   These   Molecules   are   editions   of   the  

previously   incorporated   TTF  molecules   in  which   an   organic   dye   is  

used   as   a   platform   (quinoidal   porphyrin),  which   has   higher   visible  

absorption  with   the  TTF   still   being   able   to  modulate   the   electronic  

properties  (ex-­‐TTF  porphyrin)  (Figure  B.14).    

Page 128:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 128  

Figure  B.14.  Absorption  spectra  of  exTTF-­‐Porphyrin  molecule  

 

We   received   two   derivatives   of   this   ex-­‐TTF   porphyrin   and   for  

convenience,   we   named   them   TTF56   and   TTF80   (Figure   B.15).   CV  

measurements  of  the  two  molecules  are  shown  in  Figure  B.16.  Fine-­‐  

tuning  the  electronic  properties  of  the  molecules  to   introduce  more  

electron   withdrawing   moieties   such   as   COOMeTTF56   results   in  

0.227  V  higher  oxidation  potential  compared  to  SEt  TTF80.  

 

Figure  B.15  Skeletal  formula  of  TTF80  and  and  TTF56  molecules.  

 

Page 129:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  129  

 

Figure  B.16.  CV  recorded  for  TTF80  and  TTF56.  

 

With   the   same   procedure   as   explained   before,   we   made   4  

solutions  with   these   two  molecules  and  PC60BM  (1:1)  having  either  

40  mg/ml   or   80  mg/ml   concentration,   and   containing   5%  PS.   This  

time  we   slightly   changed   the   recipe.  We   spin-­‐coated  ZnO  over  pre-­‐

patterned  ITO  substrates  at  2000  rpm  for  60s  and  baked  it  at  130°C  

for  15  min.  Each  substrate  left  in  the  vacuum  for  30  min  for  complete  

drying.  Then,  the  TTF:PC60BM  solution  was  dynamically  spin-­‐coated  

at  1000   rpm   for  60s   followed  by  1500   rpm   for  5s   resulted   in  200-­‐

260  nm  thick  film.  Again,  a  vacuum  drying  procedure  was  carried  out  

for  30  min  to  give  enough  time  for  evaporation  of  the  solvent.  After  

that,   samples   were   transferred   into   a   vacuum   deposition   system  

where   10   nm   MoO3   and   100   nm   Ag   were   deposited   as   HTL   and  

electrode  on  top.    

Final   device   characterization   shows   reproducible   results   with  

very   low   PCE   of   0.04%   and   0.01%   for   TTF56   and   TTF80,  

respectively.   The   measured   VOC   is   comparable   to   reference   donor  

Page 130:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 130  

materials  (P3HT);  however,  the  JSC  and  FF  are  very  low  (Figure  B.17).  

This   may   be   due   to   a   poor   morphology,   which   may   be   improved  

using  a  different  donor  and  acceptor  ratio  in  the  active  layer.    

   

 Figure   B.17.   J-­‐V   characteristics   and   extracted   device   parameters   for   solar  cell  devices  based  on  TTF56:PC60BM  and  TTF80:PC60BM  with  (1:1)  ratio.  

 

B.3.1  changing  the  donor  acceptor  ratio  In   another  effort,   ratio  of   the  PC60BM  was   increased   three   times  

more   and   solutions   were  made  with   TTF   (80   or   56):PC60BM   (1:3)  

with  40  mg/ml  concentration  containing  2.5%  PS  (2  solutions).  Solar  

cell   devices   were   fabricated   with   these   solutions   and   their  

performances  were  characterized.  Results  show  an  improved  PCE  to  

0.26%   and   1.11   mA/cm2   JSC   for   devices   based   on   TTF56:PC60BM  

(Figure  B.18).  

Page 131:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  131  

 

Figure   B.18.   J-­‐V   characteristics   and   extracted   device   parameters   for   solar  cell  devices  based  on  TTF56:PC60BM  and  TTF80:PC60BM  with  (1:3)  ratio.  

 

B.3.2  Degradation  measurements  As  a  final  attempt,  we   tested  stability  of  the  TTF56:PC60BM  based  

solar   cells   by   aging   them   in   ISOS-­‐D-­‐3   condition   for   24   h.   Results  

show  a  degradation  path  in  which  50%  drop  in  PCE  is  mostly  caused  

by  a  drop  in  VOC  and  JSC  and  less  related  to  a  change  in  the  FF  (Figure  

B.19).  Further  investigations  are  needed  to  identify  the  origin  of  the  

degradation  mechanisms  taking  place  in  these  devices.  

 

 

Page 132:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 132  

   

Figure  B.19.  Stability  characterization  of  TTF56:PC60BP  based  solar  cells  in  ISOS-­‐D-­‐3  condition  Overall,  the  results  so  far  indicate  the  potential  application  of  the  

TTF   molecules   as   donor   material   in   organic   solar   cells,   which  

however   requires   much   optimization   of   the   material   and   device  

properties.   Ex-­‐TTF   derivatives   show   interesting   electronic  

properties  to  be  used  in  organic  photovoltaics.  Although  the  results  

for   BHJ   type   OSC   are   poor,   they   show   a   potential   to   improve   the  

overall   performance   by   a   systematic   approach   to   modify   the  

electronic   properties   of   the   molecules   and   device   fabrication  

techniques.  

Page 133:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  133  

Bibliography    1.   Bagnall,  D.  M.  &  Boreland,  M.  Photovoltaic  technologies.  Energy  

Policy  36,  4390–4396  (2008).  2.   Hanna,  M.  C.  &  Nozik,  A.  J.  Solar  conversion  efficiency  of  

photovoltaic  and  photoelectrolysis  cells  with  carrier  multiplication  absorbers.  J.  Appl.  Phys.  100,  (2006).  

3.   Gauthier,  S.  et  al.  Mild  cognitive  impairment.  Lancet  367,  1262–1270  (2006).  

4.   Nazeeruddin,  M.  K.  et  al.  Conversion  of  Light  to  Electricity  by  cis-­‐X2Bis  (2,2′-­‐bipyridyl-­‐4,4′-­‐dicarboxylate)  ruthenium  (II)  Charge-­‐Transfer  Sensitizers  (X  =  Cl−,  Br−,  I−,  CN−,  and  SCN−)  on  Nanocrystalline  TiO2  Electrodes.  J.  Am.  Chem.  Soc.  115,  6382–6390  (1993).  

5.   Shauddin,  S.  Comparison  among  Various  Emerging  PV  Cells  with  History,  Current  Status  and  Future  Challenges.  Energy  and  Power  3,  91–105  (2013).  

6.   A  Pochettino,  Acad.Lincei  Rend,  1906,  15,  355.  No  Title.  7.   Yu,  G.,  Gao,  J.,  Hummelen,  J.  C.,  Wudl,  F.  &  Heeger,  A.  J.  Polymer  

Photovoltaic  Cells:  Enhanced  Efficiencies  via  a  Network  of  Internal  Donor-­‐Acceptor  Heterojunctions.  Science  (80-­‐.  ).  270,  1789–1791  (1995).  

8.   Facchetti,  A.  π-­‐Conjugated  polymers  for  organic  electronics  and  photovoltaic  cell  applications.  Chem.  Mater.  23,  733–758  (2011).  

9.   Zhokhavets,  U.,  Erb,  T.,  Gobsch,  G.,  Al-­‐Ibrahim,  M.  &  Ambacher,  O.  Relation  between  absorption  and  crystallinity  of  poly(3-­‐hexylthiophene)/  fullerene  films  for  plastic  solar  cells.  Chem.  Phys.  Lett.  418,  347–350  (2006).  

10.   Tseng,  H.-­‐R.  &  Lin,  C.-­‐L.  Organic  photovoltaic  cell.  183,  1–19  (2011).  

11.   Mateker,  W.  R.  &  McGehee,  M.  D.  Progress  in  Understanding  Degradation  Mechanisms  and  Improving  Stability  in  Organic  Photovoltaics.  Adv.  Mater.  29,  (2017).  

12.   Che,  X.,  Li,  Y.,  Qu,  Y.  &  Forrest,  S.  R.  High  fabrication  yield  organic  tandem  photovoltaics  combining  vacuum-­‐  and  solution-­‐processed  subcells  with  15%  efficiency.  Nat.  Energy  3,  8–13  (2018).  

13.   Cao,  H.  et  al.  Recent  progress  in  degradation  and  stabilization  

Page 134:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 134  

of  organic  solar  cells.  J.  Power  Sources  264,  168–183  (2014).  14.   Mateker,  W.  R.,  Sachs-­‐Quintana,  I.  T.,  Burkhard,  G.  F.,  

Cheacharoen,  R.  &  McGehee,  M.  D.  Minimal  long-­‐term  intrinsic  degradation  observed  in  a  polymer  solar  cell  illuminated  in  an  oxygen-­‐free  environment.  Chem.  Mater.  27,  404–407  (2015).  

15.   Yang,  W.  S.,  Park,  B.-­‐W.,  Jung,  E.  H.  &  Jeon,  N.  J.  Iodide  management  in  formamidinium-­‐lead-­‐halide  –  based  perovskite  layers  for  efficient  solar  cells.  Science  (80-­‐.  ).  356,  1376–1379  (2017).  

16.   Simon,  P.  et  al.  References  and  Notes  1.  338,  1541–1545  (2011).  

17.   NREL.  NREL.  18.   Bryant,  D.  et  al.  Light  and  oxygen  induced  degradation  limits  

the  operational  stability  of  methylammonium  lead  triiodide  perovskite  solar  cells.  Energy  Environ.  Sci.  9,  1655–1660  (2016).  

19.   Chun-­‐Ren  Ke,  J.  et  al.  In  situ  investigation  of  degradation  at  organometal  halide  perovskite  surfaces  by  X-­‐ray  photoelectron  spectroscopy  at  realistic  water  vapour  pressure.  Chem.  Commun.  53,  5231–5234  (2017).  

20.   Juarez-­‐Perez,  E.  J.,  Hawash,  Z.,  Raga,  S.  R.,  Ono,  L.  K.  &  Qi,  Y.  Thermal  degradation  of  CH  3  NH  3  PbI  3  perovskite  into  NH  3  and  CH  3  I  gases  observed  by  coupled  thermogravimetry–mass  spectrometry  analysis.  Energy  Environ.  Sci.  9,  3406–3410  (2016).  

21.   Yuan,  Y.  et  al.  Electric-­‐field-­‐driven  reversible  conversion  between  methylammonium  lead  triiodide  perovskites  and  lead  iodide  at  elevated  temperatures.  Adv.  Energy  Mater.  6,  1–7  (2016).  

22.   Guarnera,  S.  et  al.  Improving  the  long-­‐term  stability  of  perovskite  solar  cells  with  a  porous  Al2O3  buffer  layer.  J.  Phys.  Chem.  Lett.  6,  432–437  (2015).  

23.   Rolston,  N.  et  al.  Mechanical  integrity  of  solution-­‐processed  perovskite  solar  cells.  Extrem.  Mech.  Lett.  9,  353–358  (2016).  

24.   Habisreutinger,  S.  N.  et  al.  Carbon  nanotube/polymer  composites  as  a  highly  stable  hole  collection  layer  in  perovskite  solar  cells.  Nano  Lett.  14,  5561–5568  (2014).  

25.   Van  Noorden,  R.  Cheap  solar  cells  tempt  businesses.  Nature  513,  470  (2014).  

26.   Noel,  N.  K.  et  al.  Lead-­‐free  organic–inorganic  tin  halide  perovskites  for  photovoltaic  applications.  Energy  Environ.  Sci.  

Page 135:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  135  

7,  3061–3068  (2014).  27.   Perovskites  and  Perovskite  Solar  Cells:  An  Introduction.  at  

<https://www.ossila.com/pages/perovskites-­‐and-­‐perovskite-­‐solar-­‐cells-­‐an-­‐introduction>  

28.   Nie,  W.  Y.  et  al.  High-­‐efficiency  solution-­‐processed  perovskite  solar  cells  with  millimeter-­‐scale  grains.  Science  (80-­‐.  ).  347,  522–525  (2015).  

29.   Bredas,  J.  L.,  Calbert,  J.  P.,  da  Silva  Filho,  D.  A.  &  Cornil,  J.  Organic  semiconductors:  A  theoretical  characterization  of  the  basic  parameters  governing  charge  transport.  Proc.  Natl.  Acad.  Sci.  99,  5804–5809  (2002).  

30.   Kymissis,  I.  Organic  Field  Effect  Transistors.  (2003).  doi:10.1007/978-­‐0-­‐387-­‐92134-­‐1  

31.   Leonat,  L.,  Sbârcea,  G.  &  Bran̂zoi,  I.  V.  Cyclic  voltammetry  for  energy  levels  estimation  of  organic  materials.  UPB  Sci.  Bull.  Ser.  B  Chem.  Mater.  Sci.  75,  111–118  (2013).  

32.   Brutting,  W.  &  Rieß,  W.  Grundlagen  der  organischen  Halbleiter.  Phys.  J.  7,  33–38  (2008).  

33.   Gregg,  B.  A.  &  Hanna,  M.  C.  Comparing  organic  to  inorganic  photovoltaic  cells:  Theory,  experiment,  and  simulation.  J.  Appl.  Phys.  93,  3605–3614  (2003).  

34.   Torabi,  S.  et  al.  Strategy  for  enhancing  the  dielectric  constant  of  organic  semiconductors  without  sacrificing  charge  carrier  mobility  and  solubility.  Adv.  Funct.  Mater.  25,  150–157  (2015).  

35.   Deibel,  C.  &  Dyakonov,  V.  Polymer-­‐Fullerene  Bulk  Heterojunction  Solar  Cells.  096401,  68  (2010).  

36.   Vandewal,  K.  Interfacial  Charge  Transfer  States  in  Condensed  Phase  Systems.  Annu.  Rev.  Phys.  Chem  67,  113–33  (2016).  

37.   Loi,  M.  A.  et  al.  Charge  transfer  excitons  in  bulk  heterojunctions  of  a  polyfluorene  copolymer  and  a  fullerene  derivative.  Adv.  Funct.  Mater.  17,  2111–2116  (2007).  

38.   Vandewal,  K.  et  al.  The  relation  between  open-­‐circuit  voltage  and  the  onset  of  photocurrent  generation  by  charge-­‐transfer  absorption  in  polymer:  Fullerene  bulk  heterojunction  solar  cells.  Adv.  Funct.  Mater.  18,  2064–2070  (2008).  

39.   Veldman,  D.  et  al.  Compositional  and  electric  field  dependence  of  the  dissociation  of  charge  transfer  excitons  in  alternating  polyfluorene  copolymer/fullerene  blends.  J.  Am.  Chem.  Soc.  130,  7721–7735  (2008).  

40.   Benson-­‐Smith,  J.  J.  et  al.  Formation  of  a  ground-­‐state  charge-­‐transfer  complex  in  polyfluorene/[6,6]-­‐  phenyl-­‐C61  butyric  

Page 136:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 136  

acid  methyl  ester  (PCBM)  blend  films  and  its  role  in  the  function  of  polymer/PCBM  solar  cells.  Adv.  Funct.  Mater.  17,  451–457  (2007).  

41.   Tvingstedt,  K.  et  al.  Electroluminescence  from  charge  transfer  states  in  polymer  solar  cells.  J.  Am.  Chem.  Soc.  131,  11819–11824  (2009).  

42.   Goris,  L.  et  al.  Observation  of  the  subgap  optical  absorption  in  polymer-­‐fullerene  blend  solar  cells.  Appl.  Phys.  Lett.  88,  1–3  (2006).  

43.   Clarke,  T.  M.,  Ballantyne,  A.  M.,  Nelson,  J.,  Bradley,  D.  D.  C.  &  Durrant,  J.  R.  Free  energy  control  of  charge  photogeneration  in  polythiophene/fullerene  solar  cells:  The  influence  of  thermal  annealing  on  P3HT/PCBM  blends.  Adv.  Funct.  Mater.  18,  4029–4035  (2008).  

44.   Liu,  Y.,  Zojer,  K.,  Lassen,  B.,  Kjelstrup-­‐hansen,  J.  &  Madsen,  M.  The  Role  of  Charge  Transfer  State  on  the  Reduced  Langevin  Recombination  in  Organic  Solar  Cells :  A  Theoretical  Study.  J.  Phys.  Chem.  C  in  press,  (2015).  

45.   Vandewal,  K.  et  al.  Efficient  charge  generation  by  relaxed  charge-­‐transfer  states  at  organic  interfaces.  Nat.  Mater.  13,  63–8  (2014).  

46.   Lee,  J.  et  al.  Charge  transfer  state  versus  hot  exciton  dissociation  in  polymer-­‐fullerene  blended  solar  cells.  J.  Am.  Chem.  Soc.  132,  11878–11880  (2010).  

47.   Vandewal,  K.,  Tvingstedt,  K.,  Gadisa,  A.,  Inganäs,  O.  &  Manca,  J.  V.  On  the  origin  of  the  open-­‐circuit  voltage  of  polymer–fullerene  solar  cells.  Nat.  Mater.  8,  904–909  (2009).  

48.   Alqurashi,  R.,  Griffin,  J.,  Alsulami,  A.  &  Buckley,  A.  Open-­‐Circuit  Voltage  in  Inverted  Polycarbazole:Fullerene  Bulk  Heterojunction  Solar  Cells.  IEEE  J.  Photovoltaics  6,  918–923  (2016).  

49.   Marcus,  R.  A.  Relation  between  charge  transfer  absorption  and  fluorescence  spectra  and  the  inverted  region.  J.  Phys.  Chem.  93,  3078–3086  (1989).  

50.   Brabec,  C.  J.  et  al.  Tracing  photoinduced  electron  transfer  process  in  conjugated  polymer/fullerene  bulk  heterojunctions  in  real  time.  Chem.  Phys.  Lett.  340,  232–236  (2001).  

51.   Gu,  S.,  Neugebauer,  H.  &  Sariciftci,  N.  S.  Conjugated  Polymer-­‐Based  Organic  Solar  Cells.  1324–1338  (2007).  

52.   Kietzke,  T.  Recent  advances  in  organic  solar  cells.  Adv.  Optoelectron.  2007,  (2007).  

Page 137:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  137  

53.   Nunzi,  J.-­‐M.  Organic  photovoltaic  materials  and  devices.  Comptes  Rendus  Phys.  3,  523–542  (2002).  

54.   Shrotriya,  V.,  Yao,  Y.,  Li,  G.  &  Yang,  Y.  Effect  of  self-­‐organization  in  polymer/fullerene  bulk  heterojunctions  on  solar  cell  performance.  Appl.  Phys.  Lett.  89,  2–4  (2006).  

55.   Lee,  J.  H.  et  al.  Enhanced  solar-­‐cell  efficiency  in  bulk-­‐heterojunction  polymer  systems  obtained  by  nanoimprinting  with  commercially  available  AAO  membrane  filters.  Small  5,  2139–2143  (2009).  

56.   Kyaw,  A.  K.  K.  et  al.  Improved  Inverted  Organic  Solar  Cells  With  a  Sol–Gel  Derived  Indium-­‐Doped  Zinc  Oxide  Buffer  Layer.  IEEE  J.  Sel.  Top.  Quantum  Electron.  16,  1700–1706  (2010).  

57.   Du,  C.  et  al.  Morphology  and  Performance  of  Polymer  Solar  Cell  Characterized  by  DPD  Simulation  and  Graph  Theory.  Sci.  Rep.  5,  1–13  (2015).  

58.   Li,  G.  et  al.  ‘Solvent  annealing’  effect  in  polymer  solar  cells  based  on  poly(3-­‐hexylthiophene)  and  methanofullerenes.  Adv.  Funct.  Mater.  17,  1636–1644  (2007).  

59.   Chen,  H.-­‐Y.  et  al.  Polymer  solar  cells  with  enhanced  open-­‐circuit  voltage  and  efficiency.  Nat.  Photonics  3,  649–653  (2009).  

60.   Nam,  S.  et  al.  Inverted  polymer  fullerene  solar  cells  exceeding  10%  efficiency  with  poly(2-­‐ethyl-­‐2-­‐oxazoline)  nanodots  on  electron-­‐collecting  buffer  layers.  Nat.  Commun.  6,  1–9  (2015).  

61.   Dey,  S.,  Vivo,  P.,  Efimov,  A.  &  Lemmetyinen,  H.  Enhanced  performance  and  stability  of  inverted  organic  solar  cells  by  using  novel  zinc-­‐benzothiazole  complexes  as  anode  buffer  layers.  J.  Mater.  Chem.  21,  15587  (2011).  

62.   Lee,  S.-­‐H.,  Seo,  J.-­‐W.  &  Lee,  J.-­‐Y.  Stable  inverted  small  molecular  organic  solar  cells  using  a  p-­‐doped  optical  spacer.  Nanoscale  7,  157–165  (2015).  

63.   Lan,  J.-­‐L.  et  al.  The  effects  of  Ta  2  O  5  –ZnO  films  as  cathodic  buffer  layers  in  inverted  polymer  solar  cells.  J.  Mater.  Chem.  A  2,  9361–9370  (2014).  

64.   Krebs,  F.  C.,  Gevorgyan,  S.  A.  &  Alstrup,  J.  A  roll-­‐to-­‐roll  process  to  flexible  polymer  solar  cells:  model  studies,  manufacture  and  operational  stability  studies.  J.  Mater.  Chem.  19,  5442  (2009).  

65.   Cros,  S.  et  al.  Definition  of  encapsulation  barrier  requirements:  A  method  applied  to  organic  solar  cells.  Sol.  Energy  Mater.  Sol.  Cells  95,  S65–S69  (2011).  

66.   Fujishima,  D.  et  al.  Organic  thin-­‐film  solar  cell  employing  a  

Page 138:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 138  

novel  electron-­‐donor  material.  Sol.  Energy  Mater.  Sol.  Cells  93,  1029–1032  (2009).  

67.   Che,  X.,  Xiao,  X.  &  Forrest,  S.  R.  Highly  Efficient  (  11  .  1  %)  Small  Molecule  Multi-­‐junction  Organic  Photovoltaic  Cells.  70,  140–142  (2014).  

68.   Hirade,  M.  &  Adachi,  C.  Small  molecular  organic  photovoltaic  cells  with  exciton  blocking  layer  at  anode  interface  for  improved  device  performance.  Appl.  Phys.  Lett.  99,  2009–2012  (2011).  

69.   Yokoyama,  D.  et  al.  High-­‐efficiency  simple  planar  heterojunction  organic  thin-­‐film  photovoltaics  with  horizontally  oriented  amorphous  donors.  Sol.  Energy  Mater.  Sol.  Cells  98,  472–475  (2012).  

70.   Zheng,  Y.  et  al.  Highly  efficient  bulk  heterojunction  photovoltaic  cells  based  on  C  70  and  tetraphenyldibenzoperiflanthene.  Appl.  Phys.  Lett.  102,  143304  (2013).  

71.   Xiao,  X.,  Zimmerman,  J.  D.,  Lassiter,  B.  E.,  Bergemann,  K.  J.  &  Forrest,  S.  R.  A  hybrid  planar-­‐mixed  tetraphenyldibenzoperiflanthene/C70  photovoltaic  cell.  Appl.  Phys.  Lett.  102,  (2013).  

72.   Wang,  Z.  et  al.  Highly  efficient  organic  p-­‐i-­‐n  photovoltaic  cells  based  on  tetraphenyldibenzoperiflanthene  and  fullerene  C70.  Energy  Environ.  Sci.  249–255  (2012).  doi:10.1039/c2ee22952h  

73.   Hirade,  M.  &  Adachi,  C.  Small  molecular  organic  photovoltaic  cells  with  exciton  blocking  layer  at  anode  interface  for  improved  device  performance.  Appl.  Phys.  Lett.  99,  4–7  (2011).  

74.   Wang,  Z.  et  al.  High  fill  factor  and  thermal  stability  of  bilayer  organic  photovoltaic  cells  with  an  inverted  structure.  Appl.  Phys.  Lett.  106,  053305  (2015).  

75.   Peng,  Y.,  Zhang,  L.  &  Andrew,  T.  L.  High  open-­‐circuit  voltage,  high  fill  factor  single-­‐junction  organic  solar  cells.  Appl.  Phys.  Lett.  105,  083304  (2014).  

76.   Horvath,  H.  Atmospheric  light  absorption  -­‐  a  review.  Atmos.  Environ.  Part  A,  Gen.  Top.  27,  293–317  (1993).  

77.   Zhuang,  T.,  Sano,  T.  &  Kido,  J.  Efficient  small  molecule-­‐based  bulk  heterojunction  photovoltaic  cells  with  reduced  exciton  quenching  in  fullerene.  Org.  Electron.  physics,  Mater.  Appl.  26,  415–419  (2015).  

78.   Rand,  B.  P.,  Burk,  D.  P.  &  Forrest,  S.  R.  Offset  energies  at  organic  

Page 139:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  139  

semiconductor  heterojunctions  and  their  influence  on  the  open-­‐circuit  voltage  of  thin-­‐film  solar  cells.  Phys.  Rev.  B  -­‐  Condens.  Matter  Mater.  Phys.  75,  1–11  (2007).  

79.   Kroto,  H.  W.,  Heath,  J.  R.,  O’Brien,  S.  C.,  Curl,  R.  F.  &  Smalley,  R.  E.  C60:  Buckminsterfullerene.  Nature  318,  162–163  (1985).  

80.   Thirunavukkuarasu,  K.  et  al.  Rotational  Dynamics  in  C  70 :  Temperature-­‐  and  Pressure-­‐Dependent  Infrared  Studies.  J.  Phys.  Chem.  C  115,  3646–3653  (2011).  

81.   Kröger,  M.  et  al.  P-­‐type  doping  of  organic  wide  band  gap  materials  by  transition  metal  oxides:  A  case-­‐study  on  Molybdenum  trioxide.  Org.  Electron.  physics,  Mater.  Appl.  10,  932–938  (2009).  

82.   Meyer,  J.,  Zilberberg,  K.,  Riedl,  T.  &  Kahn,  A.  Electronic  structure  of  Vanadium  pentoxide:  An  efficient  hole  injector  for  organic  electronic  materials.  J.  Appl.  Phys.  110,  (2011).  

83.   Kim,  D.  Y.  et  al.  The  effect  of  molybdenum  oxide  interlayer  on  organic  photovoltaic  cells.  Appl.  Phys.  Lett.  95,  2007–2010  (2009).  

84.   Greiner,  M.  T.  et  al.  Universal  energy-­‐level  alignment  of  molecules  on  metal  oxides.  Nat.  Mater.  11,  76–81  (2012).  

85.   Wang,  F.,  Qiao,  X.,  Xiong,  T.  &  Ma,  D.  The  role  of  molybdenum  oxide  as  anode  interfacial  modification  in  the  improvement  of  efficiency  and  stability  in  organic  light-­‐emitting  diodes.  Org.  Electron.  physics,  Mater.  Appl.  9,  985–993  (2008).  

86.   Peumans,  P.,  Uchida,  S.  &  Forrest,  S.  R.  Efficient  bulk  heterojunction  photovoltaic  cells  using  small-­‐molecular-­‐weight  organic  thin  films.  Nature  425,  158–162  (2003).  

87.   Vogel,  M.,  Doka,  S.,  Breyer,  C.,  Lux-­‐Steiner,  M.  C.  &  Fostiropoulos,  K.  On  the  function  of  a  bathocuproine  buffer  layer  in  organic  photovoltaic  cells.  Appl.  Phys.  Lett.  89,  1–4  (2006).  

88.   Huang,  J.,  Yu,  J.,  Lin,  H.  &  Jiang,  Y.  Detailed  analysis  of  bathocuproine  layer  for  organic  solar  cells  based  on  copper  phthalocyanine  and  C60.  J.  Appl.  Phys.  105,  1–6  (2009).  

89.   Guerrero,  A.  et  al.  Shelf  Life  Degradation  of  Bulk  Heterojunction  Solar  Cells:  Intrinsic  Evolution  of  Charge  Transfer  Complex.  Adv.  Energy  Mater.  5,  1–8  (2015).  

90.   Guerrero,  A.  &  Garcia-­‐Belmonte,  G.  Recent  advances  to  understand  morphology  stability  of  organic  photovoltaics.  Nano-­‐Micro  Lett.  9,  (2017).  

91.   Yang,  X.,  Duren,  J.  K.  J.  Van,  Janssen,  R.  a  J.,  Michels,  M.  a  J.  &  

Page 140:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 140  

Loos,  J.  Morphology  and  Thermal  Stability  of  the  Active  Layer  in  Poly  (p  -­‐phenylenevinylene)/  Methanofullerene  Plastic  Photovoltaic  Devices.  Macromolecules  37,  2151–2158  (2004).  

92.   Zhao,  J.  et  al.  Phase  Diagram  of  P3HT  /  PCBM  Blends  and  Its  Implication  for  the  Stability  of  Morphology  Phase  Diagram  of  P3HT  /  PCBM  Blends  and  Its  Implication  for  the  Stability  of  Morphology.  J.  Phys.  Chem.  B  113,  1587–1591  (2009).  

93.   Bertho,  S.  et  al.  Influence  of  thermal  ageing  on  the  stability  of  polymer  bulk  heterojunction  solar  cells.  Sol.  Energy  Mater.  Sol.  Cells  91,  385–389  (2007).  

94.   Vandenbergh,  J.  et  al.  Thermal  stability  of  poly[2-­‐methoxy-­‐5-­‐(2′-­‐phenylethoxy)-­‐1,4-­‐  phenylenevinylene]  (MPE-­‐PPV):Fullerene  bulk  heterojunction  solar  cells.  Macromolecules  44,  8470–8478  (2011).  

95.   Ning,  Y.  et  al.  Investigation  on  Thermal  Degradation  Process  of  Polymer  Solar  Cells  Based  on  Blend  of  PBDTTT-­‐C  and  PC  70  BM.  Int.  J.  Photoenergy  2014,  1–9  (2014).  

96.   Kesters,  J.  et  al.  Enhanced  organic  solar  cell  stability  by  polymer  (PCPDTBT)  side  chain  functionalization.  Chem.  Mater.  27,  1332–1341  (2015).  

97.   Turkovic,  V.  et  al.  Long-­‐term  stabilization  of  organic  solar  cells  using  UV  absorbers.  J.  Phys.  D.  Appl.  Phys.  49,  (2016).  

98.   Turkovic,  V.  et  al.  Long-­‐term  stabilization  of  organic  solar  cells  using  hydroperoxide  decomposers  as  additives.  Appl.  Phys.  A  Mater.  Sci.  Process.  122,  1–6  (2016).  

99.   Heumueller,  T.  et  al.  Morphological  and  electrical  control  of  fullerene  dimerization  determines  organic  photovoltaic  stability.  Energy  Environ.  Sci.  9,  247–256  (2016).  

100.   Lloyd,  M.  T.  et  al.  Impact  of  contact  evolution  on  the  shelf  life  of  organic  solar  cells.  J.  Mater.  Chem.  19,  7638  (2009).  

101.   Chand,  P.  K.  and  S.  &  Center.  Recent  progress  and  future  aspects  of  organic  solar  cells.  Prog.  Photovoltaics  Res.  Appl.  20,  6–11  (2012).  

102.   Tavakkoli,  M.  et  al.  Progress  in  stability  of  organic  solar  cells  exposed  to  air.  Sol.  Energy  Mater.  Sol.  Cells  95,  1964–1969  (2011).  

103.   Clarke,  T.  M.  et  al.  Photodegradation  in  encapsulated  silole-­‐based  polymer:  Pcbm  solar  cells  investigated  using  transient  absorption  spectroscopy  and  charge  extraction  measurements.  Adv.  Energy  Mater.  3,  1473–1483  (2013).  

104.   Jørgensen,  M.  et  al.  Stability  of  polymer  solar  cells.  Adv.  Mater.  

Page 141:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  141  

24,  580–612  (2012).  105.   Ahmad,  J.,  Bazaka,  K.,  Anderson,  L.  J.,  White,  R.  D.  &  Jacob,  M.  V.  

Materials  and  methods  for  encapsulation  of  OPV:  A  review.  Renew.  Sustain.  Energy  Rev.  27,  104–117  (2013).  

106.   Mateker,  W.  R.  et  al.  Molecular  Packing  and  Arrangement  Govern  the  Photo-­‐Oxidative  Stability  of  Organic  Photovoltaic  Materials.  Chem.  Mater.  27,  6345–6353  (2015).  

107.   Yan,  C.  et  al.  Non-­‐fullerene  acceptors  for  organic  solar  cells.  Nat.  Rev.  Mater.  3,  1–19  (2018).  

108.   Cheng,  Z.  &  Lin,  J.  Layered  organic–inorganic  hybrid  perovskites:  structure,  optical  properties,  film  preparation,  patterning  and  templating  engineering.  CrystEngComm  12,  2646  (2010).  

109.   Liu,  X.,  Ding,  K.,  Panda,  A.  &  Forrest,  S.  R.  Charge  Transfer  States  in  Dilute  Donor-­‐Acceptor  Blend  Organic  Heterojunctions.  ACS  Nano  10,  7619–7626  (2016).  

110.   Stranks,  S.  D.  et  al.  Electron-­‐Hole  Diffusion  Lengths  Exceeding.  Science  342,  341–344  (2014).  

111.   Leijtens,  T.  et  al.  Overcoming  ultraviolet  light  instability  of  sensitized  TiO2with  meso-­‐superstructured  organometal  tri-­‐halide  perovskite  solar  cells.  Nat.  Commun.  4,  1–8  (2013).  

112.   Bella,  F.  et  al.  Improving  efficiency  and  stability  of  perovskite  solar  cells  with  photocurable  fluoropolymers.  Science  (80-­‐.  ).  354,  203–206  (2016).  

113.   Watson,  B.  L.,  Rolston,  N.  J.,  Printz,  A.  D.  &  Dauskardt,  R.  H.  Scaffold-­‐Reinforced  Perovskite  Compound  Solar  Cells.  Energy  Environ.  Sci.  10,  2500–2508  (2017).  

114.   Corazza,  M.,  Krebs,  F.  C.  &  Gevorgyan,  S.  A.  Lifetime  of  organic  photovoltaics:  Linking  outdoor  and  indoor  tests.  Sol.  Energy  Mater.  Sol.  Cells  143,  467–472  (2015).  

115.   Kettle,  J.  et  al.  Using  ISOS  consensus  test  protocols  for  development  of  quantitative  life  test  models  in  ageing  of  organic  solar  cells.  Sol.  Energy  Mater.  Sol.  Cells  167,  53–59  (2017).  

116.   Gevorgyan,  S.  A.,  Jørgensen,  M.  &  Krebs,  F.  C.  A  setup  for  studying  stability  and  degradation  of  polymer  solar  cells.  Sol.  Energy  Mater.  Sol.  Cells  92,  736–745  (2008).  

117.   Gevorgyan,  S.  A.  et  al.  Improving,  characterizing  and  predicting  the  lifetime  of  organic  photovoltaics.  J.  Phys.  D.  Appl.  Phys.  50,  (2017).  

118.   Perez,  M.  D.,  Borek,  C.,  Forrest,  S.  R.  &  Thompson,  M.  E.  

Page 142:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 142  

Molecular  and  Morphological  Influences  on  the  Open  Circuit.  J.  Am.  Chem.  Soc.  131,  9281–9286  (2009).  

119.   Graham,  K.  et  al.  Charge-­‐transfer  state  energy  determines  open-­‐circuit  voltage  in  organic  photovoltaics.  SPIE  Newsroom  DOI:  10.1117/2.1201309.005006  (2013).  doi:10.1117/2.1201309.005006  

120.   Elumalai,  N.  K.  &  Uddin,  A.  Open  circuit  voltage  of  organic  solar  cells:  an  in-­‐depth  review.  Energy  Environ.  Sci.  9,  391–410  (2016).  

121.   Vandewal,  K.,  Tvingstedt,  K.,  Gadisa,  A.,  Inganäs,  O.  &  Manca,  J.  V.  Relating  the  open-­‐circuit  voltage  to  interface  molecular  properties  of  donor:acceptor  bulk  heterojunction  solar  cells.  Phys.  Rev.  B  -­‐  Condens.  Matter  Mater.  Phys.  81,  1–8  (2010).  

122.   Gould,  I.  R.  et  al.  Radiative  and  nonradiative  electron  transfer  in  contact  radical-­‐ion  pairs.  Chemical  Physics  176,  439–456  (1993).  

123.   Sulas,  D.  B.  et  al.  Open-­‐Circuit  Voltage  Losses  in  Selenium-­‐Substituted  Organic  Photovoltaic  Devices  from  Increased  Density  of  Charge-­‐Transfer  States.  Chem.  Mater.  27,  6583–6591  (2015).  

124.   Tang,  Z.  et  al.  A  New  Fullerene-­‐Free  Bulk-­‐Heterojunction  System  for  Efficient  High-­‐Voltage  and  High-­‐Fill  Factor  Solution-­‐Processed  Organic  Photovoltaics.  Adv.  Mater.  27,  1900–1907  (2015).  

125.   Graham,  K.  R.  et  al.  Importance  of  the  Donor:Fullerene  Intermolecular  Arrangement  for  High-­‐E  ffi  ciency  Organic  Photovoltaics.  J.  Am.  Chem.  Soc.  136,  9608–9618  (2014).  

126.   Vandewal,  K.,  Tvingstedt,  K.,  Gadisa,  A.,  Inganäs,  O.  &  Manca,  J.  V.  Relating  the  open-­‐circuit  voltage  to  interface  molecular  properties  of  donor:acceptor  bulk  heterojunction  solar  cells.  Phys.  Rev.  B  -­‐  Condens.  Matter  Mater.  Phys.  81,  (2010).  

127.   Cluster.  No  Title.  128.   Benduhn,  J.  Sensitive  Spectroscopy  of  Charge-­‐Transfer  States  

and  Triplet  Excited  States  in  Organic  Photovoltaics.  (2015).  129.   Mulligan,  C.  J.  et  al.  A  projection  of  commercial-­‐scale  organic  

photovoltaic  module  costs.  Sol.  Energy  Mater.  Sol.  Cells  120,  9–17  (2014).  

130.   Azzopardi,  B.  et  al.  Economic  assessment  of  solar  electricity  production  from  organic-­‐based  photovoltaic  modules  in  a  domestic  environment.  Energy  Environ.  Sci.  4,  3741  (2011).  

131.   Ecker,  B.  et  al.  Degradation  effects  related  to  the  hole  transport  

Page 143:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  143  

layer  in  organic  solar  cells.  Adv.  Funct.  Mater.  21,  2705–2711  (2011).  

132.   Zou,  Y.  &  Holmes,  R.  J.  Correlation  between  the  Open-­‐Circuit  Voltage  and  Charge  Transfer  State  Energy  in  Organic  Photovoltaic  Cells.  ACS  Appl.  Mater.  Interfaces  7,  18306–18311  (2015).  

133.   Hao,  X.  et  al.  Novel  cathode  buffer  layer  of  Ag-­‐doped  bathocuproine  for  small  molecule  organic  solar  cell  with  inverted  structure.  Org.  Electron.  physics,  Mater.  Appl.  15,  1773–1779  (2014).  

134.   Patil,  B.  R.,  Ahmadpour,  M.,  Sherafatipour,  G.  &  Qamar,  T.  Area  dependent  behavior  of  bathocuproine  (BCP)  as  cathode  interfacial  layers  in  organic  photovoltaic  cells.  

135.   Galindo,  S.  et  al.  Influence  of  the  density  of  states  on  the  open-­‐circuit  voltage  in  small-­‐molecule  solar  cells.  Org.  Electron.  physics,  Mater.  Appl.  15,  2553–2560  (2014).  

136.   Hörmann,  U.  et  al.  Voc  from  a  Morphology  Point  of  View:  the  Influence  of  Molecular  Orientation  on  the  Open  Circuit  Voltage  of  Organic  Planar  Heterojunction  Solar  Cells.  J.  Phys.  Chem.  C  118,  26462–26470  (2014).  

137.   Vandewal,  K.,  Tvingstedt,  K.,  Manca,  J.  V.  &  Inganäs,  O.  Charge-­‐Transfer  States  and  Upper  Limit  of  the  Open-­‐Circuit  Voltage  in  Polymer:Fullerene  Organic  Solar  Cells.  IEEE  J.  Sel.  Top.  Quantum  Electron.  16,  1676–1684  (2010).  

138.   Vandewal,  K.  et  al.  Increased  open-­‐circuit  voltage  of  organic  solar  cells  by  reduced  donor-­‐acceptor  interface  area.  Adv.  Mater.  26,  3839–3843  (2014).  

139.   Zheng,  Y.  et  al.  Comparative  investigation  of  molecular  orientation  and  charge  collection  in  highly  efficient  mixed  heterojunctions  based  on  three  planar-­‐shaped  donors  and  C  70.  J.  Phys.  D.  Appl.  Phys.  49,  465106  (2016).  

140.   Ran,  N.  A.  et  al.  Impact  of  interfacial  molecular  orientation  on  radiative  recombination  and  charge  generation  efficiency.  Nat.  Commun.  8,  1–9  (2017).  

141.   Fu,  Y.  T.  et  al.  Structure  and  disorder  in  squaraine-­‐C60  organic  solar  cells:  A  theoretical  description  of  molecular  packing  and  electronic  coupling  at  the  donor-­‐acceptor  interface.  Adv.  Funct.  Mater.  24,  3790–3798  (2014).  

142.   Zimmerman,  J.  D.  et  al.  Independent  control  of  bulk  and  interfacial  morphologies  of  small  molecular  weight  organic  heterojunction  solar  cells.  Nano  Lett.  12,  4366–4371  (2012).  

Page 144:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 144  

143.   Seemann,  A.  et  al.  Reversible  and  irreversible  degradation  of  organic  solar  cell  performance  by  oxygen.  Sol.  Energy  85,  1238–1249  (2011).  

144.   Schafferhans,  J.,  Baumann,  A.,  Wagenpfahl,  A.,  Deibel,  C.  &  Dyakonov,  V.  Oxygen  doping  of  P3HT:PCBM  blends:  Influence  on  trap  states,  charge  carrier  mobility  and  solar  cell  performance.  Org.  Electron.  physics,  Mater.  Appl.  11,  1693–1700  (2010).  

145.   Hauch,  J.  A.,  Schilinsky,  P.,  Choulis,  S.  A.,  Rajoelson,  S.  &  Brabec,  C.  J.  The  impact  of  water  vapor  transmission  rate  on  the  lifetime  of  flexible  polymer  solar  cells.  Appl.  Phys.  Lett.  93,  (2008).  

146.   Kim,  H.  J.,  Lee,  H.  H.  &  Kim,  J.  J.  Real  time  investigation  of  the  interface  between  a  P3HT:PCBM  layer  and  an  al  electrode  during  thermal  annealing.  Macromol.  Rapid  Commun.  30,  1269–1273  (2009).  

147.   Cardinaletti,  I.  et  al.  Organic  and  perovskite  solar  cells  for  space  applications.  

148.   Lee,  C.-­‐C.  Degradation  mechanism  of  organic  photovoltaic  devices  with  bathocuproine  buffer  layer.  J.  Photonics  Energy  1,  011108  (2011).  

149.   Up-­‐scaling  inverted  organic  photovoltaic  cells  using  bathocuproine  (BCP)  as  cathode  interfacial  layers.  

150.   Yoshida,  H.  Electron  Transport  in  Bathocuproine  Interlayer  in  Organic  Semiconductor  Devices.  J.  Phys.  Chem.  C  119,  24459–24464  (2015).  

151.   Tong,  X.,  Lassiter,  B.  E.  &  Forrest,  S.  R.  Inverted  organic  photovoltaic  cells  with  high  open-­‐circuit  voltage.  Org.  Electron.  physics,  Mater.  Appl.  11,  705–709  (2010).  

152.   Kim,  J.  et  al.  Overcoming  the  challenges  of  large-­‐area  high-­‐efficiency  perovskite  solar  cells.  ACS  Energy  Lett.  2,  1978–1984  (2017).  

153.   Divitini,  G.  et  al.  In  situ  observation  of  heat-­‐induced  degradation  of  perovskite  solar  cells.  Nat.  Energy  1,  15012  (2016).  

154.   Zhao,  X.,  Kim,  H.-­‐S.,  Seo,  J.-­‐Y.  &  Park,  N.-­‐G.  Effect  of  Selective  Contacts  on  the  Thermal  Stability  of  Perovskite  Solar  Cells.  ACS  Appl.  Mater.  Interfaces  9,  7148–7153  (2017).  

155.   Kim,  N.-­‐K.  et  al.  Investigation  of  Thermally  Induced  Degradation  in  CH3NH3PbI3  Perovskite  Solar  Cells  using  In-­‐situ  Synchrotron  Radiation  Analysis.  Sci.  Rep.  7,  4645  (2017).  

Page 145:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  145  

156.   Gottesman,  R.  &  Zaban,  A.  Perovskites  for  Photovoltaics  in  the  Spotlight:  Photoinduced  Physical  Changes  and  Their  Implications.  Acc.  Chem.  Res.  49,  320–329  (2016).  

157.   Lee,  S.  W.  et  al.  UV  Degradation  and  Recovery  of  Perovskite  Solar  Cells.  Sci.  Rep.  6,  1–10  (2016).  

158.   Bae,  S.  et  al.  Electric-­‐Field-­‐Induced  Degradation  of  Methylammonium  Lead  Iodide  Perovskite  Solar  Cells.  J.  Phys.  Chem.  Lett.  7,  3091–3096  (2016).  

159.   Yadav,  P.,  Prochowicz,  D.,  Alharbi,  E.  A.,  Zakeeruddin,  S.  M.  &  Grätzel,  M.  Intrinsic  and  interfacial  kinetics  of  perovskite  solar  cells  under  photo  and  bias-­‐induced  degradation  and  recovery.  J.  Mater.  Chem.  C  5,  7799–7805  (2017).  

160.   Yang,  J.,  Siempelkamp,  B.  D.,  Liu,  D.  &  Kelly,  T.  L.  Investigation  of  CH3NH3PbI3degradation  rates  and  mechanisms  in  controlled  humidity  environments  using  in  situ  techniques.  ACS  Nano  9,  1955–1963  (2015).  

161.   Reyna,  Y.  et  al.  Performance  and  stability  of  mixed  FAPbI3(0.85)MAPbBr3(0.15)halide  perovskite  solar  cells  under  outdoor  conditions  and  the  effect  of  low  light  irradiation.  Nano  Energy  30,  570–579  (2016).  

162.   Li,  X.  et  al.  Outdoor  Performance  and  Stability  under  Elevated  Temperatures  and  Long-­‐Term  Light  Soaking  of  Triple-­‐Layer  Mesoporous  Perovskite  Photovoltaics.  Energy  Technology  3,  551–555  (2015).  

163.   Nie,  W.  et  al.  Light-­‐activated  photocurrent  degradation  and  self-­‐healing  in  perovskite  solar  cells.  Nat.  Commun.  7,  1–9  (2016).  

164.   Domanski,  K.  et  al.  Migration  of  cations  induces  reversible  performance  losses  over  day/night  cycling  in  perovskite  solar  cells.  Energy  Environ.  Sci.  10,  604–613  (2017).  

165.   Bag,  M.  et  al.  Kinetics  of  Ion  Transport  in  Perovskite  Active  Layers  and  Its  Implications  for  Active  Layer  Stability.  J.  Am.  Chem.  Soc.  137,  13130–13137  (2015).  

166.   Hoke,  E.  T.  et  al.  Reversible  photo-­‐induced  trap  formation  in  mixed-­‐halide  hybrid  perovskites  for  photovoltaics.  Chem.  Sci.  6,  613–617  (2015).  

167.   Huang,  F.  et  al.  Fatigue  behavior  of  planar  CH3NH3PbI3perovskite  solar  cells  revealed  by  light  on/off  diurnal  cycling.  Nano  Energy  27,  509–514  (2016).  

168.   Liu,  F.  et  al.  Is  Excess  PbI2  Beneficial  for  Perovskite  Solar  Cell  Performance?  Adv.  Energy  Mater.  6,  1–9  (2016).  

Page 146:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 146  

169.   Reese,  M.  O.  et  al.  Consensus  stability  testing  protocols  for  organic  photovoltaic  materials  and  devices.  Sol.  Energy  Mater.  Sol.  Cells  95,  1253–1267  (2011).  

170.   Turkovic,  V.  et  al.  Long-­‐term  stabilization  of  organic  solar  cells  using  hindered  phenols  as  additives.  ACS  Appl.  Mater.  Interfaces  6,  18525–18537  (2014).  

171.   Reliability  of  Small  Molecule  Organic  Photovoltaics  with  Electron-­‐  Filtering  Compound  Buffer.  

172.   Khenkin,  M.  V.  et  al.  Dynamics  of  Photoinduced  Degradation  of  Perovskite  Photovoltaics:  From  Reversible  to  Irreversible  Processes.  ACS  Appl.  Energy  Mater.  acsaem.7b00256  (2018).  doi:10.1021/acsaem.7b00256  

173.   Park,  B.  W.  et  al.  Chemical  engineering  of  methylammonium  lead  iodide/bromide  perovskites:  Tuning  of  opto-­‐electronic  properties  and  photovoltaic  performance.  J.  Mater.  Chem.  A  3,  21760–21771  (2015).  

174.   Yoon,  S.  J.  et  al.  Tracking  Iodide  and  Bromide  Ion  Segregation  in  Mixed  Halide  Lead  Perovskites  during  Photoirradiation.  ACS  Energy  Lett.  1,  290–296  (2016).  

175.   Eperon,  G.  E.  et  al.  Formamidinium  lead  trihalide:  A  broadly  tunable  perovskite  for  efficient  planar  heterojunction  solar  cells.  Energy  Environ.  Sci.  7,  982–988  (2014).  

176.   Jesper  Jacobsson,  T.  et  al.  Exploration  of  the  compositional  space  for  mixed  lead  halogen  perovskites  for  high  efficiency  solar  cells.  Energy  Environ.  Sci.  9,  1706–1724  (2016).  

177.   Khenkin,  M.  V.  et  al.  Supporting  information-­‐Dynamics  of  Photoinduced  Degradation  of  Perovskite  Photovoltaics:  From  Reversible  to  Irreversible  Processes.  ACS  Appl.  Energy  Mater.  acsaem.7b00256  (2018).  doi:10.1021/acsaem.7b00256  

178.   Yin,  W.  J.,  Shi,  T.  &  Yan,  Y.  Unusual  defect  physics  in  CH<inf>3</inf>NH<inf>3</inf>PbI<inf>3</inf>  perovskite  solar  cell  absorber.  Appl.  Phys.  Lett.  104,  (2014).  

179.   Jacobs,  D.  A.  et  al.  Hysteresis  phenomena  in  perovskite  solar  cells:  the  many  and  varied  effects  of  ionic  accumulation.  Phys.  Chem.  Chem.  Phys.  19,  3094–3103  (2017).  

180.   Van  Reenen,  S.,  Kemerink,  M.  &  Snaith,  H.  J.  Modeling  Anomalous  Hysteresis  in  Perovskite  Solar  Cells.  J.  Phys.  Chem.  Lett.  6,  3808–3814  (2015).  

181.   Shao,  S.  et  al.  Efficient  Perovskite  Solar  Cells  over  a  Broad  Temperature  Window:  The  Role  of  the  Charge  Carrier  Extraction.  Advanced  Energy  Materials  7,  (2017).  

Page 147:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  147  

182.   Zhao,  C.  et  al.  Revealing  Underlying  Processes  Involved  in  Light  Soaking  Effects  and  Hysteresis  Phenomena  in  Perovskite  Solar  Cells.  Advanced  Energy  Materials  5,  (2015).  

183.   Shao,  S.  et  al.  The  Effect  of  the  Microstructure  on  Trap-­‐Assisted  Recombination  and  Light  Soaking  Phenomenon  in  Hybrid  Perovskite  Solar  Cells.  Advanced  Functional  Materials  26,  8094–8102  (2016).  

184.   Peng,  J.,  Sun,  Y.,  Chen,  Y.,  Yao,  Y.  &  Liang,  Z.  Light  and  Thermally  Induced  Evolutional  Charge  Transport  in  CH  3  NH  3  PbI  3  Perovskite  Solar  Cells.  ACS  Energy  Lett.  1,  1000–1006  (2016).  

185.   Lv,  S.  et  al.  One-­‐step,  solution-­‐processed  formamidinium  lead  trihalide  (FAPbI  (3−x)  Cl  x  )  for  mesoscopic  perovskite–polymer  solar  cells.  Phys.  Chem.  Chem.  Phys.  16,  19206–19211  (2014).  

186.   Liu,  C.  et  al.  Hysteretic  behavior  upon  light  soaking  in  perovskite  solar  cells  prepared  via  modified  vapor-­‐assisted  solution  process.  ACS  Appl.  Mater.  Interfaces  7,  9066–9071  (2015).  

187.   Du,  M.  H.  Efficient  carrier  transport  in  halide  perovskites:  theoretical  perspectives.  J.  Mater.  Chem.  A  2,  9091–9098  (2014).  

188.   Noh,  J.  H.,  Im,  S.  H.,  Heo,  J.  H.,  Mandal,  T.  N.  &  Seok,  S.  Il.  Chemical  management  for  colorful,  efficient,  and  stable  inorganic-­‐organic  hybrid  nanostructured  solar  cells.  Nano  Lett.  13,  1764–1769  (2013).  

189.   Niu,  G.  et  al.  Study  on  the  stability  of  CH  3  NH  3  PbI  3  films  and  the  effect  of  post-­‐modification  by  aluminum  oxide  in  all-­‐solid-­‐state  hybrid  solar  cells.  J.  Mater.  Chem.  A  2,  705–710  (2014).  

190.   Misra,  R.  K.  et  al.  Temperature-­‐  and  component-­‐dependent  degradation  of  perovskite  photovoltaic  materials  under  concentrated  sunlight.  J.  Phys.  Chem.  Lett.  6,  326–330  (2015).  

191.   Misra,  R.  K.  et  al.  Effect  of  Halide  Composition  on  the  Photochemical  Stability  of  Perovskite  Photovoltaic  Materials.  ChemSusChem  9,  2572–2577  (2016).  

192.   Song,  D.  et  al.  Degradation  of  organometallic  perovskite  solar  cells  induced  by  trap  states.  Appl.  Phys.  Lett.  108,  (2016).  

193.   Domanski,  K.  et  al.  Not  All  That  Glitters  Is  Gold:  Metal-­‐Migration-­‐Induced  Degradation  in  Perovskite  Solar  Cells.  ACS  Nano  10,  6306–6314  (2016).  

194.   Abate,  A.  et  al.  Silolothiophene-­‐linked  triphenylamines  as  stable  hole  transporting  materials  for  high  efficiency  perovskite  solar  cells.  Energy  Environ.  Sci.  8,  2946–2953  

Page 148:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 148  

(2015).  195.   Zhao,  Y.  et  al.  Mobile-­‐Ion-­‐Induced  Degradation  of  Organic  

Hole-­‐Selective  Layers  in  Perovskite  Solar  Cells.  J.  Phys.  Chem.  C  121,  14517–14523  (2017).  

196.   Cacovich,  S.  et  al.  Gold  and  iodine  diffusion  in  large  area  perovskite  solar  cells  under  illumination.  Nanoscale  9,  4700–4706  (2017).  

197.   Akbulatov,  A.  F.  et  al.  Effect  of  Electron-­‐Transport  Material  on  Light-­‐Induced  Degradation  of  Inverted  Planar  Junction  Perovskite  Solar  Cells.  Advanced  Energy  Materials  7,  (2017).  

198.   Li,  Z.  et  al.  Extrinsic  ion  migration  in  perovskite  solar  cells.  Energy  Environ.  Sci.  10,  1234–1242  (2017).  

199.   Khenkin,  M.  V.  et  al.  Reconsidering  Figures  of  Merit  for  the  Performance  and  Stability  of  Perovskite  Photovoltaics.  Energy  Environ.  Sci.  739–743  (2018).  doi:10.1039/C7EE02956J  

200.   Bryce,  M.  R.  Current  trends  in  tetrathiafulvalene  chemistry:  Towards  increased  dimensionality.  J.  Mater.  Chem.  5,  1481–1496  (1995).  

201.   Jørgensen,  T.,  Hansen,  T.  K.  &  Becher,  J.  Tetrathiafulvalenes  as  building-­‐blocks  in  supramolecular  chemistry.  Chem.  Soc.  Rev.  23,  41–51  (1994).  

202.   Bryce,  M.  R.  Tetrathiafulvalenes  as  π-­‐electron  donors  for  intramolecular  charge-­‐transfer  materials.  Adv.  Mater.  11,  11–23  (1999).  

203.   Wudl,  F.,  Wobschall,  D.  &  Hufnagel,  E.  J.  Electrical  Conductivity  by  the  Bis-­‐1,3-­‐dithiole-­‐Bis-­‐1,3-­‐dithiolium  System.  J.  Am.  Chem.  Soc.  94,  670–672  (1972).  

204.   Ferraris,  J.,  Cowan,  D.  O.,  Walatka,  V.  &  Perlstein,  J.  H.  Electron  Transfer  in  a  New  Highly  Conducting  Donor-­‐Acceptor  Complex.  J.  Am.  Chem.  Soc.  95,  948–949  (1973).  

205.   Lorcy,  D.  &  Bellec,  N.  Dithiadiazafulvalenes:  Promising  precursors  of  molecular  materials.  Chem.  Rev.  104,  5185–5202  (2004).  

206.   Rovira,  C.  Bis(ethylenethio)tetrathiafulvalene  (BET-­‐TTF)  and  related  dissymmetrical  electron  donors:  From  the  molecule  to  functional  molecular  materials  and  devices  (OFETs).  Chem.  Rev.  104,  5289–5317  (2004).  

207.   Fabre,  J.  M.  Synthesis  strategies  and  chemistry  of  nonsymmetrically  substituted  tetrachalcogenafulvalenes.  Chem.  Rev.  104,  5133–5150  (2004).  

208.   Broggi,  J.  et  al.  Organic  Electron  Donors  as  Powerful  Single-­‐

Page 149:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  149  

Electron  Transfer  Reducing  Agents  in  Organic  Synthesis  To  cite  this  version :  HAL  Id :  hal-­‐01428063  Organic  Electron  Donors  as  Powerful  Single-­‐Electron  Transfer  Reducing  Agents  in  Organic  Synthesis.  0–30  (2017).  doi:10.1002/anie.201209060/full>.<10.1002/anie.201209060>.  

209.   Jeppesen,  J.  O.,  Nielsen,  M.  B.  &  Becher,  J.  Tetrathiafulvalene  cyclophanes  and  cage  molecules.  Chem.  Rev.  104,  5115–5131  (2004).  

210.   Segura,  J.  L.  &  Martn,  N.  New  concepts  in  tetrathiafulvalene  chemistry.  Angew.  Chemie  -­‐  Int.  Ed.  40,  1372–1409  (2001).  

211.   Liu,  J.  et  al.  A  dopant-­‐free  hole-­‐transporting  material  for  efficient  and  stable  perovskite  solar  cells.  Energy  Environ.  Sci.  7,  2963  (2014).  

212.   Martín,  N.,  Sánchez,  L.,  Herranz,  M.  Á.,  Illescas,  B.  &  Guldi,  D.  M.  Electronic  Communication  in  Tetrathiafulvalene  (TTF)/C  60  Systems:  Toward  Molecular  Solar  Energy  Conversion  Materials?  Acc.  Chem.  Res.  40,  1015–1024  (2007).  

     

 

                         Front  Cover  Image:  Echosolarhotel.com  

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 150:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 150  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 151:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  151  

 

 

 

                                                                             

 

Paper I

Page 152:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 152  

 

 

 

                                                                     

   

 

 

Page 153:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  153  

 

 

 

         

                                                                   

 

Paper II

Page 154:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 154  

 

 

 

                                                                               

 

Page 155:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  155  

 

 

 

                                                                             

 

Paper III

Page 156:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

 156  

 

 

 

                                                                   

   

 

 

 

Page 157:  · ! 5! Abstract! Overthepastthreedecades,tremendousamountofresearchhas beendevoted!to!the!field!of!renewable!energy!inorder!to!reduce!our! dependence on …

  157  

 

 

 

         

             Paper IV