第 4 章 配位化合物

60
第 4 第 第第第第第

Upload: norton

Post on 27-Jan-2016

89 views

Category:

Documents


3 download

DESCRIPTION

第 4 章 配位化合物. 11 - 1 配位化合物的基本概念 11 - 2 配位化合物的价键理论 11 - 3 配位化合物 的晶体场理论 11 - 4 配位化合物的稳定性. 配位化合物的发展史 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 第  4  章 配位化合物

第 4 章配位化合物

Page 2: 第  4  章 配位化合物

11 - 1 配位化合物的基本概念

11 - 2 配位化合物的价键理论

11 - 3 配位化合物的晶体场理论

11 - 4 配位化合物的稳定性

Page 3: 第  4  章 配位化合物

配位化合物的发展史

19 世纪末期,德国化学家发现一系列令人难以回答的问题,氯化钴跟氨结合,会生成颜色各异、化学性质不同的物质。经分析它们的分子式分别是 CoCl3∙6NH3 、 Co

Cl3∙5NH3 、 CoCl3∙5NH3∙H2O 、 CoCl3∙4NH3 。同是氯化钴,但它的性质不同,颜色也不一样。为了解释上述情况,化学家曾提出各种假说,但都未能成功。直到 1893 年,瑞士化学家维尔纳( A . Werner )发表的一篇研究分子加合物的论文,提出配位理论和内界、外界的概念,标志着配位化学的建立,并因此获得诺贝尔化学奖。

Page 4: 第  4  章 配位化合物

11 - 1 配位化合物的基本概念

11 - 1 - 1 配位化合物1. 配位化合物定义

由中心原子(或离子)和几个配体分子(或离子)以配位键相结合而形成的复杂分子或离子,通常称为配位单元,含有配位单元的化合物称为配位化合物。

配位阳离子: [Co ( NH3 )6 ]3 + 和 [Cu ( NH3 )4 ]2 +

配位阴离子: [Cr(CN)6]3 - 和 [Co(SCN)4]2 -

中性配合物分子: Ni(CO)4 和 Cu(NH2CH2COO)2

Page 5: 第  4  章 配位化合物

2. 配合物组成

Page 6: 第  4  章 配位化合物

3. 中心原子(离子):也称为配位化合物的形成体。

4. 配位体

与中心离子结合的含孤电子对的离子或分子。

中性分子配体 : H2O 、 NH3 等

阴离子配体 : Cl -、 CN -等

直接同中心离子相连接的原子称为配位原子。

Page 7: 第  4  章 配位化合物

5. 多基配体和螯合物

单基配体:只有一个配位原子的配体( NH3 , H2O );

双基配体:含有二个配位原子的配体 (C2O42 - , en) 等;

多基配体:含有多个配位原子的配体 (EDTA) 。

Page 8: 第  4  章 配位化合物

常见的多齿配体:乙二胺四乙酸( EDTA )

HOOCH2C

CH2COOH

NCH2-CH2N

HOOCH2C

CH2COOH

Page 9: 第  4  章 配位化合物

常见配体的名称 :

F - 氟, Cl - 氯, Br - 溴, I - 碘, O2 - 氧, N3 - 氮, S2 - 硫, OH - 羟, CN - 氰, H - 氢, - NO2

- 硝基, - ONO - 亚硝酸根, SO4

2 - 硫酸根, C2O42 - 草酸根,

SCN - 硫氰酸根, NCS - 异硫氰酸根, N3- 叠氮, O2

2

- 过氧根, N2 双氮, O2 双氧, NH3 氨, CO 羰, N

O 亚硝酰, H2O 水, en 乙二胺, ph3P 三苯基膦,

11 - 1 - 2 配位化合物的命名

Page 10: 第  4  章 配位化合物

1. 在配合物的内、外界之间加“化”字或“酸”字。例:

[Co (NH3 )6] Cl3 三氯化六氨合钴( III )

Cu2 [Si F6 ] 六氟合硅 ( IV ) 酸亚铜

2 . 在配位单元内先配体后中心。

配体前面用 二、三、四 … … 表示该配体的个数;几种不同的配体之间加“ · ” 号隔开;配体与中心之间加“合”字;中心后面加 ( ) ,内用罗马数字表示中心的价态。

Page 11: 第  4  章 配位化合物

3 . 配体的先后顺序

( 1 )先无机后有机

( 2 )先阴离子后分子

( 3 )同类配体中,按配位原子在英文字母表中的次序。

( 4 )配位原子相同,配体中原子个数少的在前

( 5 )配体中原子个数相同,则按和配位原子直接相连的其它原子英文字母次序。

Page 12: 第  4  章 配位化合物

例 11 - 1 命名下列配合物1. PtCl2(Ph3P)2

2. K [PtCl3 (NH3 )]

3. [Co (NH3 )5 H2O ] Cl3

4. [Pt(Py)(NH3 )(NH2OH)(NO2)]Cl

5. [ Pt (NH3)2 (NO2) (NH2) ]

1. 二氯 · 二 ( 三苯基膦 ) 合铂 (II)

2. 三氯 · 氨合铂 (II) 酸钾3. 三氯化五氨 · 水合钴 (III)

4. 氯化硝基 · 氨 · 羟胺 · 吡啶合铂 (II)

5. 氨基 · 硝基 · 二氨合铂(Ⅱ)

Page 13: 第  4  章 配位化合物

11 - 1 - 3 配位化合物的异构现象

1. 结构异构

( 1 )解离异构 如用 Ba2 +使紫色的 [CoBr(NH3)5]SO4

中 SO42 - 定量沉淀,用 Ag + 使红色的 [CoSO4(NH3)5] Br

中 Br - 定量沉淀。

( 2 )配位异构 如 [Co(NH3)6] [Cr(CN)6] 中 Co3 + 与 Cr

3 +交换配体,得到其配位异构体 [Cr(NH3)6] [Co(CN)6] 。

( 3 )键合异构 如 N 配位的- NO2- 和 O 配位的- ON

O -,导致的两种键合异构体分别为 [Co(NO2) (NH3)5]Cl2

和 [Co(ONO) (NH3)5]Cl2 。

Page 14: 第  4  章 配位化合物

2. 立体异构

( 1 )顺反异构 : [Co(en) 2Cl2] + 顺式 ( 紫色 ) 和反式(绿色 ) N

N

Cl

Cl

N

N

N

N

Cl

Cl

N

N

N

N

N

Cl

Cl

N

N

N

N

Cl

Cl

N

( 2 )旋光异构:四面体配合物中 Mabcd 有旋光异构体。

Page 15: 第  4  章 配位化合物

11 - 2 - 1 配合物的构型

配位单元的构型由中心空轨道的杂化类型决定。

常见配位单元的构型有:直线形,三角形,四面体,正方形,三角双锥,正八面体。

11 - 2 配合物的价键理论

把杂化轨道理论应用于配合物的结构与成键研究,就形成配合物的价键理论。其实质是配体中配位原子的孤电子对向中心的空杂化轨道配位形成配位键。

Page 16: 第  4  章 配位化合物

配位数 中心杂化类型 构 型 实 例

2 sp 直线形 Ag(NH3)2+

3 sp2 三角形 Cu(CN)32 -

4 sp3 四面体 Zn(NH3)42 +

4 dsp2 正方形 Ni(CN)42 -

5 sp3d 三角双锥 Fe(SCN)52 -

5 dsp3 三角双锥 Fe(CO)5

6 sp3d2 正八面体 Co(NH3)62 +

6 d2sp3 正八面体 Co(NH3)63 +

Page 17: 第  4  章 配位化合物

11 - 2 - 2 中心价层轨道的杂化

若中心参与杂化的的价层轨道属同一主层,即中心采取ns np nd 杂化,形成的配合物被称为外轨型配合物;若中心参与杂化的的价层轨道不属同一主层,即中心采取 (n

- 1)d ns np 杂化,形成的配合物被称为内轨型配合物。

Page 18: 第  4  章 配位化合物

1. ns np nd 杂化

例 11 - 2 讨论 Fe(H2O)63 + 配离子中的成键情况

解 :

3d 4s 4p 4d

Fe3+ 3d5

3d 4s 4p 4d

Fe3+ 3d5

3dsp3d2

3dsp3d2

sp3d2 杂 化

Page 19: 第  4  章 配位化合物

2 ( n - 1)d ns np 杂化

例 11 - 3 讨论 Co(CN)63 - 的杂化与成键情况

解 Co3 + 3d6 , CN - 为强配体,使 Co3 + 的 6 个 d 电子重排,空出的 2 个 3d轨道参与杂化,中心采取 d2sp3 杂化,配离子 Co(CN)6

3 - 为 正八面体构型。

重 排

Page 20: 第  4  章 配位化合物

11 - 2 - 3 配位化合物的磁性

化合物中成单电子数和磁性有关。磁矩 和单电子数n 有如下关系,式中 B.M. 为玻尔磁子。

.M.B)2( nnμ

例 11 - 4 在 Co(NH3)63 + 中 d 电子是否发生重排?

若实验测得 = 0 ,推出 n = 0 ,无单电子,说明 3d 6

电子发生重排;若实验测得 ≠ 0 ,推出 n ≠ 0 ,说明 3

d 6 电子不重排。

Page 21: 第  4  章 配位化合物

11 - 2 - 4 价键理论中的能量问题

内轨配合物一般较外轨配合物稳定,说明 E 内轨 > E 外轨。

Page 22: 第  4  章 配位化合物

11 - 2 - 5 配合物中的 d - pπ 配键(反馈键)

过渡金属与羰基、氰、链烯烃、环烯烃等含有 π 电子配体形成的配合物都含有 d - p π 配键(反馈键)。1. 羰基配合物

单核配合物: Ni(CO)4 、 Fe(CO)5 等;

双核配合物: Fe2(CO)9 、 Co2(CO)8 等;

Page 23: 第  4  章 配位化合物

例 11 - 5 讨论 Ni (CO)4 的成键情况

解: Ni采取 sp3 杂化, CO 中 C 上的孤电子对向 Ni

的 sp3 杂化空轨道配位,形成 σ 配键。实验结果表明, Ni

(CO)4 较稳定,这和配体与中心之间只有 σ 配键不符,进一步实验和理论计算都证明,中心与配体之间肯定还有其它成键作用。

Ni (CO)4 中 d - pπ 配键示意图

Page 24: 第  4  章 配位化合物

2 氰配合物

氰( CN -)配位能力很强,与过渡金属形成的配合物都很稳定,除了 C 原子给电子能力较强外,氰能与过渡金属形成 d - pπ 配键也是一个重要因素。

配体 CN -与 CO 相似,既有可配位的孤电子对,又有与 d轨道对称性一致的 π* 轨道可接受 d 电子的配位。与羰基配合物成键过程相似, CN -配体中 C 上的孤电子对向金属的杂化空轨道配位,形成 σ 配键,金属的 d 电子向 CN - π* 轨道配位,形成 d - pπ 配键。

Page 25: 第  4  章 配位化合物

3 烯烃配合物

1827 年,丹麦药剂师 Zeise 合成了 K [ PtCl3(C2H4) ]·H2O ,这是第一个有机金属化合物,但其结构直到 120 多年后才确定。乙烯的成键 π 电子向铂的杂化轨道配位,按成键的对称性应为 σ 配键;金属 d轨道的电子向乙烯的 π* 轨道配位,形成 d - pπ 配键。

σ 配键 d - pπ 配键铂与乙烯之间的成键示意图

Page 26: 第  4  章 配位化合物

11 - 3 配位化合物的晶体场理论

11 - 3 - 1 晶体场中的 d 轨道

在自由原子或离子中,五种 d 轨道的能量简并,其原子轨道的角度分布如图

x

y

d x y

x

y

d x y

x

z

d x z

x

z

d x z

y

z

d y z

y

z

d y z

y

X

dx y2 2

y

X

dx y2 2

+

+

z

x

dz 2

+

+

z

x

dz 2

Page 27: 第  4  章 配位化合物

1. 晶体场中 d 轨道的分裂

( 1 )八面体场

八面体场中 d轨道的分裂

Page 28: 第  4  章 配位化合物

( 2 ) 四面体场

四面体场中的坐标和 d轨道的分裂

由于 dε 和 dγ两组轨道与配体电场作用的大小区别,远不如在八面体场中的明显,所以四面体场的分裂能 △ t 较小,△ t < o △ 。

Page 29: 第  4  章 配位化合物

( 3 )正方形场

在正方形场中,△ p 很大,△ p > o △ 。

正方形场中坐标的选取和 d轨道的分裂

Page 30: 第  4  章 配位化合物

2. 影响分裂能大小的因素

( 1 )晶体场的对称性:△ p > o > t△ △

( 2 )中心离子电荷数:电荷高,与配体作用强,△ 大。

△ [ Fe(CN)63 - ] > [ Fe(CN)△ 6

4 - ]

( 3 )中心原子所在周期数:周期数大,△ 相对大些。

△ [ Hg(CN)42 - ] > [ Zn(CN)△ 4

2 - ]

( 4 )配体影响:配位原子的电负性越小,分裂能大。

I - < Br - < SCN - < Cl - < F - < OH - < - ONO - <C2O4

2 - < < H2O < NCS - < NH3 < en < NO2- < CN -≈ CO

Page 31: 第  4  章 配位化合物

3. 分裂后 d 轨道中电子排布:遵守电子排布三原则。

例 11 - 6 讨论过渡金属 d 4 组态在八面体场中电子排布。

低自旋方式 △ > P 高自旋方式 △ < P

Page 32: 第  4  章 配位化合物

例 11 - 7 讨论下列二种配离子 d 电子排布情况。

Fe(H2O)62 +中 △= 10400 cm - 1 , P = 15000 c

m - 1

Fe(CN)64 - 中 △= 26000 cm - 1 , P = 15000 c

m - 1

Fe(H2O)62 + ( < P) Fe(CN)△ 6

4 – ( > P) △

高自旋排布 (dε)4 (dγ)2 低自旋排布 (dε)6 (dγ)0

Page 33: 第  4  章 配位化合物

11 - 3 - 2 晶体场稳定化能

1 、 分裂后 d 轨道的能量

以球形场时 5 个简并的 d轨道的能量为零点,讨论分裂后的 d 轨道的能量。电场对称性的改变不影响 d 轨道的总能量, d 轨道分裂后,总的能量仍与球形场的总能量一致,规定其为零。

Page 34: 第  4  章 配位化合物

( 1 )八面体场分裂后的 d 轨道的能量:

列方程组 E d - E d = △ o , 3 Ed + 2 Ed = 0

解得 : E d = 3∕5 o△ , E d = - 2∕5 o△

若设分裂能 △ o = 10 Dq ,

则 E d = 6 Dq , E d =- 4 Dq

Page 35: 第  4  章 配位化合物

( 2 )四面体场分裂后的 d 轨道的能量 :

列方程组 Ed - Ed = △ t , 3 Ed + 2Ed = 0

解得: Ed = 2∕5 t△ , Ed = - 3∕5 t△

若 △ t = 10 Dq , 则 E d = 4 Dq , E d =- 6

Dq

对于相同的中心和配体 △ t = 4/9 o △

Page 36: 第  4  章 配位化合物

2 晶体场稳定化能 ( C F S E )

d 电子在晶体场中分裂后的 d轨道中排布,其能量用E 晶 表示,在球形场中的能量用 E 球 表示。因晶体场的存在,体系总能量的降低值称为晶体场稳定化能 ( Crystal F

ield Stabilization Energy ) 。

由 E 球= 0 ,则

CFSE = E 球- E 晶 = 0 - E 晶

Page 37: 第  4  章 配位化合物

例 11 - 8 计算八面体强场中 d 5 组态的 CFSE

解: E 晶 = ( - 4 Dq )×5 + 2p = - 20 Dq + 2P

CFSE = E 球 - E 晶

= 0 - ( - 20 Dq + 2P) = 20 Dq – 2P = 2 – 2P △

球形场 八面体强场

d 电子在球形场中和八面体强场中电子排布

Page 38: 第  4  章 配位化合物

例 11 - 9 计算正四面体弱场 d6 组态的 CFSE 。

解: E 晶 = ( - 6 Dq )×3 + ( 4 Dq )×3 = - 6 Dq

CFSE = 0 - E 晶 = 0 - ( - 6 Dq ) = 6 Dq

球形场 四面体弱场

球形场和八面体强场中电子排布

Page 39: 第  4  章 配位化合物

例 11 - 10 求 Fe(CN)64 -的 CFSE 。

已知: △= 33800 cm - 1 , P = 15000 cm - 1 。

解: Fe2 + 3d 6 , CN - 为强场,低自旋,△ o > P

CFSE = 0 - [ ( - 2 /5 o )×6 △ + 2 P ] = 12 / 5 o△- 2 p

= 12 / 5×33800 cm - 1 - 2×15000 cm - 1 = 51120 cm -

1

球形场 八面体强场

Page 40: 第  4  章 配位化合物

3 用晶体场稳定化能解释水合热的双峰曲线

|H|

d 电子数

|H|

d 电子数

水是弱场,无成对能 P 的问题。下面给出 M2 + 水合离子d 0 ~ d10 的晶体场稳定化能 CFSE 与 d 电子数的对应关系。

d 电子数 0 1 2 3 4 5 6 7 8 9 10

CFSE∕Dq 0 4 8 12 6 0 4 8 12 6 0

Page 41: 第  4  章 配位化合物

11 - 3 - 3 过渡金属化合物的颜色

1. 吸收光谱

自然光照射物质上,可见光全部通过,则物质无色透明;可见光全部反射,则物质为白色;可见光全部被吸收,则物质显黑色。当部分波长的可见光被物质吸收,而其余波长 (即与被吸收的光互补 ) 的光通过或反射出来,则物质显示颜色。这就是吸收光谱的显色原理。

若吸收部分在红外或紫外,则可见光全透过或全反射。

Page 42: 第  4  章 配位化合物

2. d - d 跃迁

晶体场中 d轨道的电子在光照下吸收了能量相当于分裂能△的光能后从低能级 d 轨道跃迁到高能级 d

轨道,称之为 d – d跃迁。若 d – d跃迁所需能量恰好在可见光能量范围内,即 d 电子在跃迁时吸收了可见光波长的光子,则化合物显示颜色。若 d – d跃迁吸收的是紫外光或红外光,则化合物不显色。

Page 43: 第  4  章 配位化合物

表 11 - 1 物质吸收的可见光波长与颜色

吸收光∕波长 nm

吸收光∕波数 cm - 1

吸收可见光颜色 物质的颜色

400~435435~480480~490490~500500~560560~580580~595595~605605~750

25000~2300023000~2080020800~2040020400~2000020000~1790017900~1720017200~1680016800~1650016500~13333

紫蓝绿蓝蓝绿绿黄绿黄橙红

黄绿黄橙红紫红紫蓝绿蓝蓝绿

Page 44: 第  4  章 配位化合物

例 11 - 11 讨论 Ti( H2O )63 + 的颜色

解: Ti 3 + 电子构型为 3 d 1 ,电子排布为 (dε)1(dγ)0 ,在自然光的照射下,电子吸收了能量相当于 △ O 波长的部分, d 电子发生跃迁为 (dε)0 (dγ)1 。由于电子跃迁主要吸收绿色可见光, 故 Ti( H2O )6

3 + 显紫红色。

可见光

Page 45: 第  4  章 配位化合物

例 11 - 12 讨论 Mn(H2O)62 + 的颜色。

解: Mn2 + 3d 5 , H2O 为弱场, d 电子排布为 (dε)3(d

γ)2 。当吸收了自然光中蓝绿色光后,发生 d - d 跃迁,d 电子排布变为 (dε)2(dγ)3 ,于是 Mn(H2O)6

2 + 显粉红色。

由于Mn(H2O)62 + 中心的 5 个 d 电子自旋平行,电子跃迁

几率小,使 Mn(H2O)62 + 颜色很浅,为浅粉红色。

可见光

Page 46: 第  4  章 配位化合物

3. 电荷迁移

d - d 跃迁的化合物一般无色或白色,例: d 0 和 d 10

Cu ( I ) Cd ( II ) La ( III ) Ti ( IV )

3d10 4d10 5d0 3d 0

4. 但也有一些组态为 d 0 和 d 10 的化合物有颜色,为什么?

CdI2 (4d10) HgI2 (5d10)

黄 绿 色 红 色

Page 47: 第  4  章 配位化合物

这些无 d – d 跃迁的化合物,为什么 ZnI2没有颜色而CdI2 和 HgI2却有颜色呢? 对于MI2来说, M2 + 的极化作用使其有获得电子的趋势,同时,半径较大的 I - 有给出电子的趋势。 Zn2 + 的极化能力较差, ZnI2要吸收紫外光方可实现电子从 I -

向 Zn2 +迁移,故可见光全透过,即在可见区无吸收,因而无色。 CdI2正负离子间相互极化作用较强,吸收紫色可见光即可实现电子于从负离子向正离子迁移,因而化合物显黄绿色。 Hg2 + 既有较强的极化作用,又有较大的变形性,与半径大的 I - 之间有较强的相互极化作用,电子从 I -向Hg2 +迁移更容易, HgI2吸收蓝绿色光即可,因而化合物显红色。

Page 48: 第  4  章 配位化合物

11 - 3 - 4 Jahn - Teller 效应

解释 Cu(NH3)42 + 离子的正方形结构, [Cu(NH3)4(H

2O)2]2 + 离子为拉长的八面体结构?

按晶体场理论, Cu2 + 为 d9 电子构型。在八面体场中,最后一个电子有两种排布方式:一种是最后一个电子排布到 d x2

- y2 轨道,则 xy 平面上的 4 个配体受到的斥力大,距核较远,形成压扁的八面体。

Page 49: 第  4  章 配位化合物
Page 50: 第  4  章 配位化合物

这恰好解释了 [Cu(NH3)4(H2O)2]2 + 为拉长的八面体。若轴向的两个配体拉的太远,则失去轴向两个配体,变成 [Cu(NH3)4]2 + 正方形结构。即 Jahn - Teller效应。

PtCl42 -由八面体场转为正方形场

Page 51: 第  4  章 配位化合物

11 - 4 配位化合物的稳定性

1. 酸碱的软硬分类

硬酸: 变形性小,半径小,电荷高正离子。如 :

Na +、 Mg2 +、 Al3 +、 Ti4 + 、 Mn2 +、 Fe3 +

软酸 :变形性大,半径大,电荷低的正离子。如:

Cu +、 Ag +、 Cd2 +、 Hg2 +、 Hg22 +、 Tl

交界酸:其变形性介于硬酸和软酸之间。如:

Cr2 +、 Fe2 +、 Co2 +、 Ni2 +、 Cu2 +、 Zn2 +

11 - 4 - 1 酸碱的软硬分类

Page 52: 第  4  章 配位化合物

硬碱: 给出电子对的原子的电负性大,不易变形。如 : F -、 Cl -、 H2O 、 OH -、 O2 -、 SO4

2– 、 NO3-、

NH3

软碱: 给出电子对的原子的电负性小,易变形。如: I -、 S2 -、 CN -、 SCN -、 CO 、 S2O3

2 -、 C6H6

交界碱: 其变形性介于硬碱和软碱之间。如 :

Br -、 SO32 -、 N2 、 NO2

Page 53: 第  4  章 配位化合物

2. 软硬酸碱结合原则

软亲软,硬亲硬;软和硬,不稳定。

软硬酸碱理论在解释某些配合物的稳定性和元素在自然界的存在状态等方面很成功。

Page 54: 第  4  章 配位化合物

例 11 - 13 用软硬酸碱理论解释配位离子的稳定性次序

( 1 ) HgI42 - > HgBr4

2 - > HgCl42 - > HgF4

2 -

( 2 ) Al F63 - > AlCl6

3 - > AlBr63 - > AlI6

3 -

解 Hg2 + 为软酸,而从 I - 至 F - 半径减小,从软碱向硬 碱过渡, HgI4

2 -更稳定。

Al3 + 为硬酸,从 F - 至 I -半径依次增大,从硬碱向软碱过渡, Al F6

3 -更稳定。

Page 55: 第  4  章 配位化合物

十八电子规则

过渡金属价层达到 18 个电子时,配合物一般较稳定,亦称有效原子序( EAN )规则。

例如: Fe(CO)5 , Ni(CO)4 。 Co2(CO)8 , Fe2(CO)9

等符合十八电子规则的配合物都较稳定。而 Mn(CO)5 或Co(CO)4 不符合十八电子规则,都不存在。

又例如:二茂铁 Fe(C5H5)2 符合十八电子规则,较稳定;而 Ni(C5H5)2 和 Co(C5H5)2 等不符合十八电子规则,稳定性差,容易被氧化。

Page 56: 第  4  章 配位化合物

11 - 4 - 3 配合平衡

1. 配合-解离平衡与平衡常数

配合物的内外界之间在水中全部解离,而配合物内界只部分解离,即存在配合-解离平衡。例:

Ag + + 2 NH3 = Ag (NH3)2+ K 稳 = 1.1×107

23

23

]][[

])([

NHAg

NHAgK

稳])NH(Ag[

]NH][Ag[K

3

23

不稳

Page 57: 第  4  章 配位化合物

例 11 - 14 将 0.20 mol·dm - 3 AgNO3 溶液与 2.0 mol·d

m - 3 NH3·H2O 等体积混合,试计算平衡时溶液中 Ag +,NH3 , Ag(NH3)2

+ 的浓度。 已知 Ag(NH3) 的 K 稳 = 1.1

107 。课堂练习:

解得 :

c(Ag + ) = 1.42 10 - 8 mol·dm - 3 ,

c(NH3) = 0.8 mol·dm - 3

c(Ag(NH3)2+ )= 0.1 mol·dm - 3

Page 58: 第  4  章 配位化合物

2. 配合平衡的移动

( 1 )配合平衡与酸碱解离平衡

2CuSO4 + 2NH3 + 2H2O= Cu(OH)2·CuSO4↓ + (NH4)2SO4

Cu(OH)2·CuSO4 + (NH4)2SO4 + 6NH3= 2Cu(NH3)4SO4 + 2 H2O

2Cu(NH3)4SO4 + 3H2SO4 + 2H2O= Cu(OH)2·CuSO4 + 4(NH4)2SO

4

Cu(OH)2·CuSO4 + H2SO4 = 2 CuSO4 + 2 H2O

( 2 )配合平衡和沉淀-溶解平衡

两种平衡的关系实质是配合剂与沉淀剂争夺Mn + 的问题,和 Ksp 、 K 稳 的值有关。

Page 59: 第  4  章 配位化合物

( 3 ) 配合平衡和氧化还原平衡

若氧化型生成配合物, E值减小;

还原型生成配合物, E值增大。

氧化型 + z e = 还原型

根据 Nernst方程 ][

][lg

z

V059.0EE

还原型氧化型

Page 60: 第  4  章 配位化合物

( 4 )配合平衡与配合物的取代反应

向红色的 Fe(SCN)n3 - n ( n = 1 ~ 6 )溶液中滴加 NH

4F溶液,红色逐渐褪去最终溶液变为无色。以上过程说明发生了配合物取代反应:

Fe(SCN)n3 - n + m F -= FeFm

3 - m ( m = 1~6 )+ n

SCN -

能够发生如上反应,说明 Fe3 +与 F - 生成的配合物稳定性远大于 Fe3 +与 SCN - 生成的配合物稳定。