˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · palynofacies analysis shows deposition in an offshore...

18
Campanian to Maastrichtian palynofacies and dinoflagellate cysts of the Silesian Unit, Outer Western Carpathians, Czech Republic PETR SKUPIEN & OMAR MOHAMED Dinoflagellate cysts are reported from 20 Upper Cretaceous claystone samples from the Godula and Istebna formations of the Silesian unit. Age-assessment of the sediments based on 150 species suggests a Late Campanian to probably earli- est Maastrichtian age for the middle and upper part of the Godula Formation and a Early Maastrichtian age for the basal part of the Istebna Formation. Key biotic events are especially the first occurrence datums of Areoligera senonensis, Cerodinium diebelii, Palaeocystodinium golzowense and Trithyrodinium evittii, and the last occurrence datums of Odontochitina, Palaeohystrichophora infusorioides, Raeteiaedinium truncigerum, Trihyrodinium suspectum and Xenascus ceratioides. Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is dominated by phytoclasts and contains very little amorphous organic material. The succession is also characterized by a low percentage of dinoflagellate cysts and a very low percentage of spores and pollen grains. The presence of thermophilitic dinoflagellate cysts points to a warm-temperate to subtropical climate dur- ing Late Campanian to Early Maastrichtian. • Key words: Silesian Unit, Cretaceous, Campanian, Maastrichtian, dinoflagellate cysts, palynofacies, Carpathians. SKUPIEN, P. & MOHAMED, O. 2008. Campanian to Maastrichtian palynofacies and dinoflagellate cysts of the Silesian Unit, Outer Western Carpathians, Czech Republic. Bulletin of Geosciences 83(2), 207–224 (11 figures, 3 tables). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received November 2, 2007; accepted in revised form April 25, 2008; issued June 30, 2008. Petr Skupien, Institute of Geological Engineering, VŠB – Technical University, 17. listopadu 15, Ostrava-Poruba, Czech Republic; [email protected] • Omar Mohamed, Geology Department, Faculty of Science, Elminia University, Elminia, Egypt; [email protected] The studied sections of marine Upper Cretaceous deposits are situated in the Moravskoslezské Beskydy Mountains, which are part of the Outer Western Carpathians (OWC). Geologically, they belong to Subsilesian and Silesian units of Upper Jurassic to Oligocene hemipelagic and flysch de- posits within the OWC nappe system, which overthrusted part of the Carpathian Miocene foredeep and partly on bur- ied Variscides of the Bohemian Massif (Fig. 1). Three fun- damentally different facies (developments) are preserved in the present-day structure of the Silesian unit, i.e. the Go- dula facies (basinal setting); the Baška facies (frontal slope setting); and the Kelč facies (continental slope setting). The Upper Cretaceous comprises dominantly flysch (turbiditic) sediments belonging to the Godula Formation and Istebna Formation (Fig. 2). The dinoflagellate cyst as- semblages described in this paper come from the Staré Hamry, Horní Bečva, Zarovjanka and Bílá sections, which belong to the Godula facies. Twenty samples collected for palynology were studied with special emphasis on the dinoflagellate cyst assemblages. This study builds on earlier investigations by Skupien (1999, 2003), Skupien & Vašíček (2003), Skupien et al. (in press), which dealt with the stratigraphic distribution of microplankton species in the Upper Cretaceous of the Silesian unit. Discovery of dinoflagellate cysts in a claystone layer brings new information on age, palaeoenvironment and palaeogeographical position of these deposits. Geological setting The studied sections are situated in the Silesian unit of the OWC flysch zone. The Upper Cretaceous includes the uppermost part of the Lhoty Formation, the Mazák For- mation, the Godula Formation and the Istebna Formati- on (Pícha et al. 2006). Late Cretaceous (Early Cenomani- an; Skupien & Vašíček 2003) sedimentation starts with light gray shales with a few thin intercalations of dark grey shales in the upper Lhoty Formation. The deposits of the 207 DOI 10.3140/bull.geosci.2008.02.207

Upload: others

Post on 21-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

��������������� ������������������

����������������������������������������

��� ����� ���� �����������������������

���� ������� ��� � �����

Dinoflagellate cysts are reported from 20 Upper Cretaceous claystone samples from the Godula and Istebna formationsof the Silesian unit. Age-assessment of the sediments based on 150 species suggests a Late Campanian to probably earli-est Maastrichtian age for the middle and upper part of the Godula Formation and a Early Maastrichtian age for the basalpart of the Istebna Formation. Key biotic events are especially the first occurrence datums of Areoligera senonensis,Cerodinium diebelii, Palaeocystodinium golzowense and Trithyrodinium evittii, and the last occurrence datums ofOdontochitina, Palaeohystrichophora infusorioides, Raeteiaedinium truncigerum, Trihyrodinium suspectum andXenascus ceratioides. Palynofacies analysis shows deposition in an offshore marine environment subjected to influxesof terrestrial material. Organic matter is dominated by phytoclasts and contains very little amorphous organic material.The succession is also characterized by a low percentage of dinoflagellate cysts and a very low percentage of spores andpollen grains. The presence of thermophilitic dinoflagellate cysts points to a warm-temperate to subtropical climate dur-ing Late Campanian to Early Maastrichtian. • Key words: Silesian Unit, Cretaceous, Campanian, Maastrichtian,dinoflagellate cysts, palynofacies, Carpathians.

SKUPIEN, P. & MOHAMED, O. 2008. Campanian to Maastrichtian palynofacies and dinoflagellate cysts of the SilesianUnit, Outer Western Carpathians, Czech Republic. Bulletin of Geosciences 83(2), 207–224 (11 figures, 3 tables). CzechGeological Survey, Prague. ISSN 1214-1119. Manuscript received November 2, 2007; accepted in revised form April25, 2008; issued June 30, 2008.

Petr Skupien, Institute of Geological Engineering, VŠB – Technical University, 17. listopadu 15, Ostrava-Poruba,Czech Republic; [email protected] • Omar Mohamed, Geology Department, Faculty of Science, Elminia University,Elminia, Egypt; [email protected]

The studied sections of marine Upper Cretaceous depositsare situated in the Moravskoslezské Beskydy Mountains,which are part of the Outer Western Carpathians (OWC).Geologically, they belong to Subsilesian and Silesian unitsof Upper Jurassic to Oligocene hemipelagic and flysch de-posits within the OWC nappe system, which overthrustedpart of the Carpathian Miocene foredeep and partly on bur-ied Variscides of the Bohemian Massif (Fig. 1). Three fun-damentally different facies (developments) are preservedin the present-day structure of the Silesian unit, i.e. the Go-dula facies (basinal setting); the Baška facies (frontal slopesetting); and the Kelč facies (continental slope setting).

The Upper Cretaceous comprises dominantly flysch(turbiditic) sediments belonging to the Godula Formationand Istebna Formation (Fig. 2). The dinoflagellate cyst as-semblages described in this paper come from the StaréHamry, Horní Bečva, Zarovjanka and Bílá sections, whichbelong to the Godula facies. Twenty samples collected forpalynology were studied with special emphasis on thedinoflagellate cyst assemblages.

This study builds on earlier investigations by Skupien(1999, 2003), Skupien & Vašíček (2003), Skupien et al.(in press), which dealt with the stratigraphic distributionof microplankton species in the Upper Cretaceous of theSilesian unit. Discovery of dinoflagellate cysts in aclaystone layer brings new information on age,palaeoenvironment and palaeogeographical position ofthese deposits.

��������������

The studied sections are situated in the Silesian unit of theOWC flysch zone. The Upper Cretaceous includes theuppermost part of the Lhoty Formation, the Mazák For-mation, the Godula Formation and the Istebna Formati-on (Pícha et al. 2006). Late Cretaceous (Early Cenomani-an; Skupien & Vašíček 2003) sedimentation starts withlight gray shales with a few thin intercalations of dark greyshales in the upper Lhoty Formation. The deposits of the

���� ����������������� !"����#�������

Page 2: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

Silesian unit have been studied biostratigraphically usingmainly foraminifera; Upper Cretaceous macrofauna are ab-sent.

The Upper Cenomanian to lowermost ConiacianMazák Formation is represented by sequence of variegated(red, red-brown and grey-green) non-calcareous shales, oc-casionally interbedded with thin, greenish gray quartzosesandstone layers (Roth 1980, Skupien et al. in press).

The Turonian to Santonian Godula Formation(Hanzlíková 1972a, Menčík et al. 1983) is a typical flyschsequence of alternating sandstones and shales with a vari-able proportion of these two main lithological componentsand an overall thickness of more than 3000 m. Litho-logically, the formation is subdivided into three parts (Eliáš2000; Matějka 1949, 1952; Menčík et al. 1983): a lowerturbiditic facies of thinly bedded glauconitic sandstonesand shales (grey, brown-grey, red-grey in colour); middlepart with a facies dominated by coarse glauconitic sand-stones and conglomerates; and an upper facies of thinlyinterbedded glauconitic sandstones and shales (grey,green-grey), with coarse sandstones and conglomeratesoccuring locally.

The Campanian to Maastrichtian to Danian(?) IstebnaFormation (Hanzlíková 1972b) developed from the underly-ing Godula Formation is 1200 m thick and represented by atypical flysch facies of alternating sequences of arkosicsandstones, slump conglomerates, and sand flows (fluxo-turbidites) with an equally thick sequence of dark shales.

The Cenomanian–Early Turonian age of the MazakFormation was established by the concurrent presence offoraminifers Praeglobotruncana helvetica (Bolli), Prae-globotruncana stephani (Gandolfi) and Rotaliporagreenhornensis (Morrow) (Hanzlíková 1973). New data(foraminifera and dinoflagellate cysts) support a Late

Cenomanian to earliest Coniacian age (Skupien et al. inpress). Hanzlíková (1972a) described from the GodulaFormation foraminiferal assemblages of Turonian toSantonian age. New observation from the continuousBystrá section (Skupien & Vašíček 2003, Skupien et al. inpress) provided foraminiferal and dinoflagellate cyst as-semblages of Coniacian to Early Campanian age in thelower part and of Early to Late Campanian age in the mid-dle part of the formation. Early Campanian to Danianforaminiferal zones were described by Hanzlíková (1972b)from the Istebna Formation.

��� ���

Four sections were sampled (Fig. 1). Sample positions areindicated on Figs 3, 4 and 5.

The Staré Hamry section is situated north-east ofTrojačka Hill and on the south-western part of the Šancedam. Eleven samples of grey claystones were taken fromexposures along the road from Staré Hamry to Ostravice.The studied section consists of thick flysch sediments ofthe middle part of the Godula Formation (Figs 2A, 3).

The Horní Bečva section is located in an old quarry onthe southern side of Kněhyně Hill and about 700 m north ofthe town Horní Bečva, situated near a sharp turn on theright-hand side of the road from Horní Bečva to Pustevny.Thinly interbedded glauconitic sandstones and shales(grey, green-grey) of the upper part of the Godula Forma-tion are exposed. Three samples were taken from the mid-dle part of the quarry (Figs 2B, 4).

Two samples from the Zarovjanka section were takenfrom a quarry near the junction of the Bílá Ostravice andČerná Ostravice rivers, north of Bílá. Arkosic sandstones

��#

��� ��!" Location map of the studied sections and area in the Outer Western Carpathians. Abbreviations: BL – Bílá section, PB – Horní Bečva section,SH – Staré Hamry section, ZA – Zarovjanka section.! Subsilesian Unit and Ždánice Unit,! Silesian Unit,! Rača Unit,! Bystrica Unit,

! Bílé Karpaty Unit.

����������� ������ �������������

Page 3: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

and slump conglomerates of the basal part of the IstebnaFormation are exposed. Samples were taken from the greyto dark grey claystones and siltstones in the middle part ofthe quarry (Figs 2C).

The Bílá section is located in the south-eastern part ofthe town Bílá, opposite the old church. Four samples weretaken from the exposure on the right bank of the river BíláOstravice. The sampled part of the section consists of ap-proximately 9 m of dark grey shales with occasional sand-stone layers of the Istebna Formation (Figs 2D, 5). Shalesare rich in organic matter and pyrite.

�����

A total of 20 rock samples, mostly recovered from the clayand sandy clay beds, were processed for palynomorphs.After washing and drying, standard processing involvedchemical treatment of 15–20 g of sample with HCl to re-move the calcareous fraction and with HF to remove silica-tes, sieving with an 8 μm and 15 μm nylon mesh, and cen-trifuging to concentrate the residues. Oxidation is not used.Two microscope slides were made from each samplesusing a residue > 8 μm for palynofacies analysis. Three sli-

��$

��� ��#" Lithology of the studied sections. • A – thick flysch of the middle part of the Godula Formation, Staré Hamry. • B – thin flysch of the upper partof the Godula Formation, Horní Bečva. • C – slump conglomerates of the basal part of the Istebna Formation, Zarovjanka. • D – dark grey shales with oc-casional sandstone layers of the Istebna Formation, Bílá.

$

� %

&

���� �������� ���� !���" �#��������� �� ����!�������$������ ��""�����%�������$ � ��!����� ���&���

Page 4: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

des were prepared from each sample using a part of the re-sidue >15 μm for dinoflagellate cyst analysis. Whole slidesof residues were investigated under a binocular transmittedlight microscope to identify and count the palynomorphsand other organic materials. The palynological permanentmounts are stored at the Institute of Geological Engineer-ing at the VŠB – Technical University of Ostrava, CzechRepublic. Dinocyst taxa discovered are illustrated and lis-ted in alphabetical order of genus name in an appendix. Fordinocyst taxonomy and references to taxa names and aut-hors, please refer to Fensome & Williams (2004) and Fau-connier & Masure (2004).

Palynofacies analysis (counting up to 1000 particles)was based on phytoclasts (brown and black material),amorphous organic material (AOM), spores and pollen

grains, dinoflagellate cysts and foraminiferal test linnings.The quantitative study included counting of up to 150 de-terminable dinoflagellate cysts when possible.

������

Dinoflagellate cysts have been found in all samples of greyor dark-grey lithofacies. In the present study we identifyLate Campanian to Early Maastrichtian dinoflagellate cystassemblages from the claystone samples (Godula and Is-tebna formations) in four sections. We also concentratedon the quantitative analysis to interpret the palaeoecologyand palaeoenvironment of the studied samples by counting

���

��� ��'" Lithological column with sample position and organic faciescomposition of the Staré Hamry section. Abbreviation: S – sample.

��� ��(" Lithological column with sample position and organic faciescomposition of the Horní Bečva section.

��� ��)" Lithological column with sample position and organic faciescomposition of the Bílá section.

����������� ������ �������������

Page 5: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

���

��� ��*" A – AOM-palynomorph (marine and terrestrial) -phytoclast ternary diagram (after Tyson 1995) of the relative numerical particle frequency(% of the TSOM) in the Staré Hamry section. • B – AOM-phytoclasts-foraminiferal linings/dinoflagellate cysts/acritarchs/other marine algae diagram(modified from Tyson 1995) of the relative numerical particle frequency (% of the TSOM) in the Staré Hamry section.

��� ��+" A – AOM-palynomorph (marine and terrestrial)-phytoclast ternary diagram (after Tyson 1995) of the relative numerical particle frequency(% of the TSOM) in the Horní Bečva section. • B – AOM-phytoclasts-foraminiferal linings/dinoflagellate cysts/acritarchs/other marine algae diagram(modified from Tyson 1995) of the relative numerical particle frequency (% of the TSOM) in the Horní Bečva section.

��� ��," A – OM-palynomorph (marine and terrestrial)-phytoclast ternary diagram (after Tyson 1995) of the relative numerical particle frequency(% of the TSOM) in the Bílá section. • B – AOM-phytoclasts-foraminiferal linings/dinoflagellate cysts/acritarchs/other marine algae diagram (modifiedfrom Tyson 1995) of the relative numerical particle frequency (% of the TSOM) in the Bílá section.

&

&

$

&

$

$

���� �������� ���� !���" �#��������� �� ����!�������$������ ��""�����%�������$ � ��!����� ���&���

Page 6: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

���

-�����!" Distribution of dinoflagellate cysts in the Staré Hamry section. Numbers refer to counted specimens in the slides.

Age Late Campanian

Formation Godula Formation

Species / Sample Number SH1 SH1a SH1b SH1c SH2 SH2a SH2b SH3 SH3a SH4 SH4a

Achomosphaera fenestra 2 3 3 2 3 2

Achomosphaera ramulifera 12 35 30 40 16 20 30 10 16

Achomosphaera sagena 4

Achomosphaera triangulata 8 43 40 20 46 12 21 17

Areoligera coronata 16

Areoligera senonensis 4

Biconidinium longissimum 2

Callaiosphaeridium asymmetricum 13 5 17 9 7

Cerebrocysta bartonensis 1

Cerodinium sp. 9

Chatangiella bondarenkoi 8

Chatangiella spectabilis 7 8 12 5

Chatangiella tripartita 7 7

Chatangiella williamsii 6

Cordosphaeridium sp. 1

Coronifera oceanica hebospina 5

Cribroperidinium orthoceras 6 5 4 5

Cyclonephelium distinctum 7 7 9

Dinogymnium cf. sibiricum 4 2

Dinogymnium sp. 5

Downiesphaeridium? aciculare 5 3 7 4

Exochosphaeridium bifidum 10 14

Exochosphaeridium aff. bifidum 4

Exochosphaeridium multifurcatum 11

Exochosphaeridium phragmites 7

Exochosphaeridium sp. 38 40 31 46

Florentinia aculeata 8 11 25 15

Florentinia cooksoniae 2

Florentinia deanei 7 6

Florentinia hypomagna 2

Florentinia laciniata 5 6

Florentinia sp. 21

Glaphyrocysta sp. 1

Glaphyrocysta texta 2

Hafriasphaeridium fluens 2

Hystrichokolpoma proprium 2 1 5

Hystrichodinium pulchrum 5 7 5 6

Hystrichosphaeridium bowerbankii 11 24 23 13 11 27 21 21

Hystrichosphaeridium salpingophorum 4

Hystrichosphaeridium tubiferum 12 8 7 6

Hystrichosphaeridium sp. 5

Hystrichostrogylon membraniphorum 7 10 8 8

Isabelidinium belfastense 5 2 1

Isabelidinium sp. 35 11 11 5 26

Isabelidinium svartenhukense 4

Kiokansium polypes 4

Kleithriasphaeridium loffrense 22 5 15

����������� ������ �������������

Page 7: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

the total sedimentary organic material (TSOM), as notedabove.

Most residues were characterized by abundant sedi-mentary organic materials (SOM), dominated byphytoclasts (87–96% in the Staré Hamry section; 85–95%in the Horní Bečva section; 79–83% in the Bílá section)and a small percentage of AOM (1–4% in Staré Hamry sec-tion; 1–5% in Horní Bečva section; up to 17% in the Bílásection). The succession is also characterized by a low per-centage of dinoflagellate cysts (less than 9%) and a very

low percentage of spores and pollen grains (less than 5%).Overall the studied samples show little vertical variation inthe palynofacies (Figs 3–5).

Changes in palynofacies types and composition ofpalynomorph assemblages can provide information to in-terpret the depositional environments in terms of waterdepth, sea-water oscillation, temperature variations andterrigenous influx (Lister & Batten 1988, Smelror &Leereveld 1989, Batten 1996). Samples are usually plottedin ternary diagrams. Tyson (1995) suggested the use of

���

-�����!" Continued

Age Late Campanian

Formation Godula Formation

Species / Sample Number SH1 SH1a SH1b SH1c SH2 SH2a SH2b SH3 SH3a SH4 SH4a

Kleithriasphaeridium readii 3

Leberidocysta chlamydata 1

Multiplicisphaeridium? cruciatum 3

Odontochitina costata 2 9 7

Odontochitina operculata 23 29 31 21 4 5 17

Oligosphaeridium albertense 5

Oligosphaeridium complex 11 15 41 43 5 23

Operculodinium centrocarpum 1

Palaeohystrichophora infusorioides 5 6 2

Palaeoperidinium sp. 2

Palaeotetradinium silicorum 2

Pervosphaeridium pseudhystrichodinium 19 68 23 18 17 19

Pervosphaeridium truncatum 11 8 15 4

Phelodinium cf. kozlowskii 1

Phthanoperidinium distinctum 1

Pterodinium aliferum 1 1 8 1

Pterodinium cingulatum 5 1 1

Raetiaedinium truncigerum 1

Senoniasphaera inornata 2

Senoniasphaera rotundata 6 5

Spiniferites cf. bulloideus 2 2 4 3 1

Spiniferites crassipellis 1

Spiniferites membranaceus 2 3

Spiniferites porosus 2

Spiniferites ramosus 31 23 47 13 31 25 10 31 74 11 31

Spiniferites ramosus brevifurcatus 13 13 16 11

Spiniferites aff. ramosus granomembranaceus 2 12 6 2 14

Spiniferites aff. ramosus granosus 2

Subtilisphaera sp. 2

Surculosphaeridium? longifurcatum 31 26 49 21 43 32 20 9 31

Tanyosphaeridium boletus 2 2

Trithyrodinium evittii 2

Trithyrodinium sp. 4

Trithyrodinium suspectum 2 3 2 2

Xenascus ceratioides 9 19 7 14

Xenascus sp. 22 10 11

���� �������� ���� !���" �#��������� �� ����!�������$������ ��""�����%�������$ � ��!����� ���&���

Page 8: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

AOM-Palynomorphs-Phytoclasts (APP) ternary plots tocharacterize marine depositional facies based on SOM(Figs 6–8).

The middle member of the Godula Formation (StaréHamry section) is characterized by a high percentage ofphytoclasts (87–96%, Figs 3, 6), a low percentage ofpalynomorphs (2–10%) and a very low amount of AOM(1–4%). We found only one foraminifer specimen in everySH1, 1c and 2b sample, which indicates a shallow marineenvironment with high terrestrial influx. Also, we identi-fied 87 dinoflagellate cysts species (Table 1) and the as-semblages of many samples are rich in species suchas Achomosphaera ramulifera, A. triangulata, Cribroperi-dinium orthoceras, Exochosphaeridium sp., Florentiniaaculeata, Hystrichosphaeridium bowerbankii, Hystricho-sphaeridium pulchrum, Odontochitina operculata, Oligo-sphaeridium complex, Pervosphaeridium pseudhystricho-dinium, Spiniferites ramosus, Surculosphaeridium?longifurcatum and Xenascus ceratioides.

In the upper member of the Godula Formation (HorníBečva section, Table 2) we identified 52 dinoflagellate cystspecies. Assemblages are characterized by taxa suchas Chatangiella spectabilis, Heterosphaeridium spinacon-junctum, Odontochitina operculata, Oligosphaeridiumasterigerum, Palaeohystrichophora infusorioides, Spini-ferites cf. bulloideus, Spiniferites porosus, Spiniferitesramosus, Surculosphaeridium? longifurcatum, Thalassi-phora sp., Trithyrodinium evittii, Xenascus ceratioides andXenascus sarjeantii. Samples are characterized by a veryhigh percentage of phytoclasts (85–95%, Figs 4, 7), a lowpercentage of palynomorphs (5–10%) and very little AOM(1–5%), which indicates a shallow marine environmentwith high terrestrial influx.

In the Istebna Formation (Bílá section, Table 3), 57dinoflagellate cyst species have been identified, which aredominated by species as Achomosphaera fenestra, Areo-ligera volata, Cerodinium diebelii, Florentinia radiculata,Glaphyrocysta sp., Hystrichosphaeridium pulchrum, Pa-laeocystodinium golzowense, Palaeoperidinium pyro-phorum, Spiniferites ramosus and Sumatradinium sou-

couyantiae. Samples are characterized by a very highpercentage of phytoclasts (79–83%, Figs 5, 8), a very lowpercentage of palynomorphs (1.5–3.5%) and a slightlyhigher percentage of AOM (10–17%), which indicates ashallow marine environment with high terrestrial influxand near anoxic conditions.

%��������

Below we characterize the stratigraphic assignment of thestudied sediments according to dinoflagellate cysts(Figs 9–11). Quantitative abundances of dinoflagellatecysts are illustrated in Tables 1, 2 and 3. To determine theage of the strata based on the distribution of dinoflagellatecysts, species ranges were compared with other studies inthe Northern Hemisphere (Robaszynski et al. 1985, type-Maastrichtian area; Kirsch 1991, southern Germany; Costa& Davey 1992, North Sea; Hoek et al. 1996, Israel; Ron-caglia & Corradini 1997, Roncaglia 2002, Torricelli &Amore 2003, Italy; Antonescu et al. 2001, south-westernFrance). In addition, the oldest and youngest occurrencesof dinoflagellate cyst species of Stover et al. (1996) andWilliams et al. (2004) were considered.

The dinoflagellate cyst assemblages of the samples ofthe middle part of the Godula Formation (Staré Hamry sec-tion, Table 1) can be assigned to the Late Campanian. Twointeresting markers are the first occurrences of the speciesAreoligera senonensis and Trithyrodinium evittii. The firstoccurrences of Areoligera senonensis (sample SH1b in thelower part of the Staré Hamry section) are calibrated in theLate Campanian of the Maastrichtian type area (Roba-szynski et al. 1985), of southern Germany (Kirsch 1991)and of the northern Apennines (Roncaglia & Corradini1997). Trithyrodinium evittii (sample SH3) has the first oc-currence in the latest Campanian of south-west France(Antonescu et al. 2001). But the FO of this taxon is usuallyconsidered to be a criterion for the earliest Maastrichtian inmid-latitudes (Williams et al. 2004). The FO observed inthe Silesian unit can thus represent the evolutionary ap-

���

��� ��." Taxa discovered; the species name is followed by sample location and England Finder coordinates (for localization of the specimen on theslide). Scale is 20 μm. • A – Alterbidium acutulum (Wilson, 1967b) Lentin & Williams, 1985; ZA1, S28/2. • B – Chatangiella bondarenkoiVozzhennikova, 1967; SH1/a, U32/3. • C – Callaiosphaeridium asymmetricum (Deflandre & Courteville, 1939) Davey & Williams 1966b; Pb1a,K31/32. • D – Cribroperidinium orthoceras (Eisenack, 1958a) Davey 1969a; SH3a/a, K43/2. • E – Achomosphaera sagena Davey & Williams, 1966;SH4/a, P42/2. • F – Biconidinium longissimum Islam, 1983c; SH3/a, S54/1. • G – Areoligera senonensis Lejeune-Carpentier, 1938; SH1b/a, K35/3.• H – Chatangiella spectabilis (Alberti, 1959b) Lentin & Williams, 1976; SH4a/a, R44/1. • I – Cerodinium sp.; PB1/a, P42/1. • J – Cerodinium diebelii(Alberti, 1959b) Lentin & Williams, 1987; ZA1, L42/3. • K – Achomosphaera fenestra Kirsch, 1991; BL2/b, S38. • L – Areoligera volata Drugg, 1967;BL3/b, R53. • M – Chatangiella williamsii Yun, 1981; SH2b/a, P32/4. • N – Cerodinium cf. wardenense (Williams & Downie, 1966) Lentin & Williams,1987; BL0a, S41. • O – Glaphyrocysta sp.; ZA2/a, D51. • P – Florentinia aculeate Kirsch, 1991; SH2a/c, L37. • Q – Cribroperidinium orthoceras(Eisenack, 1958a) Davey, 1969a; PB3/a, R39. • R – Exochosphaeridium bifidum (Clarke & Verdier, 1967) Clarke et al., 1968; SH3a/a, H47/1.• S – Hystrichosphaeridium bowerbankii Davey & Williams, 1966b; SH1c/a, Q32/4. • T – Glaphyrocysta castelcasiensis castelcasiensis Corradini, 1973;BL0a, K32. • U – Cauveridium membraniphorum (Cookson & Eisenack, 1962b) Fauconnier & Masure, 2004; PB3/a, Z46/1. • V – Exochosphaeridiumphragmites Davey et al., 1966; SH2/a, D34. • W – Hystrichosphaeridium salpingophorum Deflandre, 1935a; SH2a/c, T50. • X – Glaphyrocysta wilsoniiKirsch, 1991; BL0b, F43. • Y – Deflandrea cf. phosphoritica Eisenack, 1938b; ZA1/a, R42/1. • Z – Exochosphaeridium sp.; SH1a/a, S41.

����������� ������ �������������

Page 9: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

��%

$

%

/

�0

1

2

3 � 4

&

5

6

-

7

� 8 9 :

;

���� �������� ���� !���" �#��������� �� ����!�������$������ ��""�����%�������$ � ��!����� ���&���

Page 10: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

pearance of the taxon in the Western Tethys in accordancewith the data of Antonescu et al. (2001).

Other stratigraphically important dinocyst speciesfound are Kleithriasphaeridium loffrense, Raeteiaediniumtruncigerum, Senoniasphaera rotundata and Trihyrodi-nium suspectum. The last occurrences of Kleithria-sphaeridium loffrense, Raetiaedinium truncigerum andSenoniasphaera rotundata are Late Campanian (Williamset al. 2004). Antonescu et al. (2001) reports the LO ofRaetiaedinium truncigerum slightly above the Campan-ian/Maastrichtian boundary. In southern Germany the lastoccurrence of T. suspectum is close to the Campan-ian/Maastrichtian boundary (Kirsch 1991) and in theNorthern Hemisphere its total stratigraphical distributionranges slightly higher into the earliest Maastrichtian(Stover et al. 1996, Williams et al. 2004).

Co-occurrence of these dinocyst species suggests thatsedimentation of the middle part of the studied Godula For-mation took place during the Late Campanian. This is inaccordance with data from the Bystrá section (Skupien etal. in press) where dinoflagellate cyst associations of Mid-dle to Late Campanian age were found, and occurrences ofagglutinated foraminifera confirm this age assignment(Skupien et al. in press).

Samples of the upper part of the Godula Formation(Horní Bečva section, Table 2) yield diverse Late Creta-ceous dinoflagellate cyst assemblages, including the firstappearance of Alterbidinum ulloriaq and Palaeo-cystodinium golzowense in the Silesian unit. The first oc-currences of these species are known from the EarlyMaastrichtian (Antonescu et al. 2001, Kirsch 1991, Ron-caglia 2002). P. golzowense is the index species for theP. golzowense Interval Subzone of Roncaglia & Corradini(1997) in Italy. Only Hoek et al. (1996) have described thisspecies from the Late Campanian in Israel.

Several dinocyst species from the Horní Bečva sectionare long ranging with stratigraphic range tops limited to theearliest Early Maastrichtian (e.g., Odontochitina costata,

Palaeohystrichophora infusorioides, Xenascus cera-tioides, X. sarjeantii; Roncaglia & Corradini 1997,Robaszynski et al. 1985, Stover et al. 1996, Williams et al.2004).

Consistent with trends in the composition of thedinoflagellate cyst assemblages throughout the studiedsections, the section Horní Bečva indicates an age close tothe Campanian/Maastrichtian boundary or probably earli-est Maastrichtian.

A Late Campanian – earliest Maastrichtian age of thebasal part of the Istebna Formation (Zarovjanka section,Table 3) is confirmed by the presence of Cerodiniumdiebelii and Palaeocystodinium golzowense. The first oc-currence of C. diebelii and its related forms (Ypes 2001) isclose to the Campanian/Maastrichtian boundary (Anto-nescu et al. 2001, Kirsch 1991, Roncaglia 2002). Williamset al. (2004) reported that worldwide total distribution ofranges of C. diebelii is earlier in the Campanian. This isalso the bed that yielded several specimens ofCyclonephelium filoreticulatum, a dinoflagellate cyst de-scribed from the Early Maastrichtian (Costa & Davey1992), and rich occurrence of Alterbidinium (A. acutulum,A. distinctum), a genus that characterises the Maastrichtian(Antonescu et al. 2001). Hence, depending on the range in-terpretation of C. filoreticulatum and Alterbidinium, anEarly Maastrichtian age of the beginning of the IstebnaFormation sedimentation in this area of the Silesian basincan be suggested. The latter interpretation coincides withthe absence of taxa such as Palaeohystrichophora infu-sorioides, Odontochitina sp., Xenascus ceratioides withlast occurrence in the uppermost Campanian. Their last oc-currence was observed in the Horní Bečva section.

Dark grey shales of the Istebna Formation (Bílá section,Table 3) represent the Lower Maastrichtian, as indicatedby the presence of Alterbidinium distinctum, Apteodiniumdeflandrei, Areoligera volata, Hystrichodinium pulchrum,Odontochitina operculata, Trihyrodinium suspectum andgenus Glaphyrocysta.

��&

��� ��!<" Taxa discovered; the species name is followed by sample location and England Finder coordinates (for localization of the specimen on theslide). Scale is 20 μm. • A – Hystrichodinium pulchrum Deflandre, 1935a; SH2b/a, K27/4. • B – Odontochitina operculata (O. Wetzel, 1933a) Deflandre& Cookson, 1955; SH2/a, R35. • C – Kleithriasphaeridium readii (Davey & Williams, 1966b) Davey & Verdier, 1976; SH3/b, M41. • D –Operculodinium echigoense Matsuoka, 1983b; BL1/b, G40/4. • E – Hystrichosphaeridium? sp.; SH2/a, N33. • F – Isabelidinium belfastense (Cookson &Eisenack, 1961a) Lentin & Williams, 1977a; SH2a/c, O42. • G – Isabelidinium cf. bakeri (Deflandre & Cookson, 1955) Lentin & Williams, 1977a;PB1/b, T43. • H – Odontochitina costata Alberti, 1961; SH2a/c, Q39/4. • I – Operculodinium divergens (Eisenack, 1954b) Stover & Evitt, 1978; BL1/a,P42/4. • J – Florentinia cooksoniae (Singh, 1971) Duxbury, 1980; SH1c/a, R39. • K – Hystrichokolpoma proprium (Marheinecke, 1992) Foucher, 2004;SH2a/c, L38/2. • L – Odontochitina porifera Cookson, 1956; PB1/b, G44/4. • M – Oligosphaeridium albertense (Pockock, 1962) Davey & Williams,1969; SH1, S49. • N – Surculosphaeridium? longifurcatum (Firtion, 1952) Davey et al., 1966; SH1/a, O47/2. • O – Pervosphaeridium pseud-hystrichodinium (Deflandre, 1937b) Yun, 1981; PB1/b, L47/1. • P – Palaeocystodinium golzowense Alperti, 1961; BL3/a, K50. • Q – Palaeocystodiniumgolzowense Alperti, 1961; BL0/b, C29/1. • R – Oligosphaeridium buciniferum Corradini, 1973; BL0c, Q36/4. • S – Senoniasphaera rotundata Clarke &Verdier, 1967; SH1/b, S39. • T – Pervosphaeridium truncatum (Davey, 1969a) Below, 1982a; SH3/b, M41. • U – Pterodinium cingulatum (O. Wetzel,1933b) Below, 1981a; SH3a/a, R37. • V – Palaeoperidinium pyrophorum (Ehrenberg, 1838) Sarjeant, 1967b; BL0/b, R28. • W – Spiniferitespseudofurcatus (Klumpp, 1953) Sarjeant, 1970; BL3/a, D48.• X – Phelodinium cf. kozlowskii (Górka, 1963) Lindgren, 1984; SH1/b, Q49.• Y – Palaeotetradinium silicorum Deflandre, 1936b; SH3a/b, S39/1. • Z – Palaeohystrichophora infusorioides Deflandre, 1935; SH1a, H44/45.

����������� ������ �������������

Page 11: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

���

$

%

/

� 0

1

4

;

3 �

&

5

� -

6

7

� 8

9 :

2

���� �������� ���� !���" �#��������� �� ����!�������$������ ��""�����%�������$ � ��!����� ���&���

Page 12: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

Alterbidinium distinctum was found in sample BL0.Representatives of the genus Alterbidinium have their firstoccurrence in the Early Maastrichtian (Antonescu et al.2001). Apteodinium deflandrei has its last occurrence inthe Early Maastrichtian (Roncaglia 2002, Williams et al.2004). Areoligera volata was previously reported from theMaastrichtian of south Germany (Kirsch 1991). The high-est occurrences of Hystrichodinium pulchrum and Odonto-chitina operculata are calibrated in the Early Maastrichtianboth in the northern Apennines (Roncaglia 2002,Roncaglia & Corradini 1997) and in the Maastrichtiantype-area (Robaszynski et al. 1985). The highest occur-rence of Odontochitina is accepted as a cosmopolitan“event”, which has often been reported in the EarlyMaastrichtian (Wiliams et al. 2004). Trihyrodiniumsuspectum has its last occurrence in sample BL0 of thestudied sections. Representatives of this species do notrange beyond the lowermost Maastrichtian (Williams et al.2004, and others).

In summary, interpretation of our data suggests thatsedimentation of the middle and upper parts of the GodulaFormation in the studied part of the Silesian basin is LateCampanian in age and was presumably terminated duringthe earliest Maastrichtian. Based on earlier data (Skupienet al. in press), sedimentation of the Godula Formationstarts in the Santonian. This is in contradiction with theTuronian to Santonian age suggested by Hanzlíková(1972a) based on agglutinated foraminifera. Similarly, Le-manska & Gedl (2005) interpreted a Late Santonian toMiddle Campanian age for the Godula Formation in theSilesian Unit in Poland based on dinoflagellate cysts andforaminifera.

The age of the Istebna Formation was previously inter-preted as Campanian to Maastrichtian or Danian(?) (Han-zlíková 1972b). We propose herein a latest Campanian, orpossibly Early Maastrichtian age (in comparison with datafrom Italy, Roncaglia 2002) for the basal sedimentation ofthe Istebna Formation.

��#

-�����#" Distribution of dinoflagellate cysts in the Horní Bečva section. Numbers refer to counted specimens in the slides.

AgeUppermost

Campanian-LowermostMaastrichtian

Formation Godula Formation

Species / Sample Number PB1 PB2 PB3

Achomosphaera alcicornu 6

Achomosphaera andalousiensis 6 3

Achomosphaera ramulifera 32 3

Achomosphaera ramulifera ramosasimilis 16

Achomosphaera triangulata 11 17 18

Alterbidinium ulloriaq 3

Callaiosphaeridium asymmetricum 11

Cerodinium sp. 3 12

Chatangiella spectabilis 11 6

Cordosphaeridium sp. 6

Cribroperidinium cf. edwardsii 5

Cauveridium membraniphorum 3

Dapsillidinum duma 2

Ellipsodinium rugulosum 2

Florentinia aculeata 11 12

Heteraulacacysta porosa 3

Heterosphaeridium cordiforme 15

Heterosphaeridium spinaconjunctum 23 24

Hystrichodinium pulchrum 8 5

Isabelidinium cf. bakeri 14

Odontochitina costata 3 4

Odontochitina operculata 7 5 8

Odontochitina porifera 3

Oligosphaeridium asterigerum 4 3

Oligosphaeridium poculum 3

Oligosphaeridium sp. 16

AgeUppermost

Campanian-LowermostMaastrichtian

Formation Godula Formation

Species / Sample Number PB1 PB2 PB3

Operculodinium centrocarpum 6

Palaeocystodinium golzowense 5

Palaeohystrichophora infusorioides 4 4

Palaeoperidinium pyrophorum 11

Pervosphaeridium pseudhystrichodinium 4

Pervosphaeridium truncatum 4

Pierceites cf. schizocystis 2

Senoniasphaera inornata 13 19

Spiniferites cf. bulloideus 3 4

Spiniferites porosus 3 2

Spiniferites pseudofurcatus 11

Spiniferites ramosus 23 9 19

Spiniferites ramosusgranomembranaceus

14

Spiniferites scabrosus 2

Spiniferites? velatus 3

Surculosphaeridium sp. 36

Surculosphaeridium? longifurcatum 7 8 5

Tehamadinium sp. 7

Thalassiphora sp. 3 1

Trithyrodinium evittii 1 1

Trithyrodinium sp. 13

Trithyrodinium suspectum 1

Xenascus ceratioides 22 7 2

Xenascus perforatus 6

Xenascus sarjeantii 11 7 15

����������� ������ �������������

Page 13: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

5������=� ����������������

The Godula and Istebna Formations represent flysch sedi-mentation consisting of turbiditic rhythms of relativelycoarse-grained clastic material at the base, and fining up-wards. Turbiditic material typically originates from themore proximal parts of a flysch basin, e.g., from outer shelfand slope environments. The palynofacies reflect this sedi-mentation.

Samples are characterized by a very high percentage ofphytoclasts (Figs 3–8), a low percentage of palynomorphs(5–10%) and very little AOM (1–5%) which indicates ashallow marine environment with high terrestrial influx.Only in the “black” shales of the Istebna Formation (Bílásection) percentage of AOM is slightly higher (10–17%)and which can indicate anoxic conditions. The studied suc-cessions are also characterized by a low percentage of

dinoflagellate cysts (less than 9%) and a very low percent-age of spores and pollen grains (less than 5%).

Dinoflagellate cyst assemblages in the studied sectionare dominated by groups, as genera Achomosphaera,Exochosphaeridium, Oligosphaeridium, Pervosphaeri-dium, Spiniferites and Surculosphaeridium, that lived inoffshore waters. However, their ratio is variable. It is thehigher in the samples taken from the middle part of theGodula Formation. The occurrence of typical open oceanicdinoflagellates like Pterodinium confirms open marine oroceanic depositional settings.

A general decline in the number of representatives ofAchomosphaera, Spiniferites and absence of Pterodiniumin the upper part of the Godula Formation and Istebna For-mation might be related to sea-level fall.

High flux of organic matter, which seems to be re-sedimented from more proximal areas, is indicated by the

��$

��� ��!!" Taxa discovered; the species name is followed by sample location and England Finder coordinates (for localization of the specimen on theslide). Scale is 20 μm. • A – Tehamadinium sp.; PB3/a, S38. • B – Xenascus ceratioides (Deflandre, 1937b) Lentin & Williams, 1973; SH3a/a, V43/4.• C – Xenascus sp.; SH3b, K/L40.• D – Spiniferites aff. ramosus granosus (Davey & Williams, 1966a) Lentin & Williams, 1973; SH2/a, Q35/4.• E – Isabelidinium sp.; SH1b, D35. • F – Achomosphaera triangulata (Gerlach, 1961) Davey & Williams, 1969; PB1a, O37/1. • G – Florentiniaradiculata (Davey & Williams, 1966b) Davey & Verdier, 1973; BL3a, K44/45. • H – Xenascus sarjeantii (Corradini, 1973) Stover & Evitt, 1978; PB2/a,S32. • I – Spiniferites ramosus (Ehrenberg, 1838) Loeblich & Loeblich, 1966; SH2b/a, D50/1. • J – Trithyrodinium evittii Drugg, 1967; PB2/a, F51/3.• K – Dinogymnium sp.; SH1b, S32/33. • L – Xenascus perforatus (Vozzhennikova, 1967) Yun, 1981; PB1b, U37.

$

%

/

1 2

;

0

3

&

���� �������� ���� !���" �#��������� �� ����!�������$������ ��""�����%�������$ � ��!����� ���&���

Page 14: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

occurrence of dinoflagellate cysts (as genera Areoligera,Odonotochitina), which inhabit mainly near-shore waters.Representatives of Odontochitina are frequent in GodulaFormation. Representatives of Areoligera, a genus often as-sociated with inshore environments (Brinkhuis 1994), showthe highest frequencies in “black” shales of the Istebna For-mation. This might indicate less-open oceanic conditions inthe Early Maastrichtian possibly related to a long-term sea-level fall from the Campanian into the Early Maastrichtian.

The constant presence of taxa Cerodinium and Tri-thyrodinium that indicate tropical conditions (Gedl 2004),indicates rather stable and warm surface waters in theSilesian basin, consistent with the warm temperate or sub-tropical climate that prevailed during the Late Campanianand Early Maastrichtian.

���������

The palynological study of samples from the Godula andIstebna formations documents the kerogen assemblage anddinoflagellate cysts distribution.

1. Residues are characterized by abundant sedimentaryorganic materials (SOM), dominated by phytoclasts andcontaining only a small amount of AOM. The studied suc-cessions are also characterized by a low percentage ofdinoflagellate cysts (less than 9%) and a very low percent-age of spores and pollen grains (less than 5%). The formerindicates deposition in an offshore marine environmentsubjected to high influxes of terrestrial material.

2. Dinoflagellate cysts suggest that sedimentation ofthe middle part of the studied Godula Formation took place

���

-�����'" Distribution of dinoflagellate cysts in the Zarovjanka and Bílá sections. Numbers refer to counted specimens in the slides. Abbreviations: Glap.– Glaphyrocysta, Heterosphae. – Heterosphaeridium, S. – Spiniferites, Surculosphae. – Surculosphaeridium.

Age Early Maastrichtian

Formation Istebna Formation

Species / Sample Number ZA1 ZA2 BL0 BL1 BL2 BL3

Achomosphaera alcicornu 4

Achomosphaera fenestra 12 12 13

Alterbidium acutulum 11

Alterbidinium? distinctum 14 2

Apteodinium deflandrei 2

Areoligera aff. tenuicapillata 18 12

Areoligera coronata 15

Areoligera guembelii 14

Areoligera volata 26 6 31 18

Cassiculosphaeridium reticulatum 12

Cauveridium membraniphorum 2

Cerodinium diebelii 12 3 2 1 16

Cerodinium cf. wardenense 1

Chatangiella sp. 2 16

Chatangiella williamsii 2

Cordosphaeridium sp. 1

Cyclonephelium filoreticulatum 2

Deflandrea galeata 6

Deflandrea cf. phosphoritica 16

Florentinia ferox 2

Florentinia radiculata 1 13

Glap. castelcasiense castelcasiense 10

Glaphyrocysta sp. 3 27 2

Glaphyrocysta wilsonii 4

Heterosphaeridium cordiforme 11

Heterosphaeridium sp. 42

Heterosphae. spinaconjunctum 12

Homotryblium cf. tenuispinosum 2 1

Hystrichodinium pulchrum 2 11

Hystrichosphae. conispiniferum 12

Hystrichosphae. salpingophorum 2 4

Age Early Maastrichtian

Formation Istebna Formation

Species / Sample Number ZA1 ZA2 BL0 BL1 BL2 BL3

Hystrichosphaeridium truswelliae 1

Isabelidinium sp. 14 2

Kleithriasphaeridium sp. 5

Odontochitina operculata 2

Oligosphaeridium buciniferum 14

Oligosphaeridium complex 35 4 7

Oligosphaeridium sp. 1

Operculodinium centrocarpum 6 3

Operculodinium cf. divergens 7

Palaeocystodinium bulliforme 1

Palaeocystodinium golzowense 5 1 13 2 2 3

Palaeoperidinium pyrophorum 2 1 3 1

Pervosphaeridium intervelum 5 4 1 4

Phelodinium kozlowskii x

Phelodinium magnificum 1

Phelodinium tricuspis 1

Pierceites? chiemgoviensis 2 1

Scriniodinium sp. 10 2

Senoniasphaera inornata 2

Spiniferites membranaceus 12

Spiniferites pseudofurcatus 1

Spiniferites ramosus 30 6 2 12

S. ramosus granomembranaceus 7

Spiniferites scabrosus 1

Sumatradinium soucouyantiae 1 1

Surculosphaeridium sp. 35 4

Surculosphaeridium? cassospinum 1

Surculosphae.? longifurcatum 8

Trithyrodinium sp. 2

Trithyrodinium suspectum 1

Xiphophoridium cf. asteriforme 1

����������� ������ �������������

Page 15: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

during the Late Campanian. This is in accordance with datafrom the Bystrá section (Skupien et al. in press) wheredinoflagellate cyst associations of Middle to Late Cam-panian age occur and occurrence of agglutinated fora-minifera confirm this age assignment.

3. Sedimentation of the Godula Formation was termi-nated close to the Campanian/Maastrichtian boundary orprobably during the earliest Maastrichtian.

4. The basal part of the Istebna Formation is of LateCampanian – earliest Maastrichtian age.

5. The dark grey shales of the Istebna Formation weredeposited in anoxic conditions (slightly higher percentagesof AOM) and are of Early Maastrichtian age.

6. A gradual sea-level fall was presumably responsiblefor a gradual decrease in the frequency of oceanic taxafrom Late Campanian to Early Maastrichtian.

7. The presence of Cerodinium and Trithyrodiniumthroughout the sections suggests that surface waters werewarm.

&�>�?���������

This research was supported by the Czech Grant Agency No.205/05/0917 “Upper Cretaceous oceanic red beds in the Czechpart of the Outer Western Carpathians; biostratigraphy, sedi-mentology and geochemistry”. We would like to thank SusanneFeist-Burkhardt, Mohamed Ismail Ibrahim, and an anonymousreviewer for reading the manuscript; their critical remarks signifi-cantly improved the manuscript.

���� �����

ANTONESCU, E., FOUCHER, J.C., ODIN, G.S., SCHIØLER, P.,SIEGL-FARKAS, A. & WILSON, G.J. 2001. Dinoflagellatecysts in the Campanian-Maastrichtian succession of Tercis lesBains (Landes, France), a synthesis, 253–264. In ODIN, G.S.(ed.) The Campanian-Maastrichtian boundary. Elsevier, Am-sterdam.

BATTEN, D.J. 1996. Palynofacies and palaeoenvironmentalinterpretation, 1011–1164. In JANSONIUS, J. & MCGREGOR,D.C. (eds) Palynology: principles and applications. Ameri-can Association of Stratigraphic Palynologists Foundation,Dallas.

BRINKHUIS, H. 1994. Late Eocene to Early Oligocene dino-flagellate cysts from the Priabonian type-area (Notheast Italy):biostratigraphy and paleoenvironmental interpretation. Pa-laeogeography, Palaeoclimatology, Palaeoecology 107,121–163. DOI 10.1016/0031-0182(94)90168-6

COSTA, L.I. & DAVEY, R.J. 1992. Dinoflagellate cyst of the Creta-ceous System, 99–132. In POWELL, A.J. (ed.) A stratigraphicindex of dinoflagellate cysts. Chapman & Hall, London.

ELIÁŠ, M. 2000. Relation between Pustevny Sandstone and Ma-linovska skala Sandstone (Godula Formation) in the Beskydy

Mts. Geologické výzkumy na Moravě a ve Slezsku v roce 1999,64–66.

FAUCONNIER, D. & MASURE, E. Eds 2004. Les dinoflagellésfossiles: guide pratique de détermination. Groupe de travailDinoflagellés. 600 pp. BRGM Ed., Collection Scientifique,Orléans.

FENSOME, R.A. & WILLIAMS, G.L. 2004. The Lentin and Wil-liams index of fossil dinoflagellates: 2004 edition. AmericanAssociation of Stratigraphic Palynologists, Contributions Se-ries 42, 909 pp.

GEDL, P. 2004. Dinoflagellate cyst record of the deep-sea Creta-ceous-Tertiary boundary at Uzgruň, Carpathian Mountains,Czech Republic, 257–273. In ODIN, G.S. (ed.) The Campan-ian-Maastrichtian boundary. Elsevier, Amsterdam.

HANZLÍKOVÁ, E. 1972a. Carpathian Upper Cretaceousforaminiferida of Moravia (Turonian-Maastrichtian). Rozpra-vy Ústředního ústavu geologického 39, 1–160.

HANZLÍKOVÁ, E. 1972b. Mikropaläontologische Zoneneintei-lung und Stratigraphie der Istebna-Schichten und ihres unmit-telbaren Hangenden. Věstník Ústředního ústavu geologického47(2), 69–77.

HANZLÍKOVÁ, E. 1973. Foraminifera of the variegated GodulaMember in Moravia (Cenomanian-Turonian). Sborník geo-logických věd, Paleontologie 15, 119–184.

HOEK, R.P., ESHET, Y. & ALMOGI-LABIN, A. 1996. Dinofla-gellate cyst zonation of Campanian-Maastrichtian sequencesin Israel. Micropaleontology 42, 125–150.DOI 10.2307/1485866

KIRSCH, K.H. 1991. Dinoflagellatenzysten aus der Oberkreidedes Helvetikums und Nordultrahelvetikums von Oberbayern.Münchner Geowissenschaftliche Abhhandlungen, Reihe A,Geologie und Paläontologie 22, 1–306.

LEMAŇSKA, A. & GEDL, P. 2005. Benthic agglutinated fora-minifera and organic-walled dinoflagellate cysts from LateCretaceous oceanic deposits at Kalwaria Zebrzydowska,Flysch Carpathians, Poland: biostratigraphy and palaeoen-vironment. Slovak Geological Magazine 11(1), 45–58.

LISTER, J.K. & BATTEN, D.J. 1988. Stratigraphic and palaeo-environmental distribution of Early Cretaceous dinoflagellatecysts in the Hurlands Farm borehole, west Sussex, England.Palaeontographica, Abteilung B 210, 9–89.

MATĚJKA, A. 1949. Geologická studie z okolí Valašského Me-ziříčí. Sborník Státního geologického ústavu 16, 643–693.

MATĚJKA, A. 1952. Contribution to the geology of the basin ofthe Horní Ostravice in the Moravskoslezské Beskydy. SborníkStátního geologického ústavu 19, 621–646.

MENČÍK, E., ADAMOVÁ, M., DVOŘÁK, J., DUDEK, A., JETEL, J.,JURKOVÁ, A., HANZLÍKOVÁ, E., HOUŠA, V., PESLOVÁ, H.,RYBÁŘOVÁ, L., ŠMÍD, B., ŠEBESTA, J., TYRÁČEK, J. & VA-

ŠÍČEK, Z. 1983. Geology of the Moravskoslezské Beskydy andPodbeskydy upland. 304 pp. Ústřední ústav geologický, Praha(in Czech).

PÍCHA, E.J., STRÁNÍK, Z. & KREJČÍ, O. 2006. Geology and hy-drocarbon resources of the Outer Western Carpathians andtheir foreland, Czech Republic, 49–175. In GOLONKA, J. &PÍCHA, F.J. (eds) The Carpathians and their foreland: Geol-

���

���� �������� ���� !���" �#��������� �� ����!�������$������ ��""�����%�������$ � ��!����� ���&���

Page 16: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

ogy and hydrocarbon resources. American Association of Pe-troleum Geologists Memoir 84.

ROBASZYNSKI, F., BLESS, M.J.M., FELDER, P.J., FOUCHER, J.C.,LEGOUX, O., MANIVIT, H., MEESSEN, J. & VAN DER TUUK,L.A. 1985. The Campanian-Maastrichtian boundary in thechalky facies close to the type-Maastrichtian area. Bulletin desCentres de Recherches Exploration-Production Elf-Aquitaine9(1), 1–252.

RONCAGLIA, L. 2002. Lower Maastrichtian dinoflagellates fromthe Viano Clays Formation at Viano, northern Apennines, It-aly. Cretaceous Research 23, 65–76.DOI 10.1006/cres.2002.0298

RONCAGLIA, L. & CORRADINI, D. 1997. Upper Campanian toMaastrichtian dinoflagellate zonation in the northernApennines, Italy. Newsletters on Stratigraphy 35(1), 29–57.

ROTH, Z. 1980. Západní Karpaty – terciérní struktura středníEvropy. 128 pp. Knihovna Ústředního ústavu geologického,Praha.

SKUPIEN, P. 1999. Dinoflagellate cysts distribution of Albian-Cenomanian sections from the Outer Western Carpathians.Věstník Českého geologického ústavu 74(1), 1–10.

SKUPIEN, P. 2003. A summary of palynological results of thestudy of the lower part of the Silesian Unit (Czech part of theOuter Western Carpathians). Transactions of the VŠB – Tech-nical University Ostrava, Mining and Geological Series,Monograph 8, 107–116 (in Czech).

SKUPIEN, P. & VAŠÍČEK, Z. 2003. Lithostratigraphical andbiostratigraphical knowledge of the Bystrý potok section byFrenštát p. R. (Upper Cretaceous, Silesian Unit of the OuterWestern Carpathians). Transactions of the VŠB – TechnicalUniversity Ostrava, Mining and Geological Series, Mono-graph 8, 64–94 (in Czech).

SKUPIEN, P., BUBÍK, M., ŠVÁBENICKÁ, L., MIKULÁŠ, R.,VAŠÍČEK, Z. & MATÝSEK, D. in press. Cretaceous OceanicRed Beds in the Outer Western Carpathians of Czech Repub-lic. SEPM Special Publication.

SMELROR, M. & LEEREVELD, H. 1989. Dinoflagellate andacritarch assemblages from the Late Bathonian to EarlyOxfordian of Montagne Crussol, Rhone Valley, southernFrance. Palynology 13, 121–141.

STOVER, L.E., BRINKHUIS, H., DAMASSA, S.P., DE VERTEUIL, L.,HELBY, R.J., MONTEIL, E., PARTRIDGE, A.D., POWELL, A.J.,RIDING, J.B., SMELROR, M. & WILLIAMS, G.L. 1996. Chapter19. Mesozoic-Tertiary dinoflagellates, acritarchs and prasino-phytes, 641–750. In JANSONIUS, J. & MCGREGOR, D.C. (eds)Palynology: principles and applications. American Associationof Stratigraphic Palynologists Foundation, Salt Lake City.

TORRICELLI, S. & AMORE, M.R. 2003. Dinoflagellate cysts andcalcareous nannofossils from the Upper Cretaceous SaracenoFormation (Calabria, Italy): implication about the history ofthe Liguride Complex. Rivista Italiana di Paleontologia eStratigrafia 109(3), 499–516.

TYSON, R.V. 1995. Sedimentary organic matter. Organic faciesand palynofacies. 615 pp. Chapman & Hall, London.

WILLIAMS, G.L., BRINKHUIS, H., PEARCE, M.A, FENSOME, R.A.& WEEGINK, J.W. 2004. Southern ocean and global dino-flagellate cyst events compared: Index events for the late Cre-taceous-Neogene, 1–98. In EXON, N.F., KENNETT, J.P. &MALONE, M.J. (eds) Proceedings of the Ocean Drilling Pro-gram, Scientific Results 189.

YPES, O. 2001. Maastrichtian-Danian dinoflagellate cyst bio-stratigraphy and biogeography from two equatorial sections inColombia and Venezuela. Palynology 25, 217–249.DOI 10.2113/0250217

&������@"�3�������������@�������� ��������������

List of dinocyst taxa encountered in this study, arranged in alpha-betical order of genus name. The readers are referred to Fensome& Williams (2004) and Fauconnier & Masure (2004) for dinocysttaxonomy and references to taxa. A selection of taxa is depictedon Figs 9–11.Achomosphaera alcicornu (Eisenack, 1954b) Davey & Williams,1966Achomosphaera andalousiensis Jan du Chêne, 1977Achomosphaera fenestra Kirsch, 1991Achomosphaera ramulifera (Deflandre, 1937b) Evitt, 1963Achomosphaera ramulifera ramosasimilis Yun, 1981Achomosphaera sagena Davey & Williams, 1966Achomosphaera triangulata (Gerlach, 1961) Davey & Williams,1969Alterbidium acutulum (Wilson, 1967b) Lentin & Williams, 1985Alterbidinium? distinctum (Wilson, 1967) Lentin & Williams,1985

Alterbidinium ulloriaq Nøhr-Hansen, 1996Apteodinium deflandrei (Clarke & Verdier, 1967) Lucas-Clark,1987Areoligera coronata (O. Wetzel, 1933a) Lejeune-Carpentier, 1938Areoligera guembelii Kirsch, 1991Areoligera senonensis Lejeune-Carpentier, 1938Areoligera aff. tenuicapillata (O. Wetzel, 1933) Lejeune-Car-pentier, 1938Areoligera volata Drugg, 1967Biconidinium longissimum Islam, 1983Callaiosphaeridium asymmetricum (Deflandre & Courteville,1939) Davey & Williams, 1966Cassiculosphaeridium reticulatum Davey, 1969Cauveridium membraniphorum (Cookson & Eisenack, 1962)Fauconnier & Masure, 2004Cerebrocysta bartonensis Bujak in Bujak et al., 1980Cerodinium diebelii (Alberti, 1959b) Lentin & Williams, 1987

���

����������� ������ �������������

Page 17: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

Cerodinium cf. wardenense (Williams & Downie, 1966) Lentin& Williams, 1987Cerodinium sp.Chatangiella bondarenkoi (Vozzhennikova, 1967) Lentin & Wil-liams, 1976Chatangiella sp.Chatangiella spectabilis (Alberti, 1959b) Lentin & Williams,1976Chatangiella tripartita (Cookson & Eisenack, 1960a) Lentin &Williams, 1976Chatangiella williamsii Yun, 1981Cordosphaeridium sp.Coronifera oceanica hebospina Yun, 1981Cribroperidinium cf. edwardsii (Cookson & Eisenack, 1958) Da-vey, 1969Cribroperidinium orthoceras (Eisenack, 1958a) Davey, 1969Cyclonephelium distinctum Deflandre & Cookson, 1955Cyclonephelium filoreticulatum (Slimani, 1994) Prine et al.,1999Dapsillidinum duma (Below, 1982) Lentin & Williams, 1985Deflandrea galeata (Lejeune-Carpentier, 1942) Lentin & Willi-ams, 1973Deflandrea cf. phosphoritica Eisenack, 1938Dinogymnium sp.Dinogymnium cf. sibiricum (Vozzhennikova, 1967) Lentin &Williams, 1973Downiesphaeridium? aciculare (Davey, 1969a) Fauconnier &Masure, 2004Ellipsodinium rugulosum Clarke & Verdier, 1967Exochosphaeridium aff. bifidum (Clarke & Verdier, 1967) Clarkeet al., 1968Exochosphaeridium bifidum (Clarke & Verdier, 1967) Clarke etal., 1968Exochosphaeridium multifurcatum (Deflandre, 1937b) Faucon-nier & Masure, 2004Exochosphaeridium phragmites Davey et al., 1966Exochosphaeridium sp.Florentinia aculeata Kirsch, 1991Florentinia deanei (Davey & Williams, 1966b) Davey & Verdier,1973Florentinia ferox (Deflandre, 1937b) Duxbury, 1980Florentinia hypomagna Yun, 1981Florentinia laciniata Davey & Verdier, 1973Florentinia cooksoniae (Singh, 1971) Duxbury, 1980Florentinia radiculata (Davey & Williams, 1966) Davey & Ver-dier, 1973Florentinia sp.Glaphyrocysta castelcasiensis castelcasiensis Corradini, 1973Glaphyrocysta sp.Glaphyrocysta texta (Bujak, 1976) Stover & Evitt, 1978Glaphyrocysta wilsonii Kirsch, 1991Hafniasphaera fluens Hansen, 1977Heteraulacacysta porosa Bujak in Bujak et al., 1980Heterosphaeridium cordiforme Yun, 1981Heterosphaeridium sp.Heterosphaeridium spinaconjunctum Yun, 1981Homotryblium cf. tenuispinosum Davey & Williams, 1966Hystrichodinium pulchrum Deflandre, 1935Hystrichokolpoma proprium (Marheinecke, 1992) Foucher, 2004

Hystrichosphaeridium bowerbankii Davey & Williams, 1966Hystrichosphaeridium conispiniferum Yun, 1981Hystrichosphaeridium salpingophorum Deflandre, 1935Hystrichosphaeridium truswelliae Wrenn & Hart, 1988Hystrichosphaeridium tubiferum (Ehrenberg, 1838) Deflandre,1937Hystrichosphaeridium? sp.Hystrichostrogylon membraniphorum Agelopoulos, 1964Isabelidinium belfastense (Cookson & Eisenack, 1961) Lentin &Williams, 1977Isabelidinium cf. bakeri (Deflandre & Cookson, 1955) Lentin &Williams, 1977Isabelidinium sp.Isabelidinium svartenhukensis Nøhr-Hansen, 1996Kiokansium polypes (Cookson & Eisenack, 1962) Below, 1982Kleithriasphaeridium loffrense Davey & Verdier, 1976Kleithriasphaeridium readii (Davey & Williams, 1966) Davey &Verdier, 1976Kleithriasphaeridium sp.Leberidocysta chlamydata (Cookson & Eisenack, 1962b) Stover& Evitt, 1978Multiplicisphaeridium? cruciatum (Wetzel, 1933) Stancliffe &Sarjeant, 1994Odontochitina costata Alberti, 1961Odontochitina operculata (O. Wetzel, 1933) Deflandre & Cook-son, 1955Odontochitina porifera Cookson, 1956Oligosphaeridium albertense (Pockock, 1962) Davey & Willi-ams, 1969Oligosphaeridium asterigerum (Gocht, 1959) Davey & Williams,1969Oligosphaeridium buciniferum Corradini, 1973Oligosphaeridium complex (White, 1842) Davey & Williams,1966Oligosphaeridium poculum Jain, 1977Oligosphaeridium sp.Operculodinium centrocarpum (Deflandre & Cookson, 1955)Wall, 1967Operculodinium cf. divergens (Eisenack, 1954b) Stover & Evitt,1978Palaeocystodinium bulliforme Ioannides, 1986Palaeocystodinium golzowense Alperti, 1961Palaeohystrichophora infusorioides Deflandre, 1935Palaeoperidinium pyrophorum (Ehrenberg, 1838) Sarjeant, 1967Palaeoperidinium sp.Palaeotetradinium silicorum Deflandre, 1936Pervosphaeridium intervelum Kirsch, 1991Pervosphaeridium pseudhystricodinium (Deflandre, 1937) Yun,1981Pervosphaeridium truncatum (Davey, 1969) Below, 1982Phelodinium cf. kozlowskii (Gorka, 1963) Lindgren, 1984Phelodinium magnificum (Stanley, 1965) Stover & Evitt, 1978Phelodinium tricuspe (O. Wetzel, 1933) Stover & Evitt, 1978Phthanoperidinium distinctum Bujak, 1994Pierceites? chiemgoviensis Kirsch, 1991Pierceites cf. schizocystis Habib & Drugg, 1987Pterodinium aliferum Eisenack, 1958Pterodinium cingulatum (O. Wetzel, 1933b) Below, 1981Pterodinium? cornutum Eisenack, 1958

���

���� �������� ���� !���" �#��������� �� ����!�������$������ ��""�����%�������$ � ��!����� ���&���

Page 18: ˘ ˇˆ ˙ ˘˝ ˛ ˆ˚ · 2014-03-20 · Palynofacies analysis shows deposition in an offshore marine environment subjected to influxes of terrestrial material. Organic matter is

Raetiaedinium truncigerum (Deflandre, 1937) Kirsch, 1991Scriniodinium? sp.Senoniasphaera inornata (Drugg, 1970) Stover & Evitt, 1978Senoniasphaera rotundata Clarke & Verdier, 1967Spiniferites aff. ramosus granosus (Davey & Williams, 1966)Lentin & Williams, 1973Spiniferites cf. bulloideus (Deflandre & Cookson, 1955) Sarjeant,1970Spiniferites membranaceus (Rossignol, 1964) Sarjeant, 1970Spiniferites porosus (Manum & Cookson, 1964) Harland, 1973Spiniferites pseudofurcatus (Klumpp, 1953) Sarjeant, 1970Spiniferites ramosus granomembranaceus (Davey & Williams,1966a) Lentin & Williams, 1973Spiniferites ramosus (Ehrenberg, 1838) Loeblich & Loeblich,1966Spiniferites ramosus brevifurcatus (Eisenack & Cookson, 1974)Lentin & Williams, 1977Spiniferites scabrosus (Clarke & Verdier, 1967) Lentin & Willi-ams, 1975

Spiniferites? velatus (Clarke & Verdier, 1967) Stover & Evitt, 1978Subtilisphaera sp.Sumatradinium soucouyantiae de Verteuil & Norris, 1992Surculosphaeridium sp.Surculosphaeridium? cassospinum Yun, 1981Surculosphaeridium? longifurcatum (Firtion, 1952) Davey et al.,1966Tehamadinium sp.Tanyosphaeridium boletus Davey, 1974Thalassiphora sp.Trithyrodinium evittii Drugg, 1967Trithyrodinium sp.Trithyrodinium suspectum (Manum & Cookson, 1964) Davey,1969Xenascus ceratioides (Deflandre, 1937) Lentin & Williams, 1973Xenascus perforatus (Vozzhennikova, 1967) Yun, 1981Xenascus sarjeantii (Corradini, 1973) Stover & Evitt, 1978Xenascus sp.Xiphophoridium cf. asteriforme Yun, 1981

���

����������� ������ �������������